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Abstract

In this paper, we approach the problem of optimizing blackbox functions over large
hybrid search spaces consisting of both combinatorial and continuous parameters.
We demonstrate that previous evolutionary algorithms which rely on mutation-based
approaches, while flexible over combinatorial spaces, suffer from a curse of dimen-
sionality in high dimensional continuous spaces both theoretically and empirically,
which thus limits their scope over hybrid search spaces as well. In order to combat
this curse, we propose ES-ENAS, a simple and modular joint optimization proce-
dure combining the class of sample-efficient smoothed gradient gradient techniques,
commonly known as Evolutionary Strategies (ES), with combinatorial optimizers in
a highly scalable and intuitive way, inspired by the one-shot or supernet paradigm
introduced in Efficient Neural Architecture Search (ENAS). By doing so, we achieve
significantly more sample efficiency, which we empirically demonstrate over synthetic
benchmarks, and are further able to apply ES-ENAS for architecture search over
popular RL benchmarks.

1 Introduction and Related Work

We consider the problem of optimizing an expensive function f : (M, Rd) → R, where M is
a combinatorial search space consisting of potentially multiple layers of categorical and discrete
variables, and Rd is a high dimensional continuous search space, consisting of potentially hundreds to
thousands of parameters. Such scenarios commonly exist in evolutionary approaches to deep learning,
in particular the thriving field of Automated Reinforcement Learning (AutoRL) (Parker-Holder
et al., 2022), where m ∈M represents an architecture specification and θ ∈ Rd represents neural
network weights, together to form a policy πm,θ : S → A in which the goal is to maximize total
reward in a given environment. Other examples include flight optimization (Ahmad and Thomas,
2013), protein and chemical design (Elton et al., 2019; Zhou et al., 2017; Yang et al., 2019), and
program synthesis (Summers, 1977).

There have been a flurry of previous methods for approaching complex, combinatorial search spaces,
especially in the evolutionary algorithm domain, including the well-known NEAT (Stanley and
Miikkulainen, 2002). Coincidentally, the neural architecture search (NAS) community has also
adopted a multitude of blackbox optimization methods for dealing with NAS search spaces, including
policy gradients via Pointer Networks (Vinyals et al., 2015) and more recently Regularized Evolution
(Real et al., 2018). Such methods have been successfully applied to applications ranging from
image classification (Zoph and Le, 2017) to language modeling (So et al., 2019), and even algorithm
search/genetic programming (Real et al., 2020; Co-Reyes et al., 2021). Combinatorial algorithms
allow huge flexibility in the search space definition, which allows optimization over generic spaces
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such as graphs, but many techniques rely on the notion of zeroth-order mutation, which can be
inappropriate in high dimensional continuous space due to large sample complexity (Nesterov and
Spokoiny, 2017).
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Figure 1: Representation of the ES-ENAS
aggregator-worker pipeline, where the aggregator
proposes models mi in addition to a perturbed
input θ + σgi, and the worker the computes the
objective f(mi, θ + σgi), which is sent back to the
aggregator. Both the training of the weights θ and
of the model-proposing controller pϕ rely on the
number of worker samples to improve performance.

On the other hand, there are also a com-
pletely separate set of algorithms for attack-
ing high dimensional continuous spaces Rd.
These include global optimization techniques
including the Cross-Entropy method (de Boer
et al., 2005) and metaheuristic methods such as
swarm algorithms (Mavrovouniotis et al., 2017).
More local-search based techniques include the
class of methods based on Evolution Strategies
(ES) (Salimans et al., 2017), such as CMA-ES
(Hansen et al., 2003; Krause et al., 2016; Varelas
et al., 2018) and Augmented Random Search
(ARS) (Mania et al., 2018a). ES has been shown
to perform well for reinforcement learning policy
optimization, especially in continuous control
(Salimans et al., 2017) and robotics (Gao et al.,
2020; Song et al., 2020a). Even though such
methods are also zeroth-order, they have been
shown to scale better than previously believed
(Conti et al., 2018; Liu et al., 2019a; Rowland
et al., 2018) on even millions of parameters (Such
et al., 2017) due to advancements in heuristics
(Choromanski et al., 2019a) and Monte Carlo
gradient estimation techniques (Choromanski et al., 2019b; Yu et al., 2016). Unfortunately, these
analytical techniques are limited only to continuous spaces and at best, basic categorical spaces via
softmax reparameterization.

One may thus wonder whether it is possible to combine the two paradigms in an efficient manner.
For example, in AutoRL and NAS applications, it would be extremely wasteful to run an end-to-end
ES-based training loop for every architecture proposed by the combinatorial algorithm. At the same
time, two practical design choices we must strive towards are also simplicity and modularity,
in which a user may easily setup our method and arbitrarily swap in continuous algorithms like
CMA-ES (Hansen et al., 2003) or combinatorial algorithms like Policy Gradients (Vinyals et al.,
2015) and Regularized Evolution (Real et al., 2018), for specific scenarios. Generality is also
an important aspect as well, in which our method should be applicable to generic hybrid spaces.
For instance, HyperNEAT (Stanley et al., 2009) addresses the issue of high dimensional neural
network weights by applying NEAT to evolve a smaller hypernetwork (Ha et al., 2017) for weight
generation, but such a solution is domain specific and is not a general blackbox optimizer. Similarly
restrictive, Weight Agnostic Neural Networks (Gaier and Ha, 2019) do not train any continuous
parameters and apply NEAT to only the combinatorial spaces of network structures. Other works
address blackbox hybrid spaces via Bayesian Optimization (Deshwal et al., 2021) or Population
Based Training (Parker-Holder et al., 2021), but only in hyperparameter tuning settings whose
search spaces are significantly smaller.
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One of the first cases of combining differentiable continuous optimization with combinatorial
optimization was from Efficient NAS (ENAS) (Pham et al., 2018), which introduces the notion of
weight sharing to build a maximal supernet containing all possible weights θs where each child model
m only utilizes certain subcomponents and their corresponding weights from this supernet. Child
models m are sampled from a controller pϕ, parameterized by some state ϕ. The core idea is to
perform separate updates to θs and ϕ in order to respectively, improve both neural network
weights and architecture selection at the same time. However, ENAS and followup variants (Akimoto
et al., 2019) were originally proposed in the setting of using a GPU worker with autodifferentiation
over θs in mind for efficient NAS training.

In order to adopt ENAS’s joint optimization into the fully blackbox (and potentially non-
differentiable) scenario involving hundreds/thousands of CPU-only workers, we introduce the
ES-ENAS algorithm, which be practically implemented as a simple add-on to a standard syn-
chronous optimization scheme commonly found in ES, shown in Fig. 1. We explain the approach
formally below.

2 ES-ENAS Method

Preliminaries In defining notation, let M be a combinatorial search space in which m are drawn
from, and θ ∈ Rd be the continuous parameter or “weights". For scenarios such as NAS, one may
define M’s representation to be the superset of all possible child models m. Let ϕ represent the
state of our combinatorial algorithm or “controller", and let pϕ its current output distribution over
M.

2.1 Algorithm

Algorithm 1: Default ES-ENAS Algorithm,
with the few additional modifications to allow
ENAS from ES shown in blue.
Data: Initial weights θ, weight step size ηw,

precision parameter σ, number of
perturbations n, controller pϕ.

while not done do
Sample i.i.d. vectors g1, . . . , gn ∼ N (0, I);
foreach gi do

Sample m+
i , m−

i ∼ pϕ

v+
i ← f(m+

i , θ + σgi)
v−

i ← f(m−
i , θ − σgi)

vi ← 1
2(v+

i − v−
i )

pϕ ← {(m+
i , v+

i ), (m−
i , v−

i )}
end
Update weights θ ← θ + ηw

1
σn

∑n
i=1 vigi

Update controller pϕ

end

We concisely summarize our ES-ENAS method
in Algorithm 1. Below, we provide ES-ENAS’s
derivation and conceptual simplicity of combin-
ing the updates for ϕ and θ into a joint opti-
mization procedure.

The optimization problem we are interested in
is maxm∈M,θ∈Rd f(m, θ). In order to make this
problem tractable, consider instead, optimiza-
tion on the smoothed objective:

f̃σ(ϕ, θ) = Em∼pϕ,g∼N (0,I) [f(m, θ + σg)] (1)

Note that this smoothing defines a particular dis-
tribution Pm,θ across (M,Rd), and can be more
generalized to the rich literature on Information-
Geometric Optimization (Ollivier et al., 2017),
which can be used to derive different variants
and update rules of our approach, such as using
CMA-ES or other ES variants (Wierstra et al.,
2014; Heidrich-Meisner and Igel, 2009; Krause, 2019) to optimize θ. For simplicity, we use vanilla
ES as it suffices for common problems such as continuous control. Our particular update rule is
to use samples from m ∼ pϕ, g ∼ N (0, I) for updating both algorithm components in an unbiased
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manner, as it efficiently reuses evaluations to reduce the sample complexity of both the controller
pϕ and the variance of the estimated gradient ∇θf̃σ.

2.1.1 Updating the Weights

The goal is to improve f̃σ(ϕ, θ) with respect to θ via one step of the gradient:

∇θf̃σ(ϕ, θ) = 1
2σ

Em∼pϕ,g∼N (0,I) [(f(m, θ + σg)− f(m, θ − σg))g] (2)

Note that by linearity, we may move the expectation Em∼pϕ
inside into the two terms f(m, θ + σg)

and f(m, θ − σg), which implies that the gradient expression can be estimated with averaging
singleton samples of the form:

1
2σ

(f(m+, θ + σg)− f(m−, θ − σg))g (3)

where m+, m− are i.i.d. samples from pϕ, and g from N (0, I).

Thus we may sample multiple i.i.d. child models m+
1 , m−

1 ..., m+
n , m−

n ∼ pϕ and also multiple
perturbations g1, ..., gn ∼ N (0, I) and update weights θ with an approximate gradient update:

θ ← θ + ηw

(
1
n

n∑
i=1

f(m+
i , θ + σgi)− f(m−

i , θ − σgi)
2σ

gi

)
(4)

This update forms the “ES" portion of ES-ENAS. As a sanity check, we can see that using a constant
fixed m = m+

1 = m−
1 = ... = m+

n = m−
n reduces Eq. 4 to standard ES/ARS optimization.

2.1.2 Updating the Controller

For optimizing overM, we update pϕ by simply reusing the objectives f(m, θ+σg) already computed
for the weight updates, as they can be viewed as unbiased estimations of Eg∼N (0,I)[f(m, θ + σg)]
for a given m. Conveniently, we can use common approaches such as

Policy Gradient Methods ϕ are differentiable parameters of a distribution pϕ (usually a RNN-
based controller), with the goal of optimizing the smoothed objective J(ϕ) = Em∼pϕ,g∼N (0,I)[f(m; θ+
g)], whose policy gradient ∇ϕJ(ϕ) can be estimated by ∇̂ϕJ(ϕ) = 1

n

∑n
i=1 f(mi, θ +gi)∇ϕ log pϕ(mi).

The ES-ENAS variant can be seen as estimating a “simultaneous gradient" ∇ϕ,θf̃σ(ϕ, θ).

Evolutionary Algorithms In this setting, ϕ represents the algorithm state, which usually
consists of a population of inputs Q = {(m1, θ1), ..., (mn, θn)} with corresponding evaluations
(slightly abusing notation) f(Q) = {f(m1, θ1), ..., f(mn, θn)}. The algorithm performs a selection
procedure (usually argmax) which selects an individual (mi, θi) or potentially multiple individuals
T ⊆ Q, in order to perform respectively, mutation or crossover to “reproduce" and form a new
child instance (mnew, θnew). Some prominent examples include Regularized Evolution (Real et al.,
2018), NEAT (Stanley and Miikkulainen, 2002), and Hill-Climbing (Golovin et al., 2020; Song et al.,
2020b).

3 Curse of Continuous Dimensionality

One may wonder why simply using original gradientless evolutionary algorithms such as Regularized
Evolution or Hill-Climbing over the entire space (M,Rd) is not sufficient. Many algorithms such

4



Under review as submission to TMLR

as the two mentioned use a variant of the arg max operation for deciding ascent direction, and
only require a mutation operator (m, θ) → (m′, θ′), where the most common and natural way of
continuous mutation is simple additive mutation: θ′ = θ + σmutg for some random Gaussian vector
g.

The answer lies in efficiency: for e.g. convex objectives, in order to produce an accurate ascent
direction, ES only requires O(d) evaluations (Jamieson et al., 2012; Storn and Price, 1997; Agarwal
et al., 2011) via gradient estimation, while a mutation-based arg max procedure such as Hill-Climbing
requires O(exp(d)) evaluations. More formally, we prove the following instructive theorem over
continuous spaces (full proof in Appendix E):

Theorem 1. Let f(θ) be a α-strongly concave, β-smooth function over Rd, and let ∆ES(θ) be the
expected improvement of an ES update, while ∆MUT (θ) be the expected improvement of a batched
hill-climbing update, with both starting at θ and using B ≤ O(exp(d)) parallel evaluations / workers
for fairness. Then assuming optimal hyperparameter tuning, ∆ES(θ)

∆MUT (θ) ≥ O

(
1
κ

(
√

d−
√

log(B))2

log(B)

)
where

κ = β/α is the condition number.

From the above, note that the sample complexity of an arg max update is extremely inefficient:
using O(exp(d)) evaluations is effectively brute forcing the entire Rd search space! The above
establishes the theoretical explanation over the effect of large d. However, this does not cover the
case for non-convex objectives, hybrid spaces, or other types of update schemes, and thus we also
experimentally verify this issue below.

3.1 BBOB Experiments

In Figure 2, we experimentally demonstrate the degradation of vanilla combinatorial evolutionary
algorithms over 19 different Black-Box Optimization Benchmarking (BBOB) functions (Hansen
et al., 2009), when the continuous space grows in size. We define our hybrid search space as
(M,Rdcon), where M consists of dcat categorical parameters, each of which may take feasible values
from the unordered set of equally spaced grid points over the interval [−L, L]. Thus an input (m, θ)
is evaluated using the native BBOB function f originally operating on the input space Rdcat+dcon .
For practical purposes, we also bound all continuous parameters inside [−L, L]. While there is no
standard way (Li et al., 2017) to aggregate results between differently scaled BBOB functions, our
reporting is to average the normalized optimality gap f∗−f̂∗

f∗ as common in e.g. (Müller et al., 2021),
where f∗ and f̂∗ are the true and algorithm’s estimated optimums respectively.

In our experiments, we plot the performance of all the algorithms in the cross product Algorithms
× {original, ES-ENAS}, in order to compare the original evolutionary algorithms against their
modified ES-ENAS hybrids. The set of original algorithms includes: Regularized Evolution (Real
et al., 2018), NEAT (Stanley and Miikkulainen, 2002), Random Search, Gradientless Descent/Batch
Hill-Climbing (Golovin et al., 2020; Song et al., 2020b) and PPO (Schulman et al., 2017) as a
policy gradient baseline, but only for categorical parameters as Pointer Networks do not support
continuous parameters. To remain fair and consistent, we use the same mutation (m, θ)→ (m′, θ′)
across all mutation-based algorithms, which consists of θ′ = θ + σmutg for a tuned σmut, and
uniformly randomly mutating a single categorical parameter from m. All algorithms start at the
same randomly sampled initial point. More hyperparameters can be found in Appendix A.3 along
with continuous optimizer comparisons (e.g. CMA-ES) in Appendix B.
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Figure 2: Lower is better. Aggregate performance of every algorithm when ranging dcat and dcon. As dcon

increases, each original algorithm (dashed line) begins to underperform against its corresponding
hybrid ES-ENAS variant (solid line). Note that in the first row (where dcat = 0), we also verify that the
original ES (black) outperforms all other original algorithms.

4 Neural Network Policy Experiments

In order to benchmark our method over more nested combinatorial structures, we apply our method
to two combinatorial problems, Sparsification and Quantization, on standard Mujoco (Todorov
et al., 2012) environments from OpenAI Gym, which are well aligned with the use of ES and
also have hundreds to thousands of continuous neural network parameters. Furthermore, such
problems are also reducing parameter count, which can also greatly improve performance and sample
complexity.

Such problems also have a long history, with sparisification methods such as (Rumelhart, 1987;
Chauvin, 1989; Mozer and Smolensky, 1989) from the 1980’s, Optimal Brain Damage (Cun et al.,
1990), regularization (Louizos et al., 2018), magnitude-based weight pruning methods (Han et al.,
2015; See et al., 2016; Narang et al., 2017), sparse network learning (Gomez et al., 2019; Lenc
et al., 2019), and the recent Lottery Ticket Hypothesis (Frankle and Carbin, 2019). Meanwhile,
quantization has been explored with Huffman coding (Han et al., 2016), randomized quantization
(Chen et al., 2015), and hashing mechanisms (Eban et al., 2020).

4.1 Results

We can view a feedforward neural network as a standard directed acyclic graph (DAG), with a set
of vertices containing values {v1, ..., vk}, and a set of edges {(i, j) | 1 ≤ i ≤ j ≤ k} where each edge
(i, j) contains a weight wi,j , as shown in Figures 3a and 3b. The goal of sparsification is to reduce
the number of edges while maintaining high environment reward, while the goal of quantization
is to partition the edges via colorings, which allows same-colored edges to use the same weight.
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(a)

T =

w1,5 w1,6 w1,7 w1,8 w1,9 w1,10
w2,5 w2,6 w2,7 w2,8 w2,9 w2,10
w3,5 w3,6 w3,7 w3,8 w3,9 w3,10
w4,5 w4,6 w4,7 w4,8 w4,9 w4,10




θs = w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)

( )
(b)

Figure 3: (a) Example of sparsifying a neural network setup, where solid edges are those learned by
the algorithm. (b) Example of quantization using a Toeplitz pattern (Choromanski et al., 2018), for
the first layer in Fig. 3a. Entries in each of the diagonals are colored the same, thus sharing the
same weight value. The trainable weights θs =

(
w(1), ..., w(9)

)
are denoted at the very bottom in

the vectorized form with 9 entries, which effectively encodes the larger T with 24 entries.

These scenarios possess very large combinatorial policy search spaces (calculated as |M| > 1068,
comparable to 1049 from NASBench-101 (Ying et al., 2019)) that will stress test our ES-ENAS
algorithm and are also relevant to mobile robotics (Gage, 2002). Given the results in Subsection
3.1 and since this is a NAS-based problem, for ES-ENAS we use the two most domain-specific
controllers, Regularized Evolution and PPO (Policy Gradient) and take the best result in each
scenario. Specific details and search space size calculations can be found in Appendix A.4.

Env. Arch. Reward # weights compression # bits

Striker Quantization -247 23 95% 8198
Edge Pruning -130 64 93% 3072

Masked -967 25 95% 8262
Toeplitz -129 110 88% 4832
Circulant -120 82 90% 3936

Unstructured -117 1230 0% 40672

HalfCheetah Quantization 4894 17 94% 6571
Edge Pruning 4016 64 98% 3072

Masked 4806 40 92% 8250
Toeplitz 2525 103 85% 4608
Circulant 1728 82 88% 3936

Unstructured 3614 943 0% 31488

Hopper Quantization 3220 11 92% 3960
Edge Pruning 3349 64 84% 3072

Masked 2196 17 91% 4726
Toeplitz 2749 94 78% 4320
Circulant 2680 82 80% 3936

Unstructured 2691 574 0% 19680

Walker2d Quantization 2026 17 94% 6571
Edge Pruning 3813 64 90% 3072

Masked 1781 19 94% 6635
Toeplitz 1 103 85% 4608
Circulant 3 82 88% 3936

Unstructured 2230 943 0% 31488

Table 1: Comparison of the best policies from six
distinct classes of RL networks: Quantization (ours),
Edge Pruning (ours), Masked, Toeplitz, Circulant, and
Unstructured networks trained with standard ES algo-
rithm (Salimans et al., 2017). All results are for feed-
forward nets with one hidden layer. Best two metrics
for each environment are in bold, while significantly
low rewards are in red.

As we have already demonstrated comparisons
to blackbox optimization baselines in Subsection
3.1, we now focus our comparison to domain-
specific baselines for the neural network. These
include a DARTS-like (Liu et al., 2019b) soft-
max masking method (Lenc et al., 2019), which
applies a trainable boolean matrix mask over
weights for edge pruning. We also include strong
mathematically grounded baselines for fixed
quantization patterns such as Toeplitz and Cir-
culant matrices (Choromanski et al., 2018). In
all cases we use the same hyper-parameters, and
train until convergence for three random seeds.
For masking, we report the best achieved reward
with > 90% of the network pruned, making the
final policy comparable in size to the quantiza-
tion and edge-pruning networks. Specific details
can be found in Appendices C.1 and A.4.

For each class of policies, we compare various
metrics, such as the number of weight param-
eters used, total parameter count compression
with respect to unstructured networks, and total
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number of bits for encoding float values (since quantization and masking methods require extra
bits to encode the partitioning via dictionaries). In Table 1, we see that both sparsification and
quantization can be learned from scratch via optimization using ES-ENAS, which achieves
competitive or better rewards against other baselines. This is especially true against hand-designed
(Toeplitz/Circulant) patterns which significantly fail at Walker2d, as well as other optimization-
based reparameterizations, such as softmax masking, which underperforms on the majority of
environments. The full set of numerical results over all of the mentioned methods can be found in
Appendix C.

4.2 Neural Network Policy Ablations

In the rest of the experimental section, we provide ablations studies on the properties and extensions
of our ES-ENAS method. Because of the nested combinatorial structure of the neural network
space (rather than the flat space of BBOB functions), certain behaviors for the algorithm may
differ. Furthermore, we also wish to highlight the similarities and differences from regular NAS in
supervised learning, and thus raise the following questions:

1. How do controllers compare in performance?
2. How does the number of workers affect the quality of optimization?
3. Can other extensions such as constrained optimization also work in ES-ENAS?

4.2.1 Controller Comparisons

As shown in Subsection 3.1, Regularized Evolution (Reg-Evo) was the highest performing controller
when used in ES-ENAS. However, this is not always the case, as mutation-based optimization may
be prone to being stuck in local optima whereas policy gradient methods (PG) such as PPO can
allow better exploration.

Figure 4: Comparisons across different environments when using different controllers, on the edge
pruning and quantization tasks, when using a linear layer (L) or hidden layer of size 32 (H32).
We thus compare different ES-ENAS variants, when using Reg-Evo, PG (PPO), and random search
(for sanity checking), on the edge pruning task in Fig. 4. As shown, while Reg-Evo consistently
converges faster than PG at first, PG eventually may outperform Reg-Evo in asymptotic performance.
Previously on NASBENCH-like benchmarks, Reg-Evo consistently outperforms PG in both sample
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complexity and asymptotic performance (Real et al., 2018), and thus our results on ES-ENAS are
surprising, potentially due to the hybrid optimization of ES-ENAS.

Random search has been shown in supervised learning to be a surprisingly strong baseline (Li and
Talwalkar, 2019), with the ability to produce even ≥ 80-90 % accuracy (Pham et al., 2018; Real
et al., 2018), showing that NAS-based optimization produces most gains ultimately be at the tail
end; e.g. at the 95% accuracies. In the ES-ENAS setting, this is shown to occur for easier RL
environments such as Striker (Fig. 4) and Reacher (shown in Appendices C.2, C.3). However, for
the majority of RL environments, a random search controller is unable to train at all, which also
makes this regime different from supervised learning.

4.2.2 Controller Sample Complexity

We further investigate the effect of the number of objective values per batch on the controller by
randomly selecting only a subset of the objectives f(m, θ) for the controller pϕ to use, but maintain
the original number of workers for updating θs via ES to maintain weight estimation quality to
prevent confounding results. We found that this sample reduction can reduce the performance
of both controllers for various tasks, especially the PG controller. Thus, we find the use of the
already present ES workers highly crucial for the controller’s quality of architecture search in
this setting.

Figure 5: Regular ES-ENAS experiments with 150 full controller objective value usage plotted in
darker colors. Experiments with lower controller sample usage (10 random samples, similar to the
number of simultaneously training models in (Tan et al., 2018b)) plotted in corresponding lighter
colors.

4.2.3 Constrained Optimization

(Tan and Le, 2019; Tan et al., 2018b) introduce the powerful notion of constrained optimization,
where the controller may optimize multiple objectives (ex: efficiency) towards a Pareto optimal
solution (Deb, 2005). We apply (Tan et al., 2018b) and modify the controller’s objective to be a
hybrid combination f(m, θ)

(
|Em|
|ET |

)ω
of both the total reward f(m, θ) and the compression ratio

|Em|
|ET | where |Em| is the number of edges in model m and |ET | is a target number, with the search
space expressed as boolean mask mappings (i, j)→ {0, 1} over all possible edges. For simplicity,
we use the naive setting in (Tan et al., 2018b) and set ω = −1 if |Em|

|ET | > 1, while ω = 0 otherwise,
which strongly penalizes the controller if it proposes a model m whose edge number |Em| breaks
the threshold |ET |.

In Fig. 6, we see that the controller eventually reduces the number of edges below the target
threshold set at |ET | = 64, while still maintaining competitive training reward, demonstrating that
ES-ENAS is also capable of constrained optimization techniques, potentially useful for explicitly
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Figure 6: Environment reward plotted alongside the average number of edges used for proposed
models. Black horizontal line corresponds to the target |ET | = 64.

designing efficient CPU-constrained robot policies (Unitree, 2017; Gao et al., 2020; Tan et al.,
2018a).

5 Conclusions, Limitations, and Broader Impact Statement

Conclusion We presented a scalable and flexible algorithm, ES-ENAS, for performing optimization
over large hybrid spaces. ES-ENAS is efficient, simple, modular, and general-purpose, and can
utilize many techniques from both the continuous and combinatorial evolutionary literature.

Limitations In certain scenarios relevant to NAS applications where m specifies a model and
thus the continuous parameter size d is dependent on m, there may not be an obvious way to form a
global θ. This is a general issue that is being actively explored in the NAS literature. Furthermore,
due to reasons of simplicity, the joint sampling distribution Pm,θ over (M, θ) was made as a product
between independent distributions over M and θ in this paper. However, it may be worth studying
distributions and update rules in which m and θ are sampled dependently, as it may lead to even
more effective algorithms.

Broader Impact We believe that many large-scale evolutionary projects once prohibited by the
curse of continuous dimensionality may now be feasible by the efficiency of ES-ENAS, potentially
reducing computation costs dramatically. For example, one may be able to extend (Real et al., 2020)
to also search for continuous parameters (e.g. neural network weights) via ES-ENAS. Furthermore,
ES-ENAS is applicable to several downstream applications, such as architecture design for mobile
robotics, and recently new ideas in RNNs for meta-learning and memory (Bakker, 2001; Najarro
and Risi, 2020). ES-ENAS also contributes to general blackbox optimization over large and complex
spaces, useful for a variety of scenarios involving evolutionary search, such as genetic programming
(Co-Reyes et al., 2021), circuit design (Ali et al., 2004), and compiler optimization (Cooper et al.,
1999).
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Appendix
A Implementation Details

A.1 API

We use the standardized NAS API PyGlove (Peng et al., 2020), where search spaces are usu-
ally constructed via combinations of primitives such as “pyglove.oneof" and “pyglove.manyof"
operations, which respectively choose one item, or a combination of multiple objects from a con-
tainer. These primitives can be combined in a nested conditional structure via “pyglove.List" or
“pyglove.Dict". The search space can then be sent to an algorithm, which proposes child model
instances m programmically represented via Python dictionaries and strings. These are sent over
a distributed communication channel to a worker alongside the perturbation θ + σg, and then
materialized later by the worker into an actual object such as a neural network. Although the
controller needs to output hundreds of model suggestions, it can be parallelized to run quickly by
multithreading (for Reg-Evo) or by simply using a GPU (for policy gradient).

A.2 Algorithms

A.2.1 Combinatorial Algorithms

The mutator used for all evolutionary algorithms (Regularized Evolution, NEAT, Gradientless
Descent/Batch Hill-Climbing) consists of a “Uniform" mutator for the neural network setting, where
a parameter in a (potentially nested) search space is chosen uniformly at random, with its new value
also mutated uniformly over all possible choices. For continuous settings, see Appendix A.3 below.

Regularized Evolution: We set the tournament size to be
√

n where n is the number of
workers/population size, as this works best as a guideline (Real et al., 2018).

NEAT: We use the original algorithm specification of NEAT (Stanley and Miikkulainen, 2002)
without additional modifications. The compatibility distance function was implemented appropriately
for DNAs (i.e. “genomes") in PyGlove, and a gridsweep was used to find the best coefficients.

Gradientless Descent/Batch Hill-Climbing: We use the same mutator throughout the opti-
mization process, similar to (Song et al., 2020b) to reduce algorithm complexity, as the step size
annealing schedule found in (Golovin et al., 2020) is specific to convex objectives only.

Policy Gradient: We use a gradient update batch size of 64 to the Pointer Network, while
using PPO as the policy gradient algorithm, with its default (recommended) hyperparameters
from (Peng et al., 2020). These include a softmax temperature of 1.0, 100 hidden state size with
1 layer for the RNN, importance weight clipping of 0.2, and 10 update steps per weight update,
with more values found in (Vinyals et al., 2015). We grid searched PPO’s learning rate across
{1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3} and found 5× 10−4 was the best.

A.2.2 Continuous Algorithms

ARS/ES: We always use reward normalization and state normalization (for RL benchmarks)
from (Mania et al., 2018b). For BBOB functions, we use ηw = 0.5 while σ = 0.5, along with 64
Gaussian directions per batch in an ES iteration, with 8 used for evaluation. For RL benchmarks,
we use ηw = 0.01 and σ = 0.1, along with 75 Gaussian directions, with 50 more used for evaluation.
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CMA-ES: For BBOB functions, we use σ = 0.5 and ηw = 0.5, similar to ARS/ES.

A.3 BBOB Benchmarks

Our BBOB functions consisted of the 19 classical functions from (Hansen et al., 2009): {Sphere,
Rastrigin, BuecheRastrigin, LinearSlope, AttractiveSector, StepEllipsoidal, RosenbrockRotated,
Discus, BentCigar, SharpRidge, DifferentPowers, Weierstrass, SchaffersF7, SchaffersF7IllConditioned,
GriewankRosenbrock, Schwefel, Katsuura, Lunacek, Gallagher101}.

The each parameter in the raw continuous input space is bounded within [−L, L] where L = 5. For
discretization + categorization into a grid, we use a granularity of 1 between consecutive points,
i.e. a categorical a parameter is allowed to select within {−L,−L + 1, ..., 0, ..., L− 1, L}. Note that
each BBOB function is set to have its global optimum at the zero-point, and thus our hybrid spaces
contain the global optimum.

Because each BBOB function may have a completely different scaling (e.g. for a fixed dimension,
the average output for Sphere may be within the order of 102 but the average output for BentCigar
may be within 1010), we thus normalize the output of each function when reporting results. The
normalized valuation of a BBOB function f is calculated by dividing the raw value by the maximum
absolute value obtained by random search.

Since for the ES component we use a step size of ηw = 0.5 and precision parameter of σ = 0.5, we
thus use for evolutionary mutations, a Gaussian perturbation scaling σmut of 0.07, which equalizes
the average norms between the update directions on θ, which are: ηw∇θf̃σ and σmutg.

A.4 RL + Neural Network Setting

In order to allow combinatorial flexibility, our neural network consists of vertices/values V =
{v1, ..., vk}, where the initial block of |S| values {v1, ..., v|S|} corresponds to the environment state,
and the last block of |A| values {vk−|A|+1, ..., vk} corresponds to the action output values. Directed
edges E ⊆ Emax = {ei,j = (i, j) | 1 ≤ i < j ≤ k, |S| < j} are constructed with corresponding weights
W = {wi,j | (i, j) ∈ E}, and nonlinearities G = {σ|S|+1, ..., σk} for the non-state vertices. Thus a
forward propagation consists of for-looping in order j ∈ {|S|+ 1, ..., k} and computing output values
vj = σj

(∑
(i,j)∈E viwi,j

)
.

By default, unless specified, we use Tanh non-linearities with 32 units for each hidden layer.

Edge pruning: We group all possible edges (i, j) into a set in the neural network, and select
a fixed number of edges from this set. We can also further search across potentially different
nonlinearities, e.g. fi ∈ {tanh, sigmoid, sin, ...} similarly to Weight Agnostic Neural Networks (Gaier
and Ha, 2019). In terms of API, this search space can be described as pyglove.manyof(Emax,|E|)
along with pyglove.oneof(σi,G). The search space is of size

(|Emax|
|E|

)
or 2|Emax| when using a fixed

or variable size |E| respectively.

We collect all possible edges from a normal neural network into a pool Emax and set |E| = 64 as
the number of distinct choices, passed to the pyglove.manyof. Similar to quantization, this choice
is based on the value max(|S|, H) or max(|A|, H), where H = 32 is the number of hidden units,
which is linear in proportion to respectively, the maximum number of weights |S| ·H or |A| ·H.
Since a hidden layer neural network has two weight matrices due to the hidden layer connecting to
both the state and actions, we thus have ideally a maximum of 32 + 32 = 64 edges.
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For nonlinearity search, we use the same functions found in (Gaier and Ha, 2019). These are: {Tanh,
ReLU, Exp, Identity, Sin, Sigmoid, Absolute Value, Cosine, Square, Reciprocal, Step Function.}

Quantization: We assign to each edge (i, j) one color of many colors c ∈ C = {1, ..., |C|}, denoting
the partition group the edge is assigned to, which defines the value wi,j ← w(c). This is shown
pictorially in Figs. 3a and 3b. This can also programmically be done by concatenating primitives
pyglove.oneof(ei,j,C) over all edges ei,j ∈ Emax. The search space is of size |C||E|.

The number of partitions (or “colors") is set to max(|S|, |A|). This is both in order to ensure a
linear number of trainable parameters compared to the quadratic number for unstructured networks,
as well as allow sufficient parameterization to deal with the entire state/action values.

A.4.1 Environment

For all environments, we set the horizon T = 1000. We also use the reward without alive bonuses
for weight training as commonly used (Mania et al., 2018a) to avoid local maximum behaviors (such
as an agent simply standing still to collect a total of 1000 reward), but report the final score as the
real reward with the alive bonus.

A.4.2 Baseline Details

We consider Unstructured, Toeplitz, Circulant and a masking mechanism (Choromanski et al., 2018;
Lenc et al., 2019). We introduce their details below. Notice that all baseline networks share the
same general (1-hidden layer, Tanh nonlinearity) architecture from A.4. This impplies that we only
have two weight matrices W1 ∈ R|S|×h, W2 ∈ Rh×|A| and two bias vectors b1 ∈ Rh, b2 ∈ R|A|, where
|S|, |A| are dimensions of state/action spaces. These networks differ in how they parameterize the
weight matrices. We have:

Unstructured: A fully-connected layer with unstructured weight matrix W ∈ Ra×b has a total of
ab independent parameters.

Toeplitz: A toeplitz weight matrix W ∈ Ra×b has a total of a + b− 1 independent parameters.
This architecture has been shown to be effective in generating good performance on benchmark
tasks yet compressing parameters (Choromanski et al., 2018).

Circulant: A circulant weight matrix W ∈ Ra×b is defined for square matrices a = b. We
generalize this definition by considering a square matrix of size n×n where n = max{a, b} and then
do a proper truncation. This produces n independent parameters.

Masking: One additional technique for reducing the number of independent parameters in a
weight matrix is to mask out redundant parameters (Lenc et al., 2019). This slightly differs from
the other aforementioned architectures since these other architectures allow for parameter sharing
while the masking mechanism carries out pruning. To be concrete, we consider a fully-connected
matrix W ∈ Ra×b with ab independent parameters. We also setup another mask weight Γ ∈ Ra×b.
Then the mask is generated via

Γ′ = softmax(Γ/α)

where softmax is applied elementwise and α is a constant. We set α = 0.01 so that the softmax
is effectively a thresolding function wich outputs near binary masks. We then treat the entire
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concatenated parameter θ = [W, Γ] as trainable parameters and optimize both using ES methods.
Note that this softmax method can also be seen as an instance of the continuous relaxation method
from DARTS (Liu et al., 2019b). At convergence, the effective number of parameter is ab · λ where
λ is the proportion of Γ′ components that are non-zero. During optimization, we implement a
simple heuristics that encourage sparse network: while maximizing the true environment return
f(θ) =

∑T
t=1 rt, we also maximize the ratio 1− λ of mask entries that are zero. The ultimate ES

objective is: f ′(θ) = β · f(θ) + (1− β) · (1− λ), where β ∈ [0, 1] is a combination coefficient which
we anneal as training progresses. We also properly normalize f(θ) and (1 − λ) before the linear
combination to ensure that the procedure is not sensitive to reward scaling.
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B Extended BBOB Experimental Results

B.1 CMA-ES Comparison
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Figure 7: Comparison when regular ES/ARS is used as the continuous algorithm in ES-ENAS,
vs when CMA-ES is used as the continuous algorithm (which we name “CMA-ENAS"). We use
the exact same setting as Figure 2 in the main body of the paper. We use Regularized Evolution
(Reg-Evo) as the default combinatorial algorithm due its strong performance found from Figure
2. We find that ES-ENAS usually converges faster initially, while CMA-ENAS achieves a better
asymptotic performance. This is aligned with the results (in the first row) when comparing vanilla
ES with vanilla CMA-ES. For generally faster convergence to a sufficient threshold however, ES/ES-
ENAS usually suffices.
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C Extended Neural Network Experimental Results

As standard in RL, we take the mean and standard deviation of the final rewards across 3 seeds for
every setting. “L", “H" and “H, H" stand for: linear policy, policy with one hidden layer, and policy
with two such hidden layers respectively.

C.1 Baseline Method Comparisons

In terms of the masking baseline, while (Lenc et al., 2019) fixes the sparsity of the mask, we instead
initialize the sparsity at 50% and increasingly reward smaller networks (measured by the size of the
mask |m|) during optimization to show the effect of pruning. Using this approach on several Open
AI Gym tasks, we demonstrate that masking mechanism is capable of producing compact effective
policies up to a high level of pruning. At the same time, we show significant decrease of performance
at the 80-90% compression level, quantifying accurately its limits for RL tasks (see: Fig. 8).

Figure 8: The results from training both a mask m and weights θ of a neural network with two
hidden layers. ‘Usage’ stands for number of edges used after filtering defined by the mask. At the
beginning, the mask is initialized such that |m| is equal to 50% of the total number of parameters
in the network.

C.2 Quantization
Env. Dim. Arch. Partitions Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) L 8 366± 0 296± 31 5± 1
Reacher (11,2) L 11 −10± 4 −157± 62 −135± 10
Hopper (11,3) L 11 2097± 788 1650± 320 16± 0
HalfCheetah (17,6) L 17 2958± 73 3477± 964 129± 183
Walker2d (17,6) L 17 326± 86 2079± 1085 8± 0
Pusher (23,7) L 23 −68± 2 −198± 76 −503± 4
Striker (23,7) L 23 −247± 11 −376± 149 −590± 18)
Thrower (23,7) L 23 −819± 8 −1555± 427 −12490± 708)

Env. Dim. Arch. Partitions Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 8 361± 4 362± 1 15± 0
Reacher (11,2) H 11 −6± 0 −23± 11 −157± 2
Hopper (11,3) H 11 3288± 119 2834± 75 95± 2
HalfCheetah (17,6) H 17 4258± 1034 4894± 110 −41± 5
Walker2d (17,6) H 17 1684± 1008 2026± 46 −5± 1
Pusher (23,7) H 23 −225± 131 −350± 236 −1049± 40
Striker (23,7) H 23 −992± 2 −466± 238 −1009± 1
Thrower (23,7) H 23 −1873± 690 −818± 363 −12847± 172

Table 2: Results via quantization across PG, Reg-Evo, and random search controllers. The number
of partitions is always set to be max(|S|, |A|).
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C.3 Edge Pruning and Nonlinearity Search

Below in Table 3, we provide full results on edge-pruning.
Env. Dim. Arch. Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 105± 116 343± 2 21± 1
Reacher (11,2) H −16± 5 −52± 5 −160± 2
Hopper (11,3) H 3349± 206 2589± 106 66± 0
HalfCheetah (17,6) H 2372± 820 4016± 726 −156± 22
Walker2d (17,6) H 3813± 128 1847± 710 0± 2
Pusher (23,7) H −133± 31 −156± 17 −503± 15
Striker (23,7) H −178± 54 −130± 16 −464± 13
Thrower (23,7) H −532± 29 −1107± 158 −7797± 112

Table 3: Results via quantization across PG, Reg-Evo, and random search controllers. The number
of edges is always set to be 64 in total, or (32, 32) across the two weight matrices when using a
single hidden layer.

Nonlinearity Search Intriguingly, we found that appending the extra nonlinearity selection into
the edge-pruning search space improved performance across HalfCheetah and Swimmer, but not
across all environments. However, lack of total improvement is consistent with the results found with
WANNs (Gaier and Ha, 2019), which also showed that trained WANNs’ performances matched with
vanilla policies. From these two observations, we hypothesize that perhaps nonlinearity choice for
simple MLP policies trained via ES are not quite so important to performance as other components,
but more ablation studies must be conducted. Furthermore, for quantization policies, we see that
hidden layer policies near-universally outperform linear policies, even when using the same number
of distinct weights.

Env. Dim. Arch. Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 247± 110 359± 5 11± 3
Hopper (11,3) H 2270± 1464 2834± 120 57± 7
HalfCheetah (17,6) H 3028± 469 5436± 978 −268± 29
Walker2d (17,6) H 1057± 413 2006± 248 0± 1

Table 4: Results using the same setup as Table 3, but allowing nonlinearity search.

Env. Dim. (PG, Reg-Evo) Reward Method

HalfCheetah (17,6) (2958, 3477) → (4258, 4894) Quantization (L → H)
Hopper (11,3) (2097, 1650) → (3288, 2834) Quantization (L → H)
HalfCheetah (17,6) (2372, 4016) → (3028, 5436) Edge Pruning (H) → (+ Nonlinearity Search)
Swimmer (8,2) (105, 343) → (247, 359) Edge Pruning (H) → (+ Nonlinearity Search)

Table 5: Rewards for selected environments and methods, each result averaged over 3 seeds. Arrow denotes
modification or addition (+).
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D Network Visualizations

D.1 Quantization

Figure 9: (a): Partitioning of edges into distinct weight classes obtained for the linear policy for
HalfCheetah environment from OpenAI Gym. (b): Partitioning of edges for a policy with one
hidden layer encoded by two matrices. State and action dimensionalities are: s = 17 and a = 6
respectively and hidden layer for the architecture from (b) is of size 41. Thus the size of the matrices
are: 17× 6 for the linear policy from (a) and: 17× 41, 41× 6 for the nonlinear one from (b).

D.2 Visualizing and Verifying Convergence

We also graphically plot aggregate statistics over the controller samples to confirm ES-ENAS’s
convergence. We choose the smallest environment, Swimmer, which conveniently works particularly
well with linear policies (Mania et al., 2018a), to reduce visual complexity and avoid permutation
invariances. We also use a boolean mask space over all possible edges (search space size |M| =
2|S|×|A| = 28×2). We remarkably observe that for all 3 independently seeded runs, PG converges
toward a “local maximum" architecture, demonstrated in Fig. 10 with the final architectures also
presented for both PG and Reg-Evo. This suggests that there may be a few “natural architectures"
optimal to the state representation.

Figure 10: Left: Final architectures that PG and Reg-Evo converged to on Swimmer with a linear
(L) policy, from the above runs. Note that the controller does not select all edges even if it is
allowed in the boolean search space, but also ignores some state values. Right: Edge pruning
convergence over time, with samples aggregated over 3 seeds from ES-ENAS using the PG controller
on Swimmer. Each edge is colored according to a spectrum, with its color value equal to 2|p− 1

2 |
where p is the edge frequency. We see that initially, each edge has uniform (p = 1

2) probability of
being selected, but as both controller progress, their samples converge toward a single pruning.
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E Theory

In this section, for convenience we use the variable x, which may be assigned x = θ in the main
section of the paper. We present the ES/ARS and Mutation-based updates, which are respectively
(assuming equal batch size B of parallel workers):

x+ = x + η∇̂f̃σ(x) where ∇̂f̃σ(x) =
B/2∑
i=1

f(x + σgi)− f(x− σgi)
2σ

gi (5)

x+ = arg max{f(x), f(x + σmutg1), ..., f(x + σmutgB)} (6)

We assume that f is α-strongly concave and β-smooth for α, β ≥ 0 if for all x, y:

⟨∇f(x), y − x⟩ − β

2 ∥y − x∥22 ≤ f(y)− f(x) ≤ ⟨∇f(x), y − x⟩ − α

2 ∥y − x∥22 (7)

E.1 ES/ARS Guarantees

We note that the β-smoothness also carries from the original function f(x) into the smoothed
function f̃σ(x) = Eg∼N (0,I)[f(x + σg)], and thus by simply combining the β-smoothness from Eq. 7
with the definition of x+ from Eq. 5, we have

η⟨∇f̃σ(x), ∇̂f̃σ(x)⟩ − βη2

2 ∥∇̂f̃σ(x)∥22 ≤ f̃σ(x+)− f̃σ(x) (8)

Taking the expectation with respect to the sampling of g1, ..., gB/2 and noting that ∇̂f̃σ(x) is an
unbiased estimation of ∇f̃σ(x):

η∥∇f̃σ(x)∥22 −
βη2

2
(
∥∇f̃σ(x)∥22 + MSE(∇̂f̃σ(x))

)
≤ ∆σ,ES(x) (9)

where ∆σ,ES(x) = Eg1,...,gB/2∼N (0,I)[f̃σ(x+)]− f̃σ(x) is the expected one-step improvement on the
smoothed function f̃σ.

Using (Nesterov and Spokoiny, 2017), Theorem 4 leads to estimator variance MSE(∇̂f̃σ(x)) =
O(β2d3σ2/B) while Theorem 1 leads to |f(x) − f̃σ(x)| ≤ O(σ2βd), and finally Lemma 4 leads
to ∥∇f̃σ(x)∥22 − ∥∇f(x)∥22 ≤ O(β2d2σ2). Note that all of these terms are negligible compared to
∥∇f(x)∥22 as σ is small and B can be e.g. O(d), and thus we may substitute these terms with single
variables for the reader’s convenience. Thus, this leads to:

G0 + η(∥∇f(x)∥22 + G1)− βη2

2 (∥∇f(x)∥22 + G2) ≤ ∆ES(x) (10)

where the negligible terms are: G0 = −O(σ2βd), G1 = O(β2d2σ2), G2 = O(β2d2σ2 +β2d3σ2/B) and
∆ES(x) = Eg1,...,gB/2∼N (0,I)[f(x+)]− f(x) is the expected one-step improvement on the original f .

We may set η = 1
β

∥∇f(x)∥2+G1
∥∇f(x)∥2+G2

≈ 1
β to maximize the quadratic (in terms of η) in the LHS, which

leads to

O

(
∥∇f(x)∥22

β

)
= G0 + 1

2β

(∥∇f(x)∥22 + G1)2

(∥∇f(x)∥22 + G2)
≤ ∆ES(x) (11)
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E.2 Mutation Guarantees

We have from plugging in y = x+ in Eq. 6 and 7 along with taking the expectation from sampling
g1, ..., gB and taking the argmax gmax (which can potentially also be zero if there is no improvement),

∆MUT (x) ≤

max
(

0,Eg1,...,gB∼N (0,I) [⟨∇f(x), σmutgmax⟩]− Eg1,...,gB∼N (0,I)

[
α

2 ∥σmutgmax∥22
]) (12)

where ∆MUT (x) = Eg1,...,gB∼N (0,I)[f(x+)]− f(x) is the expected improvement for the mutation.

We focus on upper bounding the non-zero term in the maximum in the RHS. Note that choosing
gmax ∈ {g1, ..., gB} from the argmax process only optimizes f(x + σmutg) and not any other
objective, and thus:

Eg1,...,gB∼N (0,I)[⟨∇f(x), σmutgmax⟩]

≤ σmutEg1,...,gB∼N (0,I)

[
max

gi
⟨∇f(x), gi⟩

]
≤ σmut∥∇f(x)∥2

√
2 log(B)

(13)

where the bottom inequality is a well known fact about sums of Gaussians. For the other term, we
have:

Eg1,...,gB∼N (0,I)

[
α

2 ∥σmutgmax∥22
]
≥ ασ2

mut

2 Eg1,...,gB∼N (0,I)

[
min

gi
∥gi∥22

]
(14)

To bound the RHS’s right side, we may use a well-known concentration inequality for Lipschitz
functions with respect to Gaussian sampling, i.e. Prg∼N (0,I) [|M(g)− µ| > λ] ≤ 2e−λ2/2 where M(·)
is any Lipschitz function and µ = Eg′∼N (0,I) [M(g′)]. We may define M(g) = ∥g∥2 which leads to
µ =
√

d, and then use a union bound over B IID samples to obtain:

Prg1,...,gB∼N (0,I)
[
∥gi∥2 ≥

√
d− λ, ∀gi

]
≥ Prg1,...,gB∼N (0,I)

[
|∥gi∥2 −

√
d| ≤ λ, ∀gi

]
≥ (1−B · 2e−λ2/2)

(15)

This finally implies that from Eq. 14,

Eg1,...,gB∼N (0,I)

[
min

gi
∥gi∥22

]
≥ max

(
0,
√

d− λ
)2
· Prg1,...,gB∼N (0,I)

[
∥g∥2 ≥

√
d− λ, ∀gi

]
≥ max

(
0,
√

d− λ
)2
· (1−B · 2e−λ2/2)

(16)

To set the probability-like term (1−2Be−λ2/2) in the RHS to a constant C, we let λ =
√

2 log( 2B
1−C ) =

O
(√

log(B)
)
, which finally leads to

Eg1,...,gB∼N (0,I)

[
min

gi
∥gi∥22

]
≥ max

(
0, O

(√
d−

√
log(B)

))2
(17)
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Thus replacing the two terms in Eq. 12,

∆MUT (x) ≤ max
(

0, σmut∥∇f(x)∥2
√

2 log(B)− ασ2
mut max

(
0, O

(√
d−

√
log(B)

))2
)

(18)

If B = Ω(exp(d)), then there is no quadratic in terms of σmut, and thus σmut can be arbitrarily
large (or maximized at the search space’s bounds) to essentially brute force the entire search space.

Otherwise, hyperparameter tuning for σmut leads to maximizing the quadratic in the RHS, which
leads to setting σmut = ∥∇f(x)∥2

√
2 log(B)

α·O
(√

d−
√

log(B)
)2 , leading to

∆MUT (x) ≤ ∥∇f(x)∥22 log(B)

α ·O
(√

d−
√

log(B)
)2 (19)

E.3 Putting things together

Putting the expected improvements together, we see that:

∆MUT (x) ≤ ∥∇f(x)∥22 log(B)

α ·O
(√

d−
√

log(B)
)2 (20)

∆ES(x) ≥ O

(
∥∇f(x)∥22

β

)
(21)

and thus there is a expected improvement ratio bound when B ≤ O(exp(d)):

∆ES(x)
∆MUT (x) ≥ O

1
κ

(√
d−

√
log(B)

)2

log(B)

 (22)

where κ = β/α is the condition number.
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