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Abstract

The recent success of SimCSE has greatly
advanced state-of-the-art sentence representa-
tions. However, the original formulation of
SimCSE does not fully exploit the potential
of hard negative samples in contrastive learn-
ing. This study introduces an unsupervised
contrastive learning framework that combines
SimCSE with hard negative mining, aiming to
enhance the quality of sentence embeddings.
The proposed focal-InfoNCE function intro-
duces self-paced modulation terms in the con-
trastive objective, downweighting the loss asso-
ciated with easy negatives and encouraging the
model focusing on hard negatives. Experimen-
tation on various STS benchmarks shows that
our method improves sentence embeddings in
terms of Spearman’s correlation and represen-
tation alignment and uniformity. Our code is
available at: https://github.com/puerrrr/
Focal-InfoNCE.

1 Introduction

Unsupervised learning of sentence embeddings has
been extensively explored in natural language pro-
cessing (NLP) (Cer et al., 2018; Giorgi et al., 2020;
Yan et al., 2021), aiming to generate meaningful
representations of sentences without the need for
labeled data. Among various approaches, Sim-
CSE (Gao et al., 2021) achieves state-of-the-art
performance in learning high-quality sentence em-
beddings through contrastive learning. Due to its
simplicity and effectiveness, various efforts have
been made to improve the contrastive learning of
sentence embeddings from different aspects, in-
cluding alleviating false negative pairs (Wu et al.,
2021a; Zhou et al., 2022) and incorporating more
informative data augmentations (Wu et al., 2021b;
Chuang et al., 2022).

Leveraging hard-negative samples in contrastive
learning is of significance (Schroff et al., 2015;
Oh Song et al., 2016; Robinson et al., 2020). Nev-
ertheless, unsupervised contrastive learning ap-

proaches often face challenges in hard sample min-
ing. Specifically, the original training paradigm
of unsupervised-SimCSE proposes to use contra-
diction sentences as "negatives". But such imple-
mentation only guarantees that the contradiction
sentences are "true negatives" but not necessarily
hard. With a large number of easy negative samples,
the contribution of hard negatives is thus prone to
being overwhelmed,

To address this issue, we propose a novel loss
function, namely Focal-InfoNCE, in the paradigm
of unsupervised SimCES for sentence embedding.
Inspired by the focal loss (Lin et al., 2017), the pro-
posed Focal-InfoNCE loss assigns higher weights
to the harder negative samples in model training
and reduces the influence of easy negatives ac-
cordingly. By doing so, focal Info-NCE encour-
ages the model to focus more on challenging pairs,
forcing it to learn more discriminative sentence
representations. In addition, to adapt the dropout
strategy for positive pair construction in SimCSE,
we further incorporate a positive modulation term
in the contrastive objective, which reweights the
positive pairs in model optimization. We conduct
extensive experiments on various STS benchmark
datasets (Agirre et al., 2012, 2013, 2014, 2015,
2016; Cer et al., 2017; Marelli et al., 2014) to eval-
uate the effectiveness of Focal Info-NCE. Our re-
sults demonstrate that Focal Info-NCE significantly
improves the quality of sentence embeddings and
outperforms unsupervised-SimCSE by an average
of 1.64%, 0.82%, 1.51%, and 0.75% Spearan’s
correlation on BERT-base, BERT-large, RoBERTa-
base, and RoBERTa-large, respectively.

2 Related Work

2.1 Unsupervised SimCSE

SimCSE (Gao et al., 2021) provides an unsuper-
vised contrastive learning solution to SOTA perfor-
mance in sentence embedding. Following previ-
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ous work (Chen et al., 2020), it optimizes a pre-
trained model with the cross-entropy objective us-
ing in-batch negatives. Formally, given a mini-
batch of N sentences, {xi}Ni=1, let hi be the sen-
tence representation of xi with the pre-trained lan-
guage model such as BERT (Devlin et al., 2018)
or RoBERTa (Liu et al., 2019). SimCSE’s training
objective, InfoNCE, can be formulated as

li = −log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,hj)/τ

, (1)

where τ is a temperature hyperparameter and
sim(hi, hj) represents the cosine similarity be-
tween sentence pairs (xi, xj). Note, h+i is the rep-
resentation of an augmented version of xi, which
constitutes the positive pair of xi. For notation
simplification, we will use sip and si,jn to represent
the similarities between positive pairs and negative
pairs in this paper.

Unsupervised SimCSE uses model’s built-in
dropout as the minimal "data augmentation" and
passes the same sentence to the same encoder twice
to obtain two sentence embeddings as positive pairs.
Any two sentences within a mini-batch form a neg-
ative pair. It should be noted that in contrastive
learning, model optimizaiton with hard negative
samples helps learn better representations. But
SimCSE doesn’t distinguish hard negatives and
easy ones. We show in this work that incorporating
hard negative sample mining in SimCSE boosts the
quality of sentence embedding.

2.2 Sample Re-weighting in Machine
Learning

Re-weighting is a simple yet effective strategy for
addressing biases in machine learning. It down-
weights the loss from majority classes and obtains
a balanced learning solution for minority groups.
Re-weighting is also a common technique for hard
example mining in deep metric learning (Schroff
et al., 2015) and contrastive learning (Chen et al.,
2020; Khosla et al., 2020). Recently, self-paced
re-weighting is explored in various tasks, such
as object detection(Lin et al., 2017), person re-
identification(Sun et al., 2020), and adversarial
training (Hou et al., 2023). It re-weights the loss of
each sample adaptively according to model’s opti-
mization status and encourages a model to focus on
learning hard cases. To the best of our knowledge,
this study constitutes the first attempt to incorporate
self-paced re-weighting strategy in unsupervised
sentence embedding.

3 Focal-InfoNCE for Sentence
Embedding

This study follows the unsupervised SimCSE
framework for sentence embedding. Instead of
taking the InfoNCE loss in Eq. (1), we introduce a
self-paced reweighting objective function, Focal-
InfoNCE, to up-weight hard negative samples in
contrastive learning. Specifically, for each sentence
xi, Focal-infoNCE is formulated as

li = −log
e(s

i
p)

2/τ∑N
j ̸=i e

si,jn (si,jn +m)/τ + e(s
i
p)

2/τ
, (2)

where m is a hardness-aware hyperparameter that
offers flexibility in adjusting the re-weighting strat-
egy. Within a mini-batch of N sentences, the final
loss function, L =

∑N
i=1 li, can be derived as

L = −log
e
∑N

i=1
(sip)

2/τ

ΠN
i=1[

∑N
j ̸=i e

si,jn (si,jn +m)/τ + e(s
i
p)

2/τ ]
(3)

Analysis of Focal-InfoNCE: Compare with In-
foNCE in Eq. (1), Focal-InfoNCE introduces self-
paced modulation terms on sp and sn, proportional
to the similarity quantification. Let’s first focus on
the modulation term, si,jn + m, on negative pairs.
Prior arts have shown that pre-trained language
models usually suffer from anisotropy in sentence
embedding (Wang and Isola, 2020). Finetuning
the pretrained models with contrastive learning on
negative samples, especially hard negative samples,
improves uniformity of representations, mitigating
the anisotropy issue. In SimCSE, si,jn quantifies
the similarity between negatives xi and xj . If si,jn
is large, xi and xj are hard negatives for current
model. Improving the model with such hard nega-
tive pairs encourage representation’s uniformity. To
this end, we propose to upweight the corresponding
term si,jn /τ by a modulation factor si,jn +m. The
partial derivative of Focal-InforNCE with respect
to si,jn is

∂L

∂si,jn
=

N∑
j ̸=i

2

τ

es
i,j
n (si,jn +m)/τ

Zi
(si,jn +m), (4)

where Zi =
∑N

j ̸=i e
si,jn (si,jn +m)/τ + e(s

i
p)

2/τ . Ac-
cording to Eq. (4), comparing to easy negatives,
hard negative samples that associates with higher
similarity score si,jn contribute more to the loss
function. This implies that a model optimized with
the proposed Focal-InfoNCE focuses more on hard-
negative samples. Our experiments also show that



Focal-InfoNCE improves uniformity in sentence
embeddings.

To uncover the insight of the modulation term
sip on positive cases, let’s revisit SimCSE. In Sim-
CSE, the positive pair is formed by dropout with
random masking. Thus a low similarity score sp in-
dicates semantic information loss introduced by
dropout. Since such a low similarity is not at-
tributed to model’s representation capability, we
should mitigate its effect on model optimization.
Hence, Focal-inforNCE assigns a small weight to
the dissimilary positive pair. The partial derivative
with respect to si,jn is

∂L

∂sip
=

2

τ
(
e(s

i
p)

2/τ

Zi
− 1)sip, (5)

which suggests that positive pairs with lower simi-
larity scores in SimCSE contributes less to model
optimization. We show in the experiments that
Focal-InfoNCE improves the allignment of sen-
tense embeddings as well.

Due to the modulation terms on both positive
and negative samples, Focal-InfoNCE reduces the
chances of the model getting stuck in sub-optimal
solutions dominated by easy pairs. We show in our
experiment that the proposed Focal-InfoNCE can
easily fit into most contrastive training frameworks
for sentence embeddings.

4 Experiments

We evaluate Focal-InfoNCE on 7 semantic sim-
ilarity tasks: STS 12-16 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017) and SICK-Relatedness (Marelli et al.,
2014). Spearman’s correlation between predicted
and ground truth scores is used as the numerical
performance metric. Our implementation closely
follows unsupervised-SimCSE (Gao et al., 2021).
Briefly, starting with pre-trained models BERTbase,
BERTlarge (Devlin et al., 2018) and RoBERTabase,
and RoBERTalarge (Liu et al., 2019), we take the
[cls] embeddings as the sentence representations
and fine-tune the models with 106 randomly sam-
pled English Wikipedia sentences. The hyperpa-
rameter τ for the four models are {0.7, 0.7, 0.5,
0.5} respectively and we use m = 0.3 in this exper-
iment. To make a fair comparison, we adopted the
same batch size and learning rate as unsupervised-
SimCSE, shown in Table 1.

BERT RoBERTa
base large base large

batch size 64 64 512 512
learning rate 3e-5 1e-5 1e-5 3e-5

Table 1: Experimental setting for our main results.

4.1 Comparison to Prior Arts

Table 2 shows the performance of the differ-
ent models with and without the Focal-InfoNCE
loss. In general, we observe improvements in
Spearman’s correlation scores when incorporating
the proposed Focal-InfoNCE. For example, with
SimCSE-BERTbase, the average score increases
from 75.68 to 77.32 when using Focal-InfoNCE.

4.2 Alignment and Uniformity

Alignment and uniformity are two key properties
to measuring the quality of contrastive representa-
tions (Gao et al., 2021). By specifically focusing
on challenging negative samples, focal-InfoNCE
encourages the model to pay closer attention to
negative instances that are difficult to distinguish
from positive pairs. In Table. 3, we incorporate the
proposed focal-InfoNCE into different contrastive
learning for sentence embeddings and show im-
provements in both alignment and uniformity of
the resulting representations.

4.3 Ablation Studies on Hyperparameters

We conducted ablation studies to analyze two key
factors in Focal-InfoNCE: temperature τ and the
hardness hyperparameter m.

Temperature τ is a hyper-parameter used in the
InfoNCE loss function that scales the logits before
computing the probabilities. (Wang and Liu, 2021)
show that the temperature plays a key role in con-
trolling the strength of penalties on hard negative
samples. In this ablation, we set the temperature
as 0.03, 0.05, 0.07, and 0.1, explore the effect of
different temperature values on the model’s perfor-
mance and report the results in Table 4.

The hardness hyper-parameter m controls the
rescaling of the negative samples in the contrastive
loss function. Figure. 1 visualizes the rescaling
effects of m. Specifically, our Focal-InfoNCE
loss regards negative pairs with cosine similarity
larger than (1-m) as hard negative examples and
vice versa. The loss is then up-weighted or down-
weighted proportionally. Table. 5 demonstrates that
our method is not sensitive to m and the optimal set-
ting can usually be found between 0.2 and 0.3. One



Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
GloVe embeddings (avg.)♣ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
BERTbase(first-last avg.)* 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

BERTbase-flow* 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening* 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

SimCSE-BERTbase 67.33 82.45 72.30 80.76 79.04 76.38 71.58 75.68
+ Focal-InfoNCE 68.50±0.08 83.70±0.50 79.00±0.15 82.71±0.23 79.43±0.40 78.85±0.37 72.99±0.10 77.33±0.08

SimCSE-BERTlarge 70.31 84.73 75.52 83.06 78.90 78.20 74.56 77.90
+ Focal-InfoNCE 71.86±1.55 84.50±0.20 75.81±0.49 84.56±0.62 79.13±0.97 80.97±1.00 72.74±0.45 78.51±0.28

RoBERTabase(first-last avg.)* 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTabase-whitening* 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTabase* 52.41 75.19 65.52 77.12 78.63 72.41 68.62 69.99

SimCSE-RoBERTabase 67.54 81.39 72.82 81.61 80.29 80.00 68.86 76.07
+ Focal-InfoNCE 70.84±0.59 82.52±0.48 73.99±0.85 83.02±0.99 82.26±0.45 81.16±0.50 69.43±0.77 77.60±0.26

SimCSE-RoBERTalarge 71.54 83.11 75.04 84.20 80.54 81.52 69.99 77.99
+ Focal-InfoNCE 71.45±1.10 83.24±0.88 74.48±1.07 85.10±0.35 82.54±1.06 82.24±0.67 72.56±0.96 78.80±0.04

Table 2: Sentence embedding performance on STS tasks with Spearman’s correlation. ♣: results from (Reimers and
Gurevych, 2019); *: results from (Gao et al., 2021).

Model ALGN ↓ UNIF ↓ SpCorr ↑
SimCSE 0.190 -2.400 76.38

+Focal InfoNCE 0.134 -1.906 79.31
DiffCSE 0.081 -1.195 79.53

+Focal InfoNCE 0.070 -1.335 80.09
DCLR 0.231 -2.790 78.31

+Focal InfoNCE 0.164 -2.366 79.30

Table 3: Representation alignment (ALGN), unifor-
mity (UNIF), and Spearman’s correlation (SpCorr) with
BERTbase on the STS Benchmark (Cer et al., 2017).

BERT RoBERTa
τ base large base large

0.03 74.66 76.96 80.62 77.55
0.05 78.98 79.11 81.72 82.46
0.07 79.31 80.43 81.00 82.03
0.1 77.33 73.23 79.99 81.09

Table 4: Effects of temperature τ on STS Bench-
mark (Cer et al., 2017) with Spearman’s correlation.

possible explanation for this could be the simplic-
ity of the data augmentation employed by SimCSE,
resulting in a consistent positive similarity score of
approximately 0.85 (Wu et al., 2021a).

5 Discussion

5.1 Qualititave Analysis
We conducted a qualitative analysis as follows. We
sampled a subset of hard negative pairs from the
STS-B training data and analyzed their characteris-
tics. We noticed that these hard negative pairs often
involved sentences with domain-specific terms, or
sentences with a high degree of syntactic similar-
ity. For example, sentences like "This is a very
unusual request." and "I think it’s fine to ask this
question." have a notable cosine similarity of 0.64
by the pre-trained BERT base model, though their

BERTbase RoBERTabase
m STS-B SICK-R STS-B SICK-R
0.1 77.23 71.30 80.33 68.86
0.2 79.37 71.70 81.42 69.60
0.3 79.31 72.72 81.72 69.52
0.4 78.99 71.75 80.07 64.21

Table 5: Effects of hyperparameter m on STS Bench-
mark (Cer et al., 2017) with Spearman’s correlation.
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Figure 1: Plot of re-scaled negative pairs vs. their orig-
inal value with different choices of m. Orange: up-
weighted negative examples; green: down-weighted
negative examples

underlying tones and attitudes are completely dif-
ferent. The proposed Focal InfoNCE effectively
guides the model’s attention by putting more penal-
ties toward these cases and encourages the model
to learn a better sentence embedding to separate
them.

5.2 Statistical Significance Analysis
To validate the statistical significance of perfor-
mance increase, we conducted three more sets of
experiments, each with different random seed, and



reported the mean and standard deviation (std) in
Table 2. Based on the results, we calculated paired-
t tests with a standard significance level of 0.05. All
p-values over the various STS tasks with different
base models are smaller than 0.05, which indicate
that our focal-InfoNCE improves the performance
significantly in the statistical sense.

5.3 Compatibility with Existing Methods

As reported in Table 3, focal-InfoNCE improves
DiffCSE in terms of representation alignment,
uniformity, and Spearman’s correlation. In con-
trast, our attempts to integrate focal-InfoNCE with
PromptBERT(Jiang et al., 2022) did not yield any
improvements over the baseline models. We hy-
pothesize that this outcome could be attributed to
the different treatments of noise in positive pairs.
In SimCSE and DiffCSE(Chuang et al., 2022), pos-
itive pairs are generated with the same template
but different dropout noise. Our focal-InfoNCE
downweights the false positive pairs introduced by
the random masking mechanism. But in Prompt-
BERT where different positive templates are used
for contrastive learning, the template biases have
been incorporated in the contrastive loss. Conse-
quently, downweighting false positive pairs with
focal-InfoNCE might be unnecessary on Prompt-
BERT.

6 Conclusions

This paper introduced a novel unsupervised
contrastive learning objective function, Focal-
InfoNCE, to enhance the quality of sentence em-
beddings. By combining SimCSE with self-paced
hard negative re-weighting, model optimization
was benefited from hard negatives. Extensive ex-
periments shows the effectiveness of the proposed
method on various STS benchmarks.

7 Limitations

The effectiveness of the Focal-InfoNCE depends
on the quality of pre-trained models. When a pre-
trained model leads to bad representations, the sim-
ilarity scores may mislead model finetuing. In addi-
tion, the positive re-weighting strategy in this study
is quite simple. We believe that more sophisticated
mechanisms to address semantic information loss
in positive pairs would further improve the perfor-
mance.
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