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ABSTRACT

Practical reinforcement learning (RL) usually requires agents to be optimized for
multiple potentially conflicting criteria, e.g. speed vs. safety. Although Multi-
Objective RL (MORL) algorithms have been studied in previous works, their
trained agents often lack precise controllability of the delicate trade-off among
multiple objectives. Hence, the resulting agent is not versatile in aligning with cus-
tomized requests from different users. To bridge the gap, we develop “Preference
control (PC) RL”, which trains a meta-policy that takes user preference as input
controlling the generated trajectories within the preference region on the Pareto
frontier. To this end, we train a preference-conditioned meta-policy by our proposed
preference-regularized MORL algorithm. The achieved meta-policy performs as
a multi-objective optimizer that can directly generate user-desired Pareto solutions.
The proposed algorithm is analyzed and its convergence and controllability are theo-
retically justified. We evaluate PCRL on a discrete toy environment and challenging
high-dimensional robotic control tasks with up to six objectives. In these exper-
iments, PCRL-trained policies exhibit significantly better controllability than exist-
ing approaches and can generate Pareto solutions with better diversity and utilities.

1 INTRODUCTION

Multi-Objective Reinforcement Learning (MORL) has attracted growing interests in applications of
training sequential decision-making agents that satisfy multiple objectives. In practice, optimizing for
potentially multiple criteria often involves managing trade-offs between them. For example, speed vs.
safety or distance vs. energy for robotic control tasks. Many previous MORL methods (Yang et al.,
2019; Abels et al., 2019; Xu et al., 2020; Lu et al., 2023; Alegre et al., 2023) tried to address the
trade-off issue by optimizing a linearly scalarized objective, which sums up multiple objectives with
preference weights. However, Linear Scalarization (LS) approach’s solutions do not always guarantee
to achieve desired trade-offs. For example, even with equal weights on two objectives, LS may heavily
optimize one objective over the other (as shown in Fig. 1). Another limitation is that some methods Xu
et al. (2020); Alegre et al. (2023) require learning multiple models to identify the Pareto front , which
is unscalable to increasing objectives or model sizes. By the design, each model only handles one spec-
ified preference, while a versatile RL agent should be adaptable to various unseen user preferences.

This inspires us to develop an innovative MORL scheme, “Preference Control (PC) RL”, to train
a meta-policy that takes user preference as input to control the trade-off between objectives. The
scheme enables us to apply methods (Lin et al., 2019; Mahapatra and Rajan, 2020) from the Multi-
Objective Optimization (MOO) domain to overcome the limitation of LS and find preference-specific
solutions on the Pareto front. Moreover, inspired by how some MOO methods (Désidéri, 2009; Liu
et al., 2021; Xiao et al., 2023) deal with conflicting gradients and stochastic gradients, we propose
a novel MORL-specific algorithm “PreCo” and conduct a theoretical analysis of it, which proves
that, with stochastic gradients, PCRL using PreCo can achieve Pareto stationary solutions precisely
controlled by the input preference.

We conducted experiments in environments with conflicting objectives Felten et al. (2023) to em-
pirically demonstrate that (1) our PCRL scheme is compatible with various MOO methods; and (2)
PCRL with PreCo consistently achieves superior performance across multiple MORL environments.
In particular, our method excels in cases with a large number of objectives or conflicting objectives.
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2 PRELIMINARIES

Multiple Objective Reinforcement Learning In the multi-objective RL (MORL) setting, agent
needs to optimize possibly conflicting objectives with their separate reward function. MORL setting
can be modeled as Multi-Objective Markov Decision Process (MOMDP). Unlike the scalar reward
function in conventional MDP, the reward function in MOMDP is vector-valued. A MOMDP is
defined as M = (S,A, P, r, p0, γ), with state space S and action space A, dynamics P (st+1|, st, at),
initial state distribution p0(s0), and discount factor γ ∈ [0, 1). The vector-valued function r :
S × A → Rm is a multi-objective reward function with m objectives. A policy π : S → A is a
function mapping states to actions. The multi-objective value functions for a policy π are:

qπ(s, a) = Eπ

[ ∞∑
i=0

γir(St+i, At+i)|St = s,At = a

]
(1)

vπ(s) = Eπ

[ ∞∑
i=0

γir(St+i, At+i)|St = s

]
(2)

Let vπ ∈ Rm to be the multi-objective value vector of π under the initial state distribution p0:

vπ = ES0∼p0
[qπ(S0, π(S0))] (3)

Each entry of vπ is a value for an objective. The Pareto Front is a set of nondominated multi-objective
value functions F := {vπ | ∄π′ s.t. vπ′ ≻ vπ}, where ≻ is the relation of Pareto dominance such
that vπ′ ≻ vπ means (∀i,vπ′

i ≥ vπ
i ) ∧ (∃j,vπ′

j > vπ
j ). Intuitively, if vπ1 is dominated by vπ2 , then

there is no objective where π1 performs better so π2 is always a better choice than π1. An optimal
MORL agent should have its value vector on the Pareto front.

Preference control Preference quantifies the trade-off among the multiple objectives. We define
the set of preferences P := {p ∈ Rm : pT1 = 1,p ≻ 0}. The desired policy π for preference p
should have the value vπ optimizing a similarity metric Ψ(p,vπ), which can be cosine similarity
or what we define in Definition 4.2. The optimal vπ should be on the Pareto Front with a maximal
similarity to p. In other words, the ideal vπ for preference p should be on the Pareto front and closest
to the intersection of between the Pareto front and the ray from the origin to the direction of p.

Previous works (Yang et al., 2019; Xu et al., 2020; Alegre et al., 2023) consider maximizing a linear
scalarization of objectives pTvπ. However, the solution of maxπ p

Tvπ or maxθ p
Tvπθ can only

be in the convex part of the Pareto front (Boyd and Vandenberghe, 2004, Chapter 4.7) but not the
non-convex part. Even for some MORL cases where the Pareto front can be considered convex (Lu
et al., 2023), the solution is often limited to a Convex Coverage Set (CCS) that is a subset of Pareto
front. Even for strictly convex Pareto front, LS is still not guaranteed to be close to the direction of p
as shown by Fig. 1c.

Instead of learning a policy πp for each possible p ∈ P , our goal is to learn an agent with a conditional
policy π(a|s,p) that achieves Pareto optimal values vπ(·|·,p) ∈ argmaxπ′ Ψ(p,vπ′

) for any p ∈ P .
For conciseness, we denote vπ(·|·,p) as vπp in the following text. There are two requirements for the
agent. One is to explore the Pareto front as much as possible, and the other is to have a performance
trade-off close to the input preference. These two requirements can be evaluated for two metrics:
Hypervolume(HV) for exploration of Pareto front and Similarity Ψ(p,vπ) for controllability.

Multi-objective optimization methods Previous Multi-Objective Optimization (MOO) methods
deal with how to manipulate gradients from multiple objectives so that updating with the manipulated
gradient can reach Pareto optimality. A typical method MGDA (Désidéri, 2009) can guarantee to
update in a common ascending direction and stops when the Pareto stationary points are reached.
Methods such as CAgrad (Liu et al., 2021) and SDMGrad (Xiao et al., 2023) can provide Pareto
optimal solutions by linear scalarization with preference as weights. However, as mentioned above,
optimizing linearly scalarized objective with weight p can not guarantee a large similarity Ψ(p,vπ).

Methods such as PMTL (Lin et al., 2019) and EPO (Mahapatra and Rajan, 2020) apply similarity
constraints to reach the Pareto front with the desired preference, so they can be used for our purpose.
In the next section, we show how these methods can be used for learning π(a|s,p) and how we can
make novel improvements to them for the MORL setting.
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(a) Nonconvex (b) Nonconvex (c) convex

Figure 1: The threes plots show results of optimizing the two objectives using
linear scalarization maxπp pTvπp and its lack of controllability. The blue solid
curve is the Pareto front, the colored dotted rays are the preference directions of p,
and the same colored points are the resulted values vπp . The Pareto front in the
left two plots are non-convex, while the Pareto front in the right plot is convex.
We observe an obvious gap between the preferences and the achieved values in
both situations. Linear scalarization can not always achieve an ideal solution in
the intersection between the preference rays and the Pareto front. This explains
why optimizing a similarity Ψ(p,vπ) is necessary for preference control.

Figure 2: Illustration
of hypervolume of three
value vectors v1,v2,v3 for
a two objective optimiza-
tion. Their hypervolume is
the volume of the union set
of their dominated regions
(the green shaded area), re-
flecting their diversity and
coverage.

3 LEARNING PREFERENCE CONTROLLABLE AGENT

We propose “Preference control (PC) RL” scheme to address the trade-off between multiple conflicting
objectives by training a single agent that can be conditioned on different performance preferences.
Conditional preference p controls the agent’s emphasis on different objectives and corresponds to a
desired point on the Pareto front. We denote the policy conditioned on a preference π(·|·,p) as πp.
During training, we sample p ∈ P uniformly and collect rollout data to estimate vπp and evaluate
similarity Ψ(p,vπp). Based on the evaluation, we obtain an update direction for πp. In PCRL
scheme, the update direction can be obtained using any methods that can incorporate preference
on the objectives, such as linear scalarization (optimizing maxπp p

Tvπp), or other MOO methods
with extra optimization or regularization of the similarity (implementations in Appendix B). We also
propose a novel update method while these existing MOO methods will be tested as baselines. In
the following section, we first introduce how to estimate the vπp values then explain our proposed
update method. We provide theoretical guarantee of our proposed update method in the next section.

Figure 3: PCRL updates the agent based on its performance and the user preference of objectives.

3.1 OBJECTIVE ESTIMATION

Preference control aims to achieve the desired trade-off on conflicting objectives. In the previous RL
experiments of MOO methods like Yu et al. (2020); Liu et al. (2021); Xiao et al. (2023), the loss of
the value function is used as the objective for MOO, and equal weight is given to all value losses
to balance the multi-objectives. While this may be appropriate for RL tasks with minimal conflict,
in our setting for preference control, it is essential to align the objective with the preference, so the
objective to be aligned with the preference should be vπp itself rather than its approximation loss.
Here, we show how to estimate vπp for mainstream RL algorithms.

When learning πp with value-based methods like DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al.,
2018) and SAC (Haarnoja et al., 2018), we can estimate vπp by

v̂πp = ES0∼p0 [qθ(S0, πp(S0),p)] (4)

3
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where qθ is multi-objective critic network that outputs a vector of Q-values, it is also conditioned on
the prefernece p, because p controls the policy π thus controlling the value qπ .

For policy-based methods such as A3C Mnih et al. (2016), PPO Schulman et al. (2017), they update
with a whole episode so vπp can be estimated by episodic returns.

v̂πp = ES0∼p0

[
T∑

t=0

γtr(St, At)

]
(5)

As a result, our scheme is applicable to both discrete action space and continuous action space. With
the estimated value vector v̂πp , we can evaluate the similarity Ψ(p, v̂πp).

3.2 UPDATING PROCEDURE

After estimating objective values and similarity for preference control, we need to manipulate the
gradients from different objectives and update the agent using the manipulated gradient. Our scheme
has the following updating procedure:

1. Get the Jacobian matrix ∇πp v̂
πp :

Each row of the Jacobian matrix ∇πp v̂
πp is a gradient for one objective. The gradient can be

obtained by conventional RL methods, such as the policy gradient and the deterministic policy
gradient. An illustrative diagram (Fig. 9 in Appendix D) provides intuition and shows how to
estimate ∇πp v̂

πp for different RL algorithms.
2. Get similarity gradient ∇πpΨ(p, v̂πp):

Ψ measures the similarity between preference p and the multi-objective vector J. For evaluation, co-
sine similarity is good enough to measure how close the value vector is to the preference. However,
when gradient ∇πpΨ(p, v̂πp) is used for our updates, the resulting manipulated gradient update
is expected to not only keep the similarity large but also converge to the Pareto front. To this end,
we propose a novel design of the similarity function with theoretical analysis in the next section.

3. Manipulate the gradients and find the optimal update direction d∗ by solving:

w∗ ∈ argmin
w

∥d∥, d ≜ ∇T
πp
v̂πpw + λ∇πpΨ(p, v̂πp) (6)

d∗ = ∇T
πp
v̂πpw∗ + λ∇πpΨ(p, v̂πp) (7)

This is a min-norm problem similar to MGDA (Désidéri, 2009) and SMGrad (Xiao et al., 2023),
but it adds a similarity gradient to every objective gradient, making the update not only ascent
in a common improving direction but also closing the value vπp to the preference p. We call
this update PREference COntrol(PreCo) update. Updating with d∗ converges to where ∥d∗∥ = 0,
indicating no common improving direction exists thus satisfying Pareto stationary. We will prove
the convergence of this gradient under our proposed similarity function.

This is a general update procedure that can employ any RL algorithm for the calculation of the
objective gradients ∇πp v̂

πp . In the third step, the gradient manipulation can also be performed by
various MOO methods. In the experiment, we examine our scheme with PreCo update against the
baselines with existing gradient manipulation methods such as EPO (Mahapatra and Rajan, 2020)
CAGrad (Liu et al., 2021). Computationally, the min-norm problem in the third step is solved at
the policy level with ∇πp v̂

πp instead of the parameter level with ∇θv̂
πp . The size for a sample

of ∇πp v̂
πp is only m× B for a batch of B transitions, while ∇θv̂

πp of size m×M could have a
parameter size M ≫ m. M can even be billions for large models. For those cases, solving the min-
norm problem at the parameter level could be memory-inefficient and computationally intractable. A
pseudo-code for the PCRL scheme with PreCo update and more details on the definitions of policy
level gradients and parameter level gradients can be found in Appendix D.

4 THEORETICAL ANALYSIS

In this section, we provide the formal definition of our proposed similarity function Ψ(·, ·) and the
theoretical analysis for the PreCo update. We will prove that it converges to Pareto stationary points,
and the resulting similarity Ψ(p,vπp) will also converge to stationary points.
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Definition 4.1. We define our similarity function as follows

Ψ(p,v) = −1

2
∥max

i

vi

pi
p− v∥2 (8)

Intuitively, the similarity gradient ∇vΨ(p,v) encourages to focus on the less optimal objectives to
reach the preference p. A visualization for Φ(p, ·) can be found in Appendix E.

Deep reinforcement learning is inherently stochastic and sensitive to sample complexity. Therefore,
we analyze the convergence rate of the proposed PreCo update in the stochastic gradient setting. The
PreCo algorithm that we analyze in this case is Algorithm 1.

Algorithm 1 PreCo in the theoretical analysis setting

Initialize: Preference p, preference-conditioned policy πp, and weights w0

for t = 0, 1, ..., T − 1 do
Rollout and estimate the value to get data ξ, ξ′, ζ
wt = ΠW

(
wt−1 − βt[G(πp,t; ξ)

T (G(πp,t; ξ
′)wt−1 + λtgs(πp; ξ

′))]
)

πp,t+1 = πp,t + αt (G(πp,t; ζ)wt−1 + λtgs(πp,t; ζ))
end for

w is the one defined in Equation (6) and ΠW means the projection to the set W := {w ∈ Rm :
wT1 = 1,w ≻ 0}. Data ξ, ξ′, ζ are different transition samples used to estimate gradient ∇πp v̂

πp .
For conciseness, we denote

G(πp) = E[G(πp; ξ)] = ∇T
πp
vπp = E[∇T

πp
v̂πp ], (9)

where the expectation is taken w.r.t. data ξ, the ith column of G(πp; ξ) is the gradient of ith objective
and gs(πp) is the similarity gradient

gs(πp) = E[gs(πp, ξ)] = G(πp)∇vΨ(p,vπp) = E [G(πp; ξ)∇vΨ(p, v̂πp)] . (10)

Algorithm 1 is only for theoretical analysis; In practice, the weight w does not need to be updated only
once every iteration but can be fully optimized for the min-norm problem (6) and a more practical
Algorithm 2 is provided in Appendix D.

4.1 CONVERGENCE ANALYSIS

First, we define what Pareto stationary is:
Definition 4.2. We define π is an ϵ-accurate Pareto stationary policy if E[minw ∥G(πp)w∥] ≤ ϵ,
where w is a convex coefficient.

We assume the continuity and smoothness of the objectives.
Assumption 4.1. For every objective i ∈ [m], vi(πp) is li-Lipschitz continuous and ∇vi(πp) is
li,1-Lipschitz continuous for any preference conditioned policy πp.

This assumption is quite common in RL setting. By the “branched returns bound” in Janner et al.
(2019),

|vi(π1)− vi(π2)| ≤ 2rmax,i

(
γϵπ

(1− γ)2
+

ϵπ
1− λ

)
, (11)

where rmax,i = maxs,a ri(s, a) and ϵπ can be any scalar satisfying ϵπ ≥ maxs DTV (π1(·|s), π2(·|s)).
Because

max
s

DTV (π1(·|s), π2(·|s)) ≤ DTV (π1, π2) =
1

2
|π1 − π2|, (12)

we can derive

|vi(π1)− vi(π2)| ≤ rmax,i

(
γ

(1− γ)2
+

1

1− λ

)
|π1 − π2|, (13)

and Li can be rmax,i

(
γ

(1−γ)2 + 1
1−λ

)
. Therefore, the Lipschitz continuity of objectives is naturally

satisfied for conventional RL settings, and we only need to assume the gradients are also Lipschitz
continuous.

Next, we make an assumption on the bias and variance of the stochastic gradient gi(π; ξ).

5
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Assumption 4.2. For every objective i ∈ [m], the gradients gi(πp; ξ) is unbiased estimate of gi(πp),
and the variances is bounded by Eξ[∥gi(πp; ξ)− gi(πp)∥2] ≤ σ2.

We also assume bounded gradient.
Assumption 4.3. There exists a constant Cg such that ∥G(πp)∥ ≤ Cg .

Lemma 4.1. The similarity function Ψ(p, ·) is (1+maxi
|p|
|pi| ) -Lipschitz smooth and gs(·) is Lipschitz

continuous under Assumption 4.1 and Assumption 4.3.

This lemma shows that our proposed similarity function is Lipschitz smooth. The detailed proof is
in Appendix I.1. PreCo and SDMgrad (Xiao et al., 2023) both belong to MGDA-variant methods that
solve a min-norm problem for gradient manipulation. Leveraging the fact that gs(πp) is a positive
linear combination of G(πp) and the Lipschitz smoothness property, we can therefore build upon
their results to prove that PreCo converges to Pareto stationary points.

Theorem 4.1. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt =

Θ(m−1T− 1
2 ), with a constant λ and Lipschitz smooth similarity function Ψ(p, ·), we have

1
T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] = O(mT− 1
2 ). To achieve an ϵ-accurate Pareto stationary point, it

requires T = O(m2ϵ−2) updates.

Theorem 4.1 shows PreCo converges to Pareto stationary points when λ is a constant. This theorem
applies to our proposed similarity function Ψ(p, ·).
Theorem 4.2. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1

2T− 1
2 ), βt = Θ(m−1T− 1

2 ),
with a Lipshitz smooth similarity function with g′s(πp,t) being convex combination of gi(πp,t) for
all t, there can be an increasing λ = Θ(log T ) and we have 1

T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] =
O(mT− 1

2 log T ).

Theorem 4.2 consider a case requiring similarity gradient to be a convex combination of objective
gradients, of which its design is discussed in Appendix E.2. In this case λ can increase without an
upper limit and eventually gs will dominate the min-norm solution of (6). Proofs are in Appendix I.2.

Remark 4.1. In practice, Theorem 4.1 still applies to cases where λ increases but with an upper
limit. Because after λ gets close to the limit, it can be considered constant. This offers theoretical
justification for implementing PreCo with Ψ(p, ·) and an increasing λ.

Remark 4.2. The convergence rate for Theorem 4.2 seems slower than results from Xiao et al. (2023)
because we rigorously considered the changes in the Lipschitz constant of the (G(πp,t)wt+λgs(πp,t))
caused by increasing λ

4.2 CONTROLLABILITY ANALYSIS

Controllability in our setting is the similarity between the desired preference p and the value vπp of
the preference-conditioned policy πp. It is measured by Ψ(p,vπp). We provide the following results
to show how vπp will converge to the point close to the p direction.

Theorem 4.3. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with

a constant λ and Lipschitz smooth similarity function like Ψ(p, ·), we have 1
T

∑T−1
t=0 E[∥gs(πp)∥]−

2C2
g

λ2 = O(mT− 1
2 ).

Theorem 4.3 provides an intuitive result, that with constant λ, the norms of the similarity gradient
1
T

∑T−1
t=0 E[∥gs(πp)∥] will converge and be bounded. The larger λ, the lower the bound

2C2
g

λ2 , and the
closer the solution will reach the stationary points for maximizing similairty.

Theorem 4.4. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ),

with a constant λ and Lipschitz smooth similarity function like Ψ(p, ·), there can be an increasing
λ = Θ(T

1
2 ) and we have 1

T

∑T−1
t=0 E[∥gs(πp)∥] = O(mT− 1

2 log T ).

Theorem 4.4 shows PreCO with increasing λ will converge to the stationary points for the similarity
objective. The proofs of the theorems are in Appendix I.3.

6
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Remark 4.3. Similar to Theorem 4.1, Theorem 4.3 applies to practical implementations where λ
increases but with an upper limit.

Remark 4.4. The converged stationary points do not guarantee to have always high similarity metrics.
For example, when using Ψ(p, ·), our results show gs(πp) = G(πp)∇vΨ(p,vπp) converges to 0.
However, the value vπp coincide with the preference p only when ∥∇vΨ(p,vπp)∥ = 0. ∥gs(πp)∥ can
also be 0 when ∥∇vΨ(p,vπp)∥ > 0, with G(πp) and ∇vΨ(p,vπp) being orthogonal or G(πp) = 0.
These situations means the points desired by the preference might not exist on the Pareto front. We
discuss in practice how to deal with unreachable regions of Pareto front in Appendix H.

The theoretical results show that PreCo can discover not only Pareto stationary solutions but also
preference-specific solutions. We used a 2-D MOO example in Appendix F to demonstrate that PreCo
can find preference-specific solutions for general stochastic MOO.

5 EXPERIMENTS

In the experiment, we want to empirically answer the following questions:

1. Can the agent have non-dominated performance for different preferences?
2. How controllable is it for unseen preference trade-offs?
3. Is our method scalable for larger number of objectives?
4. Can our method be used for both discrete action and continuous action environments?

Benchmarking Environments To answer the questions, we need challenging environments with
conflicting objectives, so that there is a trade-off on the emphasis of different objectives. Also, we
need environments with more than just two objectives. In addition, we need environments with both
discrete action space and continuous action space. We use TD3 for continuous and PPO-clip for
discrete actions. We chose to conduct experiments on the following four MORL environments.

• Fruit-Tree: A discrete environment. Every leaf contains a fruit with a 6-D reward for the nutrients
Protein, Carbs, Fats, Vitamins, Minerals, and Water.

• MO-Ant: A higher dimensional continuous robotic control environment with 2-D reward of
x-velocity and y-velocity.

• MO-Hopper: A continuous robotic control environment with 2-D reward. The first dimension is
for going forward on the x-axis and the other for jumping high on the z-axis.

• MO-Reacher: A robotic control environment with continuous state space and discrete action
space. The reward is 4-D and is defined based on the distance of the tip of the arm and the four
target locations.

Evaluation metrics We evaluated the results using two metrics: hyperVolume(HV) for Pareto
front exploration and Cosine Similarity(CS) for controllability evaluation. They are measured in
test time with preference samples unseen in training (Appendix C). We report the mean and standard
deviation results of 5 seeds.

Baselines We compare PreCo with existing MOO gradient manipulation methods in PCRL scheme:

• Linear Scalarization (LS) Optimize the linearly scalarized objective and the manipulated gradient
will be simply the gradient linearly weighted by the preference (∇πp v̂

πp)Tp. This is the most
common update approach in previous MORL methods. Works like Yang et al. (2019); Xu et al.
(2020); Alegre et al. (2023) can all be categorized as LS variations.

• Exact Pareto Optimal (EPO) Search MOO methods such as PMTL (Lin et al., 2019) and
EPO (Mahapatra and Rajan, 2020) apply similarity constraints and have two modes for situations
of low and high similarity. We implement it as updating with similarity gradient for low similarity
mode, MGDA (Désidéri, 2009) gradient for high similarity mode.

• Conflict-Averse Gradient (CAGrad) CAGrad tries to find a common ascent direction that is not
too far from the average gradient. In our setting, we modify it to be a common ascent direction not
is not too far from the similarity gradient.
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• Stochastic Direction-oriented MO-Gradient (SDMGrad) Similar to PreCo, SDMGrad solves
a variant of the min-norm problem (6) for gradient manipulation. Instead of adding objective
gradients with similarity gradients like PreCO, they add a convex combination of objective gradients.
Therefore, SDMGrad can serve as a baseline to show whether our proposed similarity function Ψ
contributes to empirical performance for ablation study.

These baselines can be categorized into the linear scalarization approach, such as LS and SDMGrad,
and the similarity approach, such as EPO and CAgrad. PreCo belongs to the similarity approach.
More details of the baseline implementations can be found in the Appendix B.

5.1 FRUIT TREE

Fruit tree is a discrete environment, we used PPO-clip in the MORL scheme. We test our method and
the baselines with rewards from 3-6 dimensions. The results of HV and CS are shown in Table 1.

Method 3D 4D 5D 6D

LS 0.12 ± 0.01 | 0.78 ± 0.03 0.33 ± 0.13 | 0.76 ± 0.05 1.59 ± 0.29 | 0.74 ± 0.01 5.74 ± 0.88 | 0.78 ± 0.01
SDMgrad 0.14 ± 0.01 | 0.78 ± 0.03 0.66 ± 0.02 | 0.72 ± 0.00 2.74 ± 0.09 | 0.66 ± 0.01 13.30 ± 0.15 | 0.72 ± 0.01

EPO 0.15 ± 0.01 | 0.84 ± 0.02 1.04 ± 0.05 | 0.89 ± 0.02 3.98 ± 0.48 | 0.86 ± 0.03 14.97 ± 2.29 | 0.77 ± 0.03
CAGrad 0.14 ± 0.02 | 0.78 ± 0.02 0.30 ± 0.06 | 0.87 ± 0.01 1.23 ± 0.14 | 0.69 ± 0.01 4.93 ± 0.81 | 0.60 ± 0.09
PreCo(Ours) 0.15 ± 0.01 | 0.84 ± 0.02 1.09 ± 0.02 | 0.91 ± 0.01 4.33 ± 0.21 | 0.87 ± 0.01 15.61 ± 0.75 | 0.78 ± 0.03

Table 1: “HV|CS” (higher is better for both) in fruit-tree environment with HV in the scale of 103. Our
method consistently achieves the best optimality (HV) and controllability (CS) from 3-6 objectives.

Results show our proposed PreCo perform better especially for higher reward dimensions. Also,
similarity approach methods perform better than linear scalarization methods. One major reason for
this can be illustrated by the following example 3-dimensional reward case.

(a) Protein-Carbs-Fats (b) Protein-Carbs (c) Protein-Fats

Figure 4: (a) shows the 3-D values vπp achieved under difference preference input p. Blue points are
vπp of PreCo while LS only learns the red point for most random seeds(even with different p input).
All shown values are non-dominated by others; (b) shows the Protein-Carbs view from the grey
arrow’s perspective in (a); and (c) shows the Protein-Fats view from the green arrow in (a).

In the case shown in Fig. 4, LS agent has only one constant vπp at the red point, regardless of
the preference input, which indicates that the LS agent policy is not uncontrollable by p despite
being conditioned by p. Although this red point dominates many the blue points (vπp of different
p for PreCo agent) for Proteins and Carbs (Fig. 4b), there are blue points with better values for
Fats (Fig. 4c).

5.2 MO-ANT

The MO-Ant is a challenging environment with an 8-dimensional continuous action space and a
27-dimensional continuous observation space. The reward is 2-dimensional, with one for x-velocity
and one for y-velocity. Although the robotic agent has more complex dynamics, the objectives appear
to be very similar since both involve the movement of the agent, making it a relatively easy for
preference control. As shown in Fig. 5, the Pareto front has an intuitive convex shape. The preferences
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(a) MO-Ant (b) Hypervolume (c) Cosine Similarity (d) Pareto Front

Figure 5: Optimality (HV) and Controllability (CS) of MO-Ant. PreCo (ours) achieves the best CS.
Though being the second best on HV, it achieves the widest spread on the Pareto front in (d). In
(b)-(c), methods of blue bars are based on linear scalarization, while methods of orange bars optimize
the similarity.

.
p are 20 directions: [0.05, 0.95], [0.1, 0.9], ..., [1, 0]. The similarity approach methods have high CS
metrics over 0.98. This indicates that our proposed PCRL scheme with similarity optimization works
for Pareto front discovery and preference control.

5.3 MO-HOPPER

The MO-Hopper is a classic continuous robotic control environment, with one objective rewards for
going forward in the x-axis, and the other rewards for jumping high in the z-axis as shown in Fig. 6a.
The two objectives are less symmetric than MO-Ant and there is a clear trade-off in directions.

(a) MO-Hopper (b) Hypervolume (c) Cosine Similarity (d) Pareto Front

Figure 6: Optimality (HV) and Controllability (CS) of MO-Hopper.
.

The HV and CS results are shown in Fig. 6. Our method demonstrated superior performance in HV,
while its CS was only slightly lower than that of EPO. Unlike EPO, which employs hard constraints
on similarity, our proposed PreCo utilizes soft constraints. This could be the reason why PreCo can
sacrifice a small degree of controllability for a significant enhancement in optimality. The hopper has
to be able to jump before jumping forward, this is why objective 2 is higher than objective 1 for most
methods. As a result, the asymmetric objectives make the discovered Pareto front not as symmetric
as that of MO-Ant. We have a calibration approach to further improve controllability in Appendix H.

5.4 MO-REACHER

The MO-Reacher is a challenging environment with 4-dimensional rewards for reaching four targets
shown in Fig. 7a, and 9-dimensional discrete actions. The reward is depend on the L2 distance
from the tip of the robotic agent’s arm to 4 target locations at [0.14, 0], [0, 0.14], [−0.14, 0], [0, 0.14],
higher rewards for lower distances. PPO is used for PCRL.

Fig. 7 shows the quantitative results of HV and CS and Fig. 8 shows the state coverage of robotic
arm tip positions. The horizontal blue dotted line in Fig. 7 is the performance metric of the randomly
initialized agent. Its HV and CS serve as a reference for comparison. We can see that EPO and our
PreCo higher CS than random, indicating that their preference controllability improved after training.
Fig. 8b shows their state coverage controlled by 4 different p. From left to right they are [0, 1, 0, 0],
[0, 0.66, 0.33, 0], [0, 0.33, 0.66, 0], [0, 0, 1, 0]. The preference [0, 1, 0, 0] means full focus on closing
to top target [0, 0.14], while [0, 0, 1, 0] fully focus for left target [−0.14, 0]. The first row is EPO and
the second is PreCo. Their state coverage can be smoothly controlled from more density to the top to
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(a) MO-Reacher

(b) Hypervolume

(c) Cosine Similarity

Figure 7: HV and CS of
MO-Reacher. The dotted
line is the performance of
a randomly initialized agent
as a reference.

(a) State coverage of Random, LS, SDMgrad, and CAGrad (left to right). Each
state coverage heatmap is the same for different preference p.

(b) State coverage heatmaps of EPO (top row) and PreCo (bottom row) under
four different preferences p (columns). It shows that they produce preference-
specific policies given different p.

Figure 8: State coverage heatmaps for the positional states of the tip of the
robotic arm. Red means higher density of coverage and blue means lower
density. EPO and PreCo exhibit different state coverage controlled by different
p, while random, LS, SDMgrad, and CAGrad show the same state coverage
for different preferences.

more density to the left. In contrast, LS/SDMgrad/CAgrad have almost the same CS as the random
agent because they only learn one universal policy for all preferences, and their state coverages are
shown in Fig. 8a. We can see that their state coverages have uniform density for all directions, which
is not preference specific, so they are not controllable by p.

Four different, conflicting directions can lead to highly contradictory objective gradients. Linear
scalarization methods (like LS/SDMGrad) can only learn a local optimum for all objectives, that is,
stay at the origin (as shown in the 2nd and 3rd plots in Fig. 8a). Due to conflicting objective gradients,
uniformly sampling p during training may introduce high variance in the gradients for model update,
which could be the reason why EPO and CAGrad exhibit worse HV than random.

In summary of the empirical results, our proposed PCRL scheme is effective in searching for Pareto-
optimal solutions that are controllable by preferences. The scheme is also scalable to larger numbers
of objectives, where LS often fails. Overall, methods of the similarity approach exhibit superior
preference controllability than linear scalarization approach. Our proposed PreCo consistently
delivers strong performance across all environments, particularly in cases with a high number of
objectives or conflicting objectives. Additionally, PreCo constantly outperforms SDMgrad, which
serves as an ablation case of PreCo (using linear scalarization), highlighting the critical role of
similarity optimization. More details of the empirical results can be found in Appendix C.

6 CONCLUSION

In this work, we proposed a PCRL scheme for preference control of the multi-objective trade-offs. To
achieve this, we proposed a novel MOO approach, PreCo, and provided a comprehensive convergence
analysis for stochastic optimization with non-convex smooth objective functions. Our experiments
across multiple RL environments show that our proposed method consistently outperforms baselines,
demonstrating that a meta-policy that adapts to user preferences is both feasible and promising for
potential applications in human-interactive AI agents. Future work for improving PCRL could be
progressing training preference distribution for curriculum learning.
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A RELATED WORKS

A.1 META-POLICIES

Existing MORL methods that learn a similar meta-policy conditioned on a weight or preference
include Abels et al. (2019); Chen et al. (2019); Lu et al. (2023), of which Abels et al. (2019); Lu
et al. (2023) are LS methods and they care more about discovering all Pareto optimal policies rather
than the similarity between the weight input and the resulted value. Chen et al. (2019) employs a
setting most similar to our PCRL since they optimize a Tchebycheff Scalarized (TS) (Ehrgott, 2005)
objective for solutions aligned with the preference directions. However, Xu et al. (2020) reported that
Chen et al. (2019) has suboptimal performance in practice. This might be due to the oscillation and
stagnation issue inherent in the TS approach, as noted by Mahapatra and Rajan (2021). In particular,
for MORL, which is sensitive to stochasticity and conflicting gradients, the convergence of TS can be
problematic. Our baseline implementation of EPO with a small constraint threshold can be considered
as a version of TS tailored to the MORL setting, designed to mitigate oscillation when near preference
direction. More recent MORL algorithm (Basaklar et al., 2023) incorporates cosine similarity for
preference alignment but it is designed specifically for off-policy value-based RL and its performance
relies heavily on the HER (Andrychowicz et al., 2017) technique. In contrast, our PCRL with PreCo
is a broader MORL framework compatible with both on-policy and off-policy RL, capable of learning
quality policies without HER. Nonetheless, HER can still be integrated into PCRL with PreCo in
off-policy settings to enhance sample efficiency. While not targeting exact preference alignment,
Lu et al. (2023) addressed LS limitations by adding a concave augmentation term to the reward,
transforming the original Pareto front into a strictly convex one. However, this introduces information
loss, making the approach sensitive to the augmentation term’s magnitude. Their implementation is
limited to SAC, using policy entropy as the augmentation term. Compared to Lu et al. (2023), our
method possesses the theoretical advantages of no information loss and exact preference alignment,
which can be empirically demonstrated by our additional experiment in Appendix G.

Other RL paradigms employing meta-policies include Goal-Conditioned RL (GCRL) (Sekar et al.,
2020; Yang et al., 2022; Liu et al., 2022) and skill-based RL (SBRL) (Nam et al., 2022; Lee
et al., 2019). GCRL is controlled by an additional input of a target state that it aims to reach.
SBRL is conditioned by a skill latent z that often has a lower dimension than the state for a
specific primitive skill. Similar to SBRL, the skill learning methods of Unsupervised Reinforcement
Learning (Eysenbach et al., 2018; Hansen et al., 2020) learns skills without external task rewards by
optimizing a Mutual Information Skill Learning (MISL) (Eysenbach et al., 2021; Yang et al., 2024)
objective I(s; z) = H(s)−H(s|z). Maximizing I(s; z) encourages the state space coverage to be
high and the state distribution to be certain when controlled by a skill z. The concept of Preference
Control (PC) has a resemblance to optimizing I(s; z) = H(s) − H(s|z). The purpose of PCRL
can also be interpreted as optimizing I(v;p) = H(v)−H(v|p) to encourage diverse values on the
Pareto front and the distribution of the values needs to be controlled by preference p.

A.2 MULTI-OBJECTIVE OPTIMIZATION

We have already introduced PMTL and EPO (Lin et al., 2019; Mahapatra and Rajan, 2020) that could
find preference-specific solutions and CAGrad, SDMGrad (Liu et al., 2021; Xiao et al., 2023) that
optimize for the average objective but can deal with conflicting gradients. Désidéri (2009); Xiao et al.
(2023) has the most similarity to our proposed PreCo because they all solve a min norm problem
like 6 for gradient manipulation. The advantage of our PreCo is not only like SDMGrad, which can
provably deal with stochastic gradients, but also can follow a preference like EPO. Our theoretical
analysis of PreCo is based on some results from Xiao et al. (2023), but incorporating the similarity
gradient from Ψ makes it more complicated and novel.

A.3 TRAINING SCHEMES

We uniformly sample p for every episode during training. Techniques from curriculum reinforcement
learning Narvekar et al. (2020); Portelas et al. (2020) can also potentially improve the training of
PCRL by using a progressing p preference distribution instead of uniform p ∈ P .
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B IMPLEMENTATION OF BASELINE METHODS

We modify existing MOO algorithms EPO (Mahapatra and Rajan, 2020), CAGrad Liu et al. (2021),
and SDMGrad (Xiao et al., 2023) for our proposed PCRL scheme and use them as baselines for our
proposed PreCo algorithm.

B.1 LINEAR SCALARIZATION PREFERENCE CONTROL

Linear Scalarization (LS) For a preference p conditioned policy πp, it is updated by d = ∇v̂πp .
Equivalently, it can be d = pT∇v̂πp , which means to linearly combine the objective gradients with a
coefficient equal to the preference p.

SDMGrad Similar to PreCo that needs to solve the min-norm problem (6) for update direction,
Our implementation of SDMGrad solves:

min
w

∥∇T
πp
v̂πpw + λpT∇πp v̂

πp∥ (14)

d = ∇T
πp
v̂πpw∗ + λ∇πp v̂

πp , (15)

where w∗ is the solution for problem (14). The update direction is for πp is d. We can see that this
SDMGrad implementation and our proposed PreCo differ only in the term multiplied by λ. SDMGrad
uses LS gradient for preference alignment while PreCo uses gradient of our proposed similarity
function Ψ. This is why SDMGrad can be used as a case for ablation study of our method.

B.2 SIMILARITY PREFERENCE CONTROL

Exact Pareto Optimal (EPO) MOO methods such as PMTL Lin et al. (2019) and EPO Mahapatra
and Rajan (2020) apply similarity constraints and have two modes for situations of low and high
similarity. Based on this idea, we implement the EPO baseline as: When similarity is low, only
similarity gradients ∇πpΨ(w, v̂πp) will be used for update. When similarity is high enough, a
common ascent direction calculated by MGDA (Désidéri, 2009) is used for update.

d = ∇πpΨ(w, v̂πp), if Ψ′(w, v̂πp) > ϵ, (16)

d = ∇T
πp
v̂πp argmin

w
∥∇T

πp
v̂πpw∥, if Ψ′(w, v̂πp) ≤ ϵ, (17)

where ϵ is a threshold of similarity and Ψ′ can be cosine similarity or our proposed Ψ. Equation (17) is
the min-norm update from Désidéri (2009), which is equivalent to finding a common ascent direction
that maximizes the least improvement among the objectives:

d = argmax
d

min
i

∇T
πp
v̂
πp

i d (18)

Because most of the time during training, similarity is not high enough and only similarity gradients
are applied in updates, this implementation of EPO can also be seen as an implementation of a relaxed
Tchebycheff Scalarization, which avoids gradient oscillation as claimed in Mahapatra and Rajan
(2020).

Conflict-Averse Gradient (CAGrad) CAGrad tries to find a common ascent direction that is not
too far from the average gradient. In our setting, we modify it to be a common ascent direction not is
not too far from the similarity gradient.

d = argmax
d

min
i

∇T
πp
v̂
πp

i d s.t. ∥d−∇πpΨ(w, v̂πp)∥ ≤ c∇πpΨ(w, v̂πp), (19)

where c ∈ {r ∈ R | 0 < r < 1} is a constraint constant to keep d close to the similarity gradient
∇πpΨ(w, v̂πp). This implementation might not apply to the convergence analysis in Liu et al. (2021).
However, as shown by the empirical results, it works in practice for our PCRL scheme.
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C MORE EXPERIMENTAL DETAILS

The test preferences are p ∈ P with a resolution of 0.1 for each dimension.

For instance, in 3-D cases, these preferences include

[0, 0, 1], [0, 0.1, 0.9], . . . , [0, 1, 0], [0.1, 0, 0.9], . . . , [0.9, 0.1, 0], [1, 0, 0],

with a quantity of 66. There are 286 test preferences for 4-D, 1001 for 5-D, and 3003 for 6-D.

During training, the preferences were sampled uniformly from the convex coefficient set P , making
the probability of sampling an exact test preference nearly zero. Therefore, high CS metric in test
time means the ability to generalize to unseen preferences.

We run 5 seeds for each environment setting, and for each run, we select the best-performing agent
as a candidate for testing. The results are presented as the mean and standard deviation of the 5
candidates.

C.1 MO-ANT

The exact data for bar charts in Fig. 5 is shown in Table 2.

LS SDMgrad EPO CAGrad PreCO

HV(∗1e6) 6.81± 0.24 3.67± 1.76 6.75± 0.08 6.79± 0.20 6.85± 0.21
CS 0.988± 0.012 0.937± 0.014 0.989± 0.004 0.988± 0.0004 0.990± 0.004

Table 2: HV and CS performance in MO-Ant environment, the HV value has a unit of 1e6.

For MO-Ant, both SDMgrad and PreCo have λ that increase linearly with each update from 1 to
5. EPO has a constraint threshold of ϵ = 3e − 4 for cosine similarity Ψ′, which is very small,
making it comparable to Tchebycheff Scalarization and also similar to PreCo with a large constant
λt = λ >> 1. CAgrad has constraint c = 0.2. The definitions of c and ϵ can be found in Appendix B.

Table 3: Hyper-parameters settings MO-Ant.

Hyper-parameter Value
Discount (γ) 0.99
Optimizer Adam (Kingma and Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 256
Buffer Size 1× 106

Starting timesteps 2.5× 103

Gradient clipping False
Exploration method Noise
Noise distribution N (0, 0.12)
Noise clipping limit 0.5
Policy frequency (delay) 2
Target network update rate (τ ) 5× 10−3

Maximum episode timesteps 500
Peference sampling every new episode untill max total steps is reached
Evaluation episodes for each test preference 10

C.2 MO-HOPPER

The exact data for bar charts in Fig. 6 is shown in Table 4.
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LS SDMgrad EPO CAGrad PreCO

HV(∗1e6) 2.63± 0.12 2.24± 0.13 2.53± 0.28 0.94 2.67± 0.26
CS 0.933± 0.007 0.922± 0.018 0.963± 0.023 0.932± 0.024 0.957± 0.011

Table 4: HV and CS performance in MO-hopper environment, the HV value has a unit of 1e6.

For MO-Hopper, both SDMgrad and PreCo have λ increasing linearly with every update from 3 to
11. EPO has a constraint threshold of ϵ = 3e − 4 for cosine similarity Ψ′. CAgrad has constraint
c = 0.1.

Table 5: Hyper-parameters settings MO-Hopper.

Hyper-parameter Value
Discount (γ) 0.99
Optimizer Adam (Kingma and Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 256
Buffer Size 1× 106

Starting timesteps 2.5× 103

Gradient clipping False
Exploration method Noise
Noise distribution N (0, 0.12)
Noise clipping limit 0.5
Policy frequency (delay) 2
Target network update rate (τ ) 5× 10−3

Maximum episode timesteps 500
Peference sampling every new episode untill max total steps is reached
Evaluation episodes for each test preference 10

C.3 MO-REACHER

The exact data for Fig. 7 is shown in Table 6.

random LS SDMgrad EPO CAGrad PreCO

HV(∗1e8) 13.47 15.66± 8.03 20.37± 0.37 9.87± 3.11 13.46± 9.71 33.11± 6.29
CS 0.758 0.652± 0.030 0.761± 0.001 0.845± 0.078 0.760± 0.002 0.906± 0.002

Table 6: HV and CS performance in MO-reacher environment, the HV value has a unit of 1e6.

For MO-Reacher, both SDMgrad and PreCo have λt increasing linearly with every update from 10
to 20. EPO has a constraint threshold of ϵ = 3e − 4 for cosine similarity Ψ′, which is very small,
making it comparable to Tchebycheff Scalarization and also similar to PreCo with a large constant
λt = λ >> 1. CAgrad employs a constraint constant of c = 0.1.

C.4 FRUIT TREE

For 3-D reward, most runs of LS only learn a very limited number of values like [4.71, 5.39, 5.40]
and the values SDMGrad for most test preferences lie at [4.01, 7.17, 1.47]. They, as the LS approach,
discover much less Prareto optimal policies than methods of the similarity approach, which have one
value for each test preference. This shows the limitation of linear scalarization methods. In theory,
LS methods have the potential to discover all Pareto optimal policies for MORL (Lu et al., 2023).
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Table 7: Hyper-parameters settings MO-Reacher.

Hyper-parameter Value
Discount (γ) 0.99
Optimizer Adam (Kingma and Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 250
Gradient clipping False
Exploration method Policy Entropy
Entropy Coefficient 0.001
epsilon-clip for PPO 0.001
Epochs per PPO update 3
Timesteps every update 100
Maximum episode timesteps 250
Number of episodes per preference sample 40
Number of preference samples (for 4D reward) 600
Evaluation episode for each test preference 10

However, in practice, this is often not the case. Possible reasons could be the numerical instability
inherent in deep RL, limitations of model capacity, and the fact that the value space is usually not
strictly convex.

Table 8: Hyper-parameters settings Fruit-tree.

Hyper-parameter Value
Discount (γ) 0.99
Optimizer Adam (Kingma and Ba, 2015)
Learning rate for networks 3× 10−4

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Activation function ReLU
Batch size 100
Gradient clipping False
Exploration method Policy Entropy
Entropy Coefficient 0.001
epsilon-clip for PPO 0.001
Epochs per PPO update 3
Timesteps every update 100
Maximum episode timesteps 100
Number of episodes per preference sample 20
Number of preference samples (for 4D reward) 3000
Evaluation episode for each test preference 10

D PRACTICAL IMPLEMENTATION OF THE UPDATE PROCEDURE

D.1 ALGORITHM FRAMEWORK

Our goal is to train a single agent that can be conditioned on different performance preferences and
0-shot adapt to user preference at test time. During training, we need to uniformly sample preferences
from P and let the agent learn to find Pareto optimal policies with values aligned to p. The procedure
is shown in Algorithm 2.
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Algorithm 2 PCRL with PreCo update

Initialize:
B: Buffer.
N : Number of training samples for p,
E: Number of training episodes for every p sample,
πθ: Preference-conditioned actor model,
Qϕ for DDPG/TD3 or Vϕ for A3C/PPO: Preference-conditioned critic model with m-

dimensional output, where m is the objective number.
for n = 0, 1, ..., N − 1 do

Sample preference p ∈ P
for e = 0, 1, ..., E − 1 do

Rollout with policy πθ(·|·,p)
Store transitions (s, a, r,p) in B

end for
Update Qϕ or Vϕ by minimizing TD error for every objective.
Estimate policy-level gradient ∇T

πp
v̂πp by Eq.21/23 for TD3 or Eq.27/34 for PPO.

Estimate similarity gradient ∇πpΨ(p, v̂πp) = ∇T
πp
v̂πp∇vΨ(p, v̂πp)

Get policy-level update direction d∗ by solving Eq.6 with ∇T
πp
v̂πp and ∇πpΨ(p, v̂πp)

Update θ by solving Eq.22 for TD3 or Eq.29/31 for PPO with d∗

end for

Figure 9: Backward path of policy update. we can see that the gradient from objectives to the
parameters of the actor network first backpropagate through the probability density of action dis-
tribution (for policy-based methods such as A3C/PPO) or action sample (for value-based methods
such as DDPG/TD3), then propagate through the distribution parameters of policies such as the logits
for categorical distribution or µ,Σ for Gaussian distributions. We consider these the policy-level
gradients. They often have a size of O(B), where B is the batch size. Since B is often limited to a
few hundreds, the size of a policy-level gradient would be much smaller than the size of the neural
network parameter.

D.2 POLICY-LEVEL GRADIENT

Solving the min-norm problem (6) with parameter-level gradients ∇θv̂
πp at every gradient update

can be memory and computationally expensive when |θ| is large. Video game playing agents like
AlphaZero Silver et al. (2018) and AlphaStar Vinyals et al. (2019) can have millions of model
parameters. Besides, Large models with billions of model parameters have become very common
with recent developments in Large Language Models (LLMs) Zhao et al. (2023); Minaee et al.
(2024). To circumvent this issue, we suggest solving the min-norm problem (6) before the gradient
propagates to the model parameter θ. Therefore, ideally, we want to solve the min-norm problem
with gradients at the policy-level ∇πp v̂

πp , which has only a size of batch size B of hundreds at each
update; In practice for deep RL implementations, as shown by Fig. 9, ∇πp v̂

πp can also be replaced
by the gradients of the value v̂πp with respect to the policy model outputs, such as ∇lp v̂

πp for logits
of categorical distribution policies and ∇µp,σp v̂

πp for means and standard deviations of diagonal
Gaussian distribution policies.
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D.2.1 CONTINUOUS ACTION SPACE

Value-based methods like TD3 Fujimoto et al. (2018) and SAC Haarnoja et al. (2018) are often used
for continuous action spaces. To avoid computing min-norm with parameter gradient

∇θv̂
πp = E[∇θQ̂(s, a,p)|a∼πθ(s,p)] (20)

We look at their policy formulations. Their policy π(a|s,p) is often a Gaussian or squashed Gaus-
sian distribution with parameters mean µp(s) and log standard deviation log σp(s). We denote a
distribution parameter vector ρp with ρp(s) = [µp(s), log σp(s)]

T and we can get

∇ρp v̂
πp = E[∇ρpQ̂(s, a,p)] (21)

For each update, the size of each objective gradient ∇ρp v̂
πp

i is 2|A| ×B, where B is the batch size
and ρ has a size of 2|A|. This means that ∇ρp v̂i(s,p) could have a much lower dimension than
∇θv̂i(s,p), thus increasing the memory and computational efficiency.

After getting the update direction d for ρp by solving the min norm problem (6) with ∇ρp v̂
πp , we

update model parameter θ by solving

max
θ

{
d⊤∇θρp s.t. ∥ρ− ρold∥2 < δ

}
,

which is a trust region formulation that updates ρ in the direction of d while keeping in a local region
where d is valid. A simple and practical implementation for parameter update can be as follows:

max
θ

J (θ) = Es,a [clip(ρp(s, a), ρp(s, a)− ϵ, ρp(s, a) + ϵ)d(s, a)] . (22)

The update of every entry of π is clipped to ϵ, so ∥πθ − πθ∥2 ≤
√
B ∗ ϵ2 = δ, where B is the batch

size.

For more expressive models such as diffusion models Wang et al. (2023) or normalizing flows Brah-
manage et al. (2023), the mean and covariance gradients would not be adequate. We can instead use
the gradient of action samples as policy-level gradients and we get an update direction

d(s, a) = ∇aQ̂(s, a,p) (23)

for every (s, a) sample in the batch. Then we can perform min-norm with d and update the more
expressive policy networks by reparameterization techniques.

D.2.2 DISCRETE ACTION SPACE

Policy-based methods like A3C Mnih et al. (2016) and PPO Schulman et al. (2017) are often used for
discrete action spaces. We can approximate the multi-objective value function v̂πp(s) by a function
v̂(s,p) that takes s and p as inputs, sample the episodic returns as vector R, and calculate the
multi-objective advantage function as

Â(s, a) = R− v̂(s,p) (24)

Then, the policy gradient in the model parameter space is

∇θv̂
πp = E

[
∇θπ(a|s,p)
π(a|s,p)

Â(s, a,p)

]
, (25)

And for gradient at the policy space d = ∇πp v̂(s,p), we have

d(s, a) =
1

π(a|s,p)
Â(s, a,p) (26)

for very (s, a) sample. When using policy optimization methods like PPO/TRPO they are

∇θv̂
πp = E

[
∇θπ(a|s,p)
πold(a|s,p)

Â(s, a,p)

]
, (27)

d(s, a) =
1

πold(a|s,p)
Â(s, a,p) (28)
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In practical situations, at every update, the size of each objective gradient ∇πp v̂i(s,p) is the batch
size B, and the min norm problem (6) can be performed with gradients of batch size B, which could
be much smaller than the parameter size of deep neural networks, especially when implemented for
large language models.

After getting the update direction d = ∇πp v̂(s,p) for πp, we optimize model parameters by

max
θ

{
d⊤∇θπp s.t. ∥πp − πp,old∥2 < δ

}
, (29)

which is a trust region formulation that updates πp in the direction of d while keeping in a local
region where d is valid. This can be practically implemented by an objective as follows:

J (θ) = Es,a [clip(πθ(a|s,p), πθold(a|s,p)− ϵ, πθold(a|s,p) + ϵ)d(s, a)] . (30)

The update of every entry of π is clipped to ϵ, so ∥πθ − πθ∥2 ≤
√
B ∗ ϵ2 = δ, where B is the batch

size.

Trust region formulation with KL-divergence could be more suitable for categorical distribution πp,
so another formulation of parameter update could be

max
θ

{
d⊤∇θπp s.t. DKL(πp ∥ πp,old) < δ

}
. (31)

Whether a KL divergence trust region is theoretically compatible with the solution d of the min norm
problem (6) will be further researched in our future work.

One potential issue of ∇πp v̂(s,p)) is that (πp+α∇πp v̂(s,p)) may not be in the probability simplex.
As a result, projecting it back onto the probability simplex could cause it to deviate from the intended
update direction. Since policies for discrete action spaces are often categorical distributions, one
way to avoid this issue is to consider the gradient of lp, which denotes the logits for policy π(·|·,p)
conditioned on preference p, and lp(s) are the logits for π(·|s,p). The logits do not have the
constraint to be in the probability simplex.

∇lpπp(s)

=− π(a|s,p)
[
π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ..., π(a|A||s,p)

]T
,

(32)

where ∇lpπp(s) is the s-th entry of the jacobian ∇lpπp, and

[π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ...]
T

is a vector of action space size |A|.
Then, we can get

∇lp v̂
πp(s)

=E
[
− π(a|s,p)
πold(a|s,p)

Â(s, a,p)[π(a1|s,p), π(a2|s,p), ..., π(a|s,p)− 1, ..., π(a|A||s,p)]
]
,

(33)

where ∇lp v̂
πp(s), of size m×A, is the index [:, s, :] for ∇lp v̂

πp tensor, of size m× |S| × |A|.
In every update, the size of the objective gradient ∇lp v̂

πp(i, s) for the objective i has a size of B×|A|.
For large language models, the action space could be the vocabulary size of tens of thousands, so
B × |A| could be in millions, but is still much smaller than the parameter size that is often in billions.
Moreover, for large action spaces, π(a|s,p) · π(a′|s,p) could be much smaller than π(a|s,p), so
∇lp v̂

πp(s, a) can be approximated by

∇lp v̂
πp(s, a) ≈ π(a|s,p)

π(a|s,p)
Â(s, a,p) = Â(s, a,p). (34)

This approximation of ∇lp v̂
πp is what we implemented to replace ∇πp v̂

πp in the min norm prob-
lem (6) to avoid solving min norm with large parameter gradient ∇θv̂

πp . The model parameters are
updated by solving (29) using ∇lp v̂

πp as d.
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E MORE DETAILS ABOUT THE SIMILARITY OBJECTIVE

E.1 ABOUT PROPOSED SIMILARITY FUNCTION Ψ

For two objective cases, when p = [0.5, 0.5], Ψ(p,v) is shown in Fig. 10. The x-axis is the first
element of v and y-axis is the second element of v. The z-axis is the value of Ψ(p,v).

We can see that the similarity is maximized to 0 only when v0

p0
= v1

p1
. It is also smooth as proved

by Lemma 4.1.

Figure 10: Ψ(p, ·) when p = [0.5, 0.5]T

E.2 SIMILARITY OBJECTIVE DESIGN FOR BETTER THEORETICAL PROPERTIES

Theorem 4.2 requires the similarity gradient to be both Lipschitz continuous and convex combinations
of the objective gradients. Which formally means that for an similarity objective Ψ′(p, ·),

∇vΨ
′(p,v) ∈ W,

which can not satisfied by ∇vΨ(p,v) = maxi
vi

pi
p − v, because ∇vΨ(p,v) will be 0 when

p and v are perfectly aligned. Moreover, we can not directly normalize ∇vΨ(p,v) by dividing
∥∇vΨ(p,v)∥1, because this will make the normalized gradient not Lipschitz continuous (the gradient
changes drastically when v passes the direction of p).

Our hints to design such a similarity function Ψ′(p, ·) are as follows: Its similarity gradient
∇vΨ

′(p,v) could get close to p, when v has a high similarity to the preference p; And ∇vΨ
′(p,v)

should be close to the normalized gradient ∇vΨ(p,v)/∥∇vΨ(p,v)∥1 when the similarity is low.

F MOO TOY EXAMPLE

This is an toy example used in SDMGrad (Xiao et al., 2023) to show that in MOO, our proposed
PreCo can achieve better or comparable performance under stochastic settings. Besides, PreCo can
find the Pareto optimal point optimizing the similarity function Ψ(p, ·).
The two objectives L1(x) and L2(x) shown in Fig. 11 are defined on x = (x1, x2)

⊤ ∈ R2,

L1(x) = f1(x)g1(x) + f2(x)h1(x) and L2(x) = f1(x)g2(x) + f2(x)h2(x),
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where the functions are given by

f1(x) = max
(
tanh(0.5x2), 0

)
f2(x) = max

(
tanh(−0.5x2), 0

)
g1(x) = log

(
max

(
|0.5(−x1 − 7)− tanh(−x2)|, 0.000005

))
+ 6

g2(x) = log
(
max

(
|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005

))
+ 6

h1(x) =
(
(−x1 + 7)2 + 0.1(−x1 − 8)2

)
/10− 20

h2(x) =
(
(−x1 − 7)2 + 0.1(−x1 − 8)2

)
/10− 20.

(a) Mean objective (b) Objective 1 (c) Objective 2 (d) MGDA

(e) GD (f) CAGrad (g) SDMGrad (h) PreCo [0.4, 0.6] (i) PreCo [0.9, 0.1]

Figure 11: A two-objective toy example.

(a) p = [0.4, 0.6] (b) p = [0.9, 0.1]

Figure 12: Plots showing the Pareto front: The x-axis is L1 and the y-axis is L2. The blue line is the
direction of the preference, for (a) it is p = [0.4, 0.6], and for (b) it is p = [0.9, 0.1]. All three initial
points converged to the Pareto optimal point that intersects with the line of p direction.

Initializations points are from {(−8.5, 7.5), (−8.5, 5), (9, 9)}. The optimization trajectories are
visualized in Fig. 11. The starting point of every trajectory in Fig. 11d-Fig. 11g is given by the •
symbol, and the color of every trajectory changes gradually from red to yellow. The gray horizontal
line illustrates the Pareto front, and the ⋆ symbol denotes the global optimum for the mean objective
L0 = 0.5L1 + 0.5L2. The setting is the same as in Xiao et al. (2023) and all other methods except
PreCo optimize for L0. Zero-mean Gaussian noise is added to the gradient of each objective for
all the methods except MGDA. Adam optimizer is adopted with learning rate of 0.002 and 70000
iterations for each run. We can see that GD and CAGrad can fail to converge to the Pareto front in
certain circumstances. Only SDMGrad and our proposed PCGrad converge to the Pareto front in all
cases. Notice that, the preference PreCo in Fig. 11h is p = [0.4, 0.6], as shown in Fig. 12, we can see
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that it converges to a point optimizing Ψ(p, [L1, L2]
T ). In addition, Figs. 11i and 12b show for the

case where p = [0.9, 0.1], PreCo also updates to the preference specific Pareto optimal point.

Below is a figure comparing PreCo with existing preference following MOO algorithms such as
Tchebycheff scalarization (Lin et al., 2024)(TS) Ehrgott (2005) and smooth Tchebycheff scalarization

Figure 13: Plots showing the results of TS, SmoothTS and PreCo for preference p = [0.1, 0.9]. Our
proposed PreCo converges to the preference-aligned Pareto front for all initialization.

In Fig. 13, PreCo first converges to the Pareto front, then as λ goes up, it converges to the preference
desired solution.

G ADDITIONAL RESULTS COMPARING SIMILARITY-BASED METHODS AND
CONCAVE AUGUMENTATION

Lu et al. (2023) has tried to address LS limitations by adding a concave augmentation term to the
reward, transforming the original Pareto front into a strictly convex one. Then for this ”more convex”
new problem, LS can find more optimal solutions. Their implementation only included SAC Haarnoja
et al. (2018), as the entropy maximization in SAC serves as the reward augmentation. To ensure a fair
comparison independent of settings, code-level implementations, and algorithmic techniques (such as
HER (Andrychowicz et al., 2017)), we modified our original LS with PPO into a ”maximum entropy
PPO”. The modified multi-objective advantages are:

Â(s, a) = R+ E − v̂(s,p) (35)
where R represents the vector of multi-objective episodic returns, E denotes the sum of future policy
entropies in the sampled episode, and v̂(s,p) is the multi-objective vector value conditioned on
preference p, approximating both expected returns and entropies:

min
v̂

E
[
||R+ E − v̂(s,p)||2

]
(36)

With these modifications, our modified ”maximum entropy multi-objective PPO” with Linear Scalar-
ization(LS) is optimizing the concave augumented objective in Eq.(10) from Lu et al. (2023).

To showcase the advantage of our PCRL (Ours) framework with similarity-based methods EPO and
PreCo (ours), we test in the ’simple but hard’ fruit-tree environment. It is simple for RL due to small
discrete state and action spaces but challenging for MORL with 6 objectives and a non-strictly convex
Pareto front. This comparison isolates MORL performance from lower-level RL factors, directly
highlighting our method’s strengths.

The results in Table 9 show when the augmentation strength α = 0.01, the performance of CAPQL-
modified PPO is marginally better than the original LS (α = 0), but still significantly worse than
similarity-based methods (EPO, PreCo(ours)). Larger α values lead to performance drops. This result
aligns with Remark 5 and Figure 9 in Lu et al. (2023), which highlights that such augmentation can
cause information loss in the original problem, and excessive augmentation results in performance
degradation. In contrast, our method has the theoretical advantage of overcoming the LS limitation
without any reward augmentation, thus avoiding information loss from the original problem.
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α/Method Hyper volume(1e3) Cosine Similarity

0 (LS) 5.74± 0.88 0.718± 0.040
0.01 5.95± 1.12 0.722± 0.006
0.05 5.18± 0.36 0.718± 0.040
0.10 1.75± 1.35 0.633± 0.141
EPO 14.97± 2.29 0.77± 0.03

PreCo(ours) 15.61± 0.75 0.78± 0.03

Table 9: HV and CS performance in 6D Fruit-tree environment, the HV value has a unit of 1e3. The
comparison is between PCRL (Ours) framework with similarity-based methods such as EPO and
PreCo (Ours) and LS with different strength of concave augmentation from Lu et al. (2023)

H CALIBRATION

The reachable Pareto front for PCRL is often not the entire Rm value space, and there are often
gaps between the desired preferences and the values reached. To calibrate the possible misalignment
between the input preference and the reached value in a sample-efficient way, we employ a Gaussian
process (GP) based method to model the relationship between the input of the desired preference and
the actual values reached by the agent.

Figure 14: After training, due to general errors in deep learning or unreach-
able regions of the Pareto front, there could still be gaps between the actually
reached objectives ratios and the desired preference. The calibration procedure
obtains the reachable reachable Pareto front and modifies the desired prefer-
ence into an input that results in performance more aligned with the desired
preference.

Figure 15: Example of GP regres-
sion for the (p,vπp ) samples, this case
has two objectives and shows the relation
between the first element of the value
and the first element of the preference.
Each red cross point in this plot is a
(p0,v

πp
0 ), where p0,v

πp
0 are the first

elements of p,vπp .

After training, there might still be an input p′ with better Ψ(p,vπp′ ) than vπp . We want to find p′

that solves maxp′ E[Ψ(p,vπp′ )] for any p. we first uniformly sample the values vπp reached by
giving the agent preference input from {p ∈ Rm : pT1 = 1}, then perform a GP regression for the
(p,vπp) samples. As shown in Fig. 15, some samples can provide a Gaussian distribution of the
mapping ϕ(p) from p to vπp . Based on the distribution of ϕ, for a desired preference p, we can find
a good input p′ to solve

max
p′

E[Ψ(p, ϕ(p′))] (37)

This procedure learns the reachable regions of the agent and calibrates the desired preference into the
best input for reaching the preference. Also, it is general and can be applied to any preference control
approach. Here is an empirical example for calibration:

The colored rays are preferences p. The points with the same color as the preference vector p are
value ˆvπp of preference conditioned policy πp. The left plot is before calibration, p is directly used
as the input for πp. The right plot is after calibration, we know which regions can be reached, so
preferences p are not all directions but reachable directions. Also, the input for πp is p′ by solving
(37), resulting in higher similairty and the CS metric improved from 0.991 to 0.997.
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Figure 16: Pareto front before and after calibration.

(a) Discovered Pareto Front be-
fore calibration

(b) Resampled Pareto Front after
calibration

I THEORETICAL PROOFS

I.1 PROOF FOR LEMMA 4.1

Lemma 4.1. The similarity function Ψ(p, ·) is (1+maxi
|p|
|pi| ) -Lipschitz smooth and gs(·) is Lipschitz

continuous under Assumption 4.1 and Assumption 4.3.

Proof. By definition:

Ψ(p,v) = −1

2
∥max

i

vi

pi
p− v∥2 (38)

and

∇vΨ(p,v) = max
i

vi

pi
p− v = d(v,p)p− v (39)

. where d(v,p) denotes maxi
vi

pi
, we have

∥∇vΨ(p,v)−∇v′Ψ(p,v′)∥ = ∥d(v,p)p− v − d(v′,p)p+ v′∥
= ∥d(v,p)p− d(v′,p)p− (v − v′)∥
≤ |d(v,p)p− d(v′,p)|∥p∥+ ∥v − v′∥

(40)

Without loss of generality, we first consider the case where d(v,p) − d(v′,p) ≥ 0. We denote
iv = argmaxj

vi

pi

∥d(v,p)p− d(v′,p)p∥+ ∥v − v′∥ = (d(v,p)− d(v′,p))∥p∥+ ∥v − v′∥

≤ (
viv

|piv |
−

v′
iv

|piv |
)∥p∥+ ∥v − v′∥

≤ ∥p∥
|piv |

∥v − v′∥+ ∥v − v′∥

≤ max
i

∥p∥
|pi|

∥v − v′∥+ ∥v − v′∥

≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥

(41)
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The first inequality is because iv is optimal for v but not necessarily for v′. The case where
d(v,p)− d(v′,p) < 0 can be proved by the same procedure by denote i′v = argmaxj

v′
i

pi
, then

∥d(v,p)p− d(v′,p)p∥+ ∥v − v′∥ = (d(v′,p)− d(v,p))∥p∥+ ∥v − v′∥

≤ (
v′
i′v

|pi′v
|
−

vi′v

|pi′v
|
)∥p∥+ ∥v − v′∥

≤ ∥p∥
|pi′v

|
∥v − v′∥+ ∥v − v′∥

≤ max
i

∥p∥
|pi|

∥v − v′∥+ ∥v − v′∥

≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥.

(42)

Therefore, we have proven

∥∇vΨ(p,v)−∇v′Ψ(p,v′)∥ ≤ (1 + max
i

∥p∥
|pi|

)∥v − v′∥ (43)

and the similarity function for a preference p is 1 + maxi
∥p∥
|pi| Lipschitz smooth.

Next, we prove that gs(πp) = G(πp)∇vΨ(p,vπp) is Lipschitz continuous.

We have:

∥gs(x)− gs(y)∥ = ∥G(x)∇vΨ(p,vx)−G(y)∇vΨ(p,vy)∥
= ∥(G(x)−G(y))∇vΨ(p,vx) +G(y) (∇vΨ(p,vx)−∇vΨ(p,vy))∥

≤
m∑
i=1

∥gi(x)− gi(y)∥∥∇vΨ(p,vx)∥+ ∥G(y)∥∥∇vΨ(p,vx)−∇vΨ(p,vy)∥

(44)
where the inequality is by Cauchy-Schwartz. Since under Assumption 4.1 and Assumption 4.3,
∥G(y)∥ ≤ Cg and ∥gi(x)− gi(y)∥ ≤ li,1∥x− y∥, and

∥∇vΨ(p,vx)−∇vΨ(p,vy)∥ ≤ (1 + max
i

∥p∥
|pi|

)∥vx − vy∥ ≤ (1 + max
i

∥p∥
|pi|

)∥l∥∥x− y∥,

(45)
where l = [l1, l2, ..., lm]T is the vector of Lipschitz constants of all objectives. Denoting Lm =

(1 +maxi
∥p∥
|pi| )∥l∥, we have

∥gs(x)− gs(y)∥ ≤

(
∥∇vΨ(p,vx)∥

m∑
i=1

li,1 + CgLm

)
∥x− y∥ (46)

By definition in Equation (39):

∥∇vΨ(p,vx)∥ = ∥max
i

vx
i

pi
p− vx∥ ≤ ∥max

v
max

i

vi

pi
p∥, (47)

where the inequality is because the values of x should be no larger than the maximum values for the
objectives. Denoting

Lp = ∥max
v

max
i

vi

pi
p∥, (48)

we have

∥gs(x)− gs(y)∥ ≤

(
Lp

m∑
i=1

li,1 + CgLm

)
∥x− y∥, (49)

and we define Ls = (Lp

∑m
i=1 li,1 + CgLm). We have proven gs(·) is to be Ls-Lipshitz continuous.

Therefore, both claims of this lemma have been proven.
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I.2 PROOF FOR THEOREM 4.1 AND 4.2

Before proving Theorem 4.2, we prove Lemma I.1 for the requirements to use the proof idea in Xiao
et al. (2023) for their theorem.3 and obtain Lemma I.2. To be consistent with their proof, we consider
minimizing the negative value and similarity with gradient descent.
Lemma I.1. Under the Assumptions 4.1-4.3, we have

∥gs(πp,t)∥ ≤ LpCg, E
[
∥gs(πp,t; ξ)− gs(πp,t)∥2

]
≤ L2

pmσ2 (50)

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2] ≤ 8(mσ2 + C2

g )
2 + 8L2

pλ
2(mσ2 + C2

g )
2︸ ︷︷ ︸

C1

(51)

E[∥G(πp,t; ζ)wt + λgs(πp,t; ζ)∥2] ≤ 4mσ2 + 4C2
g + 4λ2Lpmσ2 + 4λ2L2

pC
2
g︸ ︷︷ ︸

C2

(52)

E[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥wt − wt+1∥] ≤ 2(1 + Lpλ)

2C2
g (mσ + Cg)

2︸ ︷︷ ︸
C2

(53)

Proof. Under the Assumptions 4.1-4.3, by (47) and (48), we have

∥gs(πp,t)∥ ≤ ∥G(πp,t)∇vΨ(p,vπp,t)∥ ≤ LpCg, (54)

and

E
[
∥gs(πp,t; ξ)− gs(πp,t)∥2

]
≤ E

[
∥G(πp,t; ξ)−G(πp,t)∥2∥∇vΨ(p,vπp,t)∥2 ≤ L2

pmδ2
]

(55)

The first two claims in (50) are proven.

Next, we have

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2]

(i)

≤ 2E[∥G(πp,t; ξ)
TG(πp,t; ξ

′)wt∥2︸ ︷︷ ︸
N1

+2λ2 ∥G(πp,t; ξ)
T gs(πp,t; ξ

′))∥2︸ ︷︷ ︸
N2

], (56)

where (i) is by the Young’s inequality. Next, we provide bounds for E[N1] and E[N2], separately:

E[N1]
(i)

≤E[∥(G(πp,t; ξ)
T −G(πp,t)

T +G(πp,t)
T )(G(πp,t; ξ

′)−G(πp,t) +G(πp,t))∥2]
=E[∥(G(πp,t; ξ)

T −G(πp,t)
T )(G(πp,t; ξ

′)−G(πp,t)) + (G(πp,t; ξ)
T −G(πp,t)

T )G(πp,t)

+G(πp,t)
T (G(πp,t; ξ

′)−G(πp,t)) +G(πp,t)
TG(πp,t)∥2]

(ii)

≤ 4E[∥G(πp,t; ξ)
T −G(πp,t)

T ∥2∥G(πp,t; ξ
′)−G(πp,t)∥2 + ∥G(πp,t; ξ)

T −G(πp,t)
T ∥2∥G(πp,t)∥2

+ ∥G(πp,t)
T ∥2∥(G(πp,t; ξ

′)−G(πp,t)∥2 + ∥G(πp,t)
TG(πp,t)∥2]

(iii)

≤ 4m2σ4 + 8mσ2C2
g + 4C4

g = 4(mσ2 + C2
g )

2, (57)

where (i) follows from Cauchy–Schwarz inequality and wt is a convex coeffiecient, (ii) follows
from Young’s inequality and (iii) follows from Assumption 4.2 and Assumption 4.3. For another
term,

E[N2] =E[∥(G(πp,t; ξ)
T −G(πp,t)

T +G(πp,t)
T )(gs(πp,t; ξ

′)− gs(πp,t) + gs(πp,t))∥2]
(i)

≤4E[∥(G(πp,t; ξ)
T −G(πp,t)

T )(gs(πp,t; ξ
′)− gs(πp,t))∥2 + ∥(G(πp,t; ξ)

T −G(πp,t)
T )gs(πp,t)∥2

+ ∥G(πp,t)
T (gs(πp,t; ξ

′)− gs(πp,t))∥2 + ∥G(πT
p,t)gs(πp,t)∥2]

(ii)

≤ 4L2
pm

2σ4 + 8L2
pmσ2C2

g + 4L2
pC

4
g = 4L2

p(mσ2 + C2
g )

2, (58)

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where (i) follows from Young’s inequality, (ii) follows from (54) and (55). Then substituting (57)
and (58) into (56), we can obtain,

E[∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt + λgs(πp,t; ξ
′))∥2] ≤ 8(mσ2 + C2

g )
2 + 8L2

pλ
2(mσ2 + C2

g )
2 = C1.

We have proved (51). Then, we look at (52) :

E[∥G(πp,t; ζ)wt + λgs(πp,t; ζ)∥2]
=E[∥G(πp,t; ζ)wt −G(πp,t)wt +G(πp,t)wt + λgs(πp,t; ζ)− λgs(πp,t) + λgs(πp,t)∥2]
(i)

≤4E[∥G(πp,t; ζ)−G(πp,t)∥2] + 4E[∥G(πp,t)∥2] + 4λ2E[∥gs(πp,t; ζ)− gs(πp,t)∥2]
+ 4λ2E[∥gs(πp,t)∥2]

(ii)

≤ 4mσ2 + 4C2
g + 4λ2L2

pmσ2 + 4λ2L2
pC

2
g︸ ︷︷ ︸

C2

(59)

where (i) follows from Young’s inequality, and (ii) follows from 54 and 55.

Finally,

E[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥wt −wt+1∥]

=βtE[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥∥G(πp,t; ξ)

T (G(πp,t; ξ
′)wt + λπp,t(θ; ξ

′))∥]
≤βtE[∥(G(πp,t)w + λπp,t(πp,t))

TG(πp,t)∥(∥G(πp,t; ξ)
T (G(πp,t; ξ

′)wt∥+ λ∥G(πp,t; ξ)πp,t(θ; ξ
′)∥)]

=βtE[∥(G(πp,t)w + λπp,t(πp,t))
TG(πp,t)∥(

√
N1 +

√
N2)]

≤βt2(1 + Lpλ)
2C2

g (mσ + Cg)
2 = βtC3, (60)

Lemma I.2. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), the

updates by our method satisfy

E[∥G(πp,t)wt,λ + λtgs(πp,t)∥2 ≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λt) +

l′1αt

2
C2(λt) + βtC3(λt)

(61)

where w is a fixed convex coefficient, and

l′(πp,t) = −wTv(πp,t)− λtΨ(p, πp,t), (62)

l′1 = max
i

li,1 + λLs (63)

C1 = 8(mσ2 + C2
g )

2 + 8L2
pλ

2(mσ2 + C2
g )

2, (64)

C2 = 4mσ2 + 4C2
g + 4λ2Lpmσ2 + 4λ2L2

pC
2
g , (65)

C3 = 2(1 + Lpλ)
2C2

g (mσ + Cg)
2, (66)

where Ls is the Lipschitz constant for gs(·), defined in (49).

Under Assumptions.(4.1-4.3), previous results show Lemma 4.1 and Lemma I.1 hold. Therefore, we
can replace g0 in their analysis with gs and apply their (33) in our case and it becomes Equation (61).
Stochastic gradient samples like G(πp,t, ξ) have been taken expectations and become G(πp,t) or σ.

This is an intuitive result of convergence analysis for smooth non-convex objective functions using
conventional techniques. Next we prove our main theoretical contributions based on Lemma I.2.

Theorem 4.1. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt =

Θ(m−1T− 1
2 ), with a constant λ and Lipschitz smooth similarity function Ψ(p, ·), we have

1
T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] = O(mT− 1
2 ). To achieve an ϵ-accurate Pareto stationary point, it

requires T = O(m2ϵ−2) updates.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof. By definition,

∇vΨ(p,v) = max
i

vi

pi
p− v > 0. (67)

So gs(πp) = G(πp)∇vΨ(p,vπp) can be considered as a positive linear combination of objective
gradients. We have

E[∥G(πp,t)wt,λ + λgs(πp,t)∥2 = E[∥(G(πp,t)wt,λ + λG(πp,t)w̃t)∥2]
≥ E[min

wt

∥G(πp,t)wt∥2].
(68)

For every time step t, by Equation (61) from Lemma I.2 and constant λ,

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λ) +

l′1αt

2
C2(λ) + βtC3(λ)

(69)

We take αt = α and βt = β as constants and telescope (69),

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αT
E[l′(πp,0)− l′(πp,T )] +

1

2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=0

β

2
C1(λ) +

1

T

T−1∑
t=0

l′1α

2
C2(λ) +

1

T

T−1∑
t=0

βC3(λ)

≤ O(
1

αT
+

1

βT
+ βm2 + αm)

(70)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] = O(mT− 1
2 ).

To achieve an ϵ-accurate Pareto stationary point, it requires T = O(m2ϵ−2) updates.

After proving for cases with constant λ, we need to prove further for cases with increasing λ =

Θ(T
1
2 ).

Theorem 4.2. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ),

with a Lipshitz smooth similarity function with g′s(πp,t) being convex combination of gi(πp,t) for
all t, there can be an increasing λ = Θ(log T ) and we have 1

T

∑T−1
t=0 E[minwt

∥G(πp,t)wt∥] =
O(mT− 1

2 log T ).

Proof. Because the similarity gradients g′s(πp,t) are convex combinations of G(πp,t), let g′s(πp,t) =
G(πp,t)w̃t where w̃t is a convex coefficient, then

E[∥G(πp,t)wt,λ + λtg
′
s(πp,t)∥2 = E[∥(G(πp,t)wt,λ + λtG(πp,t)w̃t)∥2]

≥ E[(1 + λt)
2 min

wt

∥G(πp,t)wt∥2]
(71)
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holds because (wt,λ + λw̃t) is also a convex coefficient which can not be more optimal than
argminwt

∥G(πp,t)wt∥2. For every time step t, by Equation (61) from Lemma I.2,

E[(1 + λt)
2 min

wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2
C1(λt) +

l′1αt

2
C2(λt) + βtC3(λt)

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2(1 + λt)2
C1(λt) +

l′1αt

2(1 + λt)2
C2(λt) +

βt

(1 + λt)2
C3(λt)

≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2λ2
t

C1(λt) +
l′1αt

2λ2
t

C2(λt) +
βt

(1 + λt)2
C3(λt)

(i)

≤ 1

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

2λ2
t

C1(λt) +
(maxi li,1 + λTLs)αt

2λ2
t

C2(λt) +
βt

(1 + λt)2
C3(λt)

(72)

where (i) is by the definition of l′1 in (63). In the proofs of Theroem 1 and 3 of Xiao et al. (2023), l′1
was considered constant as constant. For more rigor, we upper bound it with λT ≤ O(log T ). We
take αt = α and βt = β as constants and telescope (72), and by λt = Θ(log t), we have

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] ≤
1

αT
E[l′(πp,0)− l′(πp,T )] +

1

2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=0

β

2λ2
t

C1(λt) +
1

T

T−1∑
t=0

(maxi li,1 + λTLs)α

2λ2
t

C2(λt) +
1

T

T−1∑
t=0

β

(1 + λt)2
C3(λt)

= O(
1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm)

(73)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2] = O(mT− 1
2 log T ),

and proof is done.

I.3 PROOF FOR THEOREM 4.3 AND 4.4

To be consistent with previous results in MOO literature, we consider minimizing the negative
objectives and similarity with gradient descent.

Theorem 4.3. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ), with

a constant λ and Lipschitz smooth similarity function like Ψ(p, ·), we have 1
T

∑T−1
t=0 E[∥gs(πp)∥]−

2C2
g

λ2 = O(mT− 1
2 ).
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Proof. By Equation (61) from Lemma I.2 and constant λ, we have

E[∥gs(πp,t)∥2] ≤
2

λ2
E[∥G(πp,t)wt,λ + λgs(πp,t)∥2 +

2

λ2
E[∥G(πp,t)wt,λ∥2]

≤ 2

λ2αt
E[l′(πp,t)− l′(πp,t+1)] +

1

λ2βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

λ2
C1(λ) +

l′1α

λ2
C2(λ) +

2βt

λ2
C3(λ) +

2C2
g

λ2
.

(74)

By the definition of l′1 in (63), it is a constant when λ is constant. Take αt = α and βt = β as
constants telescope (74), we get

1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2]−
2C2

g

λ2
≤ 2

λ2αT
E[l′(πp,0)− l′(πp,T )] +

1

λ2βT
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=t0

β

λ2
C1(λ) +

1

T

T−1∑
t=t0

l′1α

λ2
C2(λ) +

1

T

T−1∑
t=t0

2β

λ2
C3(λ) +

2C2
g

λ2

≤ O(
1

αT
+

1

βT
+ βm2 + αm)

(75)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[min
wt

∥G(πp,t)wt∥2]−
2C2

g

λ2
= O(mT− 1

2 ).

To achieve an ϵ-accurate stationary point, it requires T = O(m2ϵ−2) updates.

Theorem 4.4. Under the Assumptions 4.1-4.3, setting αt = Θ(m− 1
2T− 1

2 ), βt = Θ(m−1T− 1
2 ),

with a constant λ and Lipschitz smooth similarity function like Ψ(p, ·), there can be an increasing
λ = Θ(T

1
2 ) and we have 1

T

∑T−1
t=0 E[∥gs(πp)∥] = O(mT− 1

2 log T ).

Proof. Suppose for all time steps t > t0, λt ≥ 1, by Equation (74) we have

E[∥gs(πp,t)∥2] ≤
2

λ2
t

E[∥G(πp,t)wt,λ + λtgs(πp,t)∥2 +
2

λt
E[∥G(πp,t)wt,λ∥2]

≤ 2

αt
E[l′(πp,t)− l′(πp,t+1)] +

1

βt
E[∥wt −w∥2 − ∥wt+1 −w∥2]

+
βt

λ2
t

C1(λt) +
l′1α

λ2
t

C2(λt) +
2βt

λ2
t

C3(λt) +
2C2

g

λ2
t

.

(76)

Take αt = α and βt = β as constants telescope (76) and by the definition of l′1 in (63) we get

T−1∑
t=t0

E[∥gs(πp,t)∥2] ≤
T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+

T−1∑
t=t0

β

λ2
t

C1(λt) +

T−1∑
t=t0

l′1α

λ2
t

C2(λt) +

T−1∑
t=t0

2β

λ2
t

C3(λt) +

T−1∑
t=t0

2C2
g

λ2
t

≤
T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+

T−1∑
t=t0

β

λ2
t

C1(λt) +

T−1∑
t=t0

(maxi li,1 + λTLs)α

λ2
t

C2(λt) +

T−1∑
t=t0

2β

λ2
t

C3(λt) +

T−1∑
t=t0

2C2
g

λ2
t

,

(77)
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then by λt = Θ(log t) we have:

1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2] ≤
1

T

T−1∑
t=t0

2

α
E[l′(πp,0)− l′(πp,T )] +

1

T

T−1∑
t=t0

1

β
E[∥w0 −w∥2 − ∥wT −w∥2]

+
1

T

T−1∑
t=t0

β

λ2
t

C1(λt) +
1

T

T−1∑
t=t0

(maxi li,1 + λTLs)α

λ2
t

C2(λt) +
1

T

T−1∑
t=t0

2β

λ2
t

C3(λt) +
1

T

T−1∑
t=t0

2C2
g

λ2
t

= O(
1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm+

1

(log T )2
)

(78)

Adding the terms before t0, we have

1

T

T−1∑
t=0

E[∥gs(πp,t)∥2] =
1

T

t0∑
t=0

E[∥gs(πp,t)∥2] +
1

T

T−1∑
t=t0

E[∥gs(πp,t)∥2]

≤ O(
1

T
+

1

αT
+

1

βT
+

βm2

log T
+ βm2 + αm log T + αm+

1

(log T )2
).

(79)

By setting α = Θ(m− 1
2T− 1

2 ), β = Θ(m−1T− 1
2 ), we can get

1

T

T−1∑
t=0

E[∥gs(πp,t)∥2] = O(mT− 1
2 log T ), (80)

and the proof is done.
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