
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FACT: A FIRST-PRINCIPLES ALTERNATIVE TO THE NEU-
RAL FEATURE ANSATZ FOR HOW NETWORKS LEARN
REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

It is a central challenge in deep learning to understand how neural networks
learn representations. A leading approach is the Neural Feature Ansatz (NFA)
(Radhakrishnan et al., 2024), a conjectured mechanism for how feature learning
occurs. Although the NFA is empirically validated, it is an educated guess and lacks
a theoretical basis, and thus it is unclear when it might fail, and how to improve
it. In this paper, we take a first-principles approach to understanding why this
observation holds, and when it does not. We use first-order optimality conditions to
derive the Features at Convergence Theorem (FACT), an alternative to the NFA that
(a) obtains greater agreement with learned features at convergence, (b) explains
why the NFA holds in most settings, and (c) captures essential feature learning
phenomena in neural networks such as grokking behavior in modular arithmetic
and phase transitions in learning sparse parities, similarly to the NFA. Thus, our
results unify theoretical first-order optimality analyses of neural networks with
the empirically-driven NFA literature, and provide a principled alternative that
provably and empirically holds at convergence.

1 INTRODUCTION

A central aim of deep learning theory is to understand how neural networks learn representations. An
empirically-driven conjecture that has recently emerged as to the mechanism driving feature learning
in neural networks is the Neural Feature Ansatz (NFA) (Radhakrishnan et al., 2024), which states
that, after training, a weight layer W in a neural network f(x) satisfies the proportionality relation

W⊤W ∝ Ê[(∇xf(x))(∇xf(x))] .

Here the right-hand-side is an empirical expectation over the training data, and the gradient is
computed with respect to the input to the network – we review more details on the NFA conjecture
later, in Section 2.

This conjecture has been validated in practice on a range of architectures, including fully-connected
networks, convolutional networks, and transformers (Radhakrishnan et al., 2024). Furthermore,
a growing literature has shown that this NFA conjecture captures and explains several intriguing
phenomena of neural network training, including grokking of modular arithmetic (Mallinar et al.,
2025), learning of hierarchical staircase functions (Zhu et al., 2025), and catapult spikes during
training (Zhu et al., 2023). Additionally, when used to power an adaptive kernel learning algorithm,
it achieves state-of-the-art performance for monitoring models (Beaglehole et al., 2025), for learning
tabular datasets (Radhakrishnan et al., 2024), and for low-rank matrix learning (Radhakrishnan et al.,
2025).

Despite its success, the NFA conjecture lacks first-principles backing for why it should necessarily
hold during training. Because this conjecture was derived in an empirical fashion, it is unclear why it
ought to hold, whether and under which conditions it may fail, and how to improve it. This motivates
the main question studied by this paper:

Is there an alternative to the empirically-observed Neural Feature Ansatz conjecture, which can be
derived from first principles?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We answer this question in the affirmative. Our main contribution is to demonstrate a connection
between the empirically-observed NFA conjecture and the literature studying first-order opti-
mality conditions that must provably hold if the training process converges. Thus, our results
unify two prominent approaches to studying feature learning (the NFA and first-order optimality). In
more detail, our contributions are:

(1) We derive a simple alternative to the NFA conjecture based on first-order optimal-
ity conditions. We call this the FACT (Features at Convergence Theorem). This is a
self-consistency formula that neural networks trained with weight decay must satisfy at
convergence; see Section 3.

(2) We empirically demonstrate that our first-principles alternative captures neural net-
work feature learning phenomena in many of the same ways that the NFA conjecture
does. We show that when FACT (instead of NFA) is used to power an adaptive kernel learn-
ing algorithm (Radhakrishnan et al., 2024), it also reproduces intriguing feature learning
behaviors observed in neural networks such as training phase transitions when learning
sparse parities (Barak et al., 2022; Abbe et al., 2023), grokking of modular arithmetic
(Nanda et al., 2023; Gromov, 2023), and high performance on tabular data matching the
state-of-the-art (Radhakrishnan et al., 2024); see Section 4.

(3) We provide a derivation for why the NFA conjecture usually holds based on first-order
optimality. By algebraically expanding the FACT relation, and analyzing the terms, we
demonstrate that it is qualitatively similar to the conjectured NFA relation. We empirically
demonstrate that the two relations are proportional in the case of modular arithmetic. This
helps put the NFA conjecture on firm theoretical foundation by connecting it to provable
first-order optimality conditions, and elucidates the mystery of why it usually holds; see
Section 5.

(4) We construct degenerate training settings in which the NFA conjecture is provably
false but where first-order optimality conditions hold true. We formally prove and
experimentally observe that in certain settings the NFA predictions can be nearly uncorrelated
to the ground truth, while FACT and any other relations based on first-order-optimality
conditions still hold. This indicates that the latter may provide a more accurate relation at
convergence; see Section 6 as well the discussion in Section 7.

1.1 RELATED LITERATURE

Implications of first-order-optimality in neural networks First-order optimality conditions of
networks at convergence – along with results on KKT conditions that arise with exponentially-tailed
losses at large training times (Soudry et al., 2018; Ji & Telgarsky, 2019; Lyu & Li, 2019; Ji &
Telgarsky, 2020) – has been used to show implicit bias of deep architectures towards low rank
(Gunasekar et al., 2017; Arora et al., 2019b; Galanti et al., 2022), of diagonal networks towards
sparsity (Woodworth et al., 2020), of convolutional networks towards Fourier-sparsity (Gunasekar
et al., 2018), and of fully-connected networks towards algebraic structure when learning modular
arithmetic (Mohamadi et al., 2023; Morwani et al., 2023). First-order optimality also has implications
to linear regression with bagging (Stewart et al., 2023), understanding adversarial examples (Frei
et al., 2024), and neural collapse (Han et al., 2021; Kothapalli, 2022; Zangrando et al., 2024).

Analyses of training dynamics Another recently prevalent approach to understanding feature
learning is to study neural network training dynamics – tracking weight evolution to understand how
features emerge (Olsson et al., 2022; Edelman et al., 2024; Nichani et al., 2024; Cabannes et al.,
2023; 2024; Arous et al., 2021; Abbe et al., 2022; 2023; Kumar et al., 2023). While insightful, these
analyses are technically challenging and are typically limited to synthetic datasets. In this paper,
we pursue an alternative approach: we seek conditions on network weights that are satisfied at the
conclusion of training, to gain insight into how the trained network represents the learned function. By
focusing on the network state at convergence, we can circumvent many of the difficulties associated
with analyzing training dynamics, and the insights directly apply beyond simplified synthetic settings.

Equivariant NFA Another alternative to the NFA, called the “equivariant NFA” (eNFA), was
recently proposed in Ziyin et al. (2025) based on an analysis of the dynamics of noisy SGD. This is
distinct from the FACT and we also compare to it in Section 4.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

x

h(x) ∈ Rd multiply
by W Wh(x) ∈ Rd′

f(x; θ)

Figure 1: The model only depends on W through multiplication of activations h(x).

2 TRAINING SETUP AND BACKGROUND

Training setup We consider the standard training setup, with a model f(·; θ) : X → Rc trained
on a sample-wise loss function ℓ : Rc × Y → R on data points (xi, yi)i∈[n] with L2 regularization
parameter λ > 0 (that is, with non-zero weight decay). The training loss is Lλ(θ) = L(θ) +
λ
2 ∥θ∥

2
F , where L(θ) = 1

n

∑n
i=1 ℓ(f(xi; θ), yi). Here X and Y are the input and output domains.

Our FACT applies to any weight matrix parameter W ∈ Rd′×d inside a trained model. The only
architectural requirement is that the model only depends on W via matrix multiplication of internal
activations. See Figure 1. Formally, fixing all parameters but W , there are functions g, h such that for
all x,

f(x; θ) = g(Wh(x), x) . (2.1)

In this notation,1 h is the input to the weight matrix, and Wh is the output. Thus, FACT applies to
any layer in neural networks that involves matrix multiplications.

For convenience, we introduce the notation to denote the gradient of the loss and the value of the
model with respect to the input of the layer containing the weight matrix W , at the data point xi:

∇hℓi :=
∂ℓ(g(Wh, x); yi)

∂h
|h=h(xi)∈ Rd and ∇hfi :=

∂g(Wh, x)

∂h
|h=h(xi)∈ Rd×c .

Neural Feature Ansatz. In the above notation, the NFA (Radhakrishnan et al., 2024) posits that
the neural feature matrix W⊤W is proportional to the influence that the different subspaces of the
input have on the output, which is captured by the Average Gradient Outer Product (AGOP) matrix.
Namely, there is a power s > 0 such that

W⊤W ∝ (AGOP)s , where AGOP :=
1

n

n∑
i=1

(∇hfi)(∇hfi)
⊤ . (NFA)

Equivariant Neural Feature Ansatz. We will also compare to the eNFA proposed in Ziyin et al.
(2025), which states

W⊤W ∝ eNFA :=
1

n

n∑
i=1

(∇hℓi)(∇hℓi)
⊤ . (eNFA)

3 NEURAL FEATURES SATISFY FACT AT CONVERGENCE

In contrast to the empirically-derived NFA and eNFA, we seek to provide a relation derived from
first principles. We proceed from the following simple observation: at a critical point of the loss, the
features h(x) are weighted by their influence on the final loss. This is stated in the following theorem.
Theorem 3.1 (Features at Convergence Theorem). If the parameters of the model are at a critical
point of the loss with respect to W , then

W⊤W = FACT := − 1

nλ

n∑
i=1

(∇hℓi)(h(xi))
⊤ . (FACT)

1More precisely, including the dependence on the parameters other than W , what this means is that we can
partition the parameters as θ = [W, θ−W], and f(x; θ) = g(Wh(x; θ−W);x; θ−W).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MNIST, ReLU MLP, 5 Layers, 1024 Width CIFAR-10, ReLU MLP, 5 Layers, 3072 Width

forward

Figure 2: We train 5 hidden layer ReLU MLPs to interpolation on MNIST and CIFAR-10. We
plot Pearson correlation of FACT,AGOP, eNFA (with respect to each hidden layer input) to WTW
for that layer. Curves are averaged over 5 independent runs. Both sides of the (FACT) are highly-
correlated at convergence across layers.

Proof. The premise of the theorem implies that ∇WLλ(θ) = 0, since W is a subset of the model
parameters. By left-multiplying by W⊤ and using the chain rule, we obtain

0 = W⊤(∇WLλ(θ))

= W⊤(λW +∇WL(θ))

= W⊤(λW +
1

n

n∑
i=1

(
∂ℓ(g(h̃); yi)

∂h̃
|h̃=Wh(xi)

)
h(xi)

⊤

= λW⊤W +
1

n

n∑
i=1

(∇hℓi)h(xi)
⊤ .

The theorem follows by rearranging and dividing by λ.

Theorem 3.1 is a straightforward modification of the stationarity conditions. Nevertheless, as we
argue in the remainder of this paper, it is a useful quantity to consider when studying feature learning
in neural networks, and it is especially fruitful when viewed as a first-principles counterpart to the
NFA. Before proceeding with applications of (FACT), we provide a few remarks and empirical
validation.
Remark 3.2 (Symmetrizations of FACT). While W⊤W is p.s.d., the quantity FACT is only guaranteed
to be p.s.d. at critical points of the loss. This means that we can exploit the symmetries of the left-
hand-side of (FACT) to get several other identities at convergence. For instance, since W⊤W =
(W⊤W)⊤, we may conclude that at the critical points of the loss W⊤W = FACT⊤ also holds.
Similarly, using that W⊤W =

√
(W⊤W)(W⊤W)⊤, we may also conclude that at critical points

W⊤W =
√
FACT · FACT⊤ also holds.

Remark 3.3 (Empirical validation on real-world data). In Figure 2, we verify FACT on 5-layer ReLU
MLPs trained until convergence on MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009)
with Mean Squared Error loss and weight decay 10−4. We find that, at convergence, the two sides
of the (FACT) relation are generally more highly correlated than those of the (NFA) and (eNFA)
relations. For hyperparameter details, see Appendix A.

Remark 3.4 (Backward form). There is also an analogous “backward” version of this equation,
(bFACT), derived and empirically validated in Appendix B, that yields information about the left
singular vectors of W rather than the right singular vectors. Letting ∇Whℓi denote the gradient of
the loss with respect to the output of the layer at data point xi, we have

WW⊤ = bFACT := − 1

nλ

n∑
i=1

(Wh(xi))(∇Whℓi)
⊤ . (bFACT)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 FACT CAPTURES FEATURE LEARNING PHENOMENA IN MANY OF THE SAME
WAYS AS THE NFA CONJECTURE

Having validated the FACT, we now turn to applications. We show that our first-principles FACT
captures many feature learning phenomena in the same ways that the empirically-driven NFA
conjecture has been previously shown to do. First, we show that the FACT can be used to design
learning algorithms that achieve high performance on tabular data based on adapting the recursive
feature machine (RFM) algorithm of Radhakrishnan et al. (2024). We also show that this algorithm
recovers important feature learning phenomena commonly studied in neural networks, such as phase
transitions in sparse parity learning, and grokking of modular arithmetic.

4.1 BACKGROUND: RECURSIVE FEATURE MACHINES

The Recursive Feature Machine (RFM) algorithm (Radhakrishnan et al., 2024) builds upon classical
kernel methods (Schölkopf, 2002), which rely on a kernel function K(x, x′) to measure data point
similarity (e.g., Gaussian, Laplace). While kernel methods have been successful, they can be provably
less sample-efficient than alternatives like neural networks that are able to learn features (Abbe et al.,
2022; Damian et al., 2022).

To address these limitations, RFM learns a linear transformation W ∈ Rd×d and applies a standard
kernel K to the transformed data: KW (x, x′) = K(Wx,Wx′). This learned W enables RFM to
identify salient features, akin to feature learning in neural networks (for example, if W is low rank, its
range contains the salient features while the orthogonal complement to its range contains the irrelevant
features). Seeking to imitate the feature learning behavior in neural networks, Radhakrishnan et al.
(2024) iteratively updates W using a fixed-point iteration to satisfy the NFA condition. This is given
in Algorithm 1, where the update equation on line 6 is given by

Wt+1 ← (AGOPt)
s/2, where AGOPt =

1

n

n∑
i=1

(∇xf̂t)(∇xf̂t)
⊤; s > 0. (NFA-RFM update)

Algorithm 1 Recursive Feature Machine (based on NFA (Radhakrishnan et al., 2024) or FACT
(ours))

1: Input: Training data (X, y), kernel KW , number of iterations T , ridge-regularization λ ≥ 0
2: Initialize W0 ← Id×d

3: for t = 0 to T do
4: Run kernel method: αt ← (KWt(X,X) + nλI)−1y

5: Let f̂t(x) := KWt
(x,X)αt be the kernel predictor

6: Update Wt, either with (NFA-RFM update) or (FACT-RFM update)
7: end for
8: Output: predictor f̂T (x)

4.2 FACT-BASED RECURSIVE FEATURE MACHINES

We study RFM with a FACT-based update instead of an NFA-based update. Similarly to the above,
let FACTt be the FACT matrix corresponding to iteration t. We symmetrize in order to ensure that
the update is p.s.d. Our FACT-based fixed-point iteration in line 6 of RFM is thus

Wt+1 ← ((FACTt)(FACTt)
⊤)1/4 . (FACT-RFM update)

We also study a variant of this update where we average geometrically with the previous iterate to
ensure greater stability (which helps for the modular arithmetic task). This geometric averaging
variant has the following update

Wt+1 ← ((FACTt)(W
⊤
t Wt)(W

⊤
t Wt)(FACTt)

⊤)1/8 . (FACT-RFM update’)

The exponents in these updates are chosen so that the fixed points of these updates coincide with the
FACT relation derived for networks at convergence in Theorem 3.1. See Appendix E for more details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method FACT-RFM
(no geom. averaging)

FACT-RFM
(geom. averaging) NFA-RFM Kernel regression

Accuracy (%) 85.22 84.99 85.10 83.71

Table 1: Average test accuracy over 120 datasets from the UCI corpus Fernandez-Delgado et al.
(2014). We compare Laplace kernel regression with adaptively learned Laplace kernels using FACT
and NFA, as well as no feature learning.

k = 3, n =5kk = 2, n = 500 k = 4, n =50k

!"#$!"#$ % &! !"#$!"#$ % &! !"#$!"#$ % &!

Fe
at

ur
e

M
at

ric
es

(R
FM

 It
er

 3
)

Figure 3: We train FACT-RFM and NFA-RFM using the Mahalanobis Gaussian kernel on sparse
parity tasks. We train with d = 50, k = 2, 3, 4. The corresponding

√
AGOP and

√
FACT ·M⊤

feature matrices are very similar and learn the support of the sparse parity.

4.3 EXPERIMENTAL RESULTS COMPARING FACT-RFM TO NFA-RFM

We compare FACT-RFM to NFA-RFM across a range of settings (tabular datasets, sparse parities,
and modular arithmetic).

Tabular datasets. The authors of Radhakrishnan et al. (2024) obtain state-of-the-art results using
NFA-RFM on tabular benchmarks including that of Fernandez-Delgado et al. (2014) which utilizes
121 tabular datasets from the UCI repository. We run their same training and cross-validating
procedure using FACT-RFM, and report results in Table 1. We find that FACT-RFM obtains roughly
the same high accuracy performance as NFA-RFM. Both of these feature-learning methods improve
over the next-best method found by Radhakrishnan et al. (2024), which is kernel regression with the
Laplace kernel without any feature learning.

Sparse parities. We train FACT-RFM and NFA-RFM on the problem of learning sparse parities and
find that both recover low-rank features. The problem of learning sparse parities has attracted attention
with respect to feature learning dynamics of neural networks on multi-index models (Edelman et al.,
2023; Abbe et al., 2023).

For training data we sample n points in d-dimensions as x ∼ {− 1√
d
, 1√

d
}d. We experiment with

sparsity levels of k = 2, 3, 4 by randomly sampling k < d coordinate indices with which to construct
our labels. Labels, y, are obtained from the product of the elements at each of the k coordinates in
the corresponding x point and set to be 0 if the product is negative and 1 if the product is positive.
We sample a held-out test set of 1000 points in the same manner.

We use the Mahalanobis Gaussian kernel in both FACT-RFM (with geometric averaging) and NFA-
RFM with bandwidth 5 and train for 5 iterations. Our experiments use d = 50 and for k = 1, 2 we
take n = 500, for k = 3 we take n = 5000, and for k = 4 we take n = 50000. The results of these
experiments are given in Figure 3. We observe that both NFA-RFM and FACT-RFM learn this task
and the features learned by both methods are remarkably similar and on the support of the sparse
parity. Additionally, Figure 4 shows a phase transition in learning sparse parities when we take a
smaller amount of data n = 25000, k = 4, which mimics the phase transition when training an MLP.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

Figure 4: In the lower data regimes of n = 25000, k = 4, and d = 50, for sparse parity, the
FACT-RFM algorithm reproduces phase transitions found in training neural networks.

!"#$ %!&' ()!

NFA RFM FACT RFM

Figure 5: We train FACT-RFM and NFA-RFM on (x+ y) mod 61 for 75 iterations. Both methods
achieve 100% test accuracy and exhibit delayed generalization aligned to the “grokking” phenomenon.
We plot the square root of FACT ·M⊤ and AGOP and find that both methods learn block circulant
feature transforms.

Grokking modular arithmetic. Mallinar et al. (2025) recently showed that NFA-RFM exhibits
delayed generalization phenomena on modular arithmetic tasks, also referred to as “grokking”. The
authors find that the square root of AGOP learns block circulant feature transformations on these
problems. We train FACT-RFM (with geometric averaging) on the same modular arithmetic tasks and
observe the same behavior. Figure 5 shows the square root of AGOP and FACT ·M⊤ after achieving
100% test accuracy on modular addition with modulus p = 61 when training on 50% of the data and
testing on the other half. The feature matrices show block circulant structures.

5 COMPARISON OF NFA AND FACT FOR INNER-PRODUCT KERNELS

Having demonstrated that the first-principles FACT obtains many of the same feature learning
phenomena as the empirically-conjectured NFA, it is natural to ask: is there a direct connection
between these two relations? Does the FACT imply the NFA?

Our findings in this section suggest there is such a connection: the updates of NFA-RFM are proxies
for the updates of FACT-RFM. Thus, the NFA-RFM algorithm can also be viewed as attempting to
minimize the loss of the kernel method, regularized by the norm of the weights ∥W∥2F . A similar
claim was previously made in Gan & Poggio (2024), but the theoretical evidence provided was
limited to the dynamics with one sample. Our analysis applies to training with more than one sample.

We restrict our analysis to inner-product kernels. The expressions for FACT and AGOP simplify
considerably, as stated below. Below, we let α be first-order optimal dual weights for kernel regression
with λ-ridge regularization computed in the RFM algorithm.
Proposition 5.1 (Comparison of FACT and AGOP for inner-product kernels). Suppose the kernel is
an inner-product kernel of the form KW (x, x′) = k(x⊤Mx′), where M = W⊤W . Then, we may
write the AGOP and the FACT matrices explicitly as:

AGOP =

n∑
i,j=1

τ(xi,M, xj) ·Mxiα
⊤
i αjx

⊤
j M

⊤ ,

FACT ·M⊤ =

n∑
i,j=1

k′(x⊤
i Mxj) ·Mxiα

⊤
i αjx

⊤
j M

⊤ ,

where τ(xi,M, xj) :=
1
n

∑n
l=1 k

′(x⊤
l Mxi)k

′(x⊤
l Mxj).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The proof is deferred to Appendix F. The proposition reveals that the matrix FACT ·M⊤ is positive
semi-definite when the function k is non-increasing (a condition satisfied by common choices like
k(t) = exp(t) or k(t) = t2). This property allows for a simplification of (FACT-RFM update’),
which can be rewritten as a geometric average between the current feature matrix and the FACT term:

Mt+1 ← (FACTtMt)
1/2 . (FACT-RFM update’ for inner-product kernels)

This form should be compared with the NFA-RFM update, which also simplifies for inner-product
kernels. We write the simplified form of the update below when the power s is set to 1/2:

Mt ← (AGOP)1/2 . (NFA-RFM update for inner-product kernels)

0.02 0.00 0.02 0.04 0.06 0.08
(xi, M, xj)

0.5
0.0
0.5
1.0
1.5
2.0
2.5

k′
(x

T i
M

x j
)

 vs k ′ at final iteration of FACT-RFM
Best fit line, R2 = 0.987

Figure 6: Validation of explanation
for why AGOP and FACT are sim-
ilar when FACT-RFM converges in
the modular arithmetic task. Each
point corresponds to a pair (xi, xj) –
we subsample 1000 points for visu-
alization purposes.

Notably, Proposition 5.1 also reveals that both updates share
the same structural form. The difference lies in the spe-
cific factors involved: τ for the NFA update and k′ for the
FACT update. Interestingly, both of these factors, k′(x⊤

i Mxj)
and τ(xi,M, xj), can be interpreted as measures of similar-
ity between the data points xi and xj . These measures in-
crease when the transformed representations Wxi and Wxj

are closer in the feature space, and decrease otherwise.

Consequently, if the similarity measures τ and k′ were ap-
proximately equal for most pairs of data points, this would
explain the observed similarities in performance between the
NFA-RFM and FACT-RFM methods, and account for their
general agreement in tracking the feature learning process as
it occurs in neural networks.

Empirical validation. We empirically validate the above ex-
planation, showing that indeed τ(xi, xj ,M) is approximately
proportional to k′(x⊤

i Mxj) for FACT-RFM in the challenging
setting of arithmetic modulo p = 61 (where as demonstrated
in Section 4.3 both algorithms converge to similar features).
In Figure 6, we show that a best-fit line proportionally relating the two quantities achieves a good fit.

6 NFA AND FACT MAY BE UNCORRELATED IN WORST-CASE SETTINGS

Finally, as a counterpoint to the analysis in the previous section, we show that when the data
distribution is chosen adversarially, NFA and FACT can differ drastically even for shallow, two-layer
nonlinear networks. Thus, FACT is perhaps a preferable alternative to the NFA.

We craft a dataset to maximimize their disagreement on a trained two-layer architecture f(x; a,W) =
a⊤σ(Wx) with quadratic activation σ(t) = t2 and parameters a ∈ Rm, W ∈ Rm×d and any large
enough width m ≥ 7. For any p ∈ (0, 1) and τ ∈ (0, 1), define the data distribution D(p, τ) over
(x, y) such that x is drawn from a mixture of distributions: x ∼ Unif[{0, 1, 2}4] with probability
p and x = (1, 1, 0, 0) with probability 1 − p, and such that y = f∗(x) = τx1x2 + x3x4 ∈ R .
For appropriate choices of the hyperparameters, we show that the NFA prediction can be nearly
uncorrelated with weights that minimize the loss, while the FACT provably holds.
Theorem 6.1 (Separation between NFA and FACT in two-layer networks). Fix any s > 0. For
any ϵ ∈ (0, 1], there are hyperparameters pϵ, τϵ, λϵ ∈ (0, 1) such that any parameters θ = (a,W)
minimizing Lλϵ

(θ) on data distribution D(pϵ, τϵ) are nearly-uncorrelated with the (NFA) prediction:

corr((AGOP)s,W⊤W) < ϵ ,

where the correlation corr is defined as corr(A,B) = ⟨A,B⟩/(∥A∥F ∥B∥F). In contrast, (FACT)
holds because the weights are at a stationary point.

Proof intuition. At a loss minimizer, the neural network approximates the true function f∗
because part of the data distribution is drawn from the uniform distribution. Therefore, since
the neural network computes a quadratic because it has quadratic activations, one can show
AGOP ≈ Ex∼D(pϵ,τϵ)[(∇xf∗)(∇xf∗)

⊤] ≈ τ2ϵ (e1 + e2)(e1 + e2)
⊤ + O(pϵ), For small pϵ, this

matrix has most of its mass in the first two rows and first two columns.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

WTW FACT AGOP

Figure 7: The FACT and NFA
are uncorrelated at conver-
gence on the synthetic dataset.

On the other hand, the weight decay in training the neural network
means that at convergence the norm of the network weights is min-
imized given the function it computes. Since the neural network
approximates the true function f∗, in order to minimize the total
norm of the weights, W⊤W must have most of its mass on the last
two rows and columns when τϵ is small. This is in contrast to AGOP,
since as we have argued that has most of its mass on the first two
rows and columns. Thus, the NFA prediction is not met. On the
other hand, the FACT prediction is provably met by Theorem 3.1.
The formal proof is in Appendix D.

The construction is empirically validated in Figure 7, which is the result of training a width-10
network for 106 iterations of Adam with learning rate 0.01 on the population loss with τ = 0.02,
p = 10−5, λ = 10−5. At convergence, FACT achieves 0.994 cosine similarity with W⊤W , while
AGOP achieves < 0.068 cosine similarity.

7 DISCUSSION

This work pursues a first principles approach to understanding feature learning by deriving a condition
that must hold in neural networks at critical points of the train loss. Perhaps the most striking aspect
of our results is that FACT is based only on local optimality conditions of the loss. Nevertheless, in
Section 4.3 we show that when used to drive the RFM algorithm, FACT recovers interesting global
behaviors of neural networks: including high-performing feature learning for tabular dataset tasks,
and grokking and phase transition behaviors on arithmetic and sparse parities datasets.

The usefulness of FACT is especially surprising since there is no reason for FACT to be correlated to
neural feature matrices during most of training, prior to interpolating the train loss; and indeed FACT

does have low correlation for most epochs (although
√
FACT · FACT⊤ has nontrivial correlation),

before sharply increasing to near-perfect correlation; see Figure 8. This is a potential limitation to
using FACT to understand the evolution of features during training, rather than in the terminal phase.
Therefore, it is of interest to theoretically derive a quantity with more stable correlation over training.

Layer 1 Layer 2 Layer 3

Figure 8: We train 5 layer ReLU MLPs to interpolation on CIFAR-10 and plot Pearson correlation
vs. epochs comparing FACT,AGOP, eNFA to neural feature matrices for the first three layers of the
model. Curves are averaged over five independent runs.

An additional limitation is that there are data distributions, such as sparse parity, where FACT-RFM
becomes unstable if continued iterations are performed after convergence, so early stopping is
necessary. Understanding this phenomenon may help derive relations that improve over FACT.

Finally, our formulation of FACT for neural networks requires non-zero weight decay. This is a
reasonable assumption for real-world neural network training (LLMs are often pretrained with a
reasonably large weight decay factor), but raises othe question of whether it is possible to compute
FACT in the zero weight-decay limit. In Section 5, we formulate FACT in a way that only relies on
the kernel dual weights, the learned features, and the data. Therefore it may be possible to compute
FACT in neural networks through the network’s empirical neural tangent kernel (Jacot et al., 2018;
Long, 2021), which would allow using FACT without requiring weight decay.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2552–2623. PMLR, 2023.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 244–253. PMLR, 10–15 Jul 2018.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks. ICLR, 2019a.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019b.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22
(106):1–51, 2021.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750–21764, 2022.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Parthe Pandit, and Mikhail Belkin. Mechanism
of feature learning in convolutional neural networks. arXiv preprint arXiv:2309.00570, 2023.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Enric Boix-Adserà, and Mikhail Belkin. Ag-
gregate and conquer: detecting and steering llm concepts by combining nonlinear predictors over
multiple layers. arXiv preprint arXiv:2502.03708, 2025.

Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti. Scaling laws for associative memories. arXiv
preprint arXiv:2310.02984, 2023.

Vivien Cabannes, Berfin Simsek, and Alberto Bietti. Learning associative memories with gradient
descent. arXiv preprint arXiv:2402.18724, 2024.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis, 7(1):1–46, 1970.

Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers
in neural feature learning: Data, compute, width, and luck. NeurIPS, 2023.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
of statistical induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004,
2024.

Manuel Fernandez-Delgado, E. Cernadas, S. Barro, and Dinani Amorim. Do we need hundreds of
classifiers to solve real world classification problems? Journal of Machine Learning Research,
2014.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias:
Generalization vs. robustness in relu networks. Advances in Neural Information Processing
Systems, 36, 2024.

Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay secretly
minimize the rank of your neural network. arXiv preprint arXiv:2206.05794, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yulu Gan and Tomaso Poggio. For hyperbfs agop is a greedy approximation to gradient descent.
Technical report, Center for Brains, Minds and Machines (CBMM), 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023. URL
https://arxiv.org/pdf/2301.02679.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018.

XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks, 2018.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on learning theory, pp. 1772–1798. PMLR, 2019.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. arXiv
preprint arXiv:2206.04041, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Tanishq Kumar, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics. arXiv preprint arXiv:2310.06110, 2023.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Philip M Long. Properties of the after kernel. arXiv preprint arXiv:2105.10585, 2021.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and
Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average
gradient outer product. ICML, 2025.

Pierre Marion and Lénaïc Chizat. Deep linear networks for regression are implicitly regularized
towards flat minima. NeurIPS, 2024.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica Sutherland. Grokking modular
arithmetic can be explained by margin maximization. In NeurIPS 2023 Workshop on Mathematics
of Modern Machine Learning, 2023.

Depen Morwani, Benjamin L Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
Feature emergence via margin maximization: case studies in algebraic tasks. arXiv preprint
arXiv:2311.07568, 2023.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

11

https://arxiv.org/pdf/2301.02679

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mechanism
for feature learning in neural networks and backpropagation-free machine learning models. Science,
383(6690):1461–1467, 2024.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive feature
machines provably recover low-rank matrices. Proceedings of the National Academy of Sciences,
122(13):e2411325122, 2025.

S Yu Rotfel’d. The singular numbers of the sum of completely continuous operators. In Spectral
Theory, pp. 73–78. Springer, 1969.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint, 2014.

B Schölkopf. Learning with kernels: support vector machines, regularization, optimization, and
beyond, 2002.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

Lawrence Stewart, Francis Bach, Quentin Berthet, and Jean-Philippe Vert. Regression as classification:
Influence of task formulation on neural network features. In International Conference on Artificial
Intelligence and Statistics, pp. 11563–11582. PMLR, 2023.

Robert Thompson. Convex and concave functions of singular values of matrix sums. Pacific Journal
of Mathematics, 66(1):285–290, 1976.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Emanuele Zangrando, Piero Deidda, Simone Brugiapaglia, Nicola Guglielmi, and Francesco Tudisco.
Neural rank collapse: Weight decay and small within-class variability yield low-rank bias. arXiv
preprint arXiv:2402.03991, 2024.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd:
spikes in the training loss and their impact on generalization through feature learning. arXiv
preprint arXiv:2306.04815, 2023.

Libin Zhu, Damek Davis, Dmitriy Drusvyatskiy, and Maryam Fazel. Iteratively reweighted kernel
machines efficiently learn sparse functions. arXiv preprint arXiv:2505.08277, 2025.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. NeurIPS, 2022.

Liu Ziyin, Isaac Chuang, Tomer Galanti, and Tomaso Poggio. Formation of representations in neural
networks. ICLR, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A HYPERPARAMETERS IN EMPIRICAL VALIDATION OF FACT

In the empirical validation of FACT in Figure 2, we train the networks until convergence, which we
operationalize as the point at which batch train loss ≤ 10−3 is achieved. The results are for training
5-layer fully-connected networks with Mean-Squared Error (MSE) loss for 200 epochs using SGD,
momentum 0.9, initial learning rate 10−1, cosine decay learning rate schedule, weight decay 10−4,
batch size 64, depth 3, and hidden width 1024 for MNIST and 3072 for CIFAR-10, and standard
PyTorch initialization.

B BACKWARD FORM OF FACT

We provide here an analogous “backward” form of the FACT condition, which applies to WW⊤

instead of W .

Recall from Section 2 that the neural network depends on W as

f(x) = g(Wh(x), x) .

Out of convenience, we introduce notation to denote the gradient of the loss with respect to the
output of the layer at data point xi. We write

∇Whℓi :=
∂ℓ(g(h̃, x); yi)

∂h̃
|h̃=Wh(xi)

∈ Rd.

With this notation in hand, the backward form of the FACT, which gives information about the left
singular vectors, is:

Theorem B.1. If the parameters of the network are at a differentiable, critical point of the loss with
respect to W , then

WW⊤ = bFACT := − 1

nλ

n∑
i=1

(Wh(xi))(∇Whℓi)
⊤ . (bFACT)

Proof. Left-multiplying by W , we obtain

0 = W (∇WLλ(θ))
⊤

= W (λW +∇WL(θ))⊤

= W (λW +
1

n

n∑
i=1

(
∂ℓ(g(h̃); yi)

∂h̃
|h̃=Wh(xi)

h(xi)
⊤)⊤

= λWW⊤ + (Wh(xi))(∇Whℓi)
⊤

Rearranging and dividing by λ proves (bFACT).

Again, we may symmetrize both sides of the equation and still get valid equations that hold at critical
points of the loss: for instance we have WW⊤ =

√
bFACT · bFACT⊤.

In the same way that we compute bFACT, we can compute an analogous “backward" version of
AGOP which is given by,

bAGOP =
1

n

n∑
i=1

(∇Whfi)(∇Whfi)
⊤

and consider whether this models the left singular vectors of layer weights as well. The backward
eNFA is as computed in (Ziyin et al., 2025). Figures 9 and 10 show the complete set of comparisons
for backward versions of FACT,AGOP, eNFA to their respective neural feature matrices compared
across both depth and epochs. The hyperparameters and training setup are the same as that described
in Appendix A.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MNIST, ReLU MLP, 5 Layers, 1024 Width CIFAR-10, ReLU MLP, 5 Layers, 3072 Width

backward

Figure 9: We train 5 hidden layer ReLU MLPs to interpolation on MNIST and CIFAR-10. We plot the
Pearson correlation of the backward versions of FACT,AGOP, eNFA (with respect to pre-activation
outputs of a layer) and compare to WWT for that layer. Curves are averaged over 5 independent
runs.

Layer 1 Layer 2 Layer 3

Figure 10: We train 5 hidden layer ReLU MLPs to interpolation on CIFAR-10. We plot the Pearson
correlation of the backward versions of FACT,AGOP, eNFA (with respect to pre-activation outputs
of a layer) vs. epochs. Curves are averaged over 5 independent runs.

C CASE STUDY FOR DEEP LINEAR NETWORKS

In this appendix, we compare the predictions of FACT and NFA in the toy setting of deep linear
networks, which have received significant attention in the theoretical literature as a simplified setting
for studying training dynamics Arora et al. (2019a); Ziyin et al. (2022); Marion & Chizat (2024);
Saxe et al. (2014); Arora et al. (2018). A deep linear network f : Rd → Rc is parameterized as

f(x) = WL ·WL−1 · · ·W1x

for W1 ∈ Rh×d,W2, . . . ,WL−1 ∈ Rh×h,WL ∈ Rc×h. We fit the network on data points x ∼
N (0, Id) and labels given by a ground truth linear transformation f∗(x) = W ∗x where W ∗ ∈ Rc×d.

In this setting, Radhakrishnan et al. (2025) show that the exponent s in (NFA) must scale as 1/L
in order for the NFA prediction to be correct. Thus, unlike the FACT, the NFA has a tunable
hyperparameter that must depend on the particular architecture involved. We rederive this dependence
of the exponent on the architecture for completeness.

Informal derivation of NFA power dependence on depth In this setting, the NFA prediction for
the first layer can be computed as

AGOP = W⊤
1 · · ·W⊤

L−1W
⊤
L WL ·WL−1 · · ·W1 ,

So, when training has converged and the network is close to fitting the ground truth W ∗, we have

AGOP ≈ (W ∗)⊤W ∗ .

It is known that weight decay biases the solutions of deep linear networks to be “balanced” at
convergence Gunasekar et al. (2017); Arora et al. (2019b), meaning that the singular values at each
layer are equal. When the layers are balanced we should therefore heuristically expect that, after
training, we have

W⊤
1 W1 ≈ ((W ∗)⊤W ∗)1/L ,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

because singular values multiply across the L layers. Putting the above equations together, at
convergence we have

W⊤
1 W1 ≈ (AGOP)1/L .

For L = 2, we recover the prescription of using
√
AGOP suggested by Radhakrishnan et al. (2024);

Beaglehole et al. (2023); Mallinar et al. (2025). However when L ̸= 2, this is no longer the best
power. Our analysis suggests that the AGOP power must be tuned with the depth of the network – on
the other hand, FACT does not need this tunable parameter.

We empirically validate this in Figure 11, with deep linear networks with d = 10, c = 5, h = 512 and
varying the depth L, and sample W ∗ ∈ Rc×d with independent standard Gaussian entries. The train
dataset is of size n = 5000 where xi ∼ N (0, Id). We train to convergence using the Mean Squared
Error (MSE) loss for 5000 epochs with SGD, minibatch size 128, learning rate of 5× 10−3, weight
decay of 10−2, and standard PyTorch initialization. After training, the singular values of all of the
weight matrices are identical after training, indicating balancedness has been achieved.

1/10 1/3 1 3 10
c

0.80

0.85

0.90

0.95

1.00

Co
sin

e
Si

m
ila

rit
y

to
 W

T W

Correlation of WTW with NFAc/L for different network depths L

NFAc/2, 2 layers
NFAc/3, 3 layers
NFAc/4, 4 layers
NFAc/5, 5 layers
NFAc/7, 7 layers

Figure 11: Deep L-layer linear networks trained to convergence on synthetic data. AGOP1/L has
cosine similarity close to 1 to the NFM (W⊤

1 W1), which validates the derivation in Appendix C.
For all of these network depths, FACT has cosine similarity ≥ 0.999, and there are no tunable
hyperparameters that depend on depth.

D PROOF OF THEOREM 6.1, SEPARATING FACT AND NFA FOR TWO-LAYER
NETWORKS

We provide the proof of Theorem 6.1, restating the theorem as Theorem D.1 for convenience.

Setup Consider a trained two-layer architecture f(x; a,W) = a⊤σ(Wx) with quadratic activation
σ(t) = t2 and parameters a ∈ Rm, W ∈ Rm×d. For any p ∈ (0, 1) and τ ∈ (0, 1), define the
data distribution D(p, τ) over (x, y) such that x is drawn from a mixture of distributions: x ∼
Unif[{0, 1, 2}4] with probability p and x = (1, 1, 0, 0) with probability 1 − p, and such that y =
f∗(x) = τx1x2 + x3x4 ∈ R .

Theorem D.1 (Separation between NFA and FACT in two-layer networks; restated Theorem 6.1).
Fix s > 0 to be the NFA power. For any ϵ ∈ (0, 1), there are hyperparameters pϵ, τϵ, λϵ ∈ (0, 1)
such that any parameters θ = (a,W) minimizing Lλϵ

(θ) on data distribution Dϵ := D(pϵ, τϵ) are
nearly-uncorrelated with the NFA prediction:

corr((AGOP)s,W⊤W) < ϵ ,

where corr(A,B) = ⟨A,B⟩/(∥A∥F ∥B∥F) is the correlation. On the other hand, the FACT predic-
tion holds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Set τϵ = ϵ3, pϵ = ϵ8, λϵ = ϵ32pϵ. The outline of the proof that the loss-minimizing weights
and AGOP are uncorrelated is to first show that there is a set of weights ā, W̄ such that the loss
Lλϵ

(ā, W̄) is small. This implies that at any minimizer a∗,W ∗ we must also have that Lλϵ
(a∗,W ∗)

is small. In turn, this means that the estimated function f̂(·) = f(·; a∗,W ∗) must be close to the true
function f∗(x) = τϵx1x2 + x3x4. Finally, this will let us compare the AGOP to the loss-minimizing
weights â, Ŵ .

1. Construct weights with low loss. Construct W̄ = [w̄1, . . . , w̄m]
⊤ ∈ Rm×d and ā =

[ā1, . . . , ām]
⊤ ∈ Rm×1 by letting w̄1 = e1 + e2, w̄2 = e1, w̄3 = e2, w̄4 = e3 + e4, w̄5 = e3,

w̄6 = e4, ā1 = τϵ/2, ā4 = 1/2, ā2 = ā3 = −τϵ, ā5 = ā6 = −1, and w̄j = 0 and āj = 0 for all
j ≥ 7. One can check that f(x; ā, W̄) = f∗(x) for all x, and that ∥W̄∥2F + ∥a∥2 ≤ 13. Therefore

Lλϵ
(â, Ŵ) ≤ Lλϵ

(ā, W̄) ≤ 169λϵ . (D.1)

2. Conclude that f̂ ≈ f∗. Define f̂(·) = f(·; â, Ŵ). Since f̂ and f∗ are homogeneous quadratic
functions, we may write them as

f̂(x) =
∑

1≤i≤j≤4

ĉijxixj and f∗(x) =
∑

1≤i≤j≤4

cijxixj .

Let us show that the coefficients {cij} must be close to the estimated coefficients {ĉij} using a
Fourier-analytic calculation. Define the distribution U = Unif[{0, 1, 2}4] and the inner product
between a pair of functions ⟨g, h⟩U = Ex∼U [g(x)h(x)]. Also define the functions

χ(0)(t) =

{
3, t = 0

0, t ∈ {1, 2} , χ(1)(t) =


−4.5, t = 0

6, t = 1

−1.5 t = 2

, χ(2)(t) =


1.5, t = 0

−3, t = 1

1.5, t = 2

and for any vector of degrees α ∈ {0, 1, 2}k define χα : {0, 1, 2}4 → R by χα(x) =
∏k

i=1 χ
(αi)(xi).

These functions have been picked so that for any α′ ∈ {0, 1, 2}k and monomial hα′(x) =

x
α′

1
1 x

α′
2

2 . . . x
α′

k

k , we have ⟨hα, χα′⟩U = 1(α = α′) . Therefore, for any 1 ≤ i ≤ j ≤ 4, there
is α ∈ {0, 1, 2} such that

cij = ⟨f∗, χα⟩U and ĉij = ⟨f̂, χα⟩U .

Therefore, by Cauchy-Schwarz, for any 1 ≤ i ≤ j ≤ 4 and corresponding α we have

|cij − ĉij | = |⟨f∗ − f̂, χα⟩U | ≤ ∥f∗ − f̂∥U∥χα∥U ≤ 64∥f∗ − f̂∥U

Now we can apply our previous bound in (D.1), which implies that E(x,y)∼Dϵ
[(f̂(x)− f∗(x))

2] ≤
L(â, Ŵ) ≤ 169λϵ, and in turn means that

∥f − f∗∥2U = ⟨f − f∗, f − f∗⟩U = Ex∼Unif[{0,1,2}4][(f̂(x)− f∗(x))
2] ≤ 169λϵ/pϵ.

So the estimated coefficients {ĉij} are close to the true coefficients {cij}ij , i.e., for any 1 ≤ i ≤ j ≤
4,

|cij − ĉij | ≤ 17000
√
λϵ/pϵ := δϵ . (D.2)

Notice that δϵ ≤ 17000ϵ16 ≤ 1/10 for small enough ϵ.

3a. Estimate the AGOP of f̂ . Since we have shown f̂ ≈ f , the AGOP of the estimated function can
be well approximated as follows.

AGOP(f̂,Dϵ) = E(x,y)∼Dϵ
[
∂f̂

∂x

∂f̂

∂x

⊤

]

= (1− pϵ)
∂f̂

∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) +pϵE(x,y)∼U [
∂f̂

∂x

∂f̂

∂x

⊤

]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since |ĉij | ≤ |cij | + δϵ ≤ 1 + δϵ ≤ 11/10 for all i, j it must hold that ∥∂f̂∂x
∂f̂
∂x

⊤
∥F ≤ 100 for all

x ∈ {0, 1, 2}4, so

∥AGOP(f̂,Dϵ)−
∂f̂

∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) ∥F ≤ 100pϵ (D.3)

Finally, ∂f̂
∂x |x=(1,1,0,0)= 2ĉ11e1 + 2ĉ22e2 + ĉ12(e1 + e2) + (ĉ13 + ĉ23)e3 + (ĉ14 + ĉ24)e4, and

c11 = c22 = c13 = c14 = c23 = c24 = 0 and c12 = τϵ, which means that

∥∂f̂
∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) −τ2ϵ (e1 + e2)(e1 + e2)
⊤∥F ≤ 20∥∂f̂

∂x
|x=(1,1,0,0) −τϵ(e1 + e2)∥F ≤ 1000

√
δϵ .

(D.4)

Putting the (D.3) and (D.4) together with the triangle inequality, we conclude our estimate of the
AGOP

∥AGOP(f̂,Dϵ)− τ2ϵ (e1 + e2)(e1 + e2)
⊤∥F ≤ 100pϵ + 1000

√
δϵ . (D.5)

3a. Estimate powers of the AGOP of f̂ . Next, let s > 0 be the power of the AGOP that we will take.

Let λ1 ≥ · · · ≥ λ4 ≥ 0 be the eigenvalues of AGOP, with a corresponding set of orthonormal
eigenvectors v1, . . . , v4 ∈ R4. By Weyl’s inequality, since τ2ϵ ≥ 100pϵ + 1000

√
δϵ for small enough

ϵ,

λ1 ≥ 2τ2ϵ − (100pϵ + 1000
√
δϵ) ≳ ϵ6

and

λ1 ≲ ϵ6

and

0 ≤ λ4 ≤ λ3 ≤ λ2 ≤ 100pϵ + 1000
√
δϵ ≲ ϵ8 .

Additionally, let P⊥ be the projection to the orthogonal subspace spanned by {(e1 + e2)}. By the
Davis-Kahan sin(Θ) theorem Davis & Kahan (1970),

∥P⊥v1∥ ≤
100pϵ + 1000

√
δϵ

τ2ϵ
≲ ϵ2.

Notice that AGOP =
∑4

i=1 λ
s
iviv

⊤
i , which we will use later.

4. Estimate the loss-minimizing weights. Now let us estimate the loss-minimizing weights, â, Ŵ .
The argument here is split into two parts: we want to (a) show that Ŵ is small in the first and second
columns, and (b) show that Ŵ is large in the third or fourth column. These two facts combined will
be enough show that Ŵ⊤Ŵ is close to uncorrelated to the AGOP.

4a. Show that Ŵ1:m,1 and Ŵ1:m,2 are small. Define weights a′,W ′ by letting a′ = â and W ′ =[
0 0 Ŵ1:m,3 Ŵ1:m,4

]
. In other words, we have zeroed out the coefficients of the variables x1

and x2 in the first layer. Then define

f ′(x) = (a′)⊤σ((W ′)x) .

If we write f ′(x) =
∑

1≤i≤j≤4 = c′ijxixj , notice that c′11 = c′12 = c′13 = c′14 = c′23 = c′24 = 0 and
that c′34 = ĉ34, c′33 = ĉ33, and c′44 = ĉ44. Now, let a′′,W ′′ be weights minimizing ∥a′′∥2 + ∥W ′′∥2F
such that

f ′(·) ≡ f(·; a′′,W ′′) .

By the construction in Lemma D.2, we may assume without loss of generality that all but 4 neurons are
nonzero: i.e., that a′′5 = · · · = a′′m = 0 and W ′′

5,1:4 = . . .W ′′
m,1:4 = 0. Now the difference between

the network after the zeroing out and the current network is f̂(x) − f ′(x) =
∑

1≤i≤j≤4 c̃ijxixj

where

|c̃ij | = |ĉij − c′ij | ≤ τϵ + δϵ .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

So by Lemma D.2, this difference can be represented on four neurons with a cost of at most
100(τϵ + δϵ)

2/3. Therefore, by editing the weights a′′,W ′′ we can construct weights a′′′,W ′′′ such
that f̂(·) ≡ f(a′′′,W ′′′) and

∥â∥2 + ∥Ŵ∥2F ≤ ∥a′′′∥2 + ∥W ′′′∥2F
≤ ∥a′′∥2 + ∥W ′′∥2F + 100(τϵ + δϵ)

2/3

= ∥â∥2 + ∥Ŵ∥2F − ∥Ŵ1:m,1∥2 − ∥Ŵ1:m,2∥2 + 100(τϵ + δϵ)
2/3 .

So we can conclude that the norm of the weights in the first and second column is small

∥Ŵ1:m,1∥2 + ∥Ŵ1:m,2∥2 ≤ 100(τϵ + δϵ)
2/3 ≲ ϵ2 . (D.6)

4b. Show that at least one of Ŵ1:m,3 or Ŵ1:m,4 is large. Finally, let us show that either the third or
fourth column of the weights is large.

0.9 ≤ c34 − δϵ ≤ ĉ34 ≤
m∑
i=1

âiŴi,3Ŵi,4

≤ ∥â∥

√√√√ m∑
i=1

(Ŵi,3Ŵi,4)2

≤ ∥â∥

√√√√ m∑
i=1

(Ŵi,3)2

√√√√ m∑
i=1

Ŵi,4)2

= ∥â∥∥Ŵ1:m,3∥∥Ŵ1:m,4∥ .

From the construction of the weights ā, W̄ in the first step of this proof, we know that ∥â∥2 ≤
∥ā∥2 + ∥W̄∥2 ≤ 13. So ∥â∥ ≤ 4. We conclude that

max(∥Ŵ1:m,3∥, ∥Ŵ1:m,4∥) ≥ 1/3. (D.7)

5. Compare AGOP to loss-minimizing weights. Finally, let us compare the NFA approximation (D.5)
to the facts proved in (D.6) and (D.7) about the loss-minimizing weights. From (D.5) and (D.6) and
∥Ŵ∥2F ≤ 13 and the calculations in step 3b, we conclude that

⟨(AGOP(f̂,Dϵ))
s, Ŵ⊤Ŵ ⟩ =

4∑
i=1

λs
i ⟨viv⊤i , Ŵ⊤Ŵ ⟩

≲ (∥Ŵ1:m,1∥2 + ∥Ŵ1:m,2∥2)(λs
1) + λs

1∥P⊥v1∥2 + λs
2 + λs

3 + λs
4

≲ ϵ2ϵ6s + ϵ8s .

From (D.5) and step 3b we conclude that

∥(AGOP(f̂,Dϵ))
s∥F ≳ (2τ2ϵ − 100pϵ − 1000

√
δϵ)

s ≥ τ2sϵ ≳ ϵ6s .

From (D.7), we conclude that

∥Ŵ⊤Ŵ∥ ≥ 1/9 ≳ 1 .

which implies that

corr(AGOP(f̂,Dϵ), Ŵ
⊤Ŵ) ≲ (ϵ2ϵ6s + ϵ8s)/ϵ6s ≲ ϵ2s + ϵ2,

which can be taken arbitrarily small by sending ϵ to 0.

The Lemma that we used in the proof of this theorem is below.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma D.2 (The minimum-norm weight solution for a network with quadratic activation). Let
f(x; a,W) = a⊤σ(Wx) be a neural network with quadratic activation function σ(t) = t2 and
weights W ∈ Rm×d, a ∈ Rm for m ≥ d. Then, for any homogeneous quadratic function f(x) =
x⊤Qx , where Q = Q⊤, the minimum-norm neural network that represents f has cost:

2

d∑
i=1

σi(Q)2/3 = min
a,W
{∥a∥2 + ∥W∥2F : f(·; a,W) ≡ f(·)} ,

and this can be achieved with a network that has at most d nonzero neurons.

Proof. We can expand the definition of the quadratic network

f(x; a,W) = a⊤σ(Wx) =

m∑
i=1

x⊤aiwiw
⊤
i x .

For any a,W such that f(·; a,W) ≡ f(·), we must have Q =
∑m

i=1 aiwiw
⊤
i . By (a) inequality (2.1)

in Thompson (1976) on concave functions of the singular values of sums of matrices (originally
proved in Rotfel’d (1969)), we must have

∥a∥2 + ∥W∥2F =

m∑
i=1

a2i + ∥wi∥2

≥ 2

m∑
i=1

σ1(aiwiw
⊤
i)

2/3

= 2

m∑
i=1

m∑
j=1

σj(aiwiw
⊤
i)

2/3

(a)

≥ 2

d∑
j=1

σj(Q)2/3 .

And notice that given an eigendecomposition (λ1, v1), . . . , (λd, vd) of Q, this can be achieved by
letting ai = sgn(λi)|λi|1/3, and wi = |λi|1/3vi for all 1 ≤ i ≤ d and ai = 0 and wi = 0 for all
d+ 1 ≤ i ≤ m.

E DERIVATION AND JUSTIFICATION OF FACT-RFM UPDATE

The simplest fixed-point iteration scheme would be to apply

Wt+1 ←
√
FACTt , (E.1)

aiming for the fixed point

W⊤
t+1W

⊤
t+1 = FACTt .

However, this scheme cannot be directly implemented because (E.1) is not necessarily well-defined.
In particular, FACT is not necessary p.s.d. when the network is not at a critical point of the loss, so
the square root of FACT in (E.1) is not well defined.

In order to fix it, the most natural solution is to symmetrize FACT and instead run the scheme

Wt+1 ← (FACTtFACT
⊤
t)

1/4 ,

since indeed when FACTt = W⊤
t Wt we are at a fixed point with this update.

We experimented with this update, and found good performance with tabular data (this is “no
geometric averaging” method reported in Table 1) and parity data, but for the modular arithmetic
problem FACT-RFM with this update was unstable and the method often did not converge – especially
in data regimes with low signal.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In order to obtain a more stable update, we chose to geometrically average with the previous iterate,
as follows:

Wt+1 ← (FACTt(W
⊤
t Wt)(W

⊤
t Wt)(FACTt)

⊤)1/8 ,

which again has a fixed point when FACTt = W⊤
t Wt. This yielded improved performance with

modular arithmetic while retaining performance with tabular data and parities. Additionally, as we
discuss in Section 5, we then discovered that this update has an interpretation as being a close relative
of the NFA-RFM update when applied to inner product kernel machines.

F PROOFS FOR SECTION 5

We first observe that the updates in FACT-RFM can be written in a convenient form in terms of the
dual solution α and the derivatives of the estimator. This lemma does not depend on the kernel being
an inner-product kernel.
Lemma F.1 (Simplified form of FACT for kernel machines). Let (X, y) be training data fit by a
kernel machine with the MSE loss, and let α be first-order optimal coefficients for kernel regression
with λ-ridge regularization. Then the FACT can be equivalently computed as

FACT =

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j αix

⊤
i .

The proof is by using known first-order optimality conditions for α.

Let us prove the convenient expression in Lemma F.1 for the FACT matrix for kernel machines,
which can be used to simplify the implementation of FACT-based RFM.

Proof. We compute the FACT for the estimator f̂(x) =
∑n

j=1 KW (x, xj)αj . Substituting the
definition of FACT and applying the chain rule, this is

FACT := − 1

nλ

n∑
i=1

(
∂

∂x
ℓ(f̂(x), yi)) |x=xi

x⊤
i = − 1

nλ

n∑
i=1

(
∂

∂x
f̂(x) |x=xi

)ℓ′(f̂(xi), yi))x
⊤
i

= − 1

nλ

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j ℓ

′(f̂(xi), yi)x
⊤
i ,

where ℓ′ ∈ Rc denotes the derivative in the first entry. The proof concludes by noting that αi =

− 1
nλℓ

′(f̂(xi), yi) because of the first-order optimality conditions for α, proved below in Lemma F.2.

Lemma F.2 (Alternative expression for representer coefficients for kernel regression). Let (X,Y)
be training data, and let α = (K(X,X) + λI)−1Y for some λ > 0. Also let ℓ(ŷ, y) = 1

2∥ŷ − y∥2.
Then

αi = −
1

nλ
ℓ′(ŷi, yi),

where ŷi = K(xi, x)α, and the derivative ℓ′ is in the first coordinate.

Proof. Notice that ℓ′(ŷi, yi) = ŷi − yi. So

ℓ′(ŷi, yi) = [Kα]i,∗ − yi

= K(K + nλI)−1yi − yi

= −nλ(K + λI)−1yi

= −nλαi .

Remark F.3. A statement of this form relating the representer coefficients to the loss derivatives at
optimality is more generally true beyond the MSE loss, but we do not need it here.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Finally, we can prove Proposition 5.1.
Proposition F.4 (Restatement of Proposition 5.1). Suppose the kernel is an inner-product kernel
of the form KW (x, x′) = k(x⊤Mx′), where M = W⊤W . Then, we may write the AGOP and the
FACT matrices explicitly as:

AGOP =

n∑
i,j=1

τ(xi, xj ,M)Mxiα
⊤
i αjx

⊤
j M

⊤ ,

FACT ·M⊤ =

n∑
i,j=1

k′(x⊤
i Mxj)Mxiα

⊤
i αjx

⊤
j M

⊤ ,

where τ(xi,M, xj) :=
1
n

∑n
l=1 k

′(x⊤
l Mxi)k

′(x⊤
l Mxj).

Proof. The expressions can be derived by plugging in the expansion f̂(x) =
∑n

j=1 K(x, xi)αi.

For AGOP, we start from its expression in Ansatz (NFA), and obtain

AGOP =
n∑

i=1

(∇x

n∑
j=1

KW (x, xj)αj)(∇x

n∑
l=1

KW (x, xl)αl)
⊤

=

n∑
i,j,l=1

k′(x⊤
j Mxi)k

′(x⊤
l xi)(Mxjα

⊤
j)(Mxlα

⊤
l)

⊤

=

n∑
i,j=1

τ(xi,M, xj)Mxiα
⊤
i αjx

⊤
j M

⊤.

For FACT, we start from the expression in Lemma F.1:

FACT ·M⊤ =

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j αix

⊤
i M

⊤

=

n∑
i,j=1

k′(x⊤
i Mxj)Mxjα

⊤
j αix

⊤
i M

⊤ .

G EXPERIMENTAL RESOURCE REQUIREMENTS

The following timings are for one A40 48GB GPU. The tabular data benchmark experiments in
Table 1 take under 1 GPU-hour to run. The synthetic benchmark task of Figure 7 on which FACT
and NFA are uncorrelated takes under 1 GPU-hour to run. The arithmetic experiments in Figure 5
and 6 take under 1 GPU-hour to run. The ReLU MLP experiments on MNIST and CIFAR-10 in
Figures 2, 8, 9, and 10 take under 50 GPU-hours to run. The sparse parity experiments in Figure 4
and Figure 3 take under 1 GPU-hour to run. The deep linear network experiments in Figure 11 take
under 2 GPU-hours to run. Additionally, debugging code and tuning hyperparameters took under 200
GPU-hours to run.

H LLM USAGE

LLMs were used only as AI coding assistants and to help polish some of the writing in the paper, and
were not used for research ideation.

21

	Introduction
	Related literature

	Training setup and background
	Neural features satisfy FACT at convergence
	FACT captures feature learning phenomena in many of the same ways as the NFA conjecture
	Background: Recursive Feature Machines
	FACT-based recursive feature machines
	Experimental results comparing FACT-RFM to NFA-RFM

	Comparison of NFA and FACT for inner-product kernels
	NFA and FACT may be uncorrelated in worst-case settings
	Discussion
	Hyperparameters in empirical validation of FACT
	Backward form of FACT
	Case study for deep linear networks
	Proof of Theorem 6.1, separating FACT and NFA for two-layer networks
	Derivation and justification of FACT-RFM update
	Proofs for Section 5
	Experimental resource requirements
	LLM usage

