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ABSTRACT

It is a central challenge in deep learning to understand how neural networks
learn representations. A leading approach is the Neural Feature Ansatz (NFA)
(Radhakrishnan et al., 2024), a conjectured mechanism for how feature learning
occurs. Although the NFA is empirically validated, it is an educated guess and lacks
a theoretical basis, and thus it is unclear when it might fail, and how to improve
it. In this paper, we take a first-principles approach to understanding why this
observation holds, and when it does not. We use first-order optimality conditions to
derive the Features at Convergence Theorem (FACT), an alternative to the NFA that
(a) obtains greater agreement with learned features at convergence, (b) explains
why the NFA holds in most settings, and (c) captures essential feature learning
phenomena in neural networks such as grokking behavior in modular arithmetic
and phase transitions in learning sparse parities, similarly to the NFA. Thus, our
results unify theoretical first-order optimality analyses of neural networks with
the empirically-driven NFA literature, and provide a principled alternative that
provably and empirically holds at convergence.

1 INTRODUCTION

A central aim of deep learning theory is to understand how neural networks learn representations. An
empirically-driven conjecture that has recently emerged as to the mechanism driving feature learning
in neural networks is the Neural Feature Ansatz (NFA) (Radhakrishnan et al., 2024), which states
that, after training, a weight layer W in a neural network f(x) satisfies the proportionality relation

W⊤W ∝ Ê[(∇xf(x))(∇xf(x))] .

Here the right-hand-side is an empirical expectation over the training data, and the gradient is
computed with respect to the input to the network – we review more details on the NFA conjecture
later, in Section 2.

This conjecture has been validated in practice on a range of architectures, including fully-connected
networks, convolutional networks, and transformers (Radhakrishnan et al., 2024). Furthermore,
a growing literature has shown that this NFA conjecture captures and explains several intriguing
phenomena of neural network training, including grokking of modular arithmetic (Mallinar et al.,
2025), learning of hierarchical staircase functions (Zhu et al., 2025), and catapult spikes during
training (Zhu et al., 2023). Additionally, when used to power an adaptive kernel learning algorithm,
it achieves state-of-the-art performance for monitoring models (Beaglehole et al., 2025), for learning
tabular datasets (Radhakrishnan et al., 2024), and for low-rank matrix learning (Radhakrishnan et al.,
2025).

Despite its success, the NFA conjecture lacks first-principles backing for why it should necessarily
hold during training. Because this conjecture was derived in an empirical fashion, it is unclear why it
ought to hold, whether and under which conditions it may fail, and how to improve it. This motivates
the main question studied by this paper:

Is there an alternative to the empirically-observed Neural Feature Ansatz conjecture, which can be
derived from first principles?
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We answer this question in the affirmative. Our main contribution is to demonstrate a connection
between the empirically-observed NFA conjecture and the literature studying first-order opti-
mality conditions that must provably hold if the training process converges. Thus, our results
unify two prominent approaches to studying feature learning (the NFA and first-order optimality). In
more detail, our contributions are:

(1) We derive a simple alternative to the NFA conjecture based on first-order optimal-
ity conditions. We call this the FACT (Features at Convergence Theorem). This is a
self-consistency formula that neural networks trained with weight decay must satisfy at
convergence; see Section 3.

(2) We empirically demonstrate that our first-principles alternative captures neural net-
work feature learning phenomena in many of the same ways that the NFA conjecture
does. We show that when FACT (instead of NFA) is used to power an adaptive kernel learn-
ing algorithm (Radhakrishnan et al., 2024), it also reproduces intriguing feature learning
behaviors observed in neural networks such as training phase transitions when learning
sparse parities (Barak et al., 2022; Abbe et al., 2023), grokking of modular arithmetic
(Nanda et al., 2023; Gromov, 2023), and high performance on tabular data matching the
state-of-the-art (Radhakrishnan et al., 2024); see Section 4.

(3) We provide a derivation for why the NFA conjecture usually holds based on first-order
optimality. By algebraically expanding the FACT relation, and analyzing the terms, we
demonstrate that it is qualitatively similar to the conjectured NFA relation. We empirically
demonstrate that the two relations are proportional in the case of modular arithmetic. This
helps put the NFA conjecture on firm theoretical foundation by connecting it to provable
first-order optimality conditions, and elucidates the mystery of why it usually holds; see
Section 5.

(4) We construct degenerate training settings in which the NFA conjecture is provably
false but where first-order optimality conditions hold true. We formally prove and
experimentally observe that in certain settings the NFA predictions can be nearly uncorrelated
to the ground truth, while FACT and any other relations based on first-order-optimality
conditions still hold. This indicates that the latter may provide a more accurate relation at
convergence; see Section 6 as well the discussion in Section 7.

1.1 RELATED LITERATURE

Implications of first-order-optimality in neural networks First-order optimality conditions of
networks at convergence – along with results on KKT conditions that arise with exponentially-tailed
losses at large training times (Soudry et al., 2018; Ji & Telgarsky, 2019; Lyu & Li, 2019; Ji &
Telgarsky, 2020) – has been used to show implicit bias of deep architectures towards low rank
(Gunasekar et al., 2017; Arora et al., 2019b; Galanti et al., 2022), of diagonal networks towards
sparsity (Woodworth et al., 2020), of convolutional networks towards Fourier-sparsity (Gunasekar
et al., 2018), and of fully-connected networks towards algebraic structure when learning modular
arithmetic (Mohamadi et al., 2023; Morwani et al., 2023). First-order optimality also has implications
to linear regression with bagging (Stewart et al., 2023), understanding adversarial examples (Frei
et al., 2024), and neural collapse (Han et al., 2021; Kothapalli, 2022; Zangrando et al., 2024).

Analyses of training dynamics Another recently prevalent approach to understanding feature
learning is to study neural network training dynamics – tracking weight evolution to understand how
features emerge (Olsson et al., 2022; Edelman et al., 2024; Nichani et al., 2024; Cabannes et al.,
2023; 2024; Arous et al., 2021; Abbe et al., 2022; 2023; Kumar et al., 2023). While insightful, these
analyses are technically challenging and are typically limited to synthetic datasets. In this paper,
we pursue an alternative approach: we seek conditions on network weights that are satisfied at the
conclusion of training, to gain insight into how the trained network represents the learned function. By
focusing on the network state at convergence, we can circumvent many of the difficulties associated
with analyzing training dynamics, and the insights directly apply beyond simplified synthetic settings.

Equivariant NFA Another alternative to the NFA, called the “equivariant NFA” (eNFA), was
recently proposed in Ziyin et al. (2025) based on an analysis of the dynamics of noisy SGD. This is
distinct from the FACT and we also compare to it in Section 4.
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x

h(x) ∈ Rd multiply
by W Wh(x) ∈ Rd′

f(x; θ)

Figure 1: The model only depends on W through multiplication of activations h(x).

2 TRAINING SETUP AND BACKGROUND

Training setup We consider the standard training setup, with a model f(·; θ) : X → Rc trained
on a sample-wise loss function ℓ : Rc × Y → R on data points (xi, yi)i∈[n] with L2 regularization
parameter λ > 0 (that is, with non-zero weight decay). The training loss is Lλ(θ) = L(θ) +
λ
2 ∥θ∥

2
F , where L(θ) = 1

n

∑n
i=1 ℓ(f(xi; θ), yi). Here X and Y are the input and output domains.

Our FACT applies to any weight matrix parameter W ∈ Rd′×d inside a trained model. The only
architectural requirement is that the model only depends on W via matrix multiplication of internal
activations. See Figure 1. Formally, fixing all parameters but W , there are functions g, h such that for
all x,

f(x; θ) = g(Wh(x), x) . (2.1)

In this notation,1 h is the input to the weight matrix, and Wh is the output. Thus, FACT applies to
any layer in neural networks that involves matrix multiplications.

For convenience, we introduce the notation to denote the gradient of the loss and the value of the
model with respect to the input of the layer containing the weight matrix W , at the data point xi:

∇hℓi :=
∂ℓ(g(Wh, x); yi)

∂h
|h=h(xi)∈ Rd and ∇hfi :=

∂g(Wh, x)

∂h
|h=h(xi)∈ Rd×c .

Neural Feature Ansatz. In the above notation, the NFA (Radhakrishnan et al., 2024) posits that
the neural feature matrix W⊤W is proportional to the influence that the different subspaces of the
input have on the output, which is captured by the Average Gradient Outer Product (AGOP) matrix.
Namely, there is a power s > 0 such that

W⊤W ∝ (AGOP)s , where AGOP :=
1

n

n∑
i=1

(∇hfi)(∇hfi)
⊤ . (NFA)

Equivariant Neural Feature Ansatz. We will also compare to the eNFA proposed in Ziyin et al.
(2025), which states

W⊤W ∝ eNFA :=
1

n

n∑
i=1

(∇hℓi)(∇hℓi)
⊤ . (eNFA)

3 NEURAL FEATURES SATISFY FACT AT CONVERGENCE

In contrast to the empirically-derived NFA and eNFA, we seek to provide a relation derived from
first principles. We proceed from the following simple observation: at a critical point of the loss, the
features h(x) are weighted by their influence on the final loss. This is stated in the following theorem.
Theorem 3.1 (Features at Convergence Theorem). If the parameters of the model are at a critical
point of the loss with respect to W , then

W⊤W = FACT := − 1

nλ

n∑
i=1

(∇hℓi)(h(xi))
⊤ . (FACT)

1More precisely, including the dependence on the parameters other than W , what this means is that we can
partition the parameters as θ = [W, θ−W ], and f(x; θ) = g(Wh(x; θ−W );x; θ−W ).
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MNIST, ReLU MLP, 5 Layers, 1024 Width CIFAR-10, ReLU MLP, 5 Layers, 3072 Width

forward

Figure 2: We train 5 hidden layer ReLU MLPs to interpolation on MNIST and CIFAR-10. We
plot Pearson correlation of FACT,AGOP, eNFA (with respect to each hidden layer input) to WTW
for that layer. Curves are averaged over 5 independent runs. Both sides of the (FACT) are highly-
correlated at convergence across layers.

Proof. The premise of the theorem implies that ∇WLλ(θ) = 0, since W is a subset of the model
parameters. By left-multiplying by W⊤ and using the chain rule, we obtain

0 = W⊤(∇WLλ(θ))

= W⊤(λW +∇WL(θ))

= W⊤(λW +
1

n

n∑
i=1

(
∂ℓ(g(h̃); yi)

∂h̃
|h̃=Wh(xi)

)
h(xi)

⊤

= λW⊤W +
1

n

n∑
i=1

(∇hℓi)h(xi)
⊤ .

The theorem follows by rearranging and dividing by λ.

Theorem 3.1 is a straightforward modification of the stationarity conditions. Nevertheless, as we
argue in the remainder of this paper, it is a useful quantity to consider when studying feature learning
in neural networks, and it is especially fruitful when viewed as a first-principles counterpart to the
NFA. Before proceeding with applications of (FACT), we provide a few remarks and empirical
validation.
Remark 3.2 (Symmetrizations of FACT). While W⊤W is p.s.d., the quantity FACT is only guaranteed
to be p.s.d. at critical points of the loss. This means that we can exploit the symmetries of the left-
hand-side of (FACT) to get several other identities at convergence. For instance, since W⊤W =
(W⊤W )⊤, we may conclude that at the critical points of the loss W⊤W = FACT⊤ also holds.
Similarly, using that W⊤W =

√
(W⊤W )(W⊤W )⊤, we may also conclude that at critical points

W⊤W =
√
FACT · FACT⊤ also holds.

Remark 3.3 (Empirical validation on real-world data). In Figure 2, we verify FACT on 5-layer ReLU
MLPs trained until convergence on MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009)
with Mean Squared Error loss and weight decay 10−4. We find that, at convergence, the two sides
of the (FACT) relation are generally more highly correlated than those of the (NFA) and (eNFA)
relations. For hyperparameter details, see Appendix A.

Remark 3.4 (Backward form). There is also an analogous “backward” version of this equation,
(bFACT), derived and empirically validated in Appendix B, that yields information about the left
singular vectors of W rather than the right singular vectors. Letting ∇Whℓi denote the gradient of
the loss with respect to the output of the layer at data point xi, we have

WW⊤ = bFACT := − 1

nλ

n∑
i=1

(Wh(xi))(∇Whℓi)
⊤ . (bFACT)

4
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4 FACT CAPTURES FEATURE LEARNING PHENOMENA IN MANY OF THE SAME
WAYS AS THE NFA CONJECTURE

Having validated the FACT, we now turn to applications. We show that our first-principles FACT
captures many feature learning phenomena in the same ways that the empirically-driven NFA
conjecture has been previously shown to do. First, we show that the FACT can be used to design
learning algorithms that achieve high performance on tabular data based on adapting the recursive
feature machine (RFM) algorithm of Radhakrishnan et al. (2024). We also show that this algorithm
recovers important feature learning phenomena commonly studied in neural networks, such as phase
transitions in sparse parity learning, and grokking of modular arithmetic.

4.1 BACKGROUND: RECURSIVE FEATURE MACHINES

The Recursive Feature Machine (RFM) algorithm (Radhakrishnan et al., 2024) builds upon classical
kernel methods (Schölkopf, 2002), which rely on a kernel function K(x, x′) to measure data point
similarity (e.g., Gaussian, Laplace). While kernel methods have been successful, they can be provably
less sample-efficient than alternatives like neural networks that are able to learn features (Abbe et al.,
2022; Damian et al., 2022).

To address these limitations, RFM learns a linear transformation W ∈ Rd×d and applies a standard
kernel K to the transformed data: KW (x, x′) = K(Wx,Wx′). This learned W enables RFM to
identify salient features, akin to feature learning in neural networks (for example, if W is low rank, its
range contains the salient features while the orthogonal complement to its range contains the irrelevant
features). Seeking to imitate the feature learning behavior in neural networks, Radhakrishnan et al.
(2024) iteratively updates W using a fixed-point iteration to satisfy the NFA condition. This is given
in Algorithm 1, where the update equation on line 6 is given by

Wt+1 ← (AGOPt)
s/2, where AGOPt =

1

n

n∑
i=1

(∇xf̂t)(∇xf̂t)
⊤; s > 0. (NFA-RFM update)

Algorithm 1 Recursive Feature Machine (based on NFA (Radhakrishnan et al., 2024) or FACT
(ours))

1: Input: Training data (X, y), kernel KW , number of iterations T , ridge-regularization λ ≥ 0
2: Initialize W0 ← Id×d

3: for t = 0 to T do
4: Run kernel method: αt ← (KWt(X,X) + nλI)−1y

5: Let f̂t(x) := KWt
(x,X)αt be the kernel predictor

6: Update Wt, either with (NFA-RFM update) or (FACT-RFM update)
7: end for
8: Output: predictor f̂T (x)

4.2 FACT-BASED RECURSIVE FEATURE MACHINES

We study RFM with a FACT-based update instead of an NFA-based update. Similarly to the above,
let FACTt be the FACT matrix corresponding to iteration t. We symmetrize in order to ensure that
the update is p.s.d. Our FACT-based fixed-point iteration in line 6 of RFM is thus

Wt+1 ← ((FACTt)(FACTt)
⊤)1/4 . (FACT-RFM update)

We also study a variant of this update where we average geometrically with the previous iterate to
ensure greater stability (which helps for the modular arithmetic task). This geometric averaging
variant has the following update

Wt+1 ← ((FACTt)(W
⊤
t Wt)(W

⊤
t Wt)(FACTt)

⊤)1/8 . (FACT-RFM update’)

The exponents in these updates are chosen so that the fixed points of these updates coincide with the
FACT relation derived for networks at convergence in Theorem 3.1. See Appendix E for more details.
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Method FACT-RFM
(no geom. averaging)

FACT-RFM
(geom. averaging) NFA-RFM Kernel regression

Accuracy (%) 85.22 84.99 85.10 83.71

Table 1: Average test accuracy over 120 datasets from the UCI corpus Fernandez-Delgado et al.
(2014). We compare Laplace kernel regression with adaptively learned Laplace kernels using FACT
and NFA, as well as no feature learning.

k = 3, n =5kk = 2, n = 500 k = 4, n =50k
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Figure 3: We train FACT-RFM and NFA-RFM using the Mahalanobis Gaussian kernel on sparse
parity tasks. We train with d = 50, k = 2, 3, 4. The corresponding

√
AGOP and

√
FACT ·M⊤

feature matrices are very similar and learn the support of the sparse parity.

4.3 EXPERIMENTAL RESULTS COMPARING FACT-RFM TO NFA-RFM

We compare FACT-RFM to NFA-RFM across a range of settings (tabular datasets, sparse parities,
and modular arithmetic).

Tabular datasets. The authors of Radhakrishnan et al. (2024) obtain state-of-the-art results using
NFA-RFM on tabular benchmarks including that of Fernandez-Delgado et al. (2014) which utilizes
121 tabular datasets from the UCI repository. We run their same training and cross-validating
procedure using FACT-RFM, and report results in Table 1. We find that FACT-RFM obtains roughly
the same high accuracy performance as NFA-RFM. Both of these feature-learning methods improve
over the next-best method found by Radhakrishnan et al. (2024), which is kernel regression with the
Laplace kernel without any feature learning.

Sparse parities. We train FACT-RFM and NFA-RFM on the problem of learning sparse parities and
find that both recover low-rank features. The problem of learning sparse parities has attracted attention
with respect to feature learning dynamics of neural networks on multi-index models (Edelman et al.,
2023; Abbe et al., 2023).

For training data we sample n points in d-dimensions as x ∼ {− 1√
d
, 1√

d
}d. We experiment with

sparsity levels of k = 2, 3, 4 by randomly sampling k < d coordinate indices with which to construct
our labels. Labels, y, are obtained from the product of the elements at each of the k coordinates in
the corresponding x point and set to be 0 if the product is negative and 1 if the product is positive.
We sample a held-out test set of 1000 points in the same manner.

We use the Mahalanobis Gaussian kernel in both FACT-RFM (with geometric averaging) and NFA-
RFM with bandwidth 5 and train for 5 iterations. Our experiments use d = 50 and for k = 1, 2 we
take n = 500, for k = 3 we take n = 5000, and for k = 4 we take n = 50000. The results of these
experiments are given in Figure 3. We observe that both NFA-RFM and FACT-RFM learn this task
and the features learned by both methods are remarkably similar and on the support of the sparse
parity. Additionally, Figure 4 shows a phase transition in learning sparse parities when we take a
smaller amount of data n = 25000, k = 4, which mimics the phase transition when training an MLP.

6
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FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

FACT Recursive Feature Machine (RFM)

1 Hidden Layer ReLU MLP

Figure 4: In the lower data regimes of n = 25000, k = 4, and d = 50, for sparse parity, the
FACT-RFM algorithm reproduces phase transitions found in training neural networks.

!"#$ %!&' ( )!

NFA RFM FACT RFM

Figure 5: We train FACT-RFM and NFA-RFM on (x+ y) mod 61 for 75 iterations. Both methods
achieve 100% test accuracy and exhibit delayed generalization aligned to the “grokking” phenomenon.
We plot the square root of FACT ·M⊤ and AGOP and find that both methods learn block circulant
feature transforms.

Grokking modular arithmetic. Mallinar et al. (2025) recently showed that NFA-RFM exhibits
delayed generalization phenomena on modular arithmetic tasks, also referred to as “grokking”. The
authors find that the square root of AGOP learns block circulant feature transformations on these
problems. We train FACT-RFM (with geometric averaging) on the same modular arithmetic tasks and
observe the same behavior. Figure 5 shows the square root of AGOP and FACT ·M⊤ after achieving
100% test accuracy on modular addition with modulus p = 61 when training on 50% of the data and
testing on the other half. The feature matrices show block circulant structures.

5 COMPARISON OF NFA AND FACT FOR INNER-PRODUCT KERNELS

Having demonstrated that the first-principles FACT obtains many of the same feature learning
phenomena as the empirically-conjectured NFA, it is natural to ask: is there a direct connection
between these two relations? Does the FACT imply the NFA?

Our findings in this section suggest there is such a connection: the updates of NFA-RFM are proxies
for the updates of FACT-RFM. Thus, the NFA-RFM algorithm can also be viewed as attempting to
minimize the loss of the kernel method, regularized by the norm of the weights ∥W∥2F . A similar
claim was previously made in Gan & Poggio (2024), but the theoretical evidence provided was
limited to the dynamics with one sample. Our analysis applies to training with more than one sample.

We restrict our analysis to inner-product kernels. The expressions for FACT and AGOP simplify
considerably, as stated below. Below, we let α be first-order optimal dual weights for kernel regression
with λ-ridge regularization computed in the RFM algorithm.
Proposition 5.1 (Comparison of FACT and AGOP for inner-product kernels). Suppose the kernel is
an inner-product kernel of the form KW (x, x′) = k(x⊤Mx′), where M = W⊤W . Then, we may
write the AGOP and the FACT matrices explicitly as:

AGOP =

n∑
i,j=1

τ(xi,M, xj) ·Mxiα
⊤
i αjx

⊤
j M

⊤ ,

FACT ·M⊤ =

n∑
i,j=1

k′(x⊤
i Mxj) ·Mxiα

⊤
i αjx

⊤
j M

⊤ ,

where τ(xi,M, xj) :=
1
n

∑n
l=1 k

′(x⊤
l Mxi)k

′(x⊤
l Mxj).

7
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The proof is deferred to Appendix F. The proposition reveals that the matrix FACT ·M⊤ is positive
semi-definite when the function k is non-increasing (a condition satisfied by common choices like
k(t) = exp(t) or k(t) = t2). This property allows for a simplification of (FACT-RFM update’),
which can be rewritten as a geometric average between the current feature matrix and the FACT term:

Mt+1 ← (FACTtMt)
1/2 . (FACT-RFM update’ for inner-product kernels)

This form should be compared with the NFA-RFM update, which also simplifies for inner-product
kernels. We write the simplified form of the update below when the power s is set to 1/2:

Mt ← (AGOP)1/2 . (NFA-RFM update for inner-product kernels)

0.02 0.00 0.02 0.04 0.06 0.08
(xi, M, xj)

0.5
0.0
0.5
1.0
1.5
2.0
2.5

k′
(x

T i
M

x j
)

 vs k ′ at final iteration of FACT-RFM
Best fit line, R2 = 0.987

Figure 6: Validation of explanation
for why AGOP and FACT are sim-
ilar when FACT-RFM converges in
the modular arithmetic task. Each
point corresponds to a pair (xi, xj) –
we subsample 1000 points for visu-
alization purposes.

Notably, Proposition 5.1 also reveals that both updates share
the same structural form. The difference lies in the spe-
cific factors involved: τ for the NFA update and k′ for the
FACT update. Interestingly, both of these factors, k′(x⊤

i Mxj)
and τ(xi,M, xj), can be interpreted as measures of similar-
ity between the data points xi and xj . These measures in-
crease when the transformed representations Wxi and Wxj

are closer in the feature space, and decrease otherwise.

Consequently, if the similarity measures τ and k′ were ap-
proximately equal for most pairs of data points, this would
explain the observed similarities in performance between the
NFA-RFM and FACT-RFM methods, and account for their
general agreement in tracking the feature learning process as
it occurs in neural networks.

Empirical validation. We empirically validate the above ex-
planation, showing that indeed τ(xi, xj ,M) is approximately
proportional to k′(x⊤

i Mxj) for FACT-RFM in the challenging
setting of arithmetic modulo p = 61 (where as demonstrated
in Section 4.3 both algorithms converge to similar features).
In Figure 6, we show that a best-fit line proportionally relating the two quantities achieves a good fit.

6 NFA AND FACT MAY BE UNCORRELATED IN WORST-CASE SETTINGS

Finally, as a counterpoint to the analysis in the previous section, we show that when the data
distribution is chosen adversarially, NFA and FACT can differ drastically even for shallow, two-layer
nonlinear networks. Thus, FACT is perhaps a preferable alternative to the NFA.

We craft a dataset to maximimize their disagreement on a trained two-layer architecture f(x; a,W ) =
a⊤σ(Wx) with quadratic activation σ(t) = t2 and parameters a ∈ Rm, W ∈ Rm×d and any large
enough width m ≥ 7. For any p ∈ (0, 1) and τ ∈ (0, 1), define the data distribution D(p, τ) over
(x, y) such that x is drawn from a mixture of distributions: x ∼ Unif[{0, 1, 2}4] with probability
p and x = (1, 1, 0, 0) with probability 1 − p, and such that y = f∗(x) = τx1x2 + x3x4 ∈ R .
For appropriate choices of the hyperparameters, we show that the NFA prediction can be nearly
uncorrelated with weights that minimize the loss, while the FACT provably holds.
Theorem 6.1 (Separation between NFA and FACT in two-layer networks). Fix any s > 0. For
any ϵ ∈ (0, 1], there are hyperparameters pϵ, τϵ, λϵ ∈ (0, 1) such that any parameters θ = (a,W )
minimizing Lλϵ

(θ) on data distribution D(pϵ, τϵ) are nearly-uncorrelated with the (NFA) prediction:

corr((AGOP)s,W⊤W ) < ϵ ,

where the correlation corr is defined as corr(A,B) = ⟨A,B⟩/(∥A∥F ∥B∥F ). In contrast, (FACT)
holds because the weights are at a stationary point.

Proof intuition. At a loss minimizer, the neural network approximates the true function f∗
because part of the data distribution is drawn from the uniform distribution. Therefore, since
the neural network computes a quadratic because it has quadratic activations, one can show
AGOP ≈ Ex∼D(pϵ,τϵ)[(∇xf∗)(∇xf∗)

⊤] ≈ τ2ϵ (e1 + e2)(e1 + e2)
⊤ + O(pϵ), For small pϵ, this

matrix has most of its mass in the first two rows and first two columns.

8
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WTW FACT AGOP

Figure 7: The FACT and NFA
are uncorrelated at conver-
gence on the synthetic dataset.

On the other hand, the weight decay in training the neural network
means that at convergence the norm of the network weights is min-
imized given the function it computes. Since the neural network
approximates the true function f∗, in order to minimize the total
norm of the weights, W⊤W must have most of its mass on the last
two rows and columns when τϵ is small. This is in contrast to AGOP,
since as we have argued that has most of its mass on the first two
rows and columns. Thus, the NFA prediction is not met. On the
other hand, the FACT prediction is provably met by Theorem 3.1.
The formal proof is in Appendix D.

The construction is empirically validated in Figure 7, which is the result of training a width-10
network for 106 iterations of Adam with learning rate 0.01 on the population loss with τ = 0.02,
p = 10−5, λ = 10−5. At convergence, FACT achieves 0.994 cosine similarity with W⊤W , while
AGOP achieves < 0.068 cosine similarity.

7 DISCUSSION

This work pursues a first principles approach to understanding feature learning by deriving a condition
that must hold in neural networks at critical points of the train loss. Perhaps the most striking aspect
of our results is that FACT is based only on local optimality conditions of the loss. Nevertheless, in
Section 4.3 we show that when used to drive the RFM algorithm, FACT recovers interesting global
behaviors of neural networks: including high-performing feature learning for tabular dataset tasks,
and grokking and phase transition behaviors on arithmetic and sparse parities datasets.

The usefulness of FACT is especially surprising since there is no reason for FACT to be correlated to
neural feature matrices during most of training, prior to interpolating the train loss; and indeed FACT

does have low correlation for most epochs (although
√
FACT · FACT⊤ has nontrivial correlation),

before sharply increasing to near-perfect correlation; see Figure 8. This is a potential limitation to
using FACT to understand the evolution of features during training, rather than in the terminal phase.
Therefore, it is of interest to theoretically derive a quantity with more stable correlation over training.

Layer 1 Layer 2 Layer 3

Figure 8: We train 5 layer ReLU MLPs to interpolation on CIFAR-10 and plot Pearson correlation
vs. epochs comparing FACT,AGOP, eNFA to neural feature matrices for the first three layers of the
model. Curves are averaged over five independent runs.

An additional limitation is that there are data distributions, such as sparse parity, where FACT-RFM
becomes unstable if continued iterations are performed after convergence, so early stopping is
necessary. Understanding this phenomenon may help derive relations that improve over FACT.

Finally, our formulation of FACT for neural networks requires non-zero weight decay. This is a
reasonable assumption for real-world neural network training (LLMs are often pretrained with a
reasonably large weight decay factor), but raises othe question of whether it is possible to compute
FACT in the zero weight-decay limit. In Section 5, we formulate FACT in a way that only relies on
the kernel dual weights, the learned features, and the data. Therefore it may be possible to compute
FACT in neural networks through the network’s empirical neural tangent kernel (Jacot et al., 2018;
Long, 2021), which would allow using FACT without requiring weight decay.

9
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A HYPERPARAMETERS IN EMPIRICAL VALIDATION OF FACT

In the empirical validation of FACT in Figure 2, we train the networks until convergence, which we
operationalize as the point at which batch train loss ≤ 10−3 is achieved. The results are for training
5-layer fully-connected networks with Mean-Squared Error (MSE) loss for 200 epochs using SGD,
momentum 0.9, initial learning rate 10−1, cosine decay learning rate schedule, weight decay 10−4,
batch size 64, depth 3, and hidden width 1024 for MNIST and 3072 for CIFAR-10, and standard
PyTorch initialization.

B BACKWARD FORM OF FACT

We provide here an analogous “backward” form of the FACT condition, which applies to WW⊤

instead of W .

Recall from Section 2 that the neural network depends on W as

f(x) = g(Wh(x), x) .

Out of convenience, we introduce notation to denote the gradient of the loss with respect to the
output of the layer at data point xi. We write

∇Whℓi :=
∂ℓ(g(h̃, x); yi)

∂h̃
|h̃=Wh(xi)

∈ Rd.

With this notation in hand, the backward form of the FACT, which gives information about the left
singular vectors, is:

Theorem B.1. If the parameters of the network are at a differentiable, critical point of the loss with
respect to W , then

WW⊤ = bFACT := − 1

nλ

n∑
i=1

(Wh(xi))(∇Whℓi)
⊤ . (bFACT)

Proof. Left-multiplying by W , we obtain

0 = W (∇WLλ(θ))
⊤

= W (λW +∇WL(θ))⊤

= W (λW +
1

n

n∑
i=1

(
∂ℓ(g(h̃); yi)

∂h̃
|h̃=Wh(xi)

h(xi)
⊤)⊤

= λWW⊤ + (Wh(xi))(∇Whℓi)
⊤

Rearranging and dividing by λ proves (bFACT).

Again, we may symmetrize both sides of the equation and still get valid equations that hold at critical
points of the loss: for instance we have WW⊤ =

√
bFACT · bFACT⊤.

In the same way that we compute bFACT, we can compute an analogous “backward" version of
AGOP which is given by,

bAGOP =
1

n

n∑
i=1

(∇Whfi)(∇Whfi)
⊤

and consider whether this models the left singular vectors of layer weights as well. The backward
eNFA is as computed in (Ziyin et al., 2025). Figures 9 and 10 show the complete set of comparisons
for backward versions of FACT,AGOP, eNFA to their respective neural feature matrices compared
across both depth and epochs. The hyperparameters and training setup are the same as that described
in Appendix A.
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MNIST, ReLU MLP, 5 Layers, 1024 Width CIFAR-10, ReLU MLP, 5 Layers, 3072 Width

backward

Figure 9: We train 5 hidden layer ReLU MLPs to interpolation on MNIST and CIFAR-10. We plot the
Pearson correlation of the backward versions of FACT,AGOP, eNFA (with respect to pre-activation
outputs of a layer) and compare to WWT for that layer. Curves are averaged over 5 independent
runs.

Layer 1 Layer 2 Layer 3

Figure 10: We train 5 hidden layer ReLU MLPs to interpolation on CIFAR-10. We plot the Pearson
correlation of the backward versions of FACT,AGOP, eNFA (with respect to pre-activation outputs
of a layer) vs. epochs. Curves are averaged over 5 independent runs.

C CASE STUDY FOR DEEP LINEAR NETWORKS

In this appendix, we compare the predictions of FACT and NFA in the toy setting of deep linear
networks, which have received significant attention in the theoretical literature as a simplified setting
for studying training dynamics Arora et al. (2019a); Ziyin et al. (2022); Marion & Chizat (2024);
Saxe et al. (2014); Arora et al. (2018). A deep linear network f : Rd → Rc is parameterized as

f(x) = WL ·WL−1 · · ·W1x

for W1 ∈ Rh×d,W2, . . . ,WL−1 ∈ Rh×h,WL ∈ Rc×h. We fit the network on data points x ∼
N (0, Id) and labels given by a ground truth linear transformation f∗(x) = W ∗x where W ∗ ∈ Rc×d.

In this setting, Radhakrishnan et al. (2025) show that the exponent s in (NFA) must scale as 1/L
in order for the NFA prediction to be correct. Thus, unlike the FACT, the NFA has a tunable
hyperparameter that must depend on the particular architecture involved. We rederive this dependence
of the exponent on the architecture for completeness.

Informal derivation of NFA power dependence on depth In this setting, the NFA prediction for
the first layer can be computed as

AGOP = W⊤
1 · · ·W⊤

L−1W
⊤
L WL ·WL−1 · · ·W1 ,

So, when training has converged and the network is close to fitting the ground truth W ∗, we have

AGOP ≈ (W ∗)⊤W ∗ .

It is known that weight decay biases the solutions of deep linear networks to be “balanced” at
convergence Gunasekar et al. (2017); Arora et al. (2019b), meaning that the singular values at each
layer are equal. When the layers are balanced we should therefore heuristically expect that, after
training, we have

W⊤
1 W1 ≈ ((W ∗)⊤W ∗)1/L ,
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because singular values multiply across the L layers. Putting the above equations together, at
convergence we have

W⊤
1 W1 ≈ (AGOP)1/L .

For L = 2, we recover the prescription of using
√
AGOP suggested by Radhakrishnan et al. (2024);

Beaglehole et al. (2023); Mallinar et al. (2025). However when L ̸= 2, this is no longer the best
power. Our analysis suggests that the AGOP power must be tuned with the depth of the network – on
the other hand, FACT does not need this tunable parameter.

We empirically validate this in Figure 11, with deep linear networks with d = 10, c = 5, h = 512 and
varying the depth L, and sample W ∗ ∈ Rc×d with independent standard Gaussian entries. The train
dataset is of size n = 5000 where xi ∼ N (0, Id). We train to convergence using the Mean Squared
Error (MSE) loss for 5000 epochs with SGD, minibatch size 128, learning rate of 5× 10−3, weight
decay of 10−2, and standard PyTorch initialization. After training, the singular values of all of the
weight matrices are identical after training, indicating balancedness has been achieved.
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Correlation of WTW with NFAc/L for different network depths L

NFAc/2, 2 layers
NFAc/3, 3 layers
NFAc/4, 4 layers
NFAc/5, 5 layers
NFAc/7, 7 layers

Figure 11: Deep L-layer linear networks trained to convergence on synthetic data. AGOP1/L has
cosine similarity close to 1 to the NFM (W⊤

1 W1), which validates the derivation in Appendix C.
For all of these network depths, FACT has cosine similarity ≥ 0.999, and there are no tunable
hyperparameters that depend on depth.

D PROOF OF THEOREM 6.1, SEPARATING FACT AND NFA FOR TWO-LAYER
NETWORKS

We provide the proof of Theorem 6.1, restating the theorem as Theorem D.1 for convenience.

Setup Consider a trained two-layer architecture f(x; a,W ) = a⊤σ(Wx) with quadratic activation
σ(t) = t2 and parameters a ∈ Rm, W ∈ Rm×d. For any p ∈ (0, 1) and τ ∈ (0, 1), define the
data distribution D(p, τ) over (x, y) such that x is drawn from a mixture of distributions: x ∼
Unif[{0, 1, 2}4] with probability p and x = (1, 1, 0, 0) with probability 1 − p, and such that y =
f∗(x) = τx1x2 + x3x4 ∈ R .

Theorem D.1 (Separation between NFA and FACT in two-layer networks; restated Theorem 6.1).
Fix s > 0 to be the NFA power. For any ϵ ∈ (0, 1), there are hyperparameters pϵ, τϵ, λϵ ∈ (0, 1)
such that any parameters θ = (a,W ) minimizing Lλϵ

(θ) on data distribution Dϵ := D(pϵ, τϵ) are
nearly-uncorrelated with the NFA prediction:

corr((AGOP)s,W⊤W ) < ϵ ,

where corr(A,B) = ⟨A,B⟩/(∥A∥F ∥B∥F ) is the correlation. On the other hand, the FACT predic-
tion holds.
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Proof. Set τϵ = ϵ3, pϵ = ϵ8, λϵ = ϵ32pϵ. The outline of the proof that the loss-minimizing weights
and AGOP are uncorrelated is to first show that there is a set of weights ā, W̄ such that the loss
Lλϵ

(ā, W̄ ) is small. This implies that at any minimizer a∗,W ∗ we must also have that Lλϵ
(a∗,W ∗)

is small. In turn, this means that the estimated function f̂(·) = f(·; a∗,W ∗) must be close to the true
function f∗(x) = τϵx1x2 + x3x4. Finally, this will let us compare the AGOP to the loss-minimizing
weights â, Ŵ .

1. Construct weights with low loss. Construct W̄ = [w̄1, . . . , w̄m]
⊤ ∈ Rm×d and ā =

[ā1, . . . , ām]
⊤ ∈ Rm×1 by letting w̄1 = e1 + e2, w̄2 = e1, w̄3 = e2, w̄4 = e3 + e4, w̄5 = e3,

w̄6 = e4, ā1 = τϵ/2, ā4 = 1/2, ā2 = ā3 = −τϵ, ā5 = ā6 = −1, and w̄j = 0 and āj = 0 for all
j ≥ 7. One can check that f(x; ā, W̄ ) = f∗(x) for all x, and that ∥W̄∥2F + ∥a∥2 ≤ 13. Therefore

Lλϵ
(â, Ŵ ) ≤ Lλϵ

(ā, W̄ ) ≤ 169λϵ . (D.1)

2. Conclude that f̂ ≈ f∗. Define f̂(·) = f(·; â, Ŵ ). Since f̂ and f∗ are homogeneous quadratic
functions, we may write them as

f̂(x) =
∑

1≤i≤j≤4

ĉijxixj and f∗(x) =
∑

1≤i≤j≤4

cijxixj .

Let us show that the coefficients {cij} must be close to the estimated coefficients {ĉij} using a
Fourier-analytic calculation. Define the distribution U = Unif[{0, 1, 2}4] and the inner product
between a pair of functions ⟨g, h⟩U = Ex∼U [g(x)h(x)]. Also define the functions

χ(0)(t) =

{
3, t = 0

0, t ∈ {1, 2} , χ(1)(t) =


−4.5, t = 0

6, t = 1

−1.5 t = 2

, χ(2)(t) =


1.5, t = 0

−3, t = 1

1.5, t = 2

and for any vector of degrees α ∈ {0, 1, 2}k define χα : {0, 1, 2}4 → R by χα(x) =
∏k

i=1 χ
(αi)(xi).

These functions have been picked so that for any α′ ∈ {0, 1, 2}k and monomial hα′(x) =

x
α′

1
1 x

α′
2

2 . . . x
α′

k

k , we have ⟨hα, χα′⟩U = 1(α = α′) . Therefore, for any 1 ≤ i ≤ j ≤ 4, there
is α ∈ {0, 1, 2} such that

cij = ⟨f∗, χα⟩U and ĉij = ⟨f̂, χα⟩U .

Therefore, by Cauchy-Schwarz, for any 1 ≤ i ≤ j ≤ 4 and corresponding α we have

|cij − ĉij | = |⟨f∗ − f̂, χα⟩U | ≤ ∥f∗ − f̂∥U∥χα∥U ≤ 64∥f∗ − f̂∥U

Now we can apply our previous bound in (D.1), which implies that E(x,y)∼Dϵ
[(f̂(x)− f∗(x))

2] ≤
L(â, Ŵ ) ≤ 169λϵ, and in turn means that

∥f − f∗∥2U = ⟨f − f∗, f − f∗⟩U = Ex∼Unif[{0,1,2}4][(f̂(x)− f∗(x))
2] ≤ 169λϵ/pϵ.

So the estimated coefficients {ĉij} are close to the true coefficients {cij}ij , i.e., for any 1 ≤ i ≤ j ≤
4,

|cij − ĉij | ≤ 17000
√
λϵ/pϵ := δϵ . (D.2)

Notice that δϵ ≤ 17000ϵ16 ≤ 1/10 for small enough ϵ.

3a. Estimate the AGOP of f̂ . Since we have shown f̂ ≈ f , the AGOP of the estimated function can
be well approximated as follows.

AGOP(f̂,Dϵ) = E(x,y)∼Dϵ
[
∂f̂

∂x

∂f̂

∂x

⊤

]

= (1− pϵ)
∂f̂

∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) +pϵE(x,y)∼U [
∂f̂

∂x

∂f̂

∂x

⊤

]
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Since |ĉij | ≤ |cij | + δϵ ≤ 1 + δϵ ≤ 11/10 for all i, j it must hold that ∥∂f̂∂x
∂f̂
∂x

⊤
∥F ≤ 100 for all

x ∈ {0, 1, 2}4, so

∥AGOP(f̂,Dϵ)−
∂f̂

∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) ∥F ≤ 100pϵ (D.3)

Finally, ∂f̂
∂x |x=(1,1,0,0)= 2ĉ11e1 + 2ĉ22e2 + ĉ12(e1 + e2) + (ĉ13 + ĉ23)e3 + (ĉ14 + ĉ24)e4, and

c11 = c22 = c13 = c14 = c23 = c24 = 0 and c12 = τϵ, which means that

∥∂f̂
∂x

∂f̂

∂x

⊤

|x=(1,1,0,0) −τ2ϵ (e1 + e2)(e1 + e2)
⊤∥F ≤ 20∥∂f̂

∂x
|x=(1,1,0,0) −τϵ(e1 + e2)∥F ≤ 1000

√
δϵ .

(D.4)

Putting the (D.3) and (D.4) together with the triangle inequality, we conclude our estimate of the
AGOP

∥AGOP(f̂,Dϵ)− τ2ϵ (e1 + e2)(e1 + e2)
⊤∥F ≤ 100pϵ + 1000

√
δϵ . (D.5)

3a. Estimate powers of the AGOP of f̂ . Next, let s > 0 be the power of the AGOP that we will take.

Let λ1 ≥ · · · ≥ λ4 ≥ 0 be the eigenvalues of AGOP, with a corresponding set of orthonormal
eigenvectors v1, . . . , v4 ∈ R4. By Weyl’s inequality, since τ2ϵ ≥ 100pϵ + 1000

√
δϵ for small enough

ϵ,

λ1 ≥ 2τ2ϵ − (100pϵ + 1000
√
δϵ) ≳ ϵ6

and

λ1 ≲ ϵ6

and

0 ≤ λ4 ≤ λ3 ≤ λ2 ≤ 100pϵ + 1000
√
δϵ ≲ ϵ8 .

Additionally, let P⊥ be the projection to the orthogonal subspace spanned by {(e1 + e2)}. By the
Davis-Kahan sin(Θ) theorem Davis & Kahan (1970),

∥P⊥v1∥ ≤
100pϵ + 1000

√
δϵ

τ2ϵ
≲ ϵ2.

Notice that AGOP =
∑4

i=1 λ
s
iviv

⊤
i , which we will use later.

4. Estimate the loss-minimizing weights. Now let us estimate the loss-minimizing weights, â, Ŵ .
The argument here is split into two parts: we want to (a) show that Ŵ is small in the first and second
columns, and (b) show that Ŵ is large in the third or fourth column. These two facts combined will
be enough show that Ŵ⊤Ŵ is close to uncorrelated to the AGOP.

4a. Show that Ŵ1:m,1 and Ŵ1:m,2 are small. Define weights a′,W ′ by letting a′ = â and W ′ =[
0 0 Ŵ1:m,3 Ŵ1:m,4

]
. In other words, we have zeroed out the coefficients of the variables x1

and x2 in the first layer. Then define

f ′(x) = (a′)⊤σ((W ′)x) .

If we write f ′(x) =
∑

1≤i≤j≤4 = c′ijxixj , notice that c′11 = c′12 = c′13 = c′14 = c′23 = c′24 = 0 and
that c′34 = ĉ34, c′33 = ĉ33, and c′44 = ĉ44. Now, let a′′,W ′′ be weights minimizing ∥a′′∥2 + ∥W ′′∥2F
such that

f ′(·) ≡ f(·; a′′,W ′′) .

By the construction in Lemma D.2, we may assume without loss of generality that all but 4 neurons are
nonzero: i.e., that a′′5 = · · · = a′′m = 0 and W ′′

5,1:4 = . . .W ′′
m,1:4 = 0. Now the difference between

the network after the zeroing out and the current network is f̂(x) − f ′(x) =
∑

1≤i≤j≤4 c̃ijxixj

where

|c̃ij | = |ĉij − c′ij | ≤ τϵ + δϵ .
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So by Lemma D.2, this difference can be represented on four neurons with a cost of at most
100(τϵ + δϵ)

2/3. Therefore, by editing the weights a′′,W ′′ we can construct weights a′′′,W ′′′ such
that f̂(·) ≡ f(a′′′,W ′′′) and

∥â∥2 + ∥Ŵ∥2F ≤ ∥a′′′∥2 + ∥W ′′′∥2F
≤ ∥a′′∥2 + ∥W ′′∥2F + 100(τϵ + δϵ)

2/3

= ∥â∥2 + ∥Ŵ∥2F − ∥Ŵ1:m,1∥2 − ∥Ŵ1:m,2∥2 + 100(τϵ + δϵ)
2/3 .

So we can conclude that the norm of the weights in the first and second column is small

∥Ŵ1:m,1∥2 + ∥Ŵ1:m,2∥2 ≤ 100(τϵ + δϵ)
2/3 ≲ ϵ2 . (D.6)

4b. Show that at least one of Ŵ1:m,3 or Ŵ1:m,4 is large. Finally, let us show that either the third or
fourth column of the weights is large.

0.9 ≤ c34 − δϵ ≤ ĉ34 ≤
m∑
i=1

âiŴi,3Ŵi,4

≤ ∥â∥

√√√√ m∑
i=1

(Ŵi,3Ŵi,4)2

≤ ∥â∥

√√√√ m∑
i=1

(Ŵi,3)2

√√√√ m∑
i=1

Ŵi,4)2

= ∥â∥∥Ŵ1:m,3∥∥Ŵ1:m,4∥ .

From the construction of the weights ā, W̄ in the first step of this proof, we know that ∥â∥2 ≤
∥ā∥2 + ∥W̄∥2 ≤ 13. So ∥â∥ ≤ 4. We conclude that

max(∥Ŵ1:m,3∥, ∥Ŵ1:m,4∥) ≥ 1/3. (D.7)

5. Compare AGOP to loss-minimizing weights. Finally, let us compare the NFA approximation (D.5)
to the facts proved in (D.6) and (D.7) about the loss-minimizing weights. From (D.5) and (D.6) and
∥Ŵ∥2F ≤ 13 and the calculations in step 3b, we conclude that

⟨(AGOP(f̂,Dϵ))
s, Ŵ⊤Ŵ ⟩ =

4∑
i=1

λs
i ⟨viv⊤i , Ŵ⊤Ŵ ⟩

≲ (∥Ŵ1:m,1∥2 + ∥Ŵ1:m,2∥2)(λs
1) + λs

1∥P⊥v1∥2 + λs
2 + λs

3 + λs
4

≲ ϵ2ϵ6s + ϵ8s .

From (D.5) and step 3b we conclude that

∥(AGOP(f̂,Dϵ))
s∥F ≳ (2τ2ϵ − 100pϵ − 1000

√
δϵ)

s ≥ τ2sϵ ≳ ϵ6s .

From (D.7), we conclude that

∥Ŵ⊤Ŵ∥ ≥ 1/9 ≳ 1 .

which implies that

corr(AGOP(f̂,Dϵ), Ŵ
⊤Ŵ ) ≲ (ϵ2ϵ6s + ϵ8s)/ϵ6s ≲ ϵ2s + ϵ2,

which can be taken arbitrarily small by sending ϵ to 0.

The Lemma that we used in the proof of this theorem is below.
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Lemma D.2 (The minimum-norm weight solution for a network with quadratic activation). Let
f(x; a,W ) = a⊤σ(Wx) be a neural network with quadratic activation function σ(t) = t2 and
weights W ∈ Rm×d, a ∈ Rm for m ≥ d. Then, for any homogeneous quadratic function f(x) =
x⊤Qx , where Q = Q⊤, the minimum-norm neural network that represents f has cost:

2

d∑
i=1

σi(Q)2/3 = min
a,W
{∥a∥2 + ∥W∥2F : f(·; a,W ) ≡ f(·)} ,

and this can be achieved with a network that has at most d nonzero neurons.

Proof. We can expand the definition of the quadratic network

f(x; a,W ) = a⊤σ(Wx) =

m∑
i=1

x⊤aiwiw
⊤
i x .

For any a,W such that f(·; a,W ) ≡ f(·), we must have Q =
∑m

i=1 aiwiw
⊤
i . By (a) inequality (2.1)

in Thompson (1976) on concave functions of the singular values of sums of matrices (originally
proved in Rotfel’d (1969)), we must have

∥a∥2 + ∥W∥2F =

m∑
i=1

a2i + ∥wi∥2

≥ 2

m∑
i=1

σ1(aiwiw
⊤
i )

2/3

= 2

m∑
i=1

m∑
j=1

σj(aiwiw
⊤
i )

2/3

(a)

≥ 2

d∑
j=1

σj(Q)2/3 .

And notice that given an eigendecomposition (λ1, v1), . . . , (λd, vd) of Q, this can be achieved by
letting ai = sgn(λi)|λi|1/3, and wi = |λi|1/3vi for all 1 ≤ i ≤ d and ai = 0 and wi = 0 for all
d+ 1 ≤ i ≤ m.

E DERIVATION AND JUSTIFICATION OF FACT-RFM UPDATE

The simplest fixed-point iteration scheme would be to apply

Wt+1 ←
√
FACTt , (E.1)

aiming for the fixed point

W⊤
t+1W

⊤
t+1 = FACTt .

However, this scheme cannot be directly implemented because (E.1) is not necessarily well-defined.
In particular, FACT is not necessary p.s.d. when the network is not at a critical point of the loss, so
the square root of FACT in (E.1) is not well defined.

In order to fix it, the most natural solution is to symmetrize FACT and instead run the scheme

Wt+1 ← (FACTtFACT
⊤
t )

1/4 ,

since indeed when FACTt = W⊤
t Wt we are at a fixed point with this update.

We experimented with this update, and found good performance with tabular data (this is “no
geometric averaging” method reported in Table 1) and parity data, but for the modular arithmetic
problem FACT-RFM with this update was unstable and the method often did not converge – especially
in data regimes with low signal.
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In order to obtain a more stable update, we chose to geometrically average with the previous iterate,
as follows:

Wt+1 ← (FACTt(W
⊤
t Wt)(W

⊤
t Wt)(FACTt)

⊤)1/8 ,

which again has a fixed point when FACTt = W⊤
t Wt. This yielded improved performance with

modular arithmetic while retaining performance with tabular data and parities. Additionally, as we
discuss in Section 5, we then discovered that this update has an interpretation as being a close relative
of the NFA-RFM update when applied to inner product kernel machines.

F PROOFS FOR SECTION 5

We first observe that the updates in FACT-RFM can be written in a convenient form in terms of the
dual solution α and the derivatives of the estimator. This lemma does not depend on the kernel being
an inner-product kernel.
Lemma F.1 (Simplified form of FACT for kernel machines). Let (X, y) be training data fit by a
kernel machine with the MSE loss, and let α be first-order optimal coefficients for kernel regression
with λ-ridge regularization. Then the FACT can be equivalently computed as

FACT =

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j αix

⊤
i .

The proof is by using known first-order optimality conditions for α.

Let us prove the convenient expression in Lemma F.1 for the FACT matrix for kernel machines,
which can be used to simplify the implementation of FACT-based RFM.

Proof. We compute the FACT for the estimator f̂(x) =
∑n

j=1 KW (x, xj)αj . Substituting the
definition of FACT and applying the chain rule, this is

FACT := − 1

nλ

n∑
i=1

(
∂

∂x
ℓ(f̂(x), yi)) |x=xi

x⊤
i = − 1

nλ

n∑
i=1

(
∂

∂x
f̂(x) |x=xi

)ℓ′(f̂(xi), yi))x
⊤
i

= − 1

nλ

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j ℓ

′(f̂(xi), yi)x
⊤
i ,

where ℓ′ ∈ Rc denotes the derivative in the first entry. The proof concludes by noting that αi =

− 1
nλℓ

′(f̂(xi), yi) because of the first-order optimality conditions for α, proved below in Lemma F.2.

Lemma F.2 (Alternative expression for representer coefficients for kernel regression). Let (X,Y )
be training data, and let α = (K(X,X) + λI)−1Y for some λ > 0. Also let ℓ(ŷ, y) = 1

2∥ŷ − y∥2.
Then

αi = −
1

nλ
ℓ′(ŷi, yi),

where ŷi = K(xi, x)α, and the derivative ℓ′ is in the first coordinate.

Proof. Notice that ℓ′(ŷi, yi) = ŷi − yi. So

ℓ′(ŷi, yi) = [Kα]i,∗ − yi

= K(K + nλI)−1yi − yi

= −nλ(K + λI)−1yi

= −nλαi .

Remark F.3. A statement of this form relating the representer coefficients to the loss derivatives at
optimality is more generally true beyond the MSE loss, but we do not need it here.
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Finally, we can prove Proposition 5.1.
Proposition F.4 (Restatement of Proposition 5.1). Suppose the kernel is an inner-product kernel
of the form KW (x, x′) = k(x⊤Mx′), where M = W⊤W . Then, we may write the AGOP and the
FACT matrices explicitly as:

AGOP =

n∑
i,j=1

τ(xi, xj ,M)Mxiα
⊤
i αjx

⊤
j M

⊤ ,

FACT ·M⊤ =

n∑
i,j=1

k′(x⊤
i Mxj)Mxiα

⊤
i αjx

⊤
j M

⊤ ,

where τ(xi,M, xj) :=
1
n

∑n
l=1 k

′(x⊤
l Mxi)k

′(x⊤
l Mxj).

Proof. The expressions can be derived by plugging in the expansion f̂(x) =
∑n

j=1 K(x, xi)αi.

For AGOP, we start from its expression in Ansatz (NFA), and obtain

AGOP =
n∑

i=1

(∇x

n∑
j=1

KW (x, xj)αj)(∇x

n∑
l=1

KW (x, xl)αl)
⊤

=

n∑
i,j,l=1

k′(x⊤
j Mxi)k

′(x⊤
l xi)(Mxjα

⊤
j )(Mxlα

⊤
l )

⊤

=

n∑
i,j=1

τ(xi,M, xj)Mxiα
⊤
i αjx

⊤
j M

⊤.

For FACT, we start from the expression in Lemma F.1:

FACT ·M⊤ =

n∑
i,j=1

(
∂

∂x
KW (x, xj) |x=xi

)α⊤
j αix

⊤
i M

⊤

=

n∑
i,j=1

k′(x⊤
i Mxj)Mxjα

⊤
j αix

⊤
i M

⊤ .

G EXPERIMENTAL RESOURCE REQUIREMENTS

The following timings are for one A40 48GB GPU. The tabular data benchmark experiments in
Table 1 take under 1 GPU-hour to run. The synthetic benchmark task of Figure 7 on which FACT
and NFA are uncorrelated takes under 1 GPU-hour to run. The arithmetic experiments in Figure 5
and 6 take under 1 GPU-hour to run. The ReLU MLP experiments on MNIST and CIFAR-10 in
Figures 2, 8, 9, and 10 take under 50 GPU-hours to run. The sparse parity experiments in Figure 4
and Figure 3 take under 1 GPU-hour to run. The deep linear network experiments in Figure 11 take
under 2 GPU-hours to run. Additionally, debugging code and tuning hyperparameters took under 200
GPU-hours to run.

H LLM USAGE

LLMs were used only as AI coding assistants and to help polish some of the writing in the paper, and
were not used for research ideation.
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