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ABSTRACT

Recent advances in one-step generative models typically follow a two-stage pro-
cess: first training a teacher diffusion model and then distilling it into a one-step
student model. This distillation process traditionally relies on both the teacher
model’s score function to compute the distillation loss and its weights for student
initialization. In this paper, we explore whether one-step generative models can be
trained directly without this distillation process. First, we show that the teacher’s
score function is not essential and propose a family of distillation methods that
achieve competitive results without relying on score estimation. Next, we demon-
strate that initialization from teacher weights is indispensable in successful train-
ing. Surprisingly, we find that this benefit is not due to improved “input-output”
mapping but rather the learned feature representations, which dominate distillation
quality. Our findings provide a better understanding of the role of initialization in
one-step model training and its impact on distillation quality.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have achieved
remarkable success across various domains (Rombach et al., 2022; Li et al., 2022; Poole et al.,
2022a; Ho et al., 2022; Hoogeboom et al., 2022; Liu et al., 2023), with several approaches enhanc-
ing generation speed (Jolicoeur-Martineau et al., 2021; Liu et al., 2022; Lu et al., 2022; Wang et al.,
2021; De Bortoli et al., 2021; Xiao et al., 2021; Wang et al., 2022; Bao et al., 2022; Bekas et al.,
2007; Ou et al., 2025). Recently, distillation techniques have gained popularity for one-step genera-
tion, achieving state-of-the-art results (Zhou et al., 2024b). These methods fall into two categories:
trajectory-based distillation (Salimans & Ho, 2022; Berthelot et al., 2023; Song et al., 2023; Heek
et al., 2024; Kim et al., 2023; Li & He, 2024), which integrates multi-step training with distillation,
and score-based distillation (Luo et al., 2024; Salimans et al., 2024; Xie et al., 2024; Zhou et al.,
2024b), which first pre-trains a diffusion teacher model and then distils it into a one-step model.

In this paper, we focus on the latter score-based strategy, as it provides a simpler training scheme.
Specifically, we investigate whether a one-step model can be effectively trained without relying on
a pre-trained first-stage teacher model. In the following sections, we first introduce the two-stage
distillation method and then explore (1) whether a one-step model can be trained without using the
teacher’s scores and (2) whether it can be trained without initializing with the teacher’s weights.

1.1 BACKGROUND OF SCORE-BASED DISTILLATION

Given data samples {x(1), . . . , x(N)} ∼ pd(x0), we define a one-step implicit model (Goodfellow
et al., 2014; Huszár, 2017; Zhang et al., 2020) as qθ(x0) =

∫
δ(x0−gθ(z))p(z)dz to match the data

distribution pd(x0). Inspired by diffusion models, one can use a set of (scaled) Gaussian convolu-
tion kernels K = {k1, · · · , kT } where kt(xt|x0) = N (xt|αtx0, σ2

t I) and define the Diffusive KL

∗Equal contribution.
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divergence between qθ(x0) and pd(x0) as

DiKLK(qθ(x0)||pd(x0)) ≡
T∑
t=1

w(t)KL(qθ(xt)||pd(xt)), (1)

where qθ(xt) =
∫
qθ(x0)kt(xt|x0)dx0 and pd(xt) =

∫
pd(x0)kt(xt|x0)dx0. In addition to the

diffusion distillation (Luo et al., 2024; Xie et al., 2024), this divergence has successfully been used
in 3D generative models (Poole et al., 2022b; Wang et al., 2024) or training neural samplers He
et al. (2024). For a single Gaussian kernel, the divergence was previously known as Spread KL
divergence (Zhang et al., 2020; 2019). It is straightforward to show that it is a valid divergence, i.e.,
DiKLK(qθ||pd) = 0 ⇔ qθ = pd, see Zhang et al. (2020) for a proof.

The gradient of θ is derived as follows, considering a single Gaussian kernel for simplicity:

∇θKL(qθ(xt)||pd(xt)) =
∫
qθ(xt) (∇xt

log qθ(xt)−∇xt
log pd(xt))

∂xt
∂θ

dxt. (2)

However, both ∇xt log qθ(xt) and ∇xt log pd(xt) are not directly accessible. Fortunately, since we
have access to samples of pd and ∇xt log pd(xt) remains fixed, we can approximate it once with de-
noising score matching (DSM) (Vincent, 2011) using a score network spdψ1

(xt, t) ≈ ∇xt
log pd(xt):

LDSM(ψ1) =

∫∫
1

2
∥spdψ1

(xt, t)−∇xt
log kt(xt|x0)∥22pd(x0)p(xt|x0)dxtdx0. (3)

To approximate the score of the student model, we note that since we can efficiently sample
from the student model, we can approximate ∇xt log qθ(xt) using a score network sqθψ2

(xt, t) ≈
∇xt

log qθ(xt), trained with the following DSM loss:

LDSM(ψ2) =

∫∫
1

2
∥sqθψ2

(xt, t)−∇xt
log kt(xt|x0)∥22qθ(x0)p(xt|x0)dxtdx0. (4)

Thus, the gradient with respect to θ is estimated as follows, a method known as Variational Score
Distillation (VSD) (Poole et al., 2022a; Wang et al., 2024; Luo et al., 2024):

∇θDiKL(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)

(
sqθψ2

(xt, t)− spdψ1
(xt, t)

)∂xt
∂θ

dxt. (5)

However, unlike ∇xt
log pd(xt), which remains fixed, ∇xt

log qθ(xt) dynamically changes during
training. Therefore, we need to update the score network sqθψ2

(xt, t) ≈ ∇xt
log qθ(xt) at each gradi-

ent step when optimizing θ. The full training procedure is detailed in Algorithm 1.

Algorithm 1 Score-based Distillation of One-Step Generative Models

Require: Data samples {x(1), . . . , x(N)} ∼ pd(x0)
Stage 1: Train a multi-step teacher diffusion model

1: Train teacher score network spdψ1
(xt, t) using DSM until convergence

Stage 2: Train a one-step student generative model
2: Initialize the student network with the teacher’s score network gθinit(·) ≡ spdψ1

(·, t = tinit)
3: for each training iteration do
4: Train student score network sqθψ2

(xt, t) using DSM
5: Estimate the DiKL gradient with score network sqθψ2

(xt, t) and spdψ1
(xt, t)

6: Update one-step generator’s parameters θ with the estimated DiKL gradient
7: end for

2 TRAINING ONE-STEP MODEL WITHOUT TEACHER’S SCORE

In Algorithm 1, the DiKL gradient estimation relies on the difference score difference, sqθψ1
(xt, t)−

spdψ2
(xt, t). To eliminate the dependency on the teacher’s score network, we observe that the score

difference can be computed via the gradient of this ratio: ∇xt log qθ(xt) − ∇xt log pd(xt) =
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∇xt
log(qθ(xt)/pd(xt)) Rather than estimating the two scores separately, we can directly estimate

the density ratio between the student and teacher models using class-ratio estimation (Sugiyama
et al., 2012; Qin, 1998; Gutmann & Hyvärinen, 2010). Specifically, we first denote distributions
qθ(xt) and pd(xt) as two conditional distributions m(xt|y = 0) and m(xt|y = 1), respectively.
With Bayes’ rule, we can transform the ratio estimation as a binary classification problem:

qθ(xt)

pd(xt)
≡ m(xt|y = 0)

m(xt|y = 1)
=
p(y = 0|xt)���m(xt)

����p(y = 0)

/p(y = 1|xt)���m(xt)

����p(y = 1)
=
p(y = 0|xt)
p(y = 1|xt)

. (6)

where the mixture distribution m(x) ≡ m(xt|y = 1)p(y = 1) + m(xt|y = 0)p(y = 0) and the
Bernoulli prior distribution p(y) can be simply set as a uniform prior p(y = 1) = p(y = 0) = 0.5.
In practice, we sample a batch of data from the pd and qθ and with the labels y = 0 and y = 1, we
train a neural network cη(xt, t) classifier that conditional on t to learn the probability of y = 1 given
xt, c∗(xt, t) = p(y = 1|xt, t). The log-ratio can be estimated by

∇xt
log(qθ(xt)/pd(xt)) ≈ ∇xt

log(1− cη(xt, t))/cη(xt, t) = ∇xt
logit(1− cη(xt, t)). (7)

We can then plug in this estimator to Equation 2 to form the DiKL gradient estimation:

∇θDiKL(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt

logit(1− cη(xt, t))
∂xt
∂θ

dxt, (8)

In addition to the DiKL, we can use the learned classifier function cη to define alternative learning
objectives. For instance, replacing the logit function with the logarithm yields an objective that
minimizes the probability of generated samples being classified as fake. This formulation aligns
with the GAN (Goodfellow et al., 2014; Nowozin et al., 2016) across different diffusion timesteps,
which is equivalent to minimizing the diffusive JS divergence:

∇θDiJS(qθ(x0)||pd(x0)) ≈
T∑
t=1

w(t)

∫
qθ(xt)∇xt log(1− cη(xt, t))

∂xt
∂θ

dxt. (9)

This objective was first used in DiffusionGAN (Wang et al., 2022) and has also shown promise in
one-step video generation (Lin et al., 2025) from a recent concurrent work. However, unlike Diffu-
sionGAN, which heavily depends on the StyleGAN2 architecture (Karras et al., 2020) with gradient
penalty (Arjovsky et al., 2017), our method is compatible with a UNet (Ronneberger et al., 2015)
generator without requiring additional GAN techniques, while still maintaining stable training.

Alternatively, rather than minimizing the probability that generated images are classified as fake
as used in GAN, we can maximize the probability that they are classified as real. We refer to this
approach as Diffusive Realness Maximization (DiRM), and define the loss gradient as

∇θDiRM(θ) ≈ −
T∑
t=1

w(t)

∫
qθ(xt)∇xt log(cη(xt, t))

∂xt
∂θ

dxt. (10)

Table 1: Sample quality on CIFAR-10.

METHOD NFE (↓) FID (↓) IS (↑)
Accelerated Diffusion models
EDM (Karras et al., 2022) 35 2.04 9.84
DDIM (Song et al., 2020) 10 8.23 -
DPM-solver-fast (Lu et al., 2022) 10 4.70 -
AMED-plugin (Zhou et al., 2024c) 5 6.61 -
iCT (Song & Dhariwal, 2024) 1 2.83 9.54
CTM (Kim et al., 2023) 1 1.98 -
BCM (Li & He, 2024) 1 3.10 9.45
sCT (Lu & Song, 2025) 1 2.97 -
Score-based Distillation
Diff-Instruct (Luo et al., 2024) 1 4.53 -
SID (α = 1) (Zhou et al., 2024b) 1 2.03 10.02
SIDA (α = 1) (Zhou et al., 2024a) 1 1.52 10.32
SID2A (α = 1) (Zhou et al., 2024a) 1 1.40 10.19
Diff-GAN (Wang et al., 2022) 1 3.19 -
Score-free / Class-ratio-based Distillation (Ours)

DiRM 1 4.87 9.85
DiKL 1 3.81 9.90
DiJS 1 2.39 9.93

We implement the proposed methods us-
ing the EDM (Karras et al., 2022) code-
base (see Algorithm 2 for training de-
tails). Our discriminator employs the en-
coder part of the U-Net, outputting a logit
scalar at half the size of the score network,
which utilizes a full UNet. The genera-
tor is initialized with EDM pre-training,
and experiments are conducted on un-
conditional CIFAR-10 (Krizhevsky et al.,
2009). Additional details are provided in
Appendix B. As shown in Table 1, DiJS,
without teacher score estimation, outper-
forms DiKL and DiRM and remains com-
petitive with state-of-the-art one-step gen-
eration methods.
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3 TRAINING ONE-STEP MODEL WITHOUT TEACHER’S WEIGHTS

In previous results, student models were initialized from the teacher’s weights. Training from ran-
dom initialization led to mode collapse, see Figure 1c for an example of mode collapse. One possible
explanation is that mode collapse arises from the training objectives (RKL or JS divergence), a phe-
nomenon also observed in GAN literature Goodfellow et al. (2014). To understand why the teacher’s
weights help prevent mode collapse in student model training, we investigate two hypotheses:

Function Space Hypothesis: Weight initialization provides a more structured latent-to-output func-
tional mapping—i.e., different locations in the latent space are initially mapped to distinct images,
preventing mode collapse. This hypothesis arises from visualizing initialized samples (see Fig-
ure 1a), which show that initialization already induces diverse mappings, with the second stage
primarily refining these into sharper images. Although intuitive, our findings surprisingly show that
functional initialization alone is insufficient to prevent mode collapse. To show this, instead of train-
ing the teacher model across different timesteps t and selecting the tinit for initialization, we only
pre-train the teacher model at the target timestep tinit and use its weight to initialize the one-step
model. This setup ensures identical latent-to-output mappings for the student model at initialization,
see Figure 1b. However, with this initialization, the student model still exhibits mode collapse early
in second-stage training, which suggests that the functional mapping perspective alone does not fully
explain one-step model training.

(a) Single-level DSM Init. (b) Multi-level DSM Init. (c) Collapsed Samples (d) DiJS Samples

Figure 1: Sample visualizations of different methods, see Appendix B for full images visualizations.

Table 2: FID scores for different initialization methods on
various datasets.

Initialization Initialization Dataset FID

No initialization - collapsed

Single-level DSM full CIFAR-10 collapsed

Multi-level DSM

10 classes in CIFAR-100 collapsed
50 classes in CIFAR-100 6.20
90 classes in CIFAR-100 6.01
full CIFAR-10 2.39

Feature Space Hypothesis: Weight
initialization provides a rich set of
multi-level features learned in train-
ing the diffusion, which help prevent
mode collapse. To verify this hypoth-
esis and isolate the role of learned
features from functional mapping ef-
fects, we pre-trained the teacher
model on CIFAR-100 while exclud-
ing any classes that overlap with
CIFAR-10. This ensures that the
second-stage generation targets are
absent during pre-training, allowing
us to focus solely on the contribution of learned features. We then trained the teacher model us-
ing progressively larger subsets of CIFAR-100 with (10, 50, 90) classes, creating a setting with
increasing feature diversity. Table 2 shows the FID scores of one-step model on CIFAR-10 with dif-
ferent numbers of CIFAR-100 classes used for initialization. We find that when the teacher model
is trained on only 10 classes, mode collapse still occurs. However, as the number of training classes
increases, the model no longer collapses, indicating that feature richness plays a crucial role in pre-
venting mode collapse. Nevertheless, despite mitigating mode collapse, this initialization strategy
achieves an FID of 6.01, which is significantly worse than the 2.39 FID obtained when using CIFAR-
10 as the pre-training dataset. This suggests that while feature richness is essential for stabilizing
training, functional mapping initialization remains important for achieving higher sample quality.
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4 CONCLUSION AND DISCUSSION

In this paper, we investigate training a one-step diffusion model without a pre-trained teacher and
propose score-estimation-free methods for training one-step generative models. Additionally, our
study identifies key pre-training components, highlighting the role of feature richness in preventing
mode collapse and the necessity of functional mapping for high-quality samples. Future work could
explore unsupervised or self-supervised pre-training, in addition to diffusion pre-training, to enhance
feature diversity and improve one-step models across modalities like images, audio, or videos.
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A ALGORITHM

Algorithm 2 Score-free Training of One-Step Generative Models

Require: Data samples {x(1), . . . , x(N)} ∼ pd(x0)
Stage 1: Train a multi-step teacher diffusion model

1: Train teacher score network spdψ2
(xt, t) using Eq. 3 until convergence

Stage 2: Train a one-step student generative model
2: Initialize the student network with the teacher’s score network gθinit(·) ≡ spdψ1

(·, t = tinit)
3: for each training iteration do
4: Estimate the ratio rη using Eq. 8 or Eq. 9 or Eq. 10
5: Estimate the DiKL gradient (Eq. 5) with the ratio network rη
6: Update one-step generator’s parameters θ with the estimated DiKL gradient
7: end for

B EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

We conduct all our experiments on a single Nvidia H100-80GB GPU. The generator is initial-
ized using the EDM pre-trained model from https://nvlabs-fi-cdn.nvidia.com/edm/
pretrained/edm-cifar10-32x32-uncond-vp.pkl. We adopt the variance-exploding
(VE) parameterization, consistent with EDM Karras et al. (2022) for the corresponding settings.
Additionally, we apply non-leaky data augmentation Karras et al. (2020).

Our training setup includes a batch size of 64, an exponential moving average (EMA) decay of 0.5,
a learning rate of 0.00001, and a fixed timestep tfix = 2.5 with weight function w(t) = σ2

t .

For each generator update, we take one gradient step for ratio estimation to ensure efficient training.
We observed that multiple-step updates can accelerate generator convergence without introducing
instability—unlike GANs, where multiple ratio updates often cause training instability. However,
multiple ratio steps significantly slow down the overall training process. Therefore, we use a single-
step gradient update in all our experiments, which is consistent with the settings in Luo et al. (2024);
Zhou et al. (2024b) and leave the exploration of multi-step ratio estimation for future work.
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Figure 2: Visualization of the samples from the multi-level DSM Initialization
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Figure 3: Visualization of the samples from the single-level DSM Initialization
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Figure 4: Visualization of the collapsed samples
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Figure 5: Visualization of the DiJS samples (FID=2.39, IS=9.93)
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