

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FACT: A FIRST-PRINCIPLES ALTERNATIVE TO THE NEU- RAL FEATURE ANSATZ FOR HOW NETWORKS LEARN REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

It is a central challenge in deep learning to understand how neural networks learn representations. A leading approach is the Neural Feature Ansatz (NFA) (Radhakrishnan et al., 2024), a conjectured mechanism for how feature learning occurs. Although the NFA is empirically validated, it is an educated guess and lacks a theoretical basis, and thus it is unclear when it might fail, and how to improve it. In this paper, we take a first-principles approach to understanding why this observation holds, and when it does not. We use first-order optimality conditions to derive the Features at Convergence Theorem (FACT), an alternative to the NFA that (a) obtains greater agreement with learned features at convergence, (b) explains why the NFA holds in most settings, and (c) captures essential feature learning phenomena in neural networks such as grokking behavior in modular arithmetic and phase transitions in learning sparse parities, similarly to the NFA. Thus, our results unify theoretical first-order optimality analyses of neural networks with the empirically-driven NFA literature, and provide a principled alternative that provably and empirically holds at convergence.

1 INTRODUCTION

A central aim of deep learning theory is to understand how neural networks learn representations. An empirically-driven conjecture that has recently emerged as to the mechanism driving feature learning in neural networks is the Neural Feature Ansatz (NFA) (Radhakrishnan et al., 2024), which states that, after training, a weight layer W in a neural network $f(x)$ satisfies the proportionality relation

$$W^\top W \propto \hat{\mathbb{E}}[(\nabla_x f(x))(\nabla_x f(x))].$$

Here the right-hand-side is an empirical expectation over the training data, and the gradient is computed with respect to the input to the network (or with respect to the hidden activations if W is not the first layer) – we review more details on the NFA conjecture later, in Section 2.

This conjecture has been validated in practice on a range of architectures, including fully-connected networks, convolutional networks, and transformers (Radhakrishnan et al., 2024). Furthermore, a growing literature has shown that this NFA conjecture captures and explains several intriguing phenomena of neural network training, including grokking of modular arithmetic (Mallinar et al., 2025), learning of hierarchical staircase functions (Zhu et al., 2025), and catapult spikes during training (Zhu et al., 2023). Additionally, when used to power an adaptive kernel learning algorithm, it achieves state-of-the-art performance for monitoring models (Beaglehole et al., 2025), for learning tabular datasets (Radhakrishnan et al., 2024), and for low-rank matrix learning (Radhakrishnan et al., 2025).

Despite its success, the NFA conjecture lacks first-principles backing for why it should necessarily hold during training. Because this conjecture was derived in an empirical fashion, it is unclear why it ought to hold, whether and under which conditions it may fail, and how to improve it. This motivates the main question studied by this paper:

Is there an alternative to the empirically-observed Neural Feature Ansatz conjecture, which can be derived from first principles?

We answer this question in the affirmative. Our main contribution is to demonstrate a connection between the empirically-observed NFA conjecture and the literature studying first-order optimality conditions that must provably hold if the training process converges.

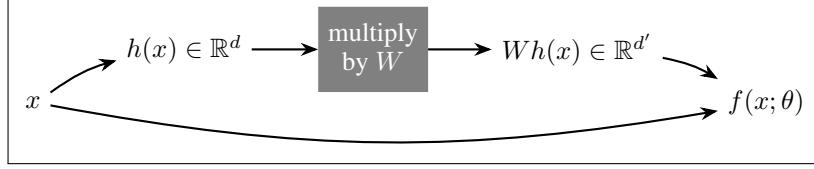
First-order optimality conditions have previously been shown to imply several phenomena in neural network training; see the related work in Section 1.1 for references. Thus, our results unify two prominent approaches to studying feature learning (the NFA and first-order optimality). In more detail, our contributions are:

- (1) **We derive a simple alternative to the NFA conjecture based on first-order optimality conditions.** We call this the *FACT* (*Features at Convergence Theorem*). This is a self-consistency formula that neural networks trained with weight decay must satisfy at convergence; see Section 3.
- (2) **We empirically demonstrate that our first-principles alternative captures neural network feature learning phenomena in many of the same ways that the NFA conjecture does.** We show that when FACT (instead of NFA) is used to power an adaptive kernel learning algorithm (Radhakrishnan et al., 2024), it also reproduces intriguing feature learning behaviors observed in neural networks such as training phase transitions when learning sparse parities (Barak et al., 2022; Abbe et al., 2023), grokking of modular arithmetic (Nanda et al., 2023; Gromov, 2023), and high performance on tabular data matching the state-of-the-art (Radhakrishnan et al., 2024); see Section 4.
- (3) **We provide a derivation for why the NFA conjecture usually holds based on first-order optimality.** By algebraically expanding the FACT relation, and analyzing the terms, we demonstrate that it is qualitatively similar to the conjectured NFA relation. We empirically demonstrate that the two relations are proportional in the case of modular arithmetic. This helps put the NFA conjecture on firm theoretical foundation by connecting it to provable first-order optimality conditions, and elucidates the mystery of why it usually holds; see Section 5.
- (4) **We construct degenerate training settings in which the NFA conjecture is provably false but where first-order optimality conditions hold true.** We formally prove and experimentally observe that in certain settings the NFA predictions can be nearly uncorrelated to the ground truth, while FACT and any other relations based on first-order-optimality conditions still hold. This indicates that the latter may provide a more accurate relation at convergence; see Section 6 as well the discussion in Section 7.

1.1 RELATED LITERATURE

Implications of first-order-optimality in neural networks First-order optimality conditions of networks at convergence – along with results on KKT conditions that arise with exponentially-tailed losses at large training times (Soudry et al., 2018; Ji & Telgarsky, 2019; Lyu & Li, 2019; Ji & Telgarsky, 2020) – has been used to show implicit bias of deep architectures towards low rank (Gunasekar et al., 2017; Arora et al., 2019b; Galanti et al., 2022), of diagonal networks towards sparsity (Woodworth et al., 2020), of convolutional networks towards Fourier-sparsity (Gunasekar et al., 2018), and of fully-connected networks towards algebraic structure when learning modular arithmetic (Mohamadi et al., 2023; Morwani et al., 2023). First-order optimality also has implications to linear regression with bagging (Stewart et al., 2023), understanding adversarial examples (Frei et al., 2024), and neural collapse (Han et al., 2021; Kothapalli, 2022; Zangando et al., 2024).

Analyses of training dynamics Another recently prevalent approach to understanding feature learning is to study neural network training dynamics – tracking weight evolution to understand how features emerge (Olsson et al., 2022; Edelman et al., 2024; Nichani et al., 2024; Cabannes et al., 2023; 2024; Arous et al., 2021; Abbe et al., 2022; 2023; Kumar et al., 2023). While insightful, these analyses are technically challenging and are typically limited to synthetic datasets. In this paper, we pursue an alternative approach: we seek conditions on network weights that are satisfied *at the conclusion of training*, to gain insight into how the trained network represents the learned function. By focusing on the network state at convergence, we can circumvent many of the difficulties associated with analyzing training dynamics, and the insights directly apply beyond simplified synthetic settings.

Figure 1: The model only depends on W through multiplication of activations $h(x)$.

Equivariant NFA Another alternative to the NFA, called the “equivariant NFA” (eNFA), was recently proposed in [Ziyin et al. \(2025\)](#) based on an analysis of the dynamics of noisy SGD, **which is invariant to linear transformations in the loss function**. This is distinct from the FACT and we also compare to it in Section 4.

Relation to literature on representation identifiability The focus of this paper is distinct from the literature on representation identifiability and Independent Component Analysis (ICA), see e.g. [\(Hyvärinen et al., 2024\)](#) and references therein. The identifiability literature is primarily concerned with the *inverse problem*: determining the sufficient conditions (such as non-Gaussianity or the presence of auxiliary variables) under which the true latent generative factors can be uniquely recovered from observed data. In contrast, this paper addresses the structure of representations learned by neural networks.

2 TRAINING SETUP AND BACKGROUND

Training setup We consider the standard training setup, with a model $f(\cdot; \theta) : \mathcal{X} \rightarrow \mathbb{R}^c$ trained on a sample-wise loss function $\ell : \mathbb{R}^c \times \mathcal{Y} \rightarrow \mathbb{R}$ on data points $(x_i, y_i)_{i \in [n]}$ with L^2 regularization parameter $\lambda > 0$ (that is, with non-zero weight decay). The training loss is $\mathcal{L}_\lambda(\theta) = \mathcal{L}(\theta) + \frac{\lambda}{2} \|\theta\|_F^2$, where $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i; \theta), y_i)$. Here \mathcal{X} and \mathcal{Y} are the input and output domains.

Our FACT applies to any weight matrix parameter $W \in \mathbb{R}^{d' \times d}$ inside a trained model. The only architectural requirement is that the model only depends on W via matrix multiplication of internal activations. See Figure 1. Formally, fixing all parameters but W , there are functions g, h such that for all x ,

$$f(x; \theta) = g(Wh(x), x). \quad (2.1)$$

In this notation,¹ h is the input to the weight matrix, and Wh is the output. Thus, FACT applies to any layer in neural networks that involves matrix multiplications.

For convenience, we introduce the notation to denote the gradient of the loss and the value of the model *with respect to the input of the layer* containing the weight matrix W , at the data point x_i :

$$\nabla_h \ell_i := \frac{\partial \ell(g(Wh, x); y_i)}{\partial h} \Big|_{h=h(x_i)} \in \mathbb{R}^d \quad \text{and} \quad \nabla_h f_i := \frac{\partial g(Wh, x)}{\partial h} \Big|_{h=h(x_i)} \in \mathbb{R}^{d \times c}.$$

Neural Feature Ansatz. In the above notation, the NFA ([Radhakrishnan et al., 2024](#)) posits that the neural feature matrix $W^\top W$ is proportional to the influence that the different subspaces of the input have on the output, which is captured by the Average Gradient Outer Product (AGOP) matrix. Namely, there is a power $s > 0$ such that

$$W^\top W \propto (\text{AGOP})^s, \text{ where } \text{AGOP} := \frac{1}{n} \sum_{i=1}^n (\nabla_h f_i)(\nabla_h f_i)^\top. \quad (\text{NFA})$$

Equivariant Neural Feature Ansatz. We will also compare to the eNFA proposed in [Ziyin et al. \(2025\)](#), which states

$$W^\top W \propto \text{eNFA} := \frac{1}{n} \sum_{i=1}^n (\nabla_h \ell_i)(\nabla_h \ell_i)^\top. \quad (\text{eNFA})$$

¹More precisely, including the dependence on the parameters other than W , what this means is that we can partition the parameters as $\theta = [W, \theta_{-W}]$, and $f(x; \theta) = g(Wh(x; \theta_{-W}); x; \theta_{-W})$.

162 3 NEURAL FEATURES SATISFY FACT AT CONVERGENCE
163164 In contrast to the empirically-derived NFA and eNFA, we seek to provide a relation derived from
165 first principles. We proceed from the following simple observation: at a critical point of the loss, the
166 features $h(x)$ are weighted by their influence on the final loss. This is stated in the following theorem.
167168 **Theorem 3.1** (Features at Convergence Theorem). *If the parameters of the model are at a critical
169 point of the loss with respect to W , then*

170
$$W^\top W = \text{FACT} := -\frac{1}{n\lambda} \sum_{i=1}^n (\nabla_{h\ell_i})(h(x_i))^\top. \quad (\text{FACT})$$

171
172

173 *Proof.* The premise of the theorem implies that $\nabla_W \mathcal{L}_\lambda(\theta) = 0$, since W is a subset of the model
174 parameters. By left-multiplying by W^\top and using the chain rule, we obtain
175

176
$$\begin{aligned} 0 &= W^\top (\nabla_W \mathcal{L}_\lambda(\theta)) \\ 177 &= W^\top (\lambda W + \nabla_W \mathcal{L}(\theta)) \\ 178 &= W^\top (\lambda W + \frac{1}{n} \sum_{i=1}^n \left(\frac{\partial \ell(g(\tilde{h}); y_i)}{\partial \tilde{h}} \Big|_{\tilde{h}=W h(x_i)} \right) h(x_i))^\top \\ 179 &= \lambda W^\top W + \frac{1}{n} \sum_{i=1}^n (\nabla_{h\ell_i})(h(x_i))^\top. \end{aligned}$$

180
181
182
183

184 The theorem follows by rearranging and dividing by λ . □
185186 Theorem 3.1 is a straightforward modification of the stationarity conditions. Nevertheless, as we
187 argue in the remainder of this paper, it is a useful quantity to consider when studying feature learning
188 in neural networks, and it is especially fruitful when viewed as a first-principles counterpart to the
189 NFA. Before proceeding with applications of (FACT), we provide a few remarks and empirical
190 validation.191 *Remark 3.2* (Symmetrizations of FACT). While $W^\top W$ is p.s.d., the quantity FACT is only guaranteed
192 to be p.s.d. at critical points of the loss. This means that we can get several other identities at
193 convergence by algebraically modifying the right-hand side in a way that preserves the symmetries of
194 the left-hand side. For instance, since $W^\top W = (W^\top W)^\top$, we may conclude that at the critical points
195 of the loss $W^\top W = \text{FACT}^\top$ also holds. Similarly, using that $W^\top W = \sqrt{(W^\top W)(W^\top W)^\top}$, we
196 may also conclude that at critical points $W^\top W = \sqrt{\text{FACT} \cdot \text{FACT}^\top}$ also holds.
197198 *Remark 3.3* (Empirical validation on real-world data). In Figure 2, we verify FACT on 5-layer ReLU
199 MLPs trained until convergence on MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky et al., 2009)
200 with Mean Squared Error loss and weight decay 10^{-4} . We find that, at convergence, the two sides of
201 the (FACT) relation generally have higher Pearson correlation than those of the (NFA) and (eNFA)
202 relations. For hyperparameter details, see Appendix A.203 *Remark 3.4* (Backward form). There is also an analogous “backward” version of this equation,
204 (bFACT), derived and empirically validated in Appendix B, that yields information about the left
205 singular vectors of W rather than the right singular vectors. Letting $\nabla_{W h} \ell_i$ denote the gradient of
206 the loss with respect to the output of the layer at data point x_i , we have

207
$$WW^\top = \text{bFACT} := -\frac{1}{n\lambda} \sum_{i=1}^n (W h(x_i)) (\nabla_{W h} \ell_i)^\top. \quad (\text{bFACT})$$

208
209

210 4 FACT CAPTURES FEATURE LEARNING PHENOMENA IN MANY OF THE SAME
211 WAYS AS THE NFA CONJECTURE
212213 Having validated the FACT, we now turn to applications. We show that our first-principles FACT
214 captures many feature learning phenomena in the same ways that the empirically-driven NFA
215 conjecture has been previously shown to do. First, we show that the FACT can be used to design

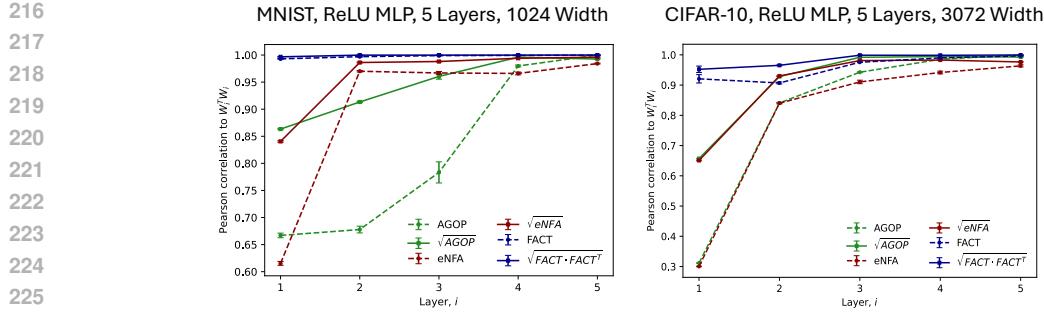


Figure 2: We train 5 hidden layer ReLU MLPs to interpolation (batch train loss $\leq 10^{-3}$) on MNIST and CIFAR-10. We plot Pearson correlation of FACT, AGOP, eNFA (with respect to each hidden layer input) to $W^T W$ for that layer. Curves are averaged over 5 independent runs. Both sides of the (FACT) are highly-correlated at convergence across layers. The power $s = 1/2$ for the NFA is suggested by prior work Radhakrishnan et al. (2024); Beaglehole et al. (2023); Mallinar et al. (2025).

learning algorithms that achieve high performance on tabular data based on adapting the recursive feature machine (RFM) algorithm of Radhakrishnan et al. (2024). We also show that this algorithm recovers important feature learning phenomena commonly studied in neural networks, such as phase transitions in sparse parity learning, and grokking of modular arithmetic.

4.1 BACKGROUND: RECURSIVE FEATURE MACHINES

The Recursive Feature Machine (RFM) algorithm (Radhakrishnan et al., 2024) builds upon classical kernel methods (Schölkopf, 2002), which rely on a kernel function $K(x, x')$ to measure data point similarity (e.g., Gaussian, Laplace). While kernel methods have been successful, they can be provably less sample-efficient than alternatives like neural networks that are able to learn features (Abbe et al., 2022; Damian et al., 2022).

To address these limitations, RFM learns a linear transformation $W \in \mathbb{R}^{d \times d}$ and applies a standard kernel K to the transformed data: $K_W(x, x') = K(Wx, Wx')$. This learned W enables RFM to identify salient features, akin to feature learning in a neural network layer (for example, if W is low rank, its range contains the salient features while the orthogonal complement to its range contains the irrelevant features). Seeking to imitate the feature learning behavior in neural networks, Radhakrishnan et al. (2024) iteratively updates W using a fixed-point iteration to satisfy the NFA condition. This is given in Algorithm 1, where the update equation on line 6 is given by

$$W_{t+1} \leftarrow (\text{AGOP}_t)^{s/2}, \text{ where } \text{AGOP}_t = \frac{1}{n} \sum_{i=1}^n (\nabla_x \hat{f}_t)(\nabla_x \hat{f}_t)^\top; \quad s > 0. \quad (\text{NFA-RFM update})$$

Algorithm 1 Recursive Feature Machine (based on NFA (Radhakrishnan et al., 2024) or FACT (ours))

- 1: **Input:** Training data (X, y) , kernel K_W , number of iterations T , ridge-regularization $\lambda \geq 0$
- 2: Initialize $W_0 \leftarrow I_{d \times d}$
- 3: **for** $t = 0$ to T **do**
- 4: Run kernel method: $\alpha_t \leftarrow (K_{W_t}(X, X) + n\lambda I)^{-1}y$
- 5: Let $\hat{f}_t(x) := K_{W_t}(x, X)\alpha_t$ be the kernel predictor
- 6: Update W_t , either with (NFA-RFM update) or (FACT-RFM update)
- 7: **end for**
- 8: **Output:** predictor $\hat{f}_T(x)$

4.2 FACT-BASED RECURSIVE FEATURE MACHINES

We study RFM with a FACT-based update instead of an NFA-based update. Similarly to the above, let FACT_t be the FACT matrix corresponding to iteration t . We symmetrize in order to ensure that

Method	FACT-RFM (no geom. averaging)	FACT-RFM (geom. averaging)	NFA-RFM	Kernel regression
Accuracy (%)	85.22	84.99	85.10	83.71

Table 1: Average test accuracy over 120 datasets from the UCI corpus [Fernandez-Delgado et al. \(2014\)](#). We compare Laplace kernel regression with adaptively learned Laplace kernels using FACT and NFA, as well as no feature learning.

the update is p.s.d. Our FACT-based fixed-point iteration in line 6 of RFM is thus

$$W_{t+1} \leftarrow ((\text{FACT}_t)(\text{FACT}_t)^\top)^{1/4}. \quad (\text{FACT-RFM update})$$

We also study a variant of this update where we average geometrically with the previous iterate to ensure greater stability (which helps for the modular arithmetic task). This geometric averaging variant has the following update

$$W_{t+1} \leftarrow ((\text{FACT}_t)(W_t^\top W_t)(W_t^\top W_t)(\text{FACT}_t)^\top)^{1/8}. \quad (\text{FACT-RFM update}')$$

The exponents in these updates are chosen so that the fixed points of these updates coincide with the FACT relation derived for networks at convergence in Theorem 3.1. See Appendix E for more details.

4.3 EXPERIMENTAL RESULTS COMPARING FACT-RFM TO NFA-RFM

We compare FACT-RFM to NFA-RFM across a range of settings (tabular datasets, sparse parities, and modular arithmetic).

Tabular datasets. The authors of [Radhakrishnan et al. \(2024\)](#) obtain state-of-the-art results using NFA-RFM on tabular benchmarks including that of [Fernandez-Delgado et al. \(2014\)](#) which utilizes 121 tabular datasets from the UCI repository. We run their same training and cross-validating procedure using FACT-RFM, and report results in Table 1. We find that FACT-RFM obtains roughly the same high accuracy performance as NFA-RFM. Both of these feature-learning methods improve over the next-best method found by [Radhakrishnan et al. \(2024\)](#), which is kernel regression with the Laplace kernel without any feature learning.

Sparse parities. We train FACT-RFM and NFA-RFM on the problem of learning sparse parities and find that both recover low-rank features. The problem of learning sparse parities has attracted attention with respect to feature learning dynamics of neural networks on multi-index models ([Edelman et al., 2023; Abbe et al., 2023](#)).

For training data we sample n points in d -dimensions as $x \sim \{-\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\}^d$. We experiment with sparsity levels of $k = 2, 3, 4$ by randomly sampling $k < d$ coordinate indices with which to construct our labels. Labels, y , are obtained from the product of the elements at each of the k coordinates in the corresponding x point and set to be 0 if the product is negative and 1 if the product is positive. We sample a held-out test set of 1000 points in the same manner.

We use the Mahalanobis Gaussian kernel in both FACT-RFM (with geometric averaging) and NFA-RFM with bandwidth 5 and train for 5 iterations. Our experiments use $d = 50$ and for $k = 1, 2$ we take $n = 500$, for $k = 3$ we take $n = 5000$, and for $k = 4$ we take $n = 50000$. The results of these experiments are given in Figure 3. We observe that both NFA-RFM and FACT-RFM learn this task and the features learned by both methods are remarkably similar and on the support of the sparse parity. Additionally, Figure 4 shows a phase transition in learning sparse parities when we take a smaller amount of data $n = 25000, k = 4$, which mimics the phase transition when training an MLP.

Grokking modular arithmetic. [Mallinar et al. \(2025\)](#) recently showed that NFA-RFM exhibits delayed generalization phenomena on modular arithmetic tasks, also referred to as “grokking”. The authors find that the square root of AGOP learns block circulant feature transformations on these problems. We train FACT-RFM (with geometric averaging) on the same modular arithmetic tasks and observe the same behavior. Figure 5 shows the square root of AGOP and $\text{FACT} \cdot M^\top$ after achieving 100% test accuracy on modular addition with modulus $p = 61$ when training on 50% of the data and testing on the other half. The feature matrices show block circulant structures.

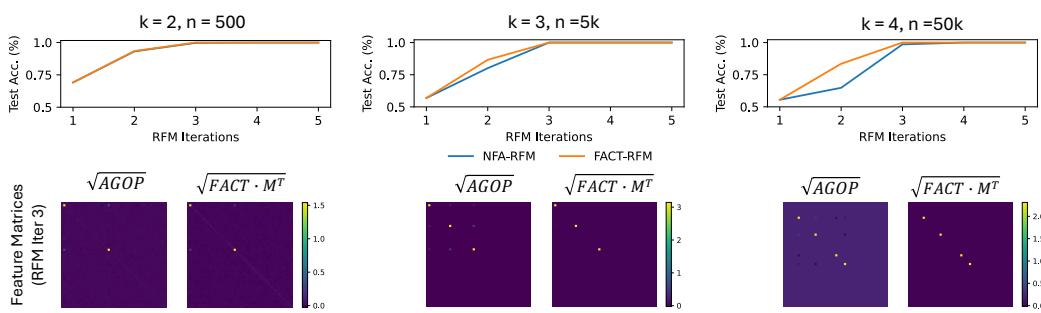


Figure 3: We train FACT-RFM and NFA-RFM using the Mahalanobis Gaussian kernel on sparse parity tasks. We train with $d = 50, k = 2, 3, 4$. The corresponding $\sqrt{\text{AGOP}}$ and $\sqrt{\text{FACT} \cdot M^\top}$ feature matrices are very similar and learn the support of the sparse parity.

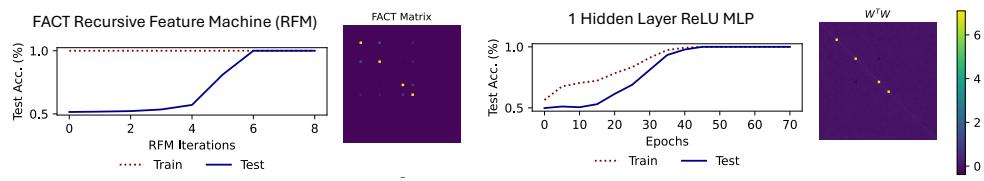


Figure 4: In the lower data regimes of $n = 25000$, $k = 4$, and $d = 50$, for sparse parity, the FACT-RFM algorithm reproduces phase transitions found in training neural networks.

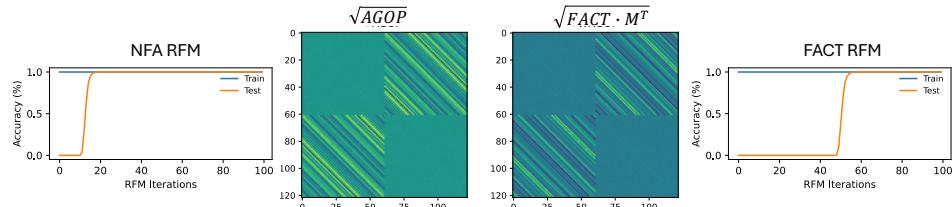


Figure 5: We train FACT-RFM and NFA-RFM on $(x + y) \bmod 61$ for 75 iterations. Both methods achieve 100% test accuracy and exhibit delayed generalization aligned to the “grokking” phenomenon. We plot the square root of $\text{FACT} \cdot M^\top$ and AGOP and find that both methods learn block circulant feature transforms.

378 5 COMPARISON OF NFA AND FACT FOR INNER-PRODUCT KERNELS
379380 Having demonstrated that the first-principles FACT obtains many of the same feature learning
381 phenomena as the empirically-conjectured NFA, it is natural to ask: is there a direct connection
382 between these two relations? Does the FACT imply the NFA?383 Our findings in this section suggest there is such a connection: the updates of NFA-RFM are proxies
384 for the updates of FACT-RFM. Thus, the NFA-RFM algorithm can also be viewed as attempting to
385 minimize the loss of the kernel method, regularized by the norm of the weights $\|W\|_F^2$. A similar
386 claim was previously made in [Gan & Poggio \(2024\)](#), but the theoretical evidence provided was
387 limited to the dynamics with one sample. Our analysis applies to training with more than one sample.
388389 We restrict our analysis to inner-product kernels. The expressions for FACT and AGOP simplify
390 considerably, as stated below. Below, we let α be first-order optimal dual weights for kernel regression
391 with λ -ridge regularization computed in the RFM algorithm.392 **Proposition 5.1** (Comparison of FACT and AGOP for inner-product kernels). *Suppose the kernel is
393 an inner-product kernel of the form $K_W(x, x') = k(x^\top M x')$, where $M = W^\top W$. Then, we may
394 write the AGOP and the FACT matrices explicitly as:*

395
$$\text{AGOP} = \sum_{i,j=1}^n \tau(x_i, M, x_j) \cdot M x_i \alpha_i^\top \alpha_j x_j^\top M^\top,$$

396
397
$$\text{FACT} \cdot M^\top = \sum_{i,j=1}^n k'(x_i^\top M x_j) \cdot M x_i \alpha_i^\top \alpha_j x_j^\top M^\top,$$

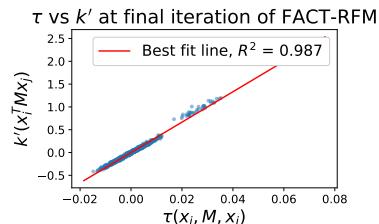
398
399

400 where $\tau(x_i, M, x_j) := \frac{1}{n} \sum_{l=1}^n k'(x_l^\top M x_i) k'(x_l^\top M x_j)$.401 The proof is deferred to Appendix F. The proposition reveals that the matrix $\text{FACT} \cdot M^\top$ is positive
402 semi-definite when the function k is non-increasing (a condition satisfied by common choices like
403 $k(t) = \exp(t)$ or $k(t) = t^2$). This property allows for a simplification of (FACT-RFM update'),
404 which can be rewritten as a geometric average between the current feature matrix and the FACT term:
405

406
$$M_{t+1} \leftarrow (\text{FACT}_t M_t)^{1/2}. \quad (\text{FACT-RFM update}' \text{ for inner-product kernels})$$

407 This form should be compared with the NFA-RFM update, which also simplifies for inner-product
408 kernels. We write the simplified form of the update below when the power s is set to 1/2:
409

410
$$M_t \leftarrow (\text{AGOP})^{1/2}. \quad (\text{NFA-RFM update for inner-product kernels})$$

411 Notably, Proposition 5.1 also reveals that both updates share
412 the same structural form. The difference lies in the spe-
413 cific factors involved: τ for the NFA update and k' for the
414 FACT update. Interestingly, both of these factors, $k'(x_i^\top M x_j)$
415 and $\tau(x_i, M, x_j)$, can be interpreted as measures of simi-
416 larity between the data points x_i and x_j . These measures in-
417 crease when the transformed representations $W x_i$ and $W x_j$
418 are closer in the feature space, and decrease otherwise.
419420 Consequently, if the similarity measures τ and k' were ap-
421 proximately equal for most pairs of data points, this would
422 explain the observed similarities in performance between the
423 NFA-RFM and FACT-RFM methods, and account for their
424 general agreement in tracking the feature learning process as
425 it occurs in neural networks.426 **Empirical validation.** We empirically validate the above ex-
427 planation, showing that indeed $\tau(x_i, x_j, M)$ is approximately
428 proportional to $k'(x_i^\top M x_j)$ for FACT-RFM in the challenging
429 setting of arithmetic modulo $p = 61$ (where as demonstrated
430 in Section 4.3 both algorithms converge to similar features).
431 In Figure 6, we show that a best-fit line proportionally relating the two quantities achieves a good fit.427 Figure 6: Validation of explanation
428 for why AGOP and FACT are simi-
429 lar when FACT-RFM converges in
430 the modular arithmetic task. Each
431 point corresponds to a pair (x_i, x_j) –
432 we subsample 1000 points for visu-
433 alization purposes.

432

6 NFA AND FACT MAY BE UNCORRELATED IN WORST-CASE SETTINGS

434 Finally, as a counterpoint to the analysis in the previous section, we show that when the data
 435 distribution is chosen adversarially, NFA and FACT can differ drastically even for shallow, two-layer
 436 nonlinear networks. Thus, FACT is perhaps a preferable alternative to the NFA.

437 We craft a dataset to maximize their disagreement on a trained two-layer architecture $f(x; a, W) =$
 438 $a^\top \sigma(Wx)$ with quadratic activation $\sigma(t) = t^2$ and parameters $a \in \mathbb{R}^m$, $W \in \mathbb{R}^{m \times d}$ and any large
 439 enough width $m \geq 7$. For any $p \in (0, 1)$ and $\tau \in (0, 1)$, define the data distribution $\mathcal{D}(p, \tau)$ over
 440 (x, y) such that x is drawn from a mixture of distributions: $x \sim \text{Unif}[\{0, 1, 2\}^4]$ with probability
 441 p and $x = (1, 1, 0, 0)$ with probability $1 - p$, and such that $y = f_*(x) = \tau x_1 x_2 + x_3 x_4 \in \mathbb{R}$.
 442 For appropriate choices of the hyperparameters, we show that the NFA prediction can be nearly
 443 uncorrelated with weights that minimize the loss, while the FACT provably holds.

444 **Theorem 6.1** (Separation between NFA and FACT in two-layer networks). *Fix any $s > 0$. For
 445 any $\epsilon \in (0, 1]$, there are hyperparameters $p_\epsilon, \tau_\epsilon, \lambda_\epsilon \in (0, 1)$ such that any parameters $\theta = (a, W)$
 446 minimizing $\mathcal{L}_{\lambda_\epsilon}(\theta)$ on data distribution $\mathcal{D}(p_\epsilon, \tau_\epsilon)$ are nearly-uncorrelated with the (NFA) prediction:*

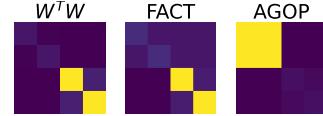
$$447 \text{corr}((\text{AGOP})^s, W^\top W) < \epsilon,$$

448 where the correlation corr is defined as $\text{corr}(A, B) = \langle A, B \rangle / (\|A\|_F \|B\|_F)$. In contrast, (FACT)
 449 holds because the weights are at a stationary point.

450 **Proof intuition.** At a loss minimizer, the neural network approximates the true function f_*
 451 because part of the data distribution is drawn from the uniform distribution. Therefore, since
 452 the neural network computes a quadratic because it has quadratic activations, one can show
 453 $\text{AGOP} \approx \mathbb{E}_{x \sim \mathcal{D}(p_\epsilon, \tau_\epsilon)}[(\nabla_x f_*)(\nabla_x f_*)^\top] \approx \tau_\epsilon^2 (e_1 + e_2)(e_1 + e_2)^\top + O(p_\epsilon)$, For small p_ϵ , this
 454 matrix has most of its mass in the first two rows and first two columns.

455 On the other hand, the weight decay in training the neural network
 456 means that at convergence the norm of the network weights is minimized
 457 given the function it computes. Since the neural network
 458 approximates the true function f_* , in order to minimize the total
 459 norm of the weights, $W^\top W$ must have most of its mass on the last
 460 two rows and columns when τ_ϵ is small. This is in contrast to AGOP,
 461 since as we have argued that has most of its mass on the first two
 462 rows and columns. Thus, the NFA prediction is not met. On the
 463 other hand, the FACT prediction is provably met by Theorem 3.1.
 464 The formal proof is in Appendix D.

465 The construction is empirically validated in Figure 7, which is the
 466 result of training a width-10 network for 10^6 iterations of Adam with learning rate 0.01 on the
 467 population loss with $\tau = 0.02$, $p = 10^{-5}$, $\lambda = 10^{-5}$. At convergence, FACT achieves 0.994 cosine
 468 similarity with $W^\top W$, while AGOP achieves < 0.068 cosine similarity.



469 Figure 7: The FACT and NFA
 470 are uncorrelated at convergence on the synthetic dataset.

472

7 DISCUSSION

473 This work pursues a first principles approach to understanding feature learning by deriving a condition
 474 that must hold in neural networks at critical points of the train loss. Perhaps the most striking aspect
 475 of our results is that FACT is based only on **local optimality** conditions of the loss. Nevertheless, in
 476 Section 4.3 we show that when used to drive the RFM algorithm, FACT recovers interesting **global**
 477 **behaviors** of neural networks: including high-performing feature learning for tabular dataset tasks,
 478 and grokking and phase transition behaviors on arithmetic and sparse parities datasets.

479 The usefulness of FACT is especially surprising since there is no reason for FACT to be correlated to
 480 neural feature matrices during most of training, prior to interpolating the train loss; and indeed FACT
 481 does have low correlation for most epochs (although $\sqrt{\text{FACT} \cdot \text{FACT}^\top}$ has nontrivial correlation),
 482 before sharply increasing to near-perfect correlation; see Figure 8. This is a potential limitation to
 483 using FACT to understand the evolution of features *during training*, rather than in the terminal phase.
 484 Therefore, it is of interest to theoretically derive a quantity with more stable correlation over training.

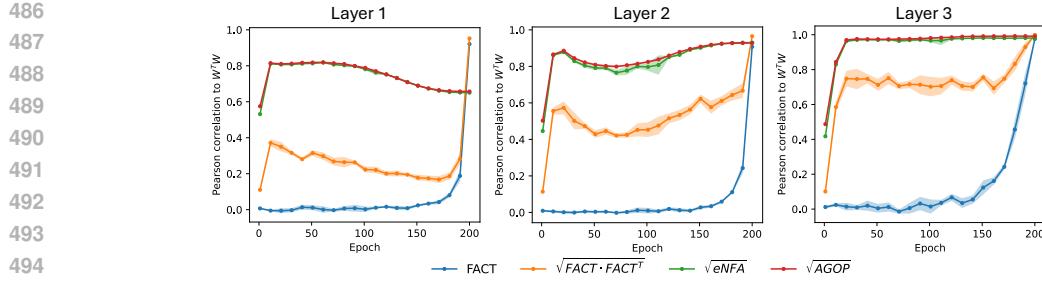


Figure 8: We train 5 layer ReLU MLPs to interpolation on CIFAR-10 and plot Pearson correlation vs. epochs comparing FACT, AGOP, eNFA to neural feature matrices for the first three layers of the model. Curves are averaged over five independent runs.

An additional limitation is that there are data distributions, such as sparse parity, where FACT-RFM becomes unstable if continued iterations are performed after convergence, so early stopping is necessary. Understanding this phenomenon may help derive relations that improve over FACT.

Finally, our formulation of FACT for neural networks requires non-zero weight decay. This is a reasonable assumption for real-world neural network training (LLMs are often pretrained with a reasonably large weight decay factor), but raises the question of whether it is possible to compute FACT in the zero weight-decay limit. In Section 5, we formulate FACT in a way that only relies on the kernel dual weights, the learned features, and the data. Therefore it may be possible to compute FACT in neural networks through the network’s empirical neural tangent kernel (Jacot et al., 2018; Long, 2021), which would allow using FACT without requiring weight decay.

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks. In *Conference on Learning Theory*, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks: leap complexity and saddle-to-saddle dynamics. In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 2552–2623. PMLR, 2023.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration by overparameterization. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pp. 244–253. PMLR, 10–15 Jul 2018.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for deep linear neural networks. *ICLR*, 2019a.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization. *Advances in Neural Information Processing Systems*, 32, 2019b.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on non-convex losses from high-dimensional inference. *Journal of Machine Learning Research*, 22(106):1–51, 2021.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden progress in deep learning: Sgd learns parities near the computational limit. *Advances in Neural Information Processing Systems*, 35:21750–21764, 2022.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Parthe Pandit, and Mikhail Belkin. Mechanism of feature learning in convolutional neural networks. *arXiv preprint arXiv:2309.00570*, 2023.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Enric Boix-Adserà, and Mikhail Belkin. Aggregate and conquer: detecting and steering llm concepts by combining nonlinear predictors over multiple layers. *arXiv preprint arXiv:2502.03708*, 2025.

540 Vivien Cabannes, Elvis Dohmatob, and Alberto Bietti. Scaling laws for associative memories. *arXiv*
 541 *preprint arXiv:2310.02984*, 2023.
 542

543 Vivien Cabannes, Berfin Simsek, and Alberto Bietti. Learning associative memories with gradient
 544 descent. *arXiv preprint arXiv:2402.18724*, 2024.

545 Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
 546 with gradient descent. In *Conference on Learning Theory*, pp. 5413–5452. PMLR, 2022.

547

548 Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. *SIAM*
 549 *Journal on Numerical Analysis*, 7(1):1–46, 1970.

550

551 Benjamin L. Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Pareto frontiers
 552 in neural feature learning: Data, compute, width, and luck. *NeurIPS*, 2023.

553

554 Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
 555 of statistical induction heads: In-context learning markov chains. *arXiv preprint arXiv:2402.11004*,
 556 2024.

557

558 Manuel Fernandez-Delgado, E. Cernadas, S. Barro, and Dinani Amorim. Do we need hundreds of
 559 classifiers to solve real world classification problems? *Journal of Machine Learning Research*,
 2014.

560

561 Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias:
 562 Generalization vs. robustness in relu networks. *Advances in Neural Information Processing
 Systems*, 36, 2024.

563

564 Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay secretly
 565 minimize the rank of your neural network. *arXiv preprint arXiv:2206.05794*, 2022.

566

567 Yulu Gan and Tomaso Poggio. For hyperbfs agop is a greedy approximation to gradient descent.
 568 Technical report, Center for Brains, Minds and Machines (CBMM), 2024.

569

570 Andrey Gromov. Grokking modular arithmetic. *arXiv preprint arXiv:2301.02679*, 2023. URL
<https://arxiv.org/pdf/2301.02679.pdf>.

571

572 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
 573 Implicit regularization in matrix factorization. *Advances in neural information processing systems*,
 30, 2017.

574

575 Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
 576 linear convolutional networks. *Advances in neural information processing systems*, 31, 2018.

577

578 XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to and
 579 dynamics on the central path. *arXiv preprint arXiv:2106.02073*, 2021.

580

581 Aapo Hyvärinen, Ilyes Khemakhem, and Ricardo Monti. Identifiability of latent-variable and
 582 structural-equation models: from linear to nonlinear. *Annals of the Institute of Statistical Mathematics*,
 76(1):1–33, 2024.

583

584 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 585 generalization in neural networks, 2018.

586

587 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 588 *Conference on learning theory*, pp. 1772–1798. PMLR, 2019.

589

590 Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. *Advances in
 591 Neural Information Processing Systems*, 33:17176–17186, 2020.

592

593 Vignesh Kothapalli. Neural collapse: A review on modelling principles and generalization. *arXiv
 preprint arXiv:2206.04041*, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

594 Tanishq Kumar, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. Grokking as the
 595 transition from lazy to rich training dynamics. *arXiv preprint arXiv:2310.06110*, 2023.
 596

597 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.
 598

599 Philip M Long. Properties of the after kernel. *arXiv preprint arXiv:2105.10585*, 2021.
 600

601 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 602 *arXiv preprint arXiv:1906.05890*, 2019.
 603

604 Neil Mallinar, Daniel Beaglehole, Libin Zhu, Adityanarayanan Radhakrishnan, Parthe Pandit, and
 605 Mikhail Belkin. Emergence in non-neural models: grokking modular arithmetic via average
 606 gradient outer product. *ICML*, 2025.
 607

608 Pierre Marion and Lénaïc Chizat. Deep linear networks for regression are implicitly regularized
 609 towards flat minima. *NeurIPS*, 2024.
 610

611 Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica Sutherland. Grokking modular
 612 arithmetic can be explained by margin maximization. In *NeurIPS 2023 Workshop on Mathematics
 613 of Modern Machine Learning*, 2023.
 614

615 Depen Morwani, Benjamin L Edelman, Costin-Andrei Oncescu, Rosie Zhao, and Sham Kakade.
 616 Feature emergence via margin maximization: case studies in algebraic tasks. *arXiv preprint
 617 arXiv:2311.07568*, 2023.
 618

619 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 620 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.
 621

622 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 623 gradient descent. *arXiv preprint arXiv:2402.14735*, 2024.
 624

625 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 626 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
 627 *arXiv preprint arXiv:2209.11895*, 2022.
 628

629 Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mechanism
 630 for feature learning in neural networks and backpropagation-free machine learning models. *Science*,
 631 383(6690):1461–1467, 2024.
 632

633 Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive feature
 634 machines provably recover low-rank matrices. *Proceedings of the National Academy of Sciences*,
 635 122(13):e2411325122, 2025.
 636

637 S Yu Rotfel'd. The singular numbers of the sum of completely continuous operators. In *Spectral
 638 Theory*, pp. 73–78. Springer, 1969.
 639

640 Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
 641 of learning in deep linear neural networks. *arXiv preprint*, 2014.
 642

643 B Schölkopf. Learning with kernels: support vector machines, regularization, optimization, and
 644 beyond, 2002.
 645

646 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
 647 bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57,
 648 2018.
 649

650 Lawrence Stewart, Francis Bach, Quentin Berthet, and Jean-Philippe Vert. Regression as classification:
 651 Influence of task formulation on neural network features. In *International Conference on Artificial
 652 Intelligence and Statistics*, pp. 11563–11582. PMLR, 2023.
 653

654 Robert Thompson. Convex and concave functions of singular values of matrix sums. *Pacific Journal
 655 of Mathematics*, 66(1):285–290, 1976.
 656

648 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
649 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
650 *Conference on Learning Theory*, pp. 3635–3673. PMLR, 2020.

651

652 Emanuele Zangrando, Piero Deidda, Simone Brugliapaglia, Nicola Guglielmi, and Francesco Tudisco.
653 Neural rank collapse: Weight decay and small within-class variability yield low-rank bias. *arXiv*
654 *preprint arXiv:2402.03991*, 2024.

655 Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd:
656 spikes in the training loss and their impact on generalization through feature learning. *arXiv*
657 *preprint arXiv:2306.04815*, 2023.

658 Libin Zhu, Damek Davis, Dmitriy Drusvyatskiy, and Maryam Fazel. Iteratively reweighted kernel
659 machines efficiently learn sparse functions. *arXiv preprint arXiv:2505.08277*, 2025.

660

661 Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network. *NeurIPS*, 2022.

662

663 Liu Ziyin, Isaac Chuang, Tomer Galanti, and Tomaso Poggio. Formation of representations in neural
664 networks. *ICLR*, 2025.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A HYPERPARAMETERS IN EMPIRICAL VALIDATION OF FACT AND FURTHER
703 EXPERIMENTS**
704

705 In the empirical validation of FACT in Figure 2, we train the networks until convergence, which we
706 operationalize as the point at which batch train loss $\leq 10^{-3}$ is achieved. The results are for training
707 5-layer fully-connected networks with Mean-Squared Error (MSE) loss for 200 epochs using SGD,
708 momentum 0.9, initial learning rate 10^{-1} , cosine decay learning rate schedule, weight decay 10^{-4} ,
709 batch size 64, depth 3, and hidden width 1024 for MNIST and 3072 for CIFAR-10, and standard
710 PyTorch initialization.
711

712 **A.1 VARYING THE NUMBER OF DATA POINTS AND THE WEIGHT DECAY**
713

714 We experiment in the above setting with varying the number of training data points, as well as the
715 weight decay. Table 2 reports the Pearson correlation to $W_1^\top W_1$ after training for the square root
716 of AGOP, the square root of the eNFA (Ziyin et al., 2025), and the FACT. In addition we report
717 the correlation to a symmetrization of FACT given that unlike the other quantities the FACT is only
718 guaranteed to be p.s.d. at exact convergence and we only train to approximate convergence with
719 batch train loss $\leq 10^{-3}$. In these experiments, the eNFA and NFA predictions without square root
720 are both less correlated to the $W_1^\top W_1$ than their square root counterparts. In all cases except for
721 MNIST $n = 1000$ we find that FACT and its symmetrization are better correlated to $W_1^\top W_1$ than
722 both AGOP and eNFA and their square roots.
723

	Pearson Correlation to $W^\top W$ after training					
	MNIST			CIFAR-10 ($n = 50K$)		
	$n = 1K$	$n = 2K$	$n = 5K$	$n = 60K$	wt decay = 10^{-3}	wt decay = 10^{-4}
FACT	0.890	0.988	0.995	0.999	0.830	0.896
$\sqrt{\text{FACT} \cdot \text{FACT}^\top}$	0.956	0.998	1.000	1.000	0.929	0.943
$\sqrt{\text{AGOP}}$ (NFA with $s = 1/2$)	0.899	0.923	0.924	0.909	0.793	0.722
$\sqrt{\text{eNFA}}$	0.903	0.923	0.917	0.903	0.797	0.714

731 Table 2: We report the correlation of the Neural Feature Matrix $W^\top W$ to the corresponding feature
732 matrices at interpolation, given by the square root of AGOP, the equivariant NFA, the FACT and a
733 symmetrization of FACT. Here W is the first layer of the network. The weight decay for MNIST-
734 trained networks is 10^{-4} , but we experiment with weight decays 10^{-3} and 10^{-4} for CIFAR-trained
735 networks. For MNIST, we experiment with changing the training set size as well.
736

737 **B BACKWARD FORM OF FACT**
739

740 We provide here an analogous ‘‘backward’’ form of the FACT condition, which applies to WW^\top
741 instead of W .

742 Recall from Section 2 that the neural network depends on W as

$$744 f(x) = g(Wh(x), x).$$

745 Out of convenience, we introduce notation to denote the gradient of the loss **with respect to the**
746 **output of the layer** at data point x_i . We write

$$747 \nabla_{Wh} \ell_i := \frac{\partial \ell(g(\tilde{h}, x); y_i)}{\partial \tilde{h}} \Big|_{\tilde{h}=Wh(x_i)} \in \mathbb{R}^d.$$

750 With this notation in hand, the backward form of the FACT, which gives information about the left
751 singular vectors, is:

752 **Theorem B.1.** *If the parameters of the network are at a differentiable, critical point of the loss with
753 respect to W , then*

$$755 WW^\top = \text{bFACT} := -\frac{1}{n\lambda} \sum_{i=1}^n (Wh(x_i))(\nabla_{Wh} \ell_i)^\top. \quad (\text{bFACT})$$

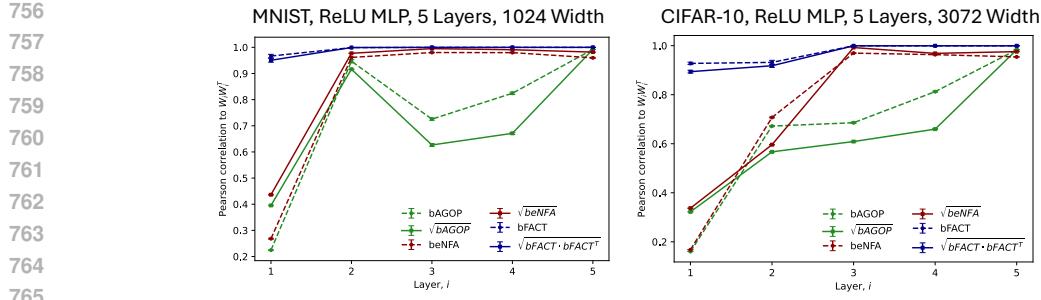


Figure 9: We train 5 hidden layer ReLU MLPs to interpolation on MNIST and CIFAR-10. We plot the Pearson correlation of the backward versions of FACT, AGOP, eNFA (with respect to pre-activation outputs of a layer) and compare to WW^T for that layer. Curves are averaged over 5 independent runs.

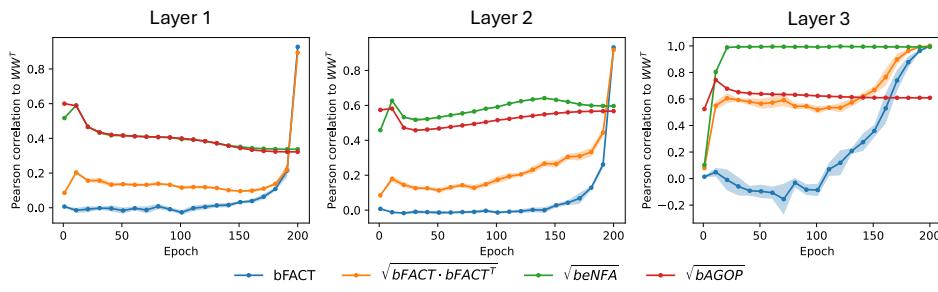


Figure 10: We train 5 hidden layer ReLU MLPs to interpolation on CIFAR-10. We plot the Pearson correlation of the backward versions of FACT, AGOP, eNFA (with respect to pre-activation outputs of a layer) vs. epochs. Curves are averaged over 5 independent runs.

Proof. Left-multiplying by W , we obtain

$$\begin{aligned}
 0 &= W(\nabla_W \mathcal{L}_\lambda(\theta))^\top \\
 &= W(\lambda W + \nabla_W \mathcal{L}(\theta))^\top \\
 &= W(\lambda W + \frac{1}{n} \sum_{i=1}^n (\frac{\partial \ell(g(\tilde{h}); y_i)}{\partial \tilde{h}} \Big|_{\tilde{h}=Wh(x_i)} h(x_i)^\top)^\top \\
 &= \lambda WW^\top + (Wh(x_i))(\nabla_{Wh} \ell_i)^\top
 \end{aligned}$$

Rearranging and dividing by λ proves (bFACT). \square

Again, we may symmetrize both sides of the equation and still get valid equations that hold at critical points of the loss: for instance we have $WW^\top = \sqrt{bFACT \cdot bFACT^\top}$.

In the same way that we compute bFACT, we can compute an analogous “backward” version of AGOP which is given by,

$$bAGOP = \frac{1}{n} \sum_{i=1}^n (\nabla_{Wh} f_i)(\nabla_{Wh} f_i)^\top$$

and consider whether this models the left singular vectors of layer weights as well. The backward eNFA is as computed in (Ziyin et al., 2025). Figures 9 and 10 show the complete set of comparisons for backward versions of FACT, AGOP, eNFA to their respective neural feature matrices compared across both depth and epochs. The hyperparameters and training setup are the same as that described in Appendix A.

810
811 C CASE STUDY FOR DEEP LINEAR NETWORKS

812 In this appendix, we compare the predictions of FACT and NFA in the toy setting of deep linear
813 networks, which have received significant attention in the theoretical literature as a simplified setting
814 for studying training dynamics Arora et al. (2019a); Ziyin et al. (2022); Marion & Chizat (2024);
815 Saxe et al. (2014); Arora et al. (2018). A deep linear network $f : \mathbb{R}^d \rightarrow \mathbb{R}^c$ is parameterized as

$$816 \quad 817 \quad f(x) = W_L \cdot W_{L-1} \cdots W_1 x$$

818 for $W_1 \in \mathbb{R}^{h \times d}$, $W_2, \dots, W_{L-1} \in \mathbb{R}^{h \times h}$, $W_L \in \mathbb{R}^{c \times h}$. We fit the network on data points $x \sim$
819 $\mathcal{N}(0, I_d)$ and labels given by a ground truth linear transformation $f^*(x) = W^*x$ where $W^* \in \mathbb{R}^{c \times d}$.
820

821 In this setting, Radhakrishnan et al. (2025) show that the exponent s in (NFA) must scale as $1/L$
822 in order for the NFA prediction to be correct. Thus, unlike the FACT, the NFA has a tunable
823 hyperparameter that must depend on the particular architecture involved. We rederive this dependence
824 of the exponent on the architecture for completeness.

825 **Informal derivation of NFA power dependence on depth** In this setting, the NFA prediction for
826 the first layer can be computed as
827

$$828 \quad 829 \quad \text{AGOP} = W_1^\top \cdots W_{L-1}^\top W_L^\top W_L \cdot W_{L-1} \cdots W_1,$$

830 So, when training has converged and the network is close to fitting the ground truth W^* , we have

$$831 \quad 832 \quad \text{AGOP} \approx (W^*)^\top W^*.$$

833 It is known that weight decay biases the solutions of deep linear networks to be “balanced” at
834 convergence Gunasekar et al. (2017); Arora et al. (2019b), meaning that the singular values at each
835 layer are equal. When the layers are balanced we should therefore heuristically expect that, after
836 training, we have

$$837 \quad 838 \quad W_1^\top W_1 \approx ((W^*)^\top W^*)^{1/L},$$

839 because singular values multiply across the L layers. Putting the above equations together, at
840 convergence we have

$$841 \quad 842 \quad W_1^\top W_1 \approx (\text{AGOP})^{1/L}.$$

843 For $L = 2$, we recover the prescription of using $\sqrt{\text{AGOP}}$ suggested by Radhakrishnan et al. (2024);
844 Beaglehole et al. (2023); Mallinar et al. (2025). However when $L \neq 2$, this is no longer the best
845 power. Our analysis suggests that the AGOP power must be tuned with the depth of the network – on
846 the other hand, FACT does not need this tunable parameter.

847 We empirically validate this in Figure 11, with deep linear networks with $d = 10, c = 5, h = 512$ and
848 varying the depth L , and sample $W^* \in \mathbb{R}^{c \times d}$ with independent standard Gaussian entries. The train
849 dataset is of size $n = 5000$ where $x_i \sim \mathcal{N}(0, I_d)$. We train to convergence using the Mean Squared
850 Error (MSE) loss for 5000 epochs with SGD, minibatch size 128, learning rate of 5×10^{-3} , weight
851 decay of 10^{-2} , and standard PyTorch initialization. After training, the singular values of all of the
852 weight matrices are identical after training, indicating balancedness has been achieved.

853
854 D PROOF OF THEOREM 6.1, SEPARATING FACT AND NFA FOR TWO-LAYER
855 NETWORKS

856 We provide the proof of Theorem 6.1, restating the theorem as Theorem D.1 for convenience.

857 **Setup** Consider a trained two-layer architecture $f(x; a, W) = a^\top \sigma(Wx)$ with quadratic activation
858 $\sigma(t) = t^2$ and parameters $a \in \mathbb{R}^m$, $W \in \mathbb{R}^{m \times d}$. For any $p \in (0, 1)$ and $\tau \in (0, 1)$, define the
859 data distribution $\mathcal{D}(p, \tau)$ over (x, y) such that x is drawn from a mixture of distributions: $x \sim$
860 $\text{Unif}[\{0, 1, 2\}^4]$ with probability p and $x = (1, 1, 0, 0)$ with probability $1 - p$, and such that $y =$
861 $f_*(x) = \tau x_1 x_2 + x_3 x_4 \in \mathbb{R}$.

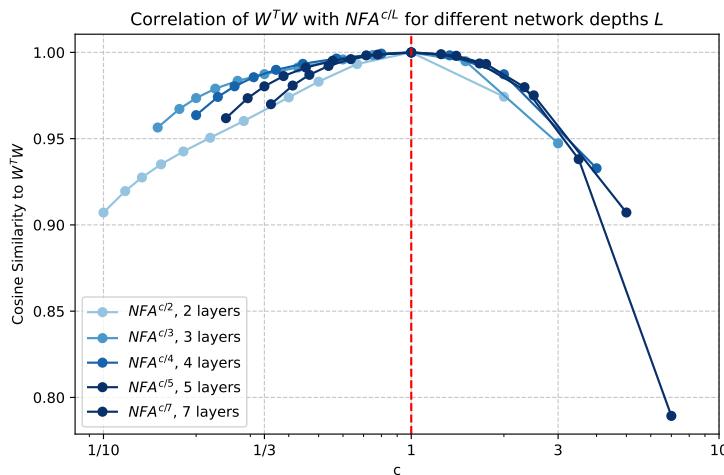


Figure 11: Deep L -layer linear networks trained to convergence on synthetic data. $\text{AGOP}^{1/L}$ has cosine similarity close to 1 to the NFM ($W_1^\top W_1$), which validates the derivation in Appendix C. For all of these network depths, FACT has cosine similarity ≥ 0.999 , and there are no tunable hyperparameters that depend on depth.

Theorem D.1 (Separation between NFA and FACT in two-layer networks; restated Theorem 6.1). *Fix $s > 0$ to be the NFA power. For any $\epsilon \in (0, 1)$, there are hyperparameters $p_\epsilon, \tau_\epsilon, \lambda_\epsilon \in (0, 1)$ such that any parameters $\theta = (a, W)$ minimizing $\mathcal{L}_{\lambda_\epsilon}(\theta)$ on data distribution $\mathcal{D}_\epsilon := \mathcal{D}(p_\epsilon, \tau_\epsilon)$ are nearly-uncorrelated with the NFA prediction:*

$$\text{corr}((\text{AGOP})^s, W^\top W) < \epsilon,$$

where $\text{corr}(A, B) = \langle A, B \rangle / (\|A\|_F \|B\|_F)$ is the correlation. On the other hand, the FACT prediction holds.

Proof. Set $\tau_\epsilon = \epsilon^3, p_\epsilon = \epsilon^8, \lambda_\epsilon = \epsilon^{32} p_\epsilon$. The outline of the proof that the loss-minimizing weights and AGOP are uncorrelated is to first show that there is a set of weights \bar{a}, \bar{W} such that the loss $\mathcal{L}_{\lambda_\epsilon}(\bar{a}, \bar{W})$ is small. This implies that at any minimizer a^*, W^* we must also have that $\mathcal{L}_{\lambda_\epsilon}(a^*, W^*)$ is small. In turn, this means that the estimated function $\hat{f}(\cdot) = f(\cdot; a^*, W^*)$ must be close to the true function $f_*(x) = \tau_\epsilon x_1 x_2 + x_3 x_4$. Finally, this will let us compare the AGOP to the loss-minimizing weights \hat{a}, \hat{W} .

1. Construct weights with low loss. Construct $\bar{W} = [\bar{w}_1, \dots, \bar{w}_m]^\top \in \mathbb{R}^{m \times d}$ and $\bar{a} = [\bar{a}_1, \dots, \bar{a}_m]^\top \in \mathbb{R}^{m \times 1}$ by letting $\bar{w}_1 = e_1 + e_2, \bar{w}_2 = e_1, \bar{w}_3 = e_2, \bar{w}_4 = e_3 + e_4, \bar{w}_5 = e_3, \bar{w}_6 = e_4, \bar{a}_1 = \tau_\epsilon/2, \bar{a}_4 = 1/2, \bar{a}_2 = \bar{a}_3 = -\tau_\epsilon, \bar{a}_5 = \bar{a}_6 = -1$, and $\bar{w}_j = 0$ and $\bar{a}_j = 0$ for all $j \geq 7$. One can check that $f(x; \bar{a}, \bar{W}) = f_*(x)$ for all x , and that $\|\bar{W}\|_F^2 + \|\bar{a}\|^2 \leq 13$. Therefore

$$\mathcal{L}_{\lambda_\epsilon}(\hat{a}, \hat{W}) \leq \mathcal{L}_{\lambda_\epsilon}(\bar{a}, \bar{W}) \leq 169\lambda_\epsilon. \quad (\text{D.1})$$

2. Conclude that $\hat{f} \approx f_*$. Define $\hat{f}(\cdot) = f(\cdot; \hat{a}, \hat{W})$. Since \hat{f} and f_* are homogeneous quadratic functions, we may write them as

$$\hat{f}(x) = \sum_{1 \leq i \leq j \leq 4} \hat{c}_{ij} x_i x_j \quad \text{and} \quad f_*(x) = \sum_{1 \leq i \leq j \leq 4} c_{ij} x_i x_j.$$

Let us show that the coefficients $\{c_{ij}\}$ must be close to the estimated coefficients $\{\hat{c}_{ij}\}$ using a Fourier-analytic calculation. Define the distribution $\mathcal{U} = \text{Unif}[\{0, 1, 2\}^4]$ and the inner product between a pair of functions $\langle g, h \rangle_{\mathcal{U}} = \mathbb{E}_{x \sim \mathcal{U}}[g(x)h(x)]$. Also define the functions

$$\chi^{(0)}(t) = \begin{cases} 3, & t = 0 \\ 0, & t \in \{1, 2\} \end{cases}, \quad \chi^{(1)}(t) = \begin{cases} -4.5, & t = 0 \\ 6, & t = 1 \\ -1.5 & t = 2 \end{cases}, \quad \chi^{(2)}(t) = \begin{cases} 1.5, & t = 0 \\ -3, & t = 1 \\ 1.5, & t = 2 \end{cases}$$

918 and for any vector of degrees $\alpha \in \{0, 1, 2\}^k$ define $\chi_\alpha : \{0, 1, 2\}^4 \rightarrow \mathbb{R}$ by $\chi_\alpha(x) = \prod_{i=1}^k \chi^{(\alpha_i)}(x_i)$.
 919 These functions have been picked so that for any $\alpha' \in \{0, 1, 2\}^k$ and monomial $h_{\alpha'}(x) =$
 920 $x_1^{\alpha'_1} x_2^{\alpha'_2} \dots x_k^{\alpha'_k}$, we have $\langle h_\alpha, \chi_{\alpha'} \rangle_{\mathcal{U}} = 1(\alpha = \alpha')$. Therefore, for any $1 \leq i \leq j \leq 4$, there
 921 is $\alpha \in \{0, 1, 2\}$ such that
 922

$$c_{ij} = \langle f_*, \chi_\alpha \rangle_{\mathcal{U}} \text{ and } \hat{c}_{ij} = \langle \hat{f}, \chi_\alpha \rangle_{\mathcal{U}}.$$

923 Therefore, by Cauchy-Schwarz, for any $1 \leq i \leq j \leq 4$ and corresponding α we have
 924

$$|c_{ij} - \hat{c}_{ij}| = |\langle f_* - \hat{f}, \chi_\alpha \rangle_{\mathcal{U}}| \leq \|f_* - \hat{f}\|_{\mathcal{U}} \|\chi_\alpha\|_{\mathcal{U}} \leq 6^4 \|f_* - \hat{f}\|_{\mathcal{U}}$$

925 Now we can apply our previous bound in (D.1), which implies that $\mathbb{E}_{(x,y) \sim \mathcal{D}_\epsilon}[(\hat{f}(x) - f_*(x))^2] \leq$
 926 $\mathcal{L}(\hat{a}, \hat{W}) \leq 169\lambda_\epsilon$, and in turn means that
 927

$$928 \|f - f_*\|_{\mathcal{U}}^2 = \langle f - f^*, f - f^* \rangle_{\mathcal{U}} = \mathbb{E}_{x \sim \text{Unif}[\{0,1,2\}^4]}[(\hat{f}(x) - f_*(x))^2] \leq 169\lambda_\epsilon/p_\epsilon.$$

929 So the estimated coefficients $\{\hat{c}_{ij}\}$ are close to the true coefficients $\{c_{ij}\}_{ij}$, i.e., for any $1 \leq i \leq j \leq$
 930 4,
 931

$$|c_{ij} - \hat{c}_{ij}| \leq 17000\sqrt{\lambda_\epsilon/p_\epsilon} := \delta_\epsilon. \quad (\text{D.2})$$

932 Notice that $\delta_\epsilon \leq 17000\epsilon^{16} \leq 1/10$ for small enough ϵ .
 933

934 3a. Estimate the AGOP of \hat{f} . Since we have shown $\hat{f} \approx f$, the AGOP of the estimated function can
 935 be well approximated as follows.
 936

$$\begin{aligned} \text{AGOP}(\hat{f}, \mathcal{D}_\epsilon) &= \mathbb{E}_{(x,y) \sim \mathcal{D}_\epsilon} \left[\frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top \right] \\ &= (1 - p_\epsilon) \frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top \Big|_{x=(1,1,0,0)} + p_\epsilon \mathbb{E}_{(x,y) \sim \mathcal{U}} \left[\frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top \right] \end{aligned}$$

937 Since $|\hat{c}_{ij}| \leq |c_{ij}| + \delta_\epsilon \leq 1 + \delta_\epsilon \leq 11/10$ for all i, j it must hold that $\|\frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top\|_F \leq 100$ for all
 938 $x \in \{0, 1, 2\}^4$, so
 939

$$\|\text{AGOP}(\hat{f}, \mathcal{D}_\epsilon) - \frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top \Big|_{x=(1,1,0,0)}\|_F \leq 100p_\epsilon \quad (\text{D.3})$$

940 Finally, $\frac{\partial \hat{f}}{\partial x} \Big|_{x=(1,1,0,0)} = 2\hat{c}_{11}e_1 + 2\hat{c}_{22}e_2 + \hat{c}_{12}(e_1 + e_2) + (\hat{c}_{13} + \hat{c}_{23})e_3 + (\hat{c}_{14} + \hat{c}_{24})e_4$, and
 941 $c_{11} = c_{22} = c_{13} = c_{14} = c_{23} = c_{24} = 0$ and $c_{12} = \tau_\epsilon$, which means that
 942

$$\|\frac{\partial \hat{f}}{\partial x} \frac{\partial \hat{f}}{\partial x}^\top \Big|_{x=(1,1,0,0)} - \tau_\epsilon^2(e_1 + e_2)(e_1 + e_2)^\top\|_F \leq 20\|\frac{\partial \hat{f}}{\partial x} \Big|_{x=(1,1,0,0)} - \tau_\epsilon(e_1 + e_2)\|_F \leq 1000\sqrt{\delta_\epsilon}. \quad (\text{D.4})$$

943 Putting the (D.3) and (D.4) together with the triangle inequality, we conclude our estimate of the
 944 AGOP
 945

$$\|\text{AGOP}(\hat{f}, \mathcal{D}_\epsilon) - \tau_\epsilon^2(e_1 + e_2)(e_1 + e_2)^\top\|_F \leq 100p_\epsilon + 1000\sqrt{\delta_\epsilon}. \quad (\text{D.5})$$

946 3a. Estimate powers of the AGOP of \hat{f} . Next, let $s > 0$ be the power of the AGOP that we will take.
 947

948 Let $\lambda_1 \geq \dots \geq \lambda_4 \geq 0$ be the eigenvalues of AGOP, with a corresponding set of orthonormal
 949 eigenvectors $v_1, \dots, v_4 \in \mathbb{R}^4$. By Weyl's inequality, since $\tau_\epsilon^2 \geq 100p_\epsilon + 1000\sqrt{\delta_\epsilon}$ for small enough
 950 ϵ ,
 951

$$\lambda_1 \geq 2\tau_\epsilon^2 - (100p_\epsilon + 1000\sqrt{\delta_\epsilon}) \gtrsim \epsilon^6$$

952 and
 953

$$\lambda_1 \lesssim \epsilon^6$$

972 and

973
$$0 \leq \lambda_4 \leq \lambda_3 \leq \lambda_2 \leq 100p_\epsilon + 1000\sqrt{\delta_\epsilon} \lesssim \epsilon^8.$$
 974

975 Additionally, let P_\perp be the projection to the orthogonal subspace spanned by $\{(e_1 + e_2)\}$. By the 976 Davis-Kahan $\sin(\Theta)$ theorem [Davis & Kahan \(1970\)](#),

977
$$\|P_\perp v_1\| \leq \frac{100p_\epsilon + 1000\sqrt{\delta_\epsilon}}{\tau_\epsilon^2} \lesssim \epsilon^2.$$
 978 979

980 Notice that $\text{AGOP} = \sum_{i=1}^4 \lambda_i^s v_i v_i^\top$, which we will use later. 981982 **4. Estimate the loss-minimizing weights.** Now let us estimate the loss-minimizing weights, \hat{a}, \hat{W} . 983 The argument here is split into two parts: we want to (a) show that \hat{W} is small in the first and second 984 columns, and (b) show that \hat{W} is large in the third or fourth column. These two facts combined will 985 be enough show that $\hat{W}^\top \hat{W}$ is close to uncorrelated to the AGOP. 986987 **4a. Show that $\hat{W}_{1:m,1}$ and $\hat{W}_{1:m,2}$ are small.** Define weights a', W' by letting $a' = \hat{a}$ and $W' =$ 988 $[0 \ 0 \ \hat{W}_{1:m,3} \ \hat{W}_{1:m,4}]$. In other words, we have zeroed out the coefficients of the variables x_1 989 and x_2 in the first layer. Then define

990
$$f'(x) = (a')^\top \sigma((W')x).$$
 991

992 If we write $f'(x) = \sum_{1 \leq i \leq j \leq 4} c'_{ij} x_i x_j$, notice that $c'_{11} = c'_{12} = c'_{13} = c'_{14} = c'_{23} = c'_{24} = 0$ and 993 that $c'_{34} = \hat{c}_{34}$, $c'_{33} = \hat{c}_{33}$, and $c'_{44} = \hat{c}_{44}$. Now, let a'', W'' be weights minimizing $\|a''\|^2 + \|W''\|_F^2$ 994 such that

995
$$f'(\cdot) \equiv f(\cdot; a'', W'').$$
 996

997 By the construction in [Lemma D.2](#), we may assume without loss of generality that all but 4 neurons are 998 nonzero: i.e., that $a''_5 = \dots = a''_m = 0$ and $W''_{5:1:4} = \dots = W''_{m:1:4} = 0$. Now the difference between 999 the network after the zeroing out and the current network is $\hat{f}(x) - f'(x) = \sum_{1 \leq i \leq j \leq 4} \tilde{c}_{ij} x_i x_j$ 1000 where

1001
$$|\tilde{c}_{ij}| = |\hat{c}_{ij} - c'_{ij}| \leq \tau_\epsilon + \delta_\epsilon.$$
 1002

1003 So by [Lemma D.2](#), this difference can be represented on four neurons with a cost of at most 1004 $100(\tau_\epsilon + \delta_\epsilon)^{2/3}$. Therefore, by editing the weights a'', W'' we can construct weights a''', W''' such 1005 that $\hat{f}(\cdot) \equiv f(a''', W''')$ and

1006
$$\begin{aligned} \|\hat{a}\|^2 + \|\hat{W}\|_F^2 &\leq \|a'''\|^2 + \|W'''\|_F^2 \\ &\leq \|a''\|^2 + \|W''\|_F^2 + 100(\tau_\epsilon + \delta_\epsilon)^{2/3} \\ &= \|\hat{a}\|^2 + \|\hat{W}\|_F^2 - \|\hat{W}_{1:m,1}\|^2 - \|\hat{W}_{1:m,2}\|^2 + 100(\tau_\epsilon + \delta_\epsilon)^{2/3}. \end{aligned}$$
 1007 1008 1009

1010 So we can conclude that the norm of the weights in the first and second column is small

1011
$$\|\hat{W}_{1:m,1}\|^2 + \|\hat{W}_{1:m,2}\|^2 \leq 100(\tau_\epsilon + \delta_\epsilon)^{2/3} \lesssim \epsilon^2. \quad (\text{D.6})$$
 1012

1013 **4b. Show that at least one of $\hat{W}_{1:m,3}$ or $\hat{W}_{1:m,4}$ is large.** Finally, let us show that either the third or 1014 fourth column of the weights is large. 1015

1016
$$\begin{aligned} 0.9 \leq c_{34} - \delta_\epsilon &\leq \hat{c}_{34} \leq \sum_{i=1}^m \hat{a}_i \hat{W}_{i,3} \hat{W}_{i,4} \\ &\leq \|\hat{a}\| \sqrt{\sum_{i=1}^m (\hat{W}_{i,3} \hat{W}_{i,4})^2} \\ &\leq \|\hat{a}\| \sqrt{\sum_{i=1}^m (\hat{W}_{i,3})^2} \sqrt{\sum_{i=1}^m (\hat{W}_{i,4})^2} \\ &= \|\hat{a}\| \|\hat{W}_{1:m,3}\| \|\hat{W}_{1:m,4}\|. \end{aligned}$$
 1017 1018 1019 1020 1021 1022 1023 1024 1025

1026 From the construction of the weights \bar{a}, \bar{W} in the first step of this proof, we know that $\|\bar{a}\|^2 \leq$
 1027 $\|\bar{a}\|^2 + \|\bar{W}\|^2 \leq 13$. So $\|\hat{a}\| \leq 4$. We conclude that
 1028

$$\max(\|\hat{W}_{1:m,3}\|, \|\hat{W}_{1:m,4}\|) \geq 1/3. \quad (\text{D.7})$$

1030 **5. Compare AGOP to loss-minimizing weights.** Finally, let us compare the NFA approximation (D.5)
 1031 to the facts proved in (D.6) and (D.7) about the loss-minimizing weights. From (D.5) and (D.6) and
 1032 $\|\hat{W}\|_F^2 \leq 13$ and the calculations in step 3b, we conclude that
 1033

$$\begin{aligned} 1034 \langle (\text{AGOP}(\hat{f}, \mathcal{D}_\epsilon))^s, \hat{W}^\top \hat{W} \rangle &= \sum_{i=1}^4 \lambda_i^s \langle v_i v_i^\top, \hat{W}^\top \hat{W} \rangle \\ 1036 &\lesssim (\|\hat{W}_{1:m,1}\|^2 + \|\hat{W}_{1:m,2}\|^2)(\lambda_1^s) + \lambda_1^s \|P_\perp v_1\|^2 + \lambda_2^s + \lambda_3^s + \lambda_4^s \\ 1037 &\lesssim \epsilon^2 \epsilon^{6s} + \epsilon^{8s}. \end{aligned}$$

1039 From (D.5) and step 3b we conclude that
 1040

$$\|(\text{AGOP}(\hat{f}, \mathcal{D}_\epsilon))^s\|_F \gtrsim (2\tau_\epsilon^2 - 100p_\epsilon - 1000\sqrt{\delta_\epsilon})^s \geq \tau_\epsilon^{2s} \gtrsim \epsilon^{6s}.$$

1041 From (D.7), we conclude that
 1042

$$\|\hat{W}^\top \hat{W}\| \geq 1/9 \gtrsim 1.$$

1043 which implies that
 1044

$$\text{corr}(\text{AGOP}(\hat{f}, \mathcal{D}_\epsilon), \hat{W}^\top \hat{W}) \lesssim (\epsilon^2 \epsilon^{6s} + \epsilon^{8s})/\epsilon^{6s} \lesssim \epsilon^{2s} + \epsilon^2,$$

1045 which can be taken arbitrarily small by sending ϵ to 0. □
 1046

1047 The Lemma that we used in the proof of this theorem is below.
 1048

1049 **Lemma D.2** (The minimum-norm weight solution for a network with quadratic activation). *Let
 1050 $f(x; a, W) = a^\top \sigma(Wx)$ be a neural network with quadratic activation function $\sigma(t) = t^2$ and
 1051 weights $W \in \mathbb{R}^{m \times d}$, $a \in \mathbb{R}^m$ for $m \geq d$. Then, for any homogeneous quadratic function $f(x) =$
 1052 $x^\top Qx$, where $Q = Q^\top$, the minimum-norm neural network that represents f has cost:*
 1053

$$2 \sum_{i=1}^d \sigma_i(Q)^{2/3} = \min_{a, W} \{ \|a\|^2 + \|W\|_F^2 : f(\cdot; a, W) \equiv f(\cdot) \},$$

1054 and this can be achieved with a network that has at most d nonzero neurons.
 1055

1056 *Proof.* We can expand the definition of the quadratic network
 1057

$$f(x; a, W) = a^\top \sigma(Wx) = \sum_{i=1}^m x^\top a_i w_i w_i^\top x.$$

1058 For any a, W such that $f(\cdot; a, W) \equiv f(\cdot)$, we must have $Q = \sum_{i=1}^m a_i w_i w_i^\top$. By (a) inequality (2.1)
 1059 in [Thompson \(1976\)](#) on concave functions of the singular values of sums of matrices (originally
 1060 proved in [Rotfel'd \(1969\)](#)), we must have
 1061

$$\begin{aligned} 1062 \|a\|^2 + \|W\|_F^2 &= \sum_{i=1}^m a_i^2 + \|w_i\|^2 \\ 1063 &\geq 2 \sum_{i=1}^m \sigma_1(a_i w_i w_i^\top)^{2/3} \\ 1064 &= 2 \sum_{i=1}^m \sum_{j=1}^m \sigma_j(a_i w_i w_i^\top)^{2/3} \\ 1065 &\stackrel{(a)}{\geq} 2 \sum_{j=1}^d \sigma_j(Q)^{2/3}. \end{aligned}$$

1066 And notice that given an eigendecomposition $(\lambda_1, v_1), \dots, (\lambda_d, v_d)$ of Q , this can be achieved by
 1067 letting $a_i = \text{sgn}(\lambda_i)|\lambda_i|^{1/3}$, and $w_i = |\lambda_i|^{1/3}v_i$ for all $1 \leq i \leq d$ and $a_i = 0$ and $w_i = 0$ for all
 1068 $d+1 \leq i \leq m$.
 1069

1070 □

1080 **E DERIVATION AND JUSTIFICATION OF FACT-RFM UPDATE**
 1081

1082 The simplest fixed-point iteration scheme would be to apply
 1083

$$1084 W_{t+1} \leftarrow \sqrt{\text{FACT}_t}, \quad (\text{E.1})$$

1085 aiming for the fixed point
 1086

$$1087 W_{t+1}^\top W_{t+1}^\top = \text{FACT}_t.$$

1088 However, this scheme cannot be directly implemented because (E.1) is not necessarily well-defined.
 1089 In particular, FACT is not necessary p.s.d. when the network is not at a critical point of the loss, so
 1090 the square root of FACT in (E.1) is not well defined.

1091 In order to fix it, the most natural solution is to symmetrize FACT and instead run the scheme
 1092

$$1093 W_{t+1} \leftarrow (\text{FACT}_t \text{FACT}_t^\top)^{1/4},$$

1094 since indeed when $\text{FACT}_t = W_t^\top W_t$ we are at a fixed point with this update.
 1095

1096 We experimented with this update, and found good performance with tabular data (this is “no
 1097 geometric averaging” method reported in Table 1) and parity data, but for the modular arithmetic
 1098 problem FACT-RFM with this update was unstable and the method often did not converge – especially
 1099 in data regimes with low signal.

1100 In order to obtain a more stable update, we chose to geometrically average with the previous iterate,
 1101 as follows:

$$1102 W_{t+1} \leftarrow (\text{FACT}_t (W_t^\top W_t) (W_t^\top W_t) (\text{FACT}_t)^\top)^{1/8},$$

1103 which again has a fixed point when $\text{FACT}_t = W_t^\top W_t$. This yielded improved performance with
 1104 modular arithmetic while retaining performance with tabular data and parities. Additionally, as we
 1105 discuss in Section 5, we then discovered that this update has an interpretation as being a close relative
 1106 of the NFA-RFM update when applied to inner product kernel machines.

1107 **F PROOFS FOR SECTION 5**
 1108

1109 We first observe that the updates in FACT-RFM can be written in a convenient form in terms of the
 1110 dual solution α and the derivatives of the estimator. This lemma does not depend on the kernel being
 1111 an inner-product kernel.

1112 **Lemma F.1** (Simplified form of FACT for kernel machines). *Let (X, y) be training data fit by a
 1113 kernel machine with the MSE loss, and let α be first-order optimal coefficients for kernel regression
 1114 with λ -ridge regularization. Then the FACT can be equivalently computed as*

$$1115 \text{FACT} = \sum_{i,j=1}^n \left(\frac{\partial}{\partial x} K_W(x, x_j) \big|_{x=x_i} \right) \alpha_j^\top \alpha_i x_i^\top.$$

1116 The proof is by using known first-order optimality conditions for α .
 1117

1118 Let us prove the convenient expression in Lemma F.1 for the FACT matrix for kernel machines,
 1119 which can be used to simplify the implementation of FACT-based RFM.

1120 *Proof.* We compute the FACT for the estimator $\hat{f}(x) = \sum_{j=1}^n K_W(x, x_j) \alpha_j$. Substituting the
 1121 definition of FACT and applying the chain rule, this is
 1122

$$1123 \text{FACT} := -\frac{1}{n\lambda} \sum_{i=1}^n \left(\frac{\partial}{\partial x} \ell(\hat{f}(x), y_i) \big|_{x=x_i} x_i^\top \right) = -\frac{1}{n\lambda} \sum_{i=1}^n \left(\frac{\partial}{\partial x} \hat{f}(x) \big|_{x=x_i} \ell'(\hat{f}(x_i), y_i) x_i^\top \right) \\ 1124 = -\frac{1}{n\lambda} \sum_{i,j=1}^n \left(\frac{\partial}{\partial x} K_W(x, x_j) \big|_{x=x_i} \right) \alpha_j^\top \ell'(\hat{f}(x_i), y_i) x_i^\top,$$

1125 where $\ell' \in \mathbb{R}^c$ denotes the derivative in the first entry. The proof concludes by noting that $\alpha_i = -\frac{1}{n\lambda} \ell'(\hat{f}(x_i), y_i)$ because of the first-order optimality conditions for α , proved below in Lemma F.2.
 1126 \square

Lemma F.2 (Alternative expression for representer coefficients for kernel regression). *Let (X, Y) be training data, and let $\alpha = (K(X, X) + \lambda I)^{-1}Y$ for some $\lambda > 0$. Also let $\ell(\hat{y}, y) = \frac{1}{2}\|\hat{y} - y\|^2$. Then*

$$\alpha_i = -\frac{1}{n\lambda} \ell'(\hat{y}_i, y_i),$$

where $\hat{y}_i = K(x_i, x)\alpha$, and the derivative ℓ' is in the first coordinate.

Proof. Notice that $\ell'(\hat{y}_i, y_i) = \hat{y}_i - y_i$. So

$$\begin{aligned}
\ell'(\hat{y}_i, y_i) &= [K\alpha]_{i,*} - y_i \\
&= K(K + n\lambda I)^{-1}y_i - y_i \\
&= -n\lambda(K + \lambda I)^{-1}y_i \\
&= -n\lambda\alpha_i.
\end{aligned}$$

Remark F.3. A statement of this form relating the representer coefficients to the loss derivatives at optimality is more generally true beyond the MSE loss, but we do not need it here.

Finally, we can prove Proposition 5.1.

Proposition F.4 (Restatement of Proposition 5.1). *Suppose the kernel is an inner-product kernel of the form $K_W(x, x') = k(x^\top M x')$, where $M = W^\top W$. Then, we may write the AGOP and the FACT matrices explicitly as:*

$$\text{AGOP} = \sum_{i,j=1}^n \tau(x_i, x_j, M) M x_i \alpha_i^\top \alpha_j x_j^\top M^\top,$$

$$\text{FACT} \cdot M^\top = \sum_{i,j=1}^n k'(x_i^\top M x_j) M x_i \alpha_i^\top \alpha_j x_j^\top M^\top,$$

where $\tau(x_i, M, x_j) := \frac{1}{n} \sum_{l=1}^n k'(x_l^\top M x_i) k'(x_l^\top M x_j)$.

Proof. The expressions can be derived by plugging in the expansion $\hat{f}(x) = \sum_{i=1}^n K(x, x_i)\alpha_i$.

For AGOP, we start from its expression in Ansatz (NFA), and obtain

$$\begin{aligned}
\text{AGOP} &= \sum_{i=1}^n (\nabla_x \sum_{j=1}^n K_W(x, x_j) \alpha_j) (\nabla_x \sum_{l=1}^n K_W(x, x_l) \alpha_l)^\top \\
&= \sum_{i,j,l=1}^n k'(x_j^\top M x_i) k'(x_l^\top x_i) (M x_j \alpha_j^\top) (M x_l \alpha_l^\top)^\top \\
&= \sum_{i,j=1}^n \tau(x_i, M, x_j) M x_i \alpha_i^\top \alpha_j x_j^\top M^\top.
\end{aligned}$$

For FACT, we start from the expression in Lemma E.1:

$$\begin{aligned} \text{FACT} \cdot M^\top &= \sum_{i,j=1}^n \left(\frac{\partial}{\partial x} K_W(x, x_j) \big|_{x=x_i} \right) \alpha_j^\top \alpha_i x_i^\top M^\top \\ &= \sum_{i,j=1}^n k'(x_i^\top M x_j) M x_j \alpha_j^\top \alpha_i x_i^\top M^\top. \end{aligned}$$

1188 **G EXPERIMENTAL RESOURCE REQUIREMENTS**
11891190 The following timings are for one A40 48GB GPU. The tabular data benchmark experiments in
1191 Table 1 take under 1 GPU-hour to run. The synthetic benchmark task of Figure 7 on which FACT
1192 and NFA are uncorrelated takes under 1 GPU-hour to run. The arithmetic experiments in Figure 5
1193 and 6 take under 1 GPU-hour to run. The ReLU MLP experiments on MNIST and CIFAR-10 in
1194 Figures 2, 8, 9, and 10 take under 50 GPU-hours to run. The sparse parity experiments in Figure 4
1195 and Figure 3 take under 1 GPU-hour to run. The deep linear network experiments in Figure 11 take
1196 under 2 GPU-hours to run. Additionally, debugging code and tuning hyperparameters took under 200
1197 GPU-hours to run.1198 **H LLM USAGE**
11991200 LLMs were used only as AI coding assistants and to help polish some of the writing in the paper, and
1201 were not used for research ideation.1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241