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Abstract

Explanations of Local Interpretable Model-
agnostic Explanations (LIME) are often incon-
sistent across different runs making them unreli-
able for eXplainable AI (XAI). The inconsistency
stems from sign flips and variability in ranks of
the segments for each different run. We propose a
Bayesian Regularization approach to reduce sign
flips, which in turn stabilizes feature rankings and
ensures significantly higher consistency in expla-
nations. The proposed approach enforces sparsity
by incorporating a Sign Entropy prior on the coef-
ficient distribution and dynamically eliminates fea-
tures during optimization. Our results demonstrate
that the explanations from the proposed method
exhibit significantly better consistency and fidelity
than LIME (and its earlier variants). Further, our
approach exhibits comparable consistency and fi-
delity with a significantly lower execution time
than the latest LIME variant, i.e., SLICE.

1 INTRODUCTION

Explanation methods for Deep Learning (DL) models need
access to intermediate layers which often is not easy to
access as in the case of Class Activation Map (CAM) based
methods (e.g., Grad-CAM [Selvaraju et al., 2017], Grad-
CAM++ [Chattopadhay et al., 2018]). Addressing such a
problem, model agnostic based explanations methods have
been proposed which do not need access to the layers of DL
models and work in complete black-box setting. Methods
like LIME [Ribeiro et al., 2016], SHAP [Lundberg and
Lee, 2017] and their variants have shown the application in
black-box setting making them a popular choice in post-hoc
explanations.

Despite the popularity and model agnostic property of
LIME [Ribeiro et al., 2016], a number of inconsistency in

LIME has been reported [Zhang et al., 2019, Gosiewska and
Biecek, 2019, Li et al., 2023, Lee and Lee, 2023, Zhao et al.,
2021, Zafar and Khan, 2019, Zhou et al., 2021]. Gosiewska
and Biecek [2019] and Lee and Lee [2023] highlight the
instability of additive explanations and observed variations
in feature importance across different methods. Addition-
ally, Zhang et al. [2019] note (i) variability in explanations
due to sampling, (ii) dependence on hyper-parameters such
as neighborhood size and sample count, and (iii) fluctua-
tions in model reliability across different instances. These
factors lead to inconsistency in explanations making them
unreliable.

Figure 1: Figure showing the top five positive and negative
superpixels (segments) of inconsistent LIME explanations
for a random image of the Oxford-IIIT Pets dataset with
Inception V3 model for four different runs. The predicted
class was Newfoundland, and the prediction probability was
0.46. Blue and red colors denote positive and negative su-
perpixels, and the numbers inside the superpixels specify
their importance rank. By addressing the limitations, we
demonstrate consistent explanation using our proposed ap-
proach for the same image and model. (Results in Figure S1
- supplementary material).

As shown in Figure 1, the inconsistency of LIME expla-
nation can be noted in highlighted superpixels that flip be-
tween positive (blue) and negative (red) contributions for the
output probability. Further, it can be noted that the impor-
tance ranks of the superpixels (segments) for both positively
and negatively contributing superpixels also vary across
different runs. These inconsistencies make interpretability
challenging [Bora et al., 2024]. This flipping of superpixel
sign, for different independent runs, is defined as the uncer-

mailto:<revoti.p.bora@ntnu.no>?Subject=Your UAI 2025 paper
mailto:<philipp.terhoerst@uni-paderborn.de>?Subject=Your UAI 2025 paper
mailto:<raymond.veldhuis@ntnu.no>?Subject=Your UAI 2025 paper
mailto:<raghavendra.ramachandra@ntnu.no>?Subject=Your UAI 2025 paper
mailto:<kiran.raja@ntnu.no>?Subject=Your UAI 2025 paper


tainty in the sign of superpixels (i.e., Sign Entropy [Bora
et al., 2024]). Estimating the uncertainty of the signs of
the superpixels by using bootstrapping on frequentist Ridge
Regression, and eliminating superpixels with high uncer-
tainty in signs (i.e., selecting features with low sign entropy)
has been shown to stabilize LIME explanations [Bora et al.,
2024]. This however, comes at the cost of considerable in-
crease in execution time due to bootstrapping approach. In
this paper, we propose a novel Sign Entropy Regularization
using Bayesian paradigm to estimate the uncertainty and
mitigate the inconsistencies while achieving significantly
faster (≈ 10×) execution time.

2 RELATED WORKS

Several works have studied different approaches to mitigate
the inconsistency of LIME. ALIME [Shankaranarayana and
Runje, 2019] incorporates an autoencoder as a weighting
mechanism to assess the proximity of sampled points to the
instance being explained (IE), thereby improving coefficient
stability. DLIME [Zafar and Khan, 2019] applies hierarchi-
cal clustering to segment the dataset into multiple clusters
and selects representative points from the cluster nearest
to the IE, ensuring alignment with LIME’s locality princi-
ple. S-LIME [Zhou et al., 2021] enhances the consistency
of LIME explanations by introducing a hypothesis testing
framework, which utilizes the Central Limit Theorem (CLT)
to determine the required sample size for stable explanations.
BayLIME [Zhao et al., 2021] adopts a Bayesian approach
for local surrogate modeling, where explanations are gen-
erated by combining prior knowledge with estimates from
newly sampled data through a Bayesian-weighted summa-
tion. SLICE [Bora et al., 2024] uses a two stage strategy
of using adaptive Gaussian Blur (Adaptive-blur) followed
by feature selection algorithm to remove inconsistent super-
pixels from explanations. The feature selection algorithm
uses bootstrapping to estimate the probability of sign flips
of coefficients (i.e., sign entropy) and eliminate superpixels
with a high likelihood of sign flips. A surrogate model is
built using Ridge Regression, similar to the original LIME
[Ribeiro et al., 2016]. SLICE [Bora et al., 2024] achieved
high consistency and fidelity as compared to LIME [Ribeiro
et al., 2016] and BayLIME [Zhao et al., 2021] at the cost of
a considerable increase in execution time due to the use of
bootstrapping for feature selection.

3 OUR CONTRIBUTIONS

We propose a new method, BELIEF, to achieve consistency
of explanations similar to SLICE [Bora et al., 2024], using
a Bayesian Regularization approach, eliminating the need
for external feature selection and offering faster computa-
tion time. Specifically, we propose a novel Sign Entropy
regularization, modeling it in Bayesian paradigm instead

of the bootstrapping-based frequentist approach. Thus, our
approach achieves consistency and fidelity similar to SLICE
but with much faster computing time (≈ 10×) by eliminat-
ing bootstrapping based feature selection.

We first demonstrate our proposed method for reducing the
uncertainty associated with the sign of the coefficients in
linear models, thereby enhancing consistency on tabular
datasets. We then show the broader use of our proposed
method in stabilizing LIME for consistent explanations for
DL-based image classification applications. With extensive
experiments on multiple tabular and image datasets, we
evaluate and compare our approach with State-Of-The-Art
(SOTA) counterparts for consistent explanation. Addition-
ally, we perform statistical validation using multiple tests to
provide empirical evidence supporting our claims of consis-
tent explanation, high fidelity, and lower execution time.

4 PROPOSED APPROACH

LIME works by building a local simple surrogate model to
approximate the decision boundary near the IE (details in
Appendix A.1). A frequentist Ridge Regression is used as a
surrogate model in the LIME and SLICE implementation,
while in BayLIME, a Bayesian Ridge Regression is used.
The coefficients of the surrogate model, which have map-
ping to each superpixel, represent the impact (i.e., sign and
magnitude) of the corresponding superpixels on the output
probability. Hence, the flipping of the sign of the surrogate
model coefficients leads to uncertainty regarding the direc-
tion of impact of the superpixels on the output probability.
This section discusses our approach to reducing the uncer-
tainty of coefficients’ signs in the surrogate model using our
novel Sign Entropy regularization. Additionally, the relative
ranks of the coefficients also stabilize as an added advantage
of our regularization, further enhancing explainability. We
first discuss it as a general-purpose regularization technique,
and then in subsequent sections, we show its applicability
on tabular and image datasets.

4.1 BAYESIAN FORMULATION

Bayesian Ridge Regression model is defined as y = Xβ +
ϵ with β representing the vector of coefficients, and ϵ
representing Gaussian noise with precision parameter α.
Bayesian Ridge Regression applies a prior p(β | λ) over β
with Gaussian distribution N given by:

p(β | λ) = N (0, λ−1I),

where, λ controls the regularization strength i.e., the preci-
sion of the prior and I is an identity matrix.

The likelihood function for the observed data y, given X



and β is Gaussian:

p(y | X,β, α) = N (y | Xβ,α−1I),

where, α represents the precision of the noise.

Using Bayes’ theorem, the posterior distribution over β,
given X and y, is obtained as:

p(β | X, y, α, λ) = N (β | µβ ,Σβ),

where, mean µβ and covariance Σβ are given by:

µβ = αΣβX
T y Σβ = (αXTX + λI)−1,

λ and α are the hyper-parameters of Bayesian Ridge Re-
gression normally with a γ distribution prior.

Bayesian Ridge Regression follows an iterative Bayesian
update process, where the posterior at each step serves as the
prior for the next iteration [Tipping, 2001], [MacKay, 1992].
We extend this approach by enforcing a Sign Entropy prior
dynamically during optimization. Instead of using a Gaus-
sian prior that does not enforce sign stability, we enforce the
Sign Entropy prior to refine the feature set at each iteration
based on the posterior distribution of the coefficients. This
ensures that only stable features contribute to learning in
subsequent iterations. The sparsity enforcing Sign Entropy
prior in our approach acts as a structured regularization
mechanism for capturing stable/consistent coefficient esti-
mates. The proposed Sign Entropy Regularization is further
discussed in detail in the next sub-section.

4.2 SIGN ENTROPY REGULARIZATION

For a given jth coefficient βj , the variance σ2
j is given by:

σ2
j = Σβ [j, j]

As the posterior distribution of βj is N (βj | µβ ,Σβ), we
can calculate the probability that βj is positive (p+) as fol-
lows:

p+ = P (βj > 0) = 1− P (βj ≤ 0)

= 1− Φ

(
−µj

σj

)

where, µj is the posterior mean and σj is the variance of of
βj , and Φ is the Cumulative Distribution Function (CDF) of
the standard normal distribution.

The Sign Entropy H(βj) is computed using p+ and p− (i.e.,
p− = 1− p+) as below:

H(βj) = −p+ log2(p
+)− p− log2(p

−),

where, p+ is the estimated probability that βj is positive and
p− = 1− p+ is the estimated probability that βj is negative.
A high value of Sign Entropy indicates that the coefficient’s
sign has a high probability of flipping.

The Sign Entropy prior applied on the coefficients at each
iteration enforces sparsity by eliminating features with high
entropy:

F (t+1) = F (t) \ {j | H(βj) > ζ}

where, F (t) represents the set of active features in a particu-
lar iteration t, \ denotes set minus, and features with high
Sign Entropy H(βj) > ζ are eliminated from the model
in the next iteration of the optimization process, and ζ is a
hyper-parameter representing the highest acceptable thresh-
old for Sign Entropy (details in Appendix B).

4.3 EVALUATION OF SIGN ENTROPY
REGULARIZATION

We first validate the proposed Sign Entropy regularization by
comparing it with a family of other approaches with differ-
ent regularization strategies. We compared our approached
with frequentist Lasso [Tibshirani, 1996], Ridge [Hoerl
and Kennard, 1970], Bayesian Ridge [MacKay, 1992] Tip-
ping [2001], Automatic Relevance Determination (ARD)
[MacKay, 1992], [Salakhutdinov, 2024] and Ordinary Least
Squares (OLS) [Kutner et al., 2005]. We compute Average
Sign Flip Entropy (ASFE) [Bora et al., 2024] and Root
Mean Square Error (RMSE) for all approaches to establish
the efficacy of our newly proposed Sign Entropy-based reg-
ularization on two public datasets: House Prices - Advanced
Regression Techniques dataset from Kaggle [Kaggle, 2024]
and Appliance Energy Prediction dataset [Candanedo et al.,
2017] from the UCI repository. We used the implementa-
tion from Scikit-learn [Pedregosa et al., 2011] for the SOTA
approaches and we wrote our code1 in python.

We evaluate LASSO, Ridge, Bayesian Ridge, and the pro-
posed method with different settings of the regularization
hyper-parameter (α = 0.1, 0.5, 1 in case of LASSO and
Ridge and λinit = 0.1, 0.5, 1 for Bayesian Ridge)2. This
enabled us to compare the proposed regularization method
with other methods at different regularization strengths. We
then computed the ASFE and the RMSE3 metrics by per-
forming five-fold cross validation with five repeats. As noted
from Figure 2, the proposed regularization scheme achieves
low ASFE compared to all other approaches indicating sta-
bility/consistency of coefficient sign. Further, we note no
significant loss of RMSE as compared to other approaches.

1https://github.com/rebathip/BELIEF.git
2OLS does not have a regularization term and ARD does not

have λinit hyper-parameter.
3We normalized RMSE to a scale of [0,1] using min-max

scaling.

https://github.com/rebathip/BELIEF.git


Figure 2: Distribution of ASFE and RMSE scores of the
proposed method and other methods for Housing Price and
Energy appliances datasets. The proposed method achieves
much lower ASFE score while maintaining comparable
RMSE with other methods.

The ASFE score for the proposed method outperformed
other methods by a large margin which can be observed
from the low overlap of the ASFE scores. For ascertain-
ing that our method does not impact the predictive power,
we conducted Two-sample Kolmogorov-Smirnov (KS) test
[Hodges Jr, 1958] on the distribution of RMSE scores of our
proposed method with the other methods. We used KS test
owing to its non-parametric nature. Null Hypothesis H0 was
that the two distributions are identical and the alternate hy-
pothesis was that they are not identical. The p-values (refer
to supplementary for details Table S9) from the tests were
much higher than the commonly accepted threshold of 0.05
providing insufficient statistical evidence to reject the Null
Hypothesis H0. Thus, we see that our method achieves high
stability in terms of coefficients’ sign flips while retaining
comparable predictive power.

5 ON THE APPLICATION TO IMAGE
EXPLANATIONS

We use the proposed Sign Entropy regularization method to
provide consistent explanations for images. Additionally, to
generate perturbed images for learning the surrogate model,
we used Adaptive-blur from [Bora et al., 2024]. We conduct
a series of experiments to demonstrate the applicability of
the proposed approach to obtain consistent explanations.
Two pre-trained image classification models - InceptionV3
[Szegedy et al., 2016] and ResNet50 [He et al., 2016] initial-
ized with ImageNet weights on the Oxford-IIIT Pet Dataset

Parkhi et al. [2012] and Pascal VOC 2007 [Everingham
et al., 2007] dataset were used to evaluate the proposed
approach4.

We compare our method against LIME, BayLIME and
SLICE. We use BayLIME with Grad-CAM as prior for
our comparison, as it was demonstrated to have superior
consistency and fidelity in comparison to LIME [Zhao et al.,
2021]. We randomly selected 50 images from each of the
mentioned datasets and analyze both DL models for 20 re-
peated and distinct runs. We computed the consistency and
fidelity scores for each image-model and averaged them
across all the 20 distinct runs. We follow similar settings as
outlined in [Bora et al., 2024] to conduct our ablation study
as presented in Table 1. Statistical significance of our find-
ings is provided using Wilcoxon Signed Rank test [Virtanen
et al., 2020] benefiting from a non-parametric nature of the
test. The threshold of p-value to reject the Null Hypothesis
is set at the commonly used threshold of 0.05 and to mea-
sure the effect size, we have employed Common Language
Effect Size (CLES) [McGraw and Wong, 1992] [Vargha and
Delaney, 2000].

5.1 EVALUATION METRICS

For a fair comparison of consistency and fidelity of our
proposed approach with the SOTA approaches we use the
Combined Consistency Metric (CCM) from [Bora et al.,
2024]. CCM is defined as below:

CCMxp
M,I = (1−ASFExp

M,I) ∗ARSxp
M,I

where, ASFExp
M,I denotes the Average Sign Flip Entropy

of the coefficients and ARSxp
M,I denotes the Rank Similarity

of the superpixels in the explanations for a model M and
image I . ASFExp

M,I ranges from 0 to 1 with a lower value
indicating more consistency and ARSxp

M,I ranges from 0 to 1
with a higher value indicating better consistency. CCMxp

M,I

ranges between [0,1] where 0 denotes low consistency and
1 denotes full consistency in both Sign Entropy and super-
pixel importance ranks (Details provided in Appendix A in
supplementary). Further, adapted Area Under Perturbation
Curve (AOPC) [Bora et al., 2024] and Insertion and Dele-
tion Area Under the Curve metrics [Petsiuk et al., 2018] are
used for measuring the fidelity of explanations.

6 CONSISTENCY OF BELIEF

The Empirical Cumulative Distribution Function (ECDF)
plots of the CCM scores for both models with Oxford-IIIT
Pets dataset are provided in Figure 3 (refer Figure S3, and

4We use a kernel size of (5,5) for Gaussian Blur (similar to
Bora et al. [2024]). The code for SOTA methods were obtained
from the github repositories: BayLIME [Zhao, 2023], LIME and
SLICE [Bora et al., 2024].
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Figure 3: ECDF plot of CCM Scores for BELIEF, LIME,
BayLIME and SLICE (higher score is better)

Figure S5 in supplementary for exhaustive ECDF and Den-
sity plots). BayLIME and LIME have much lower CCM
scores than BELIEF and SLICE. The results empirically in-
dicate that our proposed approach performs at par, in terms
of consistency, with SLICE without the additional step of
feature selection.

Further, we conducted the Wilcoxon signed-rank test to as-
certain that the higher CCM scores of BELIEF as compared
to LIME and BayLIME are statistically significant. The p-
values from the Wilcoxon Signed Rank tests were low (in
the range of 8.9e-16 to 2.2e-11), the Test Statistics were
high (in the range of 1227 to 1275) and effect sizes were
large (in the range of 0.96 to 1) (refer Table S2 in supple-
mentary for test details). The notably low p-value and the
substantially high value of the Test Statistic provide robust
statistical evidence to reject the null hypothesis. Further, the
large effect sizes indicate that the higher CCM scores of
BELIEF explanations were not only statistically significant
but also practically meaningful.

Table 1: Ablation settings with BELIEF and SLICE variants

Method Feature Adaptive-Blur
Elimination

SLICE_blur ✗ ✓
SLICE_FE ✓ ✗
SLICE ✓ ✓
BELIEF ✓ ✓
BELIEF_FE ✓ ✗

6.1 ABLATION STUDY FOR BELIEF

In our ablation study, we evaluate BELIEF in settings simi-
lar to SLICE, i.e., with (BELIEF) and without (BELIEF_FE)
adaptive blur as noted in Table 1. As our proposed approach
enforces sparsity using Sign Entropy regularization, BE-
LIEF does not have a counterpart for SLICE_blur for ab-
lation studies. The ECDF plots of the CCM scores of all
the five variants of BELIEF and SLICE on Oxford-IIIT
pets dataset are presented in Figure 4 (refer Figure S4 in
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Figure 4: ECDF plot of CCM Scores for BELIEF, BE-
LIEF_FE, SLICE_blur, SLICE_FE and SLICE (higher is
better)

supplementary for exhaustive plots). With similar ECDF
plots, it can be seen that BELIEF and SLICE performed
the best followed by SLICE_blur, while BELIEF_FE and
SLICE_FE performed the worst. This supports our idea
that using Sign Entropy as a regularization technique in the
Bayesian paradigm can achieve the same consistency as
SLICE without the need for an additional feature selection
step.

Similarly, BELIEF_FE and SLICE_FE have higher CCM
scores than LIME but lower than that of BELIEF, SLICE
and SLICE_blur as seen in Figure 3, and Figure 4 (refer to
exhaustive ECDF plots in Figure S4 and density plots in Fig-
ure S6 of supplementary). Without Adaptive-Blur, the cre-
ated perturbed images, used in building the surrogate model,
are significantly different from the original image making
it difficult for BELIEF_FE and SLICE_FE to estimate the
Sign Entropy of the superpixels/segments. However, when
we combine Adaptive-blur with Sign Entropy regulariza-
tion (or Sign Entropy based feature selection in SLICE)
the estimation of Sign Entropy is more accurate leading to
the proper elimination of inconsistent features/superpixels.
We further performed Wilcoxon Signed Rank tests to as-
certain the statistical significance of our claims. The low
p-values (8.9e-16 to 4.7e-3) and high value of Test Statistics
(904 to 1275) provide robust statistical evidence that the
CCM scores of BELIEF is higher than LIME, BayLIME,
SLICE_blur and SLICE_FE. Further, the effect size (close
to 1 in most cases) support that our observations are statisti-
cally significant and practically meaningful. The details of
the tests are in Table S3 of the supplementary material.

7 FIDELITY EVALUATION OF BELIEF
EXPLANATIONS

7.1 AREA UNDER PERTURBATION CURVE
(AOPC)

The AOPC scores for BELIEF was higher than that of LIME
and BayLIME as seen in Figure 5 for Oxford-IIIT Pets



(a) ECDF plots of AOPC deletion scores

(b) ECDF plots of AOPC insertion scores

Figure 5: ECDF plots of AOPC (Higher AOPC indicates
higher fidelity)

(a) ECDF plots of AUC deletion scores (Lower is better)

(b) ECDF plots of AUC insertion scores (Higher is better)

Figure 6: ECDF plots of AUC scores for Oxford-IIIT Pets
Dataset for Inception V3 and ResNet50

Dataset (Refer Figure S7a and Figure S7b in Supplementary
for both datasets). The AOPC scores are low as it is based
on the difference between the output probability of the un-
perturbed image and the perturbed images. We performed
Wilcoxon Signed Rank tests along with effect size calcula-
tion to ascertain that the higher AOPC scores of BELIEF
explanations, as compared to those of LIME and BayLIME,
were statistically significant and practically meaningful. In
our tests, as shown in Table 2 for Oxford-IIIT Pets dataset,
the p-values were low, the test statistics were high and the
effect sizes were close to 1. The details of test results for
both the datasets are provided in Table S5 of supplementary
material. These provide robust statistical evidence confirm-
ing that the AOPC scores of BELIEF were significantly
higher than those of LIME and BayLIME and are practi-
cally meaningful.

Table 2: Wilcoxon signed rank test results for comparison
of LIME, BayLIME, and BELIEF. For a given pair (x,y),
the null hypothesis H0 was "The median of the differences
(metric(x)−metric(y)) is equal to zero," and the alterna-
tive hypothesis was Ha was "The median of the differences
(metricscore(x)−metricscore(y)) is greater than zero".
[BELIEF(B), LIME(L), and BayLIME(Ba); D:M denotes
Dataset:Model; O refers to Oxford-IIIT Pets dataset. R de-
notes ResNet50 and I denotes Inception V3 models. W
denotes the Test Statistic and CLES denotes the Common
Language Effect Size.

Test D:M W p-value CLES
AOPC Insertion

B, L O:I 1229 1.7e-11 0.892
B,Ba O:I 1188 1.4e-09 0.886
B,L O:R 1040 2.6e-05 0.756
B,Ba O:R 1057 1.1e-05 0.753

AOPC Deletion
B,L O:I 1231 1.3e-11 0.889
B,Ba O:I 1184 2.0e-09 0.879
B,L O:R 1040 2.6e-05 0.758
B,Ba O:R 1054 1.3e-05 0.753

AUC Insertion
B,L O:I 1230 1.5e-11 0.898
B,Ba O:I 1190 1.2e-09 0.885
B,L O:R 1051 1.5e-05 0.767
B,Ba O:R 1076 4.0e-06 0.766

AUC Deletion
L,B O:I 1230 1.5e-11 0.894
Ba,B O:I 1186 1.7e-09 0.883
L,B O:R 1056 1.2e-05 0.767
Ba,B O:R 1068 6.1e-06 0.764

7.2 DELETION AND INSERTION GAME

We additionally analyze Insertion and Deletion AUC for
fidelity evaluation [Petsiuk et al., 2018] for BELIEF, LIME,
and BayLIME. A higher area under the curve (AUC) of
the insertion graph indicates higher fidelity of explanations.
Conversely, in the deletion procedure, a lower AUC of the
deletion graph indicates higher fidelity.



We present the ECDF plots of the AUC insertion and AUC
deletion scores for Oxford-IIIT Pets datasets for both mod-
els in Figure 6. It can be observed on the top row of Figure 6
that the AUCs for the deletion procedure of BELIEF ex-
planations were lower than those of LIME and BayLIME
explanations (Refer Figure S8a in supplementary for ECDF
plots for both datasets). We performed the Wilcoxon signed
rank tests on the AUCs obtained for all three methods on
Oxford-IIIT Pets dataset to confirm this observation (refer
Table 2 for test details). Extremely low p-values and high
test statistics in all scenarios indicate robust statistical evi-
dence to reject the Null Hypothesis. This confirms that the
AUC deletion scores of LIME and BayLIME were much
higher than that of BELIEF. Further, the large effect size,
i.e., 0.76 to 0.89 proves the practical implications of the
same.

Similarly, the higher AUC insertion scores of BELIEF can
be seen in the lower row of the ECDF plot in Figure 6
(Refer Figure S8b in supplementary for ECDF plots for
both datasets) and the details of statistical test in Table 2.
The results from our tests provide robust statistical evidence
confirming that the explanations of BELIEF are significantly
superior than those of LIME and BayLIME in terms of
fidelity and at par with SLICE. The detailed results on both
datasets can be found in supplementary material (Table S6).

8 COMPARISON OF BELIEF AND SLICE

8.1 CONSISTENCY COMPARISON

BELIEF and SLICE have almost the same distribution of
CCM scores Oxford-IIIT Pets dataset and both model as
shown in Figure 3 (refer Figure S3 in supplementary ma-
terial for ECDF plots of both datasets). However, to con-
firm that there is no significant difference in their CCM
scores, we conducted a Wilcoxon Signed Rank test as shown
in Table 3 for Oxford IIIT Pets datatset. We fail to re-
ject the Null Hypothesis ("The median of the differences
(CCM score(BELIEF)− CCM score(SLICE)) is equal
to zero.") as the p-values are much larger than the commonly
accepted threshold of 0.05 indicating insufficient statistical
evidence to prove that the CCM scores of BELIEF and
SLICE are different.

8.2 FIDELITY COMPARISON

We further see that the distribution of the fidelity scores
are similar for BELIEF and SLICE as shown in Figure 5
and Figure 6 for Oxford-IIIT Pets dataset for both Inception
V3 and ResNet50 models (refer Figure S7 and Figure S8
in supplementary for ECDF plots for both datasets). The
high p-values observed in Table 4 which are much greater
than the commonly accepted threshold of 0.05 indicate that
we fail to reject the Null Hypothesis. Hence, we conclude

Table 3: Wilcoxon Signed Rank test results comparing CCM
scores of BELIEF(B) and SLICE(S) with a two-sided alter-
native hypothesis. In each test, the null hypothesis H0 was
"The median of the differences (CCM score(BELIEF)−
CCM score(SLICE)) is equal to zero." and the alterna-
tive hypothesis was Ha was "The median of the differ-
ences (CCM score(BELIEF)− CCM score(SLICE)) is
not equal to zero". D:M denotes Dataset:Model, where O
refers to Oxford-IIIT Pets and P refers to PASCAL VOC
datasets. R denotes ResNet50 and I denotes Inception V3
models. W represents the Test Statistic, and CLES denotes
the Common Language Effect Size.

Test D:M W p-value CLES
B, S O:I 501 0.19 0.392
B, S O:R 422 0.37 0.432
B, S P:I 552 0.42 0.392
B, S P:R 493 0.17 0.428

that there is not enough statistical evidence to prove that the
fidelity scores of BELIEF and SLICE are different. (Refer
Table S7 in supplementary for test details on both datasets).

8.3 RUNTIME COMPARISON

The main difference between BELIEF and SLICE is that BE-
LIEF uses our proposed novel Sign Entropy regularization.
In contrast, SLICE uses the frequentist Ridge Regression
with bootstrapping to eliminate features with high Sign En-
tropy making it slow. Further, the main component that
takes the highest time is running the predict function on
the perturbed sample images generated around the IE. A
larger sample size would require more calls to predict, thus
increasing the overall execution time.

We therefore analyze the computation advantage of BELIEF
as compared to SLICE. To demonstrate the computational
advantage of BELIEF, we ran SLICE for 100 random images
from Oxford-IIT Pets and PASCAL VOC datasets. We noted
the number of calls to the predict function and the execution
time for each image and calculated their Pearson correlation.
The Pearson correlation for SLICE using ResNet50 was
0.9959, and for Inception V3, it was 0.9953, proving that
our assumption regarding the direct impact of sample size
on execution time is valid.

Further, we fixed the sample size for BELIEF at 500 for all
our experiments and were able to achieve comparable results
in consistency and fidelity as compared to SLICE (which
used ≈ 2500 samples for ResNet50 and ≈ 3000 samples for
Inception V3, as shown in Section 8.1 and Section 8.2). We
present the sample sizes used by SLICE for all the images
for ResNet50 and Inception V3 models in Figure 7. The
median number of samples required for SLICE to stabilize
the explanations for ResNet50 was 2500 and for Inception



Table 4: Wilcoxon signed rank test results for comparison
of BELIEF(B) and SLICE(S). metric(B,S) indicates the test
where the null hypothesis H0 was "The median of the dif-
ferences (metricscore(BELIEF)−metricscore(SLICE))
is equal to zero," and the alternative hypothesis was Ha was
"The median of the differences (metric score(BELIEF)−
metric score(SLICE)) is not equal to zero". AOPC and
AUC are the metrics, D:M denotes Dataset:Model; O refers
to Oxford-IIIT Pets and P refers to PASCAL VOC datasets.
R denotes ResNet50 and I denotes Inception V3 models. W
denotes the Test Statistic and CLES denotes the Common
Language Effect Size.

Test D:M W p-value CLES
AOPC Insertion

B,S O:I 590 .65 0.538
B,S O:R 557 .44 0.535

AOPC Deletion
B,S O:I 589 .65 0.537
B,S O:R 567 .50 0.528

AUC Insertion
B,S O:I 589 .65 0.535
B,S O:R 546 .38 0.546

AUC Deletion
B,S O:I 591 .66 0.462
B,S O:R 553 .42 0.460

V3 was 3000, which are much larger (≈ 5X times) than
that of BELIEF. Based on the distribution information, we
employed Kernel Density Estimation (KDE) to estimate
the probability of SLICE to have a sample size of 500 or
less. We used Scott’s method [Scott, 2015] of calculating
the bandwidth for the same. The probabilities for SLICE to
have less than or equal to 500 sample sizes was 5.058e− 03
for ResNet50 and 1.240e− 06 for Inception V3. BELIEF
was therefore able to stabilize LIME explanations with a
much smaller sample size and lower average execution time
as shown in Table 5. While the running time for BELIEF
is comparable to LIME and BayLIME, it provides a high
consistency comparable to SLICE.

Table 5: Median running time (lower is better) and CCM
scores (higher is better) of BELIEF, SLICE, BayLIME and
LIME (in seconds per image) for Inception V3 and Resnet50
models. The values are calculated by running the four meth-
ods on 100 randomly sampled images from Oxford-IIIT Pets
and PASCAL VOC 2007 datasets for both Resnet50 and
Inception V3 models. The median Runtime and CCM scores
were computed by aggregating values from both datasets.

Method Runtime ↓ CCM ↑ Runtime ↓ CCM ↑
Inception V3 ResNet50

LIME 5.06 0.232 3.43 0.363
BayLIME 5.04 0.312 3.38 0.501
SLICE 50.53 0.999 30.32 0.999
BELIEF 5.04 0.998 3.39 0.999
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Figure 7: Distribution of sample sizes of SLICE for 100 ran-
dom images with ResNet50 and Inception V3 models with
dotted lines of corresponding colors denoting the respective
median values. The sample size of BELIEF is denoted using
the blue dotted line at 500. BELIEF uses a much smaller
sample size as compared to SLICE to achieve comparable
Consistency and Fidelity of Explanations.

9 LIMITATIONS

Fidelity metrics were criticized by Tomsett et al. [2020]
highlighting their inconsistency. While we have used the
well-known metrics (as discussed in Section 5.1), the re-
liability and consistency of fidelity metrics were beyond
the scope of our paper and should be investigated in future
works.

10 CONCLUSION AND FUTURE WORK

The proposed approach of Sign Entropy regularization to
enforce sparsity of coefficients achieved robustness in sign
flips while maintaining the model’s predictive power. The
application of our proposed regularization method, BELIEF,
is also shown for XAI where the approach adeptly esti-
mates and discards superpixels with high sign variability for
consistent explanation. Further, BELIEF works without the
additional step of feature selection as compared to previous
work leading to a considerable gain (≈ 10X) in execution
time while maintaining the same level of consistency and fi-
delity as compared to previous state-of-the-art method. Our
results are also supported by statistical tests that provide
statistical significance for our claims. The proposed Sign
Entropy-based regularization is thus applicable to tabular
and image data, proving its versatility for general-purpose
regression tasks and explainability. While we demonstrated
the effectiveness of BELIEF on tabular and image data, fu-
ture work can explore its applicability to other use cases
where stability of coefficients is crucial, such as finance,
healthcare, and Natural Language Processing (NLP).
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A DEFINITIONS

A.1 OVERVIEW OF LIME

LIME is a popular post-hoc model agnostic method for interpreting the predictions of complex machine learning models
[Ribeiro et al., 2016]. LIME approximates a complex model locally with a simpler, transparent model (like linear regression
or decision trees) called a surrogate model. This surrogate model, since it is transparent, is used to explain individual
predictions in the locality. Mathematically, LIME solves the optimization problem as below:

min
g∈G

L(f, g, πx) + Ω(g) (1)

where, f(x) is the prediction of the complex model, for instance, x, g(x′) is the prediction of the surrogate model for a
representation x′ of instance x, πx(z) is a proximity measure between instance x and z and L(f, g, πx) is a measure of how
unfaithfully g approximates f in the vicinity of x, weighted by the proximity measure πx(z) and Ω(g) is a measure of the
complexity of the surrogate model.

LIME’s optimization aims to find a surrogate model g that approximates the complex model f in the neighbourhood of x
and is transparent in nature. The most important aspects in LIME are the choice of the representation x′ and the measure
of locality πx(z). The authors use a binary vector x′ indicating the presence or absence of interpretable components (like
words in text or superpixels/segments in images). Further, a weight function is used to give higher weight to instances that
are closer to x. This weight function uses an exponential kernel, i.e. πx(z) = exp(−Dist(x, z)2/σ2), where Dist(x, z) is
the cosine distance between x and z, and σ is a kernel width parameter.

In the context of explaining images, this involves transforming the problem from image to a tabular format. The process has
the following main steps, viz. (1) Divide the image into superpixels or segments using segmentation, (2) Generate random
perturbation vectors with length equal to a number of superpixels, (3) Perturbing the superpixels and noting the predictions
(output probability) (4) Building a surrogate model with perturbation vectors as X and predictions from step 3 as y, and (5)
extracting explanations from the surrogate model. This transformation of the problem statement from images into a tabular
format is the vital part of how LIME generalizes the extraction of explanation to image classification models.

A.2 EVALUATION METRICS

We use the same consistency metrics as mentioned in [Bora et al., 2024]. Bora et al. [2024] propose two consistency
evaluation metrics to address the two aspects of consistency i.e., coefficients’ sign flips and the variance in importance ranks
of the coefficients of the surrogate model. These metrics are defined as below:

1. Average Sign Flip Entropy (ASFE): This metric measures the variability in the sign of a superpixel across multiple
runs. A lower value of ASFE indicates that the concerned superpixel has lower probability of sign flips across multiple
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runs. ASFE for model ‘M’ and explanation technique ‘xp’ is calculated as below:

ASFExp
M =

1

n

n∑
i=1

H(signi) (2)

where,
H(signi) = −p+i log2(p

+
i )− p−i log2(ip

−)

where, H(signi) is the sign entropy of the ith superpixel. The the probabilities of the ith superpixel to be positive
or negative are denoted by the terms p+i and p−i respectively. Kernel Density Estimation (KDE), owing to its non-
parametric nature, is used to estimate p+i and p−i for each of the ‘n’ superpixels. For bandwidth selection Scott’s method
is used [Scott, 2015]. ASFExp

Model can range between [0,1] such that 0 represents no sign flips and 1 denotes 50%
probability of the coefficient to be positive i.e. high sign flips.

2. Average Rank Similarity (ARS): This measure quantifies the consistency in the importance ranks of superpixels
across multiple runs. A higher ARS score indicates that the importance ranks of the superpixels have more agreement
across multiple runs than a lower ARS score. Rank Biased Overlap (RBO) score [Webber et al., 2010] is used to
calculate the ARS across different runs for model ‘M’ and explanation technique ‘xp’ as per the equation below.

ARSxp
M =

∑m−1
i=1

∑m
j=i+1 rbo_ext(Ri,Rj)(

m
2

) (3)

Here, Ri and Rj denote the ranked coefficient vectors obtained from the i-th and j-th runs, respectively. The function
rboext(Ri,Rj) calculates the extrapolated Rank-Biased Overlap (RBO) score between these ranked vectors. To
compute the RBO scores, we utilized the Python package ‘rbo’ [Chen, 2023], configuring the persistence parameter
(p) to 0.2 to assign greater emphasis to the highest-ranked elements. The denominator term

(
m
2

)
represents the total

number of distinct rank list pairs, ensuring that the rank similarities are averaged across all rank list pairs. The metric
ARSxp

Model varies between 0 and 1, where a value of 1 signifies a perfect agreement in superpixel rankings across runs,
whereas 0 indicates a complete lack of correspondence.

3. Combined Consistency Metric (CCM): Sign entropy and variance the importance ranks of superpixels are quatified
by the metrics ASFE and ARS respectively. Bora et. al., thus combined both into a consolidated metric to understand
and evaluate an XAI system. The combined metric, CCM, is defined as:

CCMxp
M = (1−ASFExp

M ) ∗ARSxp
Model (4)

CCMxp
M ranges between [0,1] where 0 denotes low consistency and 1 denotes full consistency in both sign entropy

and superpixel importance ranks.

A.3 ADAPTED AREA OVER PERTURBATION CURVE

We employ the adapted Area Over Perturbation Curve (AOPC), introduced in Bora et al. [2024], to assess the fidelity
of explanations generated by LIME, BayLIME, SLICE, and BELIEF. Originally proposed by Samek et al. [2016] as an
enhancement of the method by Bach et al. [2015], AOPC quantifies the reduction in predicted probability (Ŷ ) as an image
undergoes perturbation, where in our case, perturbations are applied to superpixels based on their ranked importance. While
AOPC was initially formulated for deletion, it has since been adapted for insertion as well. The modified AOPC metric is
formally defined below.

AOPCd =
1

L+ 1

〈
L∑

k=1

∆f(x, k)

〉
p(x)

(5)

where, the term ∆f(x, k) represents the variation in the classifier’s output probability after k perturbation steps, either
as an increase or a decrease. For deletion of positive superpixels or insertion of negative superpixels, it is computed as
f(x(0))− f(x(k)), where x(0) denotes the original, unperturbed image. Conversely, for insertion of positive superpixels or
deletion of negative superpixels, ∆f(x, k) is defined as f(x(k))− f(x(0)), where x(0) corresponds to the fully perturbed
(i.e., blurred) image. The level of blurring is determined using the Adaptive-blur technique from Bora et al. [2024].

Further, x(k) refers to the image at step k during the insertion process, whereas in the deletion process, it represents the
progressively restored image after k superpixels from the original image have been reintroduced into the blurred background.



The total number of perturbation steps is denoted by L. The notation ⟨.⟩p(x) indicates the expectation over all dataset images,
enabling the computation of the average AOPC score across a deep learning model’s predictions.

Additionally, d represents the pixel removal strategy, which can follow either the Most Relevant First (MoRF) or the Least
Relevant First (LeRF) order. Since our evaluation involves all superpixels, the insertion and deletion procedures yield
identical results. Thus, we conducted all experiments using the MoRF strategy and refer to the computed metric simply as
AOPC. As AOPC measures the difference in predicted probabilities between the initial and modified images, a higher AOPC
score for both insertion and deletion indicates stronger fidelity. This contrasts with traditional insertion and deletion metrics,
where higher insertion AUC and lower deletion AUC signify greater fidelity.

B MAP OBJECTIVE WITH ITERATIVE SIGN ENTROPY PRIOR

Our method introduces a prior over coefficients, one that is not based on magnitude alone, but instead constructed using
both the mean and variance of each coefficient’s posterior distribution. This prior reflects a more Bayesian treatment by
taking into account the full distributional behavior (both mean and variance) of the coefficients.

Carroll et.al. [Carroll and Luo, 2009], described the MAP objective for Bayesian Ridge Regression β̂MAP assuming a
Gaussian likelihood with homoscedastic noise of yn | xn, β ∼ N (x⊤

n β, σ
2) and a zero-mean Gaussian prior βj ∼ N (0, τ2)

over each of d coefficients as below:

β̂MAP = argmin
β

 1

2σ2

N∑
n=1

(yn − x⊤
n β)

2 +
1

2τ2

d∑
j=1

β2
j


Letting λ1 = 1

2τ2 , we rewrite this as:

β̂MAP = argmin
β

 1

2σ2

N∑
n=1

(yn − x⊤
n β)

2 + λ1

d∑
j=1

β2
j


Sign Entropy Prior (Our Contribution): Unlike traditional priors which penalize βj based on magnitude alone (i.e., mean),
we propose to penalize βj by using both its mean and variance. We augment the model with the proposed prior that iteratively
and adaptively penalizes coefficients based on the their Sign Entropy which is computed using the coefficient’s posterior
distribution. The proposed iterative prior update resembles the Empirical Bayesian methods where hyper-parameters are
refined using the posterior information of the previous iteration [Tipping, 2001].

After iteration t− 1, the posterior of each coefficient can be approximated as:

βj ∼ N (µ
(t−1)
j , (σ2

j )
(t−1)

)

We define the Sign Entropy as:

H(µj , σj) = −pj log pj − (1− pj) log(1− pj), where pj = Φ(0;µj , σj)

The Sign Entropy prior at tth iteration is given as:

π(β
(t)
j ) ∝ exp

(
−λ2 · H(µ

(t−1)
j , σ

(t−1)
j )

)
(6)

Although the Sign Entropy prior in Equation 6 is defined as a proportional relationship, due to the bounded nature of
H(µj , σj) between [0,1] (with log base 2), it can be normalized over a finite domain of βj .

We solve the standard MAP objective on a reduced set of features, where At, the active set at iteration t is defined by a
threshold on sign entropy:

A(t) =
{
j ∈ {1, . . . , d}

∣∣∣H(µ
(t−1)
j , σ

(t−1)
j ) ≤ ζ

}



We then solve the MAP problem over this active set A(t) as below:

β̂(t) = arg min
βj=0 for j /∈A(t)

 1

2σ2

N∑
n=1

(yn − x⊤
n β)

2 + λ1

∑
j∈A(t)

β2
j

 (7)

This Sign Entropy prior penalizes coefficients whose sign is inconsistent, and acts as a feedback-based prior, reducing
sign entropy of coefficients in subsequent iterative updates. The resulting MAP objective is dynamic and evolves during
optimization, leading to improved stability in the sign of the coefficients. While traditional priors like Ridge or Lasso
penalize based on the coefficient value alone (and not variance), our Sign Entropy prior incorporates posterior uncertainty
(i.e., mean and variance of the coefficients) of previous iteration by penalizing sign inconsistency.

C ADDITIONAL PLOTS

Figure S1: Figure showing the top five positive and negative superpixels of explanations using BELIEF (proposed method)
for a random image of the Oxford-IIIT Pets dataset with Inception V3 model for four different runs. The predicted class
was Newfoundland, and the prediction probability was 0.46. Blue and red colors denote positive and negative superpixels,
and the numbers inside the superpixels specify their importance and rank. There is no inconsistency of superpixels sign
i.e., a superpixel deemed as positive in one run is not marked as negative in another and vice-versa. Further, the superpixel
importance ranks for both positive and negative superpixels remain stable across all runs.

Figure S2: Distribution of effect sizes for Cliff’s Delta of ASFE gain and RMSE Loss for the proposed Sign Entropy
regularization compared to other well-known approaches for both Energy and Housing datasets. ASFE gain is the decrease
in ASFE score (i.e. improvement in Sign Entropy of the coefficients) and RMSE loss is the increase in RMSE score (i.e. the
increase in the RMSE of the Linear Regression model). The effect size for ASFE gain is almost always positive and high
(’1’) except for two cases. The effect size of RMSE loss is either very low or negative. This indicates that our proposed
regularization can reduce the sign entropy significantly while keeping the RMSE comparable. We do additional statistical
tests to confirm our claims. Please refer Table S9 for details of the conducted statistical tests.
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Figure S3: ECDF plot of CCM Scores for BELIEF,
LIME, BayLIME and SLICE (higher score is better)

Figure S4: ECDF plot of CCM Scores for BELIEF, BE-
LIEF_FE, SLICE_blur, SLICE_FE and SLICE (higher
is better)
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Figure S5: Distribution of CCM Scores for BELIEF,
LIME, BayLIME, and SLICE (higher is better).
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(a) ECDF plots of AOPC deletion scores (b) ECDF plots of AOPC insertion scores

Figure S7: ECDF plots of AOPC (Higher AOPC indicates higher fidelity)

(a) ECDF plots of Deletion AUC.(Lower is better) (b) ECDF plots of Insertion AUC.(Higher is better)

Figure S8: ECDF plots of Deletion and Insertion AUC



D SENSITIVITY ANALYSIS OF HYPER-PARAMETER ζ

Table S1: Mean CCM scores for different values of ζ on the Oxford-IIIT Pets dataset.

ζ Value Mean CCM Score
0.01 0.958
0.1 0.915
0.5 0.893
0.9 0.880
1.0 0.851

(a) ECDF plot of (1 – ASFE) scores across different ζ variants for
the ResNet-50 model evaluated on 50 randomly selected images
from the Oxford-IIIT Pets dataset.

(b) ECDF plot of ARS scores across different ζ variants for the
ResNet-50 model on the same 50-image sample of the Oxford-IIIT
Pets dataset.

(c) ECDF plot of CCM scores across different ζ variants for the
ResNet-50 model on 50 Oxford-IIIT Pets images.

(d) Bar plot showing the average (mean) ratio of selected segments
obtained with different ζ variants for the ResNet-50 model on the
same image set.

Figure S9: Sensitivity analysis for hyper-parameter ζ of BELIEF on ResNet-50 with 50 Oxford-IIIT Pets images.

In this section we show the results of sensitivity analysis of the hyper-parameter ζ, for the Oxford-IIIT Pets Dataset images
on the ResNet50 model. In the plots Figure S9a and Figure S9b, the quantities (1–ASFE) and ARSC decrease as ζ increases.
This leads to an overall decrease in CCM scores with increasing ζ, as shown in Table S1 and the ECDF plot of Figure S9c.

Thus, the approach becomes more conservative in selecting features (segments in this case) with a propensity for sign flips as
the value of ζ goes down. This is illustrated in Figure S9d, where lowering the value of ζ leads to a decrease in the average
(mean) ratio of selected segments.

Therefore, the hyper-parameter ζ should be tuned to balance the trade-off between explainability and feature retention based
on the end user’s goals. We recommend that in applications where explainability is crucial, the value of ζ be set low based
on the acceptable percentage of sign flips; in other situations, it can be relaxed.



E DETAILS OF STATISTICAL TESTS

We performed the Wilcoxon Signed Rank test to ascertain the statistical significance of our results. Additionally, we report
the Common Language Effect Size (CLES), which quantifies the proportion of pairs where a value from the first distribution
is greater than a value from the second distribution, with an adjustment for tied values McGraw and Wong [1992], Vargha
and Delaney [2000].

Table S2: Wilcoxon Signed Rank test results for comparison of CCM scores of BELIEF, BayLIME, and LIME. Here x,y in
the test column indicates the test details with x and y. Where x and y are one of B, Ba, and L denotes BELIEF, BayLIME,
and LIME respectively. The null hypothesis H0 was "The median of the differences (CCM(x)− CCM(y)) is equal to
zero," and the alternative hypothesis Ha was "The median of the differences (CCM(x)− CCM(y)) is greater than zero".
D:M denotes Dataset:Model where O refers to Oxford-IIIT Pets and P refers to PASCAL VOC datasets. R denotes ResNet50
and I denotes Inception V3 models. W denotes the Test Statistic and CLES denotes the Common Language Effect Size.

Test D:M W p-value CLES
B, L O:I 1275 8.9e-16 1.000
B, Ba O:I 1275 8.9e-16 1.000
B, L O:R 1267 2.2e-14 0.973
B, Ba O:R 1227 2.2e-11 0.961
B, L P:I 1275 8.9e-16 1.000
B, Ba P:I 1275 8.9e-16 1.000
B, L P:R 1275 8.9e-16 0.996
B, Ba P:R 1274 1.8e-15 0.989



Table S3: Wilcoxon Signed Rank test results for comparison of BELIEF, BELIEF_FE, SLICE_blur, SLICE_FE, LIME, and
BayLIME for ablation study. Here x,y in the test column indicates the test details with x and y. Where x and y are one of B,
Bf, Sb, Sf, L, and Ba denotes BELIEF, BELIEF_FE, SLICE_blur, SLICE_FE, LIME, and BayLIME respectively. The null
hypothesis H0 was "The median of the differences (CCM(x)− CCM(y)) is equal to zero," and the alternative hypothesis
was Ha was "The median of the differences (CCM(x) − CCM(y)) is greater than zero". D:M denotes Dataset:Model
where O refers to Oxford-IIIT Pets and P refers to PASCAL VOC datasets. R denotes ResNet50 and I denotes Inception V3
models. W denotes the Test Statistic and CLES denotes the Common Language Effect Size.

Test D:M W p-value CLES
B, Bf O:I 1275 8.9e-16 0.999
B, Sb O:I 1260 1.2e-13 0.925
B, Sf O:I 1275 8.9e-16 0.999
B, L O:I 1275 8.9e-16 1.000
B, Ba O:I 1275 8.9e-16 1.000
B, Bf O:R 1261 9.8e-14 0.966
B, Sb O:R 974 4.4e-04 0.652
B, Sf O:R 1257 2.2e-13 0.962
B, L O:R 1267 2.2e-14 0.973
B, Ba O:R 1227 2.2e-11 0.961
B, Bf P:I 1272 4.4e-15 0.992
B, Sb P:I 1267 2.2e-14 0.918
B, Sf P:I 1275 8.9e-16 0.996
B, L P:I 1275 8.9e-16 1.000
B, Ba P:I 1275 8.9e-16 1.000
B, Bf P:R 1275 8.9e-16 0.988
B, Sb P:R 904 4.7e-03 0.615
B, Sf P:R 1269 1.2e-14 0.982
B, L P:R 1275 8.9e-16 0.996
B, Ba P:R 1274 1.8e-15 0.989



Table S4: Wilcoxon Signed Rank test results for comparison of BELIEF, BELIEF_FE, SLICE_blur, SLICE_FE, LIME, and
BayLIME for ablation study. Here x,y in the test column indicates the test details with x and y. Where x and y are one of B,
Bf, Sb, Sf, L, and B denotes BELIEF, BELIEF_FE, SLICE_blur, SLICE_FE, LIME, and BayLIME respectively. The null
hypothesis H0 was "The median of the differences (CCM(x)− CCM(y)) is equal to zero," and the alternative hypothesis
was Ha was "The median of the differences (CCM(x) − CCM(y)) is greater than zero". D:M denotes Dataset:Model
where O refers to Oxford-IIIT Pets and P refers to PASCAL VOC datasets. R denotes ResNet50 and I denotes Inception V3
models. W denotes the Test Statistic and CLES denotes the Common Language Effect Size.

Test D:M W p-value CLES
B, Bf O:I 1275 8.9e-16 0.999
B, Sb O:I 1260 1.2e-13 0.925
B, Sf O:I 1275 8.9e-16 0.999
B, L O:I 1275 8.9e-16 1.000
B, Ba O:I 1275 8.9e-16 1.000
B, Bf O:R 1261 9.8e-14 0.966
B, Sb O:R 974 4.4e-04 0.652
B, Sf O:R 1257 2.2e-13 0.962
B, L O:R 1267 2.2e-14 0.973
B, Ba O:R 1227 2.2e-11 0.961
B, Bf P:I 1272 4.4e-15 0.992
B, Sb P:I 1267 2.2e-14 0.918
B, Sf P:I 1275 8.9e-16 0.996
B, L P:I 1275 8.9e-16 1.000
B, Ba P:I 1275 8.9e-16 1.000
B, Bf P:R 1275 8.9e-16 0.988
B, Sb P:R 904 4.7e-03 0.615
B, Sf P:R 1269 1.2e-14 0.982
B, L P:R 1275 8.9e-16 0.996
B, Ba P:R 1274 1.8e-15 0.989



Table S5: Wilcoxon signed rank test results for comparison of BELIEF (B), LIME (L), and BayLIME (Ba). AOPC(x,y) indi-
cates the test where the null hypothesis H0 was "The median of the differences (AOPCscore(x)−AOPCscore(y)) is equal
to zero," and the alternative hypothesis was Ha was "The median of the differences (AOPCscore(x)−AOPCscore(y))
is greater than zero". [D:M denotes Dataset:Model; O refers to Oxford-IIIT Pets and P refers to PASCAL VOC datasets.
R denotes ResNet50 and I denotes Inception V3 models. W denotes the Test Statistic and CLES denotes the Common
Language Effect Size.

Test D:M W p-value CLES
Insertion

AOPC(B,L) O:I 1229 1.7e-11 0.892
AOPC(B,L) O:R 1040 2.6e-05 0.756
AOPC(B,L) P:I 1187 1.5e-09 0.878
AOPC(B,L) P:R 1098 1.1e-06 0.771
AOPC(B,Ba) O:I 1188 1.4e-09 0.886
AOPC(B,Ba) O:R 1057 1.1e-05 0.753
AOPC(B,Ba) P:I 1171 6.3e-09 0.880
AOPC(B,Ba) P:R 1028 4.5e-05 0.768

Deletion
AOPC(B,L) O:I 1231 1.3e-11 0.889
AOPC(B,L) O:R 1040 2.6e-05 0.758
AOPC(B,L) P:I 1187 1.5e-09 0.874
AOPC(B,L) P:R 1094 1.4e-06 0.775
AOPC(B,Ba) O:I 1184 2.0e-09 0.879
AOPC(B,Ba) O:R 1054 1.3e-05 0.753
AOPC(B,Ba) P:I 1160 1.5e-08 0.876
AOPC(B,Ba) P:R 1007 1.2e-04 0.768

Table S6: Wilcoxon signed rank test results comparing Insertion and Deletion AUCs of BELIEF (B) with LIME (L) and
BayLIME (Ba) using a greater alternative hypothesis. AUC(x,y) denotes a test with null hypothesis H0 that the median
difference in scores between x and y is zero, against an alternative hypothesis Ha of a positive median difference. [D:M
signifies Dataset:Model; O for Oxford-IIIT Pets, P for PASCAL VOC, R for ResNet50, and I for Inception V3. W represents
the Test Statistic and CLES the Common Language Effect Size.]

Test D:M W p-value CLES
Insertion

AUC(B,L) O:I 1230 1.5e-11 0.898
AUC(B,Ba) O:I 1190 1.2e-09 0.885
AUC(B,L) O:R 1051 1.5e-05 0.767
AUC(B,Ba) O:R 1076 4.0e-06 0.766
AUC(B,L) P:I 1183 2.2e-09 0.872
AUC(B,Ba) P:I 1169 7.4e-09 0.877
AUC(B,L) P:R 1113 4.4e-07 0.773
AUC(B,Ba) P:R 999 1.6e-04 0.763

Deletion
AUC(L,B) O:I 1230 1.5e-11 0.894
AUC(Ba,B) O:I 1186 1.7e-09 0.883
AUC(L,B) O:R 1056 1.2e-05 0.767
AUC(Ba,B) O:R 1068 6.1e-06 0.764
AUC(L,B) P:I 1184 2.0e-09 0.872
AUC(Ba,B) P:I 1156 2.1e-08 0.874
AUC(L,B) P:R 1098 1.1e-06 0.775
AUC(Ba,B) P:R 997 1.8e-04 0.765



Table S7: Wilcoxon signed rank test results for comparison of BELIEF(B) and SLICE(S). metric(B,S) indicates the test
where the null hypothesis H0 was "The median of the differences (metricscore(BELIEF) − metricscore(SLICE)) is
equal to zero," and the alternative hypothesis was Ha was "The median of the differences (metric score(BELIEF) −
metric score(SLICE)) is not equal to zero". AOPC and AUC are the metrics, D:M denotes Dataset:Model; O refers to
Oxford-IIIT Pets and P refers to PASCAL VOC datasets. R denotes ResNet50 and I denotes Inception V3 models. W denotes
the Test Statistic and CLES denotes the Common Language Effect Size.

Test D:M W p-value CLES
AOPC Insertion

AOPC(B,S) O:I 590 .65 0.538
AOPC(B,S) O:R 557 .44 0.535
AOPC(B,S) P:I 597 .70 0.557
AOPC(B,S) P:R 559 .45 0.522

AOPC Deletion
AOPC(B,S) O:I 589 .65 0.537
AOPC(B,S) O:R 567 .50 0.528
AOPC(B,S) P:I 596 .69 0.557
AOPC(B,S) P:R 548 .39 0.521

AUC Insertion
AUC(B,S) O:I 589 .65 0.535
AUC(B,S) O:R 546 .38 0.546
AUC(B,S) P:I 597 .70 0.558
AUC(B,S) P:R 555 .43 0.525

AUC Deletion
AUC(B,S) O:I 591 .66 0.462
AUC(B,S) O:R 553 .42 0.460
AUC(B,S) P:I 595 .69 0.444
AUC(B,S) P:R 547 .39 0.478

Table S8: Median ASFE scores and RMSE of our proposed Sign Entropy regularization and other approaches. Lower ASFE
and RMSE scores are better. OLS does not have a regularization term and ARD does not have lambda_init hyper-parameter.
Therefore, we conducted the experiments without applying the regularization hyper-parameter settings (0.1, 0.5, and 1), and
we denote this scenario using the same values of ASFE and RMSE for R1, R.5, and R1 in OLS and ARD.

ASFE ↓ RMSE ↓
M Proposed Lasso Ridge Bayesian ARD OLS Proposed Lasso Ridge Bayesian ARD OLS

Ridge Ridge
Housing Price Dataset

R.1 0.149 0.474 0.46 0.451 0.427 0.474 0.319 0.316 0.311 0.310 0.432 0.317
R.5 0.15 0.465 0.412 0.439 0.427 0.474 0.293 0.294 0.284 0.290 0.432 0.317
R1 0.149 0.462 0.398 0.443 0.427 0.474 0.343 0.345 0.307 0.337 0.432 0.317

Energy Appliances Dataset
R.1 0.004 0.029 0.183 0.198 0.16 0.192 0.502 0.518 0.472 0.473 0.47 0.469
R.5 0.004 0.000 0.201 0.194 0.16 0.192 0.502 0.595 0.474 0.473 0.47 0.469
R1 0.000 0.000 0.262 0.184 0.16 0.192 0.503 0.596 0.478 0.475 0.47 0.469



Table S9: Kolmogorov-Smirnov (KS) test results comparing proposed Sign Entropy regularization with other methods. For
each test, the null hypothesis H0 was "The distribution of the RMSE score of our proposed regularization is the same as
the compared method," and the alternative hypothesis Ha was "The distributions are different." KS Statistic refers to the
maximum distance between cumulative distributions, and p-value indicates the probability of observing the result under H0.
Results are grouped by dataset: Energy (E) and Housing (H). All p-values are larger than the commonly accepted threshold
of 0.05 except for the proposed method vs. ARD for Housing Dataset (highlighted in red). However, as seen from the RMSE
density plots in fig. 2 and table S8, the RMSE of ARD in this case is much higher than other methods. Thus, we conclude
that there is no statistically significant increase in the RMSE score due to our proposed Sign Entropy regularization.

Test KS Statistic p-value
Energy Dataset (E)

Proposed vs OLS 0.200 0.731
Proposed vs ARD 0.200 0.731
Proposed vs Bayesian Ridge 0.133 0.825
Proposed vs Lasso 0.200 0.332
Proposed vs Ridge 0.111 0.948

Housing Dataset (H)
Proposed vs OLS 0.110 0.958
Proposed vs ARD 0.550 0.000
Proposed vs Bayesian Ridge 0.050 0.999
Proposed vs Lasso 0.040 1.000
Proposed vs Ridge 0.050 0.999
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