
MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Yahong Zhang * 1 Chenchen Fan * 1 Donghui Chen 1 Congrui Li 1 Wenli Ouyang 1 Mingda Zhu 1 Junchi Yan 2

Abstract
Machine learning (ML) has been actively adopted
in Linear Programming (LP) and Mixed-Integer
Linear Programming (MILP), whose potential
is hindered by instance scarcity. Current syn-
thetic instance generation methods often fall short
in closely mirroring the distribution of original
datasets or ensuring the feasibility and bound-
edness of the generated data — a critical re-
quirement for obtaining reliable supervised la-
bels in model training. In this paper, we present
a diffusion-based LP/MILP instance generative
framework called MILP-FBGen. It strikes a bal-
ance between structural similarity and novelty
while maintaining feasibility/boundedness via a
meticulously designed structure-preserving gen-
eration module and a feasibility/boundedness-
constrained sampling module. Our method shows
superiority on two fronts: 1) preservation of key
properties (hardness, feasibility, and bounded-
ness) of LP/MILP instances, and 2) enhanced per-
formance on downstream tasks. Extensive studies
show two-fold superiority that our method ensures
higher distributional similarity and 100% feasi-
bility in both easy and hard datasets, surpassing
current state-of-the-art techniques.

1. Introduction
LP (Linear Programming) and MILP (Mixed Integer Linear
Programming) have wide applications, e.g. planning logis-
tics path problems (Troncoso & Garrido, 2005), tackling
matching problems (Wang et al., 2020), and scheduling or-
ders in production workshop (Tang et al., 2001). Although
the instances from the same applications share similar pat-
terns and characteristics, classic heuristic methods (Whit-

*Equal contribution 1AI Lab, Lenovo Research, Beijing, China
2School of Artificial Intelligence & Department of Computer Sci-
ence and Engineering & MoE Lab of AI, Shanghai Jiao Tong
University, Shanghai, China. Correspondence to: Wenli Ouyang
<ouyangwl1@lenovo.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ley, 1994; Helsgaun, 2000) or branch-and-bound solvers
(Gurobi; SCIP; HiGHS) solve them repeatedly without mak-
ing use of those similarities. Machine learning (ML) meth-
ods (Sun & Yang, 2023; Fan et al., 2023; Han et al., 2023;
Nair et al., 2020) hold significant potential in recognizing
patterns, and hence they are helpful for building optimiza-
tion algorithms. Nevertheless, the application of ML faces
various challenges stemming from the intricacies and data
scarcity inherent in real-world problems from general combi-
natorial problems (Bengio et al., 2021; Yehuda et al., 2020),
satisfiabilty (Guo et al., 2023; Malitsky et al., 2016a), to
MILP (Zhang et al., 2023). The lack of practically usable
and representative instances hinders the training and gener-
alization of ML methods. To address this issue, efforts have
been dedicated to LP/MILP instance generation.

The current mainstream techniques for LP/MILP instance
generation can be divided into three categories: i) building
on (practically limited) domain knowledge (Vander Wiel &
Sahinidis, 1995; Balas & Ho, 1980); ii) constructing general
LP/MILP instances by sampling from the hyperparameter
encoding space (Bowly et al., 2020; Li et al., 2024; Bowly,
2019); iii) using a deep generative framework to destroy
and repair parts of the original LP/MILP instances (Geng
et al., 2023; Wang et al., 2023). The first category involves a
specific scheme or formulation design, and can only cover a
few LP/MILP instance types with known expert knowledge.
The second category is for general instance generation, but
only controlling and manipulating limited statistics make it
difficult to capture the fine-grained characteristics, such as
keeping the topological structure of a single instance. To ad-
dress this issue, the third one converts the LP/MILP instance
generation into a graph generation problem. It iteratively
destroys and repairs parts of the original graphs, typically
with a masked variational autoencoder (VAE) model (Kipf
& Welling, 2016), so that the original instance’s topological
structure can be preserved to some extent. G2MILP (Wang
et al., 2023) generates instances that can simulate real-world
scenarios and enrich the original dataset, but it does not
guarantee the feasibility and boundedness for many real-
world problems. If the generated instance is infeasible and
unbounded, it becomes impossible to obtain corresponding
label data for supervised learning, which hinders the appli-
cation of most ML methods. DIG-MILP (Wang et al., 2023)
claims to be able to guarantee these two points but at the

1

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

cost of sacrificing the structure-preserving capacity. Due to
the complete modification of all constraints, its generated
instances have a large gap with the original training data
concerning both the structural similarity and computational
hardness, which fall out of the training distribution and can
be useless in the original training task.

Therefore, ensuring these key properties of the generated
instances is a fundamental step in LP/MILP sample gen-
eration and our work focuses on addressing these issues.
In this paper, we resort to the probabilistic diffusion mod-
els, to build a diffusion-based LP/MILP instance gener-
ative framework called MILP-FBGen which meanwhile
preserves Feasibility and Boundedness. Using the standard
MILP formulation MILP(A,b, c) (see Eq. 1 in the method
section), we first devise a structure-preserving generation
module to generate new row or column vectors of the inci-
dence matrix A and replace the existing ones, so that the
balance between the novelty and structure’s preservation can
be controlled by setting the replacement ratio. Besides, we
develop a feasibility and boundedness-constrained sampling
module that makes right-hand side constant b and objec-
tive coefficient c fall within the appropriate domain. Thus,
the feasibility and boundedness of the generated instances
can be ensured and superfluous constraints from both the
primal and dual forms are also avoided. Furthermore, we
design different constraint/variable vector selection strate-
gies to guide the specification of vectors to be regenerated
in incidence matrix A: random selection and task-oriented
selection. The contributions are:

1) To our best knowledge, we have pioneered the develop-
ment of the first diffusion-based generative framework for
LP/MILP instance generation namely MILP-FBGen, in con-
trast to those based on VAE framework (Geng et al., 2023)
for MILP or more broadly SAT instance generation (Malit-
sky et al., 2016b; Li et al., 2023a; Chen et al., 2024).

2) We develop a tailored approach to preserve both feasibil-
ity and boundedness while ensuring a high structural similar-
ity between the generated and original instances, which has
not been ensured in peer works to the best of our knowledge.

3) We design different constraint/variable vector selection
strategies for LP/MILP instance generation, suitable for
different scenarios.

4) Extensive experiments verify the higher similarity and
100% feasibility in diverse datasets, compared with cur-
rent state-of-the-art methods. Our generated instances also
significantly boost the performance of representative down-
stream tasks. Source code will be made publicly available.

2. Related Work
Machine learning for LP/MILP. ML techniques have
emerged as a powerful approach in operations research (Ben-

gio et al., 2021; Cappart et al., 2023). The mainstream meth-
ods can be divided into two classes. The first one directly
solves specific LP/MILP problems (Han et al., 2023; Ye
et al., 2023; Sun & Yang, 2023; Li et al., 2023b), e.g. by
one-shot forward prediction. The second one assists the
solving process by embedding ML models within the solver
to replace its key components, including node selection (He
et al., 2014; Labassi et al., 2022), branching (Zarpellon et al.,
2021; Gupta et al., 2020), initial basis prediction (Fan et al.,
2023) and so on. Although ML methods exhibit promise,
they are still limited by inadequate data, especially in the su-
pervised setting. Unfortunately, existing instance generation
methods often fall short of ensuring feasibility and bound-
edness, resulting in instances that are practically unusable.
Our generative framework can complement the original in-
stances by generating both feasible and bounded instances,
which are vital in many real-world applications.

LP/MILP instance generation. Early approaches use ex-
pert knowledge or mathematical formulas to generate in-
stances for a specific problem type, e.g. Set Covering
(SC) (Balas & Ho, 1980), Travelling Salesman Problem
(TSP) (Pilcher & Rardin, 1992; Vander Wiel & Sahinidis,
1995), and Knapsack Problem (Hill et al., 2011). To gener-
ate general LP/MILP instances, (Bowly et al., 2020; Bowly,
2019) achieve it by sampling from the hyperparameter en-
coding space. However, it cannot control the structural
characteristics while preserving the same distribution as
the original data. Based on the deep generative framework,
G2MILP (Geng et al., 2023) proposes a VAE-based genera-
tive model and iteratively destroys and repairs parts of the
original graphs to generate new ones. Its generated instances
closely resemble the original data, but they may not satisfy
the feasibility and boundedness, which is quite essential
for most ML tasks to obtain supervised labels. While DIG-
MILP (Wang et al., 2023) asserts the assurance of these two
fundamental properties, the instances it generates deviate
from the original training distribution. This deviation could
result in poorer performance in the downstream task when
incorporating these newly generated instances. Therefore,
we are the first to address the aforementioned issues ex-
isting in previous works simultaneously. Specifically, our
approach allows for the direct generation of instances that
are both feasible and bounded, while also ensuring their
distribution closely resembles that of the original data.

3. Preliminaries
Given a triplet of the incidence matrix A ∈ Qm×n, the right-
hand side constant b ∈ Qm, and the objective coefficient
c ∈ Qn, a MILP(A,b, c) can be defined as:

min
x

cTx,

s.t. Ax ≤ b,x ∈ Zp
≥0 ×Qn−p

≥0 ,
(1)

2

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

1

𝑖
𝐗𝟎 ෩𝐗𝟏 ෩𝐗𝟐 ෩𝐗𝑻−𝟏…

෩𝐗𝑻…1 1 1 0 1

0.1 0.3 −0.9 0 0.8…

𝐗𝟎 ෩𝐗𝟏 ෩𝐗𝟐 ෩𝑿𝑻−𝟏
…

෩𝐗𝑻…0 1 1 0 1

0.1 0.5 −0.6 0.1 0.5…

Denoising Reverse Diffusion

ℒ(𝐗𝟎, 𝐗𝟎)

0 0.5 −0.6 0 0.5…

𝐀𝑖∙

0.1 0.3 −0.9 0 0.8…

𝐀𝑖∙

Replace

𝐀

Noising Forward Diffusion

෩𝐗𝑻~𝒩(∙)

෩𝐗𝟎

෩𝐗𝟎

𝑖

𝐀 ∈ ℚ𝑚×𝑛

Index

selector

𝑖

…

…

var. cons.

GNN

𝑣1

𝑣𝑛

𝑤1

𝑤𝑖

𝑤𝑚

…

ℎ𝑣
ℎ𝑤𝑖

…𝑖 𝑖 𝑖

…1 2 𝑛 Latent

RepresentationsMILP 𝑨, 𝒃, 𝒄

Training Instance Generation

Training Loss

Input instance

Weighted Bipartite

Graph

Figure 1. SPGM module overview: An LP/MILP instance is represented as a bipartite graph, where yellow and green nodes signify
variables and constraints, respectively. A destroy and repair scheme is applied to a constraint vector Ai· and the two rows of X0 indicate:
i) its connections to variables; ii) connection weights. These two rows undergo the forward noising and reverse denoising processes. The
multiplication of these rows yields the new constraint Âi·. The diffusion model is trained by reconstructing it back to the original one.

where x = (x1, x2, · · · , xn)
T is the vector of decision vari-

ables with p variables being integer. Each row vector of
incidence matrix A represents the connection between each
constraint and all other decision variables, while each col-
umn vector corresponds to the relationship between each
decision variable and all other constraints. For clarity, we re-
fer to the row vector and column vector of incidence matrix
A as the constraint vector and variable vector respectively.
LP(A,b, c) can be seen as a special form of the MILP
by setting p = 0, and thus all decision variables take real
values. Our method applies to both MILP and LP instances.

As aforementioned, for most ML-based tasks, e.g. node
selection (He et al., 2014) and initial basis prediction (Fan
et al., 2023), the MILP instances need to satisfy the con-
ditions of feasibility and boundedness and have optimal
solutions. The definitions of feasibility, boundedness, and
optimal solution of MILP are as follows:

Definition 3.1. (Feasibility of MILP): A MILP(A,b, c)
is feasible if there exists an xf such that all the constraints
are satisfied. Then, xf is termed as a feasible solution.

Definition 3.2. (Boundedness of MILP): An instance
MILP(A,b, c) is bounded if there is an upper bound on
cTx across all the feasible solutions.

Definition 3.3. (Optimal solution of MILP): x∗ is recog-
nized as an optimal solution if it is a feasible solution and
no worse than all other feasible solutions x: cTx∗ ≤ cTx.

By narrowing the ranges of A, b and c from the real domain
R to the rational domain Q, as commonly performed in
MILP studies, any feasible-bounded MILP exists an optimal
solution (Schrijver, 1998). Hence, our generative model
only needs to ensure that the generated instances are feasible
and bounded.

4. Methodology
We present MILP-FBGen, featuring three unique modules:
structure-preserving generation, feasibility/boundedness-
constrained sampling, and constraint/variable vector selec-
tion. We also elaborate on our model architecture in this
section.

4.1. Structure-preserving Generation
Our primary objective is to preserve the intrinsic structures
of the original LP/MILP instances as much as possible. The
incidence matrix A encapsulates crucial structural infor-
mation, yet generating the entire matrix directly can be
computationally expensive and challenging, as noted in (Li
et al., 2023a). Fortunately, leveraging prior knowledge, we
adopt a destroy and repair paradigm, aiming at partial seg-
ments of the matrix to ensure minimal structural changes
(Geng et al., 2023). We implement this concept by selecting
one or more constraint vectors from the incidence matrix
A. Subsequently, we generate one or more new vectors
to replace the existing ones based on the diffusion model.
As the generation processes for one or more constraint and
variable vectors are equivalent, for the sake of simplicity,
we choose to exemplify the generation of one constraint vec-
tor to illustrate the structure-preserving generation module
(SPGM), as depicted in Fig. 1.

Formally, given an incidence matrix A drawn from the
dataset D, we select a constraint vector from it based on
a specific selection strategy (details in Sec. 4.3), denoted
by Ai· ∼ p (Ai·|A). To better represent and reconstruct
Ai· ∈ R1×n, here we re-formulate this selected constraint

vector Ai· as a matrix X =

[
I{Ai· ̸= 0}

Ai·

]
∈ R2×n. The

first row indicates whether the ith constraint is connected
with each decision variable. X0

j = 1 (j = 0, 1, · · · , n− 1)

3

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

represents a connection between it and the jth variable,
while X0

j = 0 represents no connection. The second row
indicates the weights between the connected constraint and
decision variable. By converting Ai· to X, we achieve task
decomposition and can directly obtain the reconstructed
Ai· by multiplying them: Âi· = X0 × X1. Thus, we
aim to build a parameterized generator pθ (X|A,b, c, i).
We train the generator by maximizing the log-likelihood
log pθ

(
X = X̂|A,b, c, i

)
of reconstructing X given input

MILP(A,b, c) and constraint index i. The objective is:

argmax
θ

E(A,b,c)∼DEX∼p(X|A) log pθ (X|A,b, c, i) .

(2)

Diffusion paradigm for incidence matrix modeling. We
follow the probabilistic diffusion model (Sohl-Dickstein
et al., 2015; Ho et al., 2020) to parameterize the generative
distribution pθ in Eq. 2. For brevity, we omit the conditional
notations of (A,b, c, i) and denote X as X0 representing
the raw sample from dataset D. As shown in Fig. 1, we fol-
low the processing approach in (Chen et al., 2022) that first
rescales the {0, 1}-valued vector X0 to the {−1, 1} domain
as X̃0, and then treats it as real values. Thus, the matrix

X̃ =

[
X̃0

X1

]
is all consisted of real values and can be applied

to a continuous-space diffusion model. X̃1, X̃2, · · · , X̃T

are the latent variables with the same dimension. In the
predefined forward noising process:

q(X̃t+1|X̃t) := N (X̃t+1;
√
αtX̃t, (1− αt)I), (3)

where 1 − αt denotes the variance schedule. With care-
fully chosen and long enough iteration steps T , we want∏T

t=1αt ≈ 0 such that XT ∼ N (·). Based on Bayes’
Theorem, we can get the closed-form Gaussian posterior:

q
(
X̃t−1|X̃t, X̃0

)
=

q
(
X̃t|X̃t−1, X̃0

)
q
(
X̃t−1|X̃0

)
q
(
X̃t|X̃0

) .

(4)
In continuous diffusion, the denoising network is trained
to predict the unscaled Gaussian noise ϵ̃t = (X̃t −√
ᾱtX̃0)/

√
1− ᾱt = fθ(X̃t, t). The reverse process (Ho

et al., 2020) uses a point estimation of X̃0 in the posterior:

pθ
(
X̃t−1|X̃t

)
= q

X̃t−1|X̃t,
X̃t −

√
1− ᾱtfθ

(
X̃t, t

)
√
ᾱt

 .

(5)

To restore the discrete data, after generating the continuous
X̃0, thresholding is applied to its first-row vector and con-
vert it back to binary vector. Then, the generation model’s
output X̂0 is obtained.

4.2. Feasibility/boundedness-constrained Sampling
Based on the above SPGM module, a new incidence ma-
trix Â is generated. To ensure the new MILP instance

𝐀
Diffusion-based

SPGM
𝐀

New feasible-bounded

MILP(𝐀, መ𝐛, Ƹ𝐜)

ො𝐱
Right-Hand Sampler

መ𝐛 ∼ 𝑈 𝐀ො𝐱, 𝐀ത𝐱

Object coefficient Sampler

Ƹ𝐜 ∼ 𝑈(𝐀𝐓𝐲, 𝐀𝐓 ො𝐲)

𝓢𝒙

sampling
ො𝐲𝓢𝒚

sampling

Figure 2. Our FBCSM module: x̂ and ŷ are sampled from the sets
of collected feasible solutions. Together with the newly generated
Â from SPGM, b̂ and ĉ are constructed by sampling within the
bounds on the one sides to ensure the feasibility and boundedness.
Meanwhile, sampling bounds of b̂ and ĉ on the other sides are
designed to maximize the tightness of generated constraints.

is feasible and bounded, we propose a feasibility and
boundedness-constrained sampling module (FBCSM) to
generate b and c, as depicted in Fig. 2. The primal format of
a MILP(A,b, c) has been provided in Eq. 1. By relaxing
to the corresponding LP instance, we obtain the dual format
of this relaxed instance as denoted by DualLP(A,b, c):

max
y

bTy, s.t. ATy ≥ c,y ≥ 0. (6)

Solve for the primal instance MILP(A,b, c) and the dual
instance DualLP(A,b, c), and represent the sets of their
feasible solutions as Sx and Sy, which are consisted of
collected feasible solutions xf and yf separately. It is im-
portant to emphasize that the solutions obtained need not
be optimal. We randomly select from these sets to obtain
x̂ and ŷ. Then, subsequent right-hand sampler and object
coefficient sampler can be constructed based on Â, x̂ and
ŷ, thus the feasibility and boundedness can be guaranteed:

b̂ ≥ Âx̂, ĉ ≤ ÂTŷ, (7)

Proposition 4.1. (Boundedness and Feasibility Guarantee
of MILP-FBGen): MILP-FBGen ensures the new LP/MILP
instance MILP(Â, b̂, ĉ) is both feasible and bounded.

Proof: x̂ satisfy both x̂ ∈ Zp
≥0 × Qn−p

≥0 and b̂ ≥ Âx̂,
therefore MILP(Â, b̂, ĉ) at least has a feasible solution
x̂. The feasibility of the instance is proved. Similarly, ŷ
satisfy both ŷ ≥ 0 and ĉ ≤ ÂTŷ and ŷ is the feasible
solution of DualLP(Â, b̂, ĉ). Based on the weak duality
theorem, b̂Tŷ provides a lower bound on MILP(Â, b̂, ĉ).
The boundedness of the instance is proved.

Presolving techniques play a crucial role in the resolution
of LP/MILP instances. Bound and constraint tightening
serves to propagate constraints and refine variable domains,
eliminating redundancies. To maximize the tightness of
the generated constraints, we ensure that each constraint is

4

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

MILP 𝐀, 𝐛, 𝐜

…

…

…

GNN MLP

Task Network

…

…0.5

0.8

0.7

0.6

0.1

…

Node-aware

Confidence Level

Training

Set

Selection

Probability

𝐀 ∈ ℚ𝑚×𝑛

Index Selector

…

Figure 3. Task-oriented constraint/variable vector selection. For
each training instance, node-aware confidence level can be ex-
tracted after the task network and used to construct the selection
probability of each node. Nodes with worse performance in down-
stream tasks have a larger chance to be selected.

tightened to at least the extent propagated by the connected
variable’s range. Then, the construction of right-hand side
constant and object coefficient can be further constrained
by:

b̂ ≤ Âx̄, ĉ ≥ ÂTy. (8)

Each element of x̄ and y is formulated as

x̄j =

{
xl
j if Âij ≤ 0

xu
j if Âij > 0

(j = 1, 2, · · · , n),

y
i
=

{
yl
i if Âij ≥ 0

yu
i if Âij < 0

(i = 1, 2, · · · ,m),

(9)

where xl
j and xu

j are the lower bound and upper bound
of xj separately, yl

i and yu
i are corresponding bounds of

yi. By combining Eq. 7 and Eq. 8, we derive the final
sampling strategy for the right-hand side constant and object
coefficient:

b̂ ∼ Uniform(Âx̂, Âx̄), ĉ ∼ Uniform(ÂTy, ÂTŷ).
(10)

Hence, the resulting instance can be succinctly represented
as MILP(Â, b̂, ĉ). As for the generation of LP instances,
the processes involved are comparable, and we will refrain
from repeating them here. This sampling strategy provides
theoretical assurances regarding the boundedness and feasi-
bility of the generated instances, ensuring the high quality
of the produced data without superfluous constraints from
both the primal and dual forms.

4.3. Constraint/variable Vector Selection
Constraint/variable vector selection is another crucial aspect,
which directly influences the attributes of the generated
instances. In the training phase, to ensure thorough training,
constraints are randomly selected. However, during the
inference phase, we offer two distinct strategies.

Random selection. The default strategy is easy to imple-
ment. It randomly selects among all the constraint vectors
and can be applied to any dataset and any type of down-
stream tasks.

Task-oriented selection. Instance generation serves down-
stream tasks, so downstream tasks can in turn guide instance
generation. As depicted in Fig. 3, the selection probability
of constraint vectors is constructed based on the error be-
tween the outputs of downstream tasks and corresponding
labels, thus the tasks currently are limited to node-level re-
gression or classification. The worse the performance on a
node, the greater the probability that the node is selected.
The detailed procedure is presented in Appendix C. Based
on the newly-generated instances, the original dataset is
enriched and the downstream task network can also be fur-
ther finetuned. For better performance, this process can be
repeated.

4.4. Overall Pipeline
Bipartite graph representation. A weighted bipartite
graph G = (V,W,E) is used to represent a MILP or LP
instance, consisting of two disjoint sets of vertices V and
W , and a collection E of weighted edges. Each vertex in
V represents a decision variable v, and each vertex in W
represents a constraint variable w. Based on the statistics
information about these vertices, we can construct original
vertex features, denoted as ev and ew.

Forward noising process. Given a sample X0 from original
dataset, we randomly select a timestamp t from the range
of [1, T] and then obtain the noised X̃t. It is embedded into
the bipartite graph:

Ev = MLPv(concat(ev, X̃t)),Ew = MLPw(ew). (11)

To introduce the time information, we map the timestamp t
to a high-dimensional sinusoidal feature (Sun & Yang, 2023)
and add it to above vertex features. We utilize the standard
message-passing network (Fan et al., 2023) as the graph
neural network and the learned vertex representations are
denoted as Ẽ

v
, Ẽ

w
= GNN(Ev,Ew). Next, we select the

constraint feature Ẽ
w

i corresponding to the chosen constraint
index i and embed it to each variable feature respectively.
Subsequently, the enriched variable feature acts as the final
encoded feature Ẽ

v
.

Reverse denoising process. Based on the encoded feature,
we can output the predicted Gaussian noise ϵ̃t = MLP(Ẽ

v
).

During training process, Eq. 2 is equivalent to minimize

L = ||ϵ̃t − ϵ||2, ϵ ∼ N (0, I). (12)

With resort to the denoising formula of Eq. 5, we can gradu-
ally obtain the predicted X̂0 and perform the multiplication
operation between its row vectors to obtain Âi·, which is
used to replace the ith constraint vector. Based on a pre-
defined replacement ratio η, this process is performed in
parallel to ensure that ηm vectors (for variable vectors, ηn)
are generated and replaced.

Instance generation. Based on the newly-generated inci-
dence matrix Â, we use the module described in Sec. 4.2

5

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

to obtain b̂ and ĉ, which can guarantee the feasibility and
boundedness of the new instance MILP(Â, b̂, ĉ).

5. Experiments
In this section, we first delineate the experimental settings,
including datasets and baselines, Then, we provide corre-
sponding numerical results and conduct detailed analysis to
verify the superiority of our proposed method.

5.1. Datasets and Baselines
We execute MILP-FBGen across four MILP datasets and
two LP datasets, covering a range of scenarios including
simple and challenging instances. Considering factors such
as the numbers of constraints, variables, non-zero elements
in incidence matrix A, and solving time, we categorize the
instances into three groups: Easy, Medium, and Hard. A
more detailed description can be found in Appendix A.

Easy: This category includes two MILP datasets, i.e., Set
Covering (SC) (Balas & Ho, 1980) and Mixed-integer Knap-
sack (MIK) (Atamtürk, 2003). SC is synthetic and generated
following previous work (Nair et al., 2020), and MIK is also
a widely used dataset.

Medium: This group is consisted of two publicly avail-
able LP datasets, Maritime Inventory Routing Problems
(MIRP) (Fan et al., 2023) and PDS (Mittelmann). PDS has
extremely large problem sizes and can be used to test the
performance of different models in the challenging scenario.

Hard: We adopt the MILP datasets utilized in
ML4CO (Gasse et al., 2022), including Workload Appor-
tionment (WA) and Anonymous. Due to the large scale of
these datasets and excessive solving time, we select the first
100 instances as our datasets respectively.

Three baselines are considered, ranging from the heuristic
method to the state-of-the-art (SOTA) deep generative mod-
els. Bowly (Bowly, 2019; Bowly et al., 2020) is a classic
heuristic generator and can generate feasible and bounded
instances. To ensure a fair comparison, we set all the con-
trollable parameters of Bowly to match the statistics of the
training set. G2MILP (Geng et al., 2023) is the first deep
generative framework for MILP instance generation and
preserves the training distribution well. DIG-MILP (Wang
et al., 2023) can ensure the feasibility and boundedness of
generated instances but at the cost of sacrificing the struc-
tural similarity.

5.2. Experimental Settings
We generate more instances w.r.t. each original one in the
training set, to double, triple, or even quadruple the original
dataset size. Without specification, the double one is used.
For most datasets, instance generation is performed with
different replacement ratios η, while for datasets with ex-
ceptionally large problem sizes, one proper ratio is kept to
avoid generated instances deviating from the original train-

ing distribution. Among the two constraint/variable vector
selection strategies, the Random one is the default option.

Our experiments mainly consist of two parts. For the first
part, we evaluate the ability of property preservation be-
tween training and generated instances from three aspects:
computational hardness, structural distributional similarity
and feasibility. We utilize the commercial solver Gurobi
(Gurobi) to solve instances, and report the average solving
time (Time) and feasibility ratio (F). Gap is the relative de-
viation between the solving time of training data and that of
generated data. As for the structural distributional similarity
(S), we adopt the similarity score from (Geng et al., 2023),
which ranges from 0 to 1.

The second part is to analyze the effect on the performance
of downstream tasks using instances generated from various
methods. We conduct evaluations on three tasks: initial ba-
sis prediction (Fan et al., 2023) on LP datasets, predict and
search for the best feasible solution (Han et al., 2023) on
MILP datasets, and hyperparameter tuning on LP datasets.
We modify the open-source solver HiGHS (HiGHS) to en-
able it to receive an external initial basis and hyperparam-
eters and use it to report the solving time (TimeH) on the
unseen test set, after passing in the predicted initial basis
or searched hyperparameters. For the predict and search
task, we follow (Han et al., 2023) and use Gurobi to output
the objective value after searching within a region around
the predicted solutions. The result from the default solver
without any assistance from ML models is named as De-
fault, while the result only based on the original training set
is denoted as Baseline. Gain is the relative improvement
compared with Baseline, due to the usage of augmented
instances. For more details, please refer to Appendix D.2.

5.3. Numerical Results

5.3.1. PROPERTY PRESERVATION
Computational hardness. Solving time can be considered
as the direct reflection of computational hardness and we
report the mean solving time of the training set and gen-
erated instances in Table 1. Typically, larger η leads to
greater perturbation, and the corresponding gap becomes
larger. Across all the datasets and ratios η, MILP-FBGen
beats all the compared baselines with a much lower gap.
The instances generated by Bowly perform poorly, primar-
ily due to the significant simplicity of generated instances,
and Bowly does not work for any medium and hard dataset.
As for DIG-MILP, it also has a relatively large gap, because
it changes all the constraints during instance generation and
thus the generated instances fall out of the original distri-
bution. G2MILP shows comparable performance in easy
datasets, while for medium and hard datasets, our method
shows significant superiority. Especially for the PDS dataset,
both DIG-MILP and G2MILP can not handle such large
instances, which greatly limits their applicability in real-

6

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Table 1. Average solving time (Time), feasibility ratio (F), and structural distributional similarity score (S) by Gurobi.

Easy: SC Easy: MIK Medium: MIRP
n=1000,m=500,#1000 n=387,m=312,#90 n=28738,m=33085,#28

Time(s) Gap(%) ↓ F(%) ↑ S ↑ Time(s) Gap(%) ↓ F(%) ↑ S ↑ Time(s) Gap(%) ↓ F(%) ↑ S ↑
Training Set 0.790 100 0.164 100 1.629 100

Bowly1 0.014 98.23 100 0.175 0.001 99.39 100 - - - - -

η = 0.01
DIG-MILP 1.051 32.98 100 0.902 0.093 43.53 100 0.860 1.292 23.51 100 0.814
G2MILP 0.796 0.83 100 0.812 0.129 21.49 100 0.996 1.024 37.13 96.4 0.895

MILP-FBGen 0.793 0.38 100 0.997 0.153 6.47 100 0.946 1.582 2.89 100 0.972

η = 0.05
DIG-MILP 1.246 57.72 100 0.808 0.073 55.29 100 0.886 1.280 24.22 100 0.809
G2MILP 0.731 7.51 100 0.861 0.103 37.17 100 0.970 1.136 30.26 85.7 0.898

MILP-FBGen 0.783 0.89 100 0.940 0.128 21.76 100 0.884 1.569 3.68 100 0.906

η = 0.1
DIG-MILP 3.738 373.12 100 0.790 0.081 50.59 100 0.821 1.295 23.32 100 0.808
G2MILP 0.715 9.52 100 0.819 0.057 65.21 100 0.891 0.722 55.68 57.1 0.872

MILP-FBGen 0.770 2.53 100 0.917 0.122 25.88 100 0.804 1.577 3.19 100 0.875

Medium:PDS,η = 0.0001 Hard:Anonymous,η = 0.01 Hard:WA,η = 0.001
n=317105,m=188399,#9 n=33999,m=55545,#98 n=61000,m=64305,#100

Time(s) Gap(%) ↓ F(%) ↑ S ↑ Time(s) Gap(%) ↓ F(%) ↑ S ↑ Time(s) Gap(%) ↓ F(%) ↑ S ↑
Training Set 11.236 100 344.962 100 621.088 100

DIG-MILP2 - - - - - - - - 0.046 99.99 100 0.654
G2MILP2 - - - - 189.410 45.09 81.6 0.879 70.841 88.59 16.0 0.885

MILP-FBGen 12.273 9.22 100 0.937 295.718 14.28 100 0.947 468.621 24.55 100 0.853
1 Bowly cannot generate instances for hard, even medium datasets, including MIRP, PDS, WA and Anonymous. The similarity of Bowly on MIK is not reported

because Ecole (Prouvost et al., 2020) fails to read its generated instances during computation due to large numerical values.
2 Based on the official implementation, DIG-MILP and G2MILP cannot handle extremely large instances of PDS dataset. For Anonymous dataset, DIG-MILP

cannot converge and incurs an infinite loss.

Table 2. Average solving time (TimeH) by HiGHS with predicted initial basis from different models.
Dataset MIRP PDS

#Aug
MILP-FBGen G2MILP DIG-MILP MILP-FBGen

TimeH(s) Gain(%) ↑ TimeH(s) Gain(%) ↑ TimeH(s) Gain(%) ↑ TimeH(s) Gain(%) ↑

Default 130.51 130.51 130.51 88.23
Baseline 125.57 125.57 125.57 78.21

1:1 86.07 31.46 98.32 21.70 112.03 10.78 75.70 3.21
1:2 88.91 29.19 94.43 24.80 109.55 12.76 76.14 2.65
1:3 92.07 26.68 101.81 18.92 125.90 -0.26 63.24 19.14

world scenarios. Besides solving time, we also provide the
average branching nodes for MILP instances (iterations for
LP) and the results can be found in Appendix D.1 with a
similar conclusion.

Feasibility and structural distributional similarity. Our
method can ensure both feasibility and boundedness, while
boundedness is hard to violate, and most cases encounter in-
feasibility first. In our experiments, all generated instances
are bounded, hence there is no need for specific reporting
regarding their boundedness. From Table 1, the feasibility
preservation advantage of MILP-FBGen is demonstrated by
generating 100% feasible samples under different replace-
ment ratios and different datasets. Due to the simplicity of
SC and MIK datasets, all the methods can generate feasi-
ble samples. For medium and hard datasets, most of the
instances generated by G2MILP are infeasible, especially
with a larger replacement ratio. For the Anonymous dataset,
the feasibility ratio of G2MILP is 81.6%, and for the WA
dataset, it decreases to 16%, which means most of the gener-

ated samples are infeasible for this dataset and cannot be ap-
plied to downstream tasks. Although Bowly and DIG-MILP
can also guarantee feasibility, their generated instances have
low similarity compared with the training set, making them
less usable in original tasks. In contrast to them, our method
always has higher similarity, which means the statistical
characteristics are well maintained.

5.3.2. EVALUATION ON DOWNSTREAM TASKS
Initial basis prediction. The solving process in solver can
be greatly boosted by starting with a basis much closer to
an optimal one. This is a 3-classification task in essence
and the direct classification accuracy can be found in Ap-
pendix D.2.1. To show the effect of the predicted basis on
the solving process, we also provide the end-to-end solv-
ing time on the test set. We conduct experiments on MIRP
and PDS datasets, which construct augmented datasets with
mixed ratio and 0.0001 separately. From the results in Ta-
ble 2, we can observe that our method owns the shortest
time and the largest gain compared with Baseline, especially

7

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Table 3. Average objective value (OBJ) given by different methods. Please note DIG-MILP cannot generate instances for Anonymous.

Dataset BKS Default
Baseline MILP-FBGen DIG-MILP G2MILP

OBJ gapabs ↓ OBJ gapabs ↓ Gain(%) ↑ OBJ gapabs ↓ Gain(%) ↑ OBJ gapabs ↓ Gain(%) ↑

SC 228.36 228.36 228.36 0 228.36 0 - 228.36 0 - 228.36 0 -
WA 701.52 701.64 701.68 0.16 701.60 0.08 50.00 701.64 0.12 25.00 701.67 0.15 6.25

Anonymous 11545.78 11904.86 11904.09 358.31 11900.94 355.16 0.879 - - - 11906.63 360.85 -0.709

when doubling the original dataset (#Aug=1:1). When ex-
cessive augmented instances are used, solving time increases
across all the methods, which may be due to the accumu-
lation of noise in the enhanced data and then the original
training distribution is disturbed to some extent. In the case
of DIG-MILP with #Aug=1:3, the solving time is even a
little larger than Baseline. However, the increase from our
method is slight, which demonstrates the stability and high
quality of our generated instances. For the PDS dataset, it
is quite small and the problem size is very large, so data
augmentation is extremely important for it. However, nei-
ther G2MILP and DIG-MILP can generate an instance for
it. With the increase in the total number of augmented in-
stances from our method, the solving time is significantly
reduced.

Predict and search. This task aims at efficiently identifying
high-quality feasible solutions. Specifically, the marginal
probability of each binary variable is predicted, and then
the solver searches for the best feasible solution within a
properly defined ball around the predicted solution. By
tightening the search area to a compact one closer to the op-
timal solution, the optimal solution can be found faster and
better, especially in a limited time. Following the evaluation
method in (Han et al., 2023), we report the average objective
value of incumbent solutions across test instances at 1000
seconds as OBJ. A single-thread solver is run for 3600 sec-
onds and its results are denoted as BKS, the objective of the
incumbent solutions. The absolute primal gap, defined as
gapabs = |OBJ− BKS|, acts as the performance metrics
and a smaller primal gap indicates a stronger performance.
Gain is computed between the gapabs of each model and
that of Baseline. We conduct experiments on three MILP
datasets and the results by Gurobi (Gurobi) are shown in
Table 3. SC is easily solved by default solver, thus there
is no difference in objective values for this dataset. For
WA, our method results in 50% improvement compared
with Baseline and surpasses DIG-MILP and G2MILP sig-
nificantly. The Anonymous dataset is hard to solve within
1000 seconds and thus the gap between OBJ and BKS is
relatively large. In that case, we decrease this gap, while
G2MILP performs even worse than Baseline.

Hyperparameter tuning. While the above two tasks fo-
cus on node-level classification tasks, it is noteworthy that
MILP-FBGen possesses the capability to handle instance-
level and dataset-level optimization as well. Hyperpa-
rameter tuning on Linear Programming Solver is a crit-

Table 4. Average solving time (TimeH) by HiGHS with searched
hyperparameters of different methods.

Dataset MIRP PDS
TimeH(s) Gain(%) ↑ TimeH(s) Gain(%) ↑

Default 28.89 276.58
Baseline 29.25 36.68

G2MILP 29.16 0.31 - -
DIG-MILP 101.27 -246.22 - -

MILP-FBGen 28.04 4.14 29.56 19.41

Table 5. Performance comparison between constraint vector selec-
tion strategies on MIRP and PDS.

MIRP, η = 0.01 PDS, η = 0.0001

TimeH(s) Gain(%) ↑ TimeH(s) Gain(%) ↑
Baseline 125.57 78.21

FBGen-Random 86.07 31.46 75.70 3.21
FBGen-Task 83.41 33.57 73.55 5.96

ical instance-level task that ensures the solver is finely
tuned to maximize its efficiency and effectiveness. We
choose 11 key parameters of the primal simplex method in
HiGHS (HiGHS) and the details of parameters are described
in Appendix D.2.2. SMAC (Hutter et al., 2011) is used to
search for the best hyperparameter configurations on the
training or augmented datasets separately and we report the
average solving time on the test set with the tuned hyperpa-
rameters. We conduct the experiments on MIRP and PDS
datasets, which are both LP datasets, and the results are
reported in Table 4. In MIRP, the configuration searched
only with training data performs worse than Default. By
using the augmented dataset of our method, the searched
configuration is much better, thus the solving time decreases
by 4.14% compared with Baseline in MIRP and 19.41% in
PDS, demonstrating the effectiveness of our method in the
hyperparameter tuning task. However, G2MILP shows lit-
tle improvement and DIG-MILP performs extremely worse,
mainly due to its complete modification of all the constraints,
thus its generated instances fall out of the original training
distribution. Both of them cannot generate instances in PDS,
due to its extremely large problem size.

5.4. Ablations and Further Study
Which selection strategy of constraints is better? We
compare the results of two different selection strategies and
denote them as FBGen-Random and FBGen-Task respec-
tively. As shown in Table 5, we use them to double the
original dataset size separately and compare their perfor-

8

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Table 6. Source of gain evaluated by Gurobi on SC, MIK and MIRP (η = 0.01).
SPGM FBCSM SC MIK MIRP

Diffusion VAE Eq. 7 Eq. 8 Time(s) Gap(%) ↓ Time(s) Gap(%) ↓ Time(s) Gap(%) ↓
Training set - - - - 0.790 0.164 1.629 -

MILP-FBGen ✓ ✓ ✓ 0.793 0.38 0.153 6.47 1.58 2.90
MILP-FBGen-V1 ✓ ✓ 0.800 1.29 0.197 20.12 1.44 11.80
MILP-FBGen-V2 ✓ ✓ ✓ 0.798 0.97 0.144 12.35 1.51 7.40

Training Set
MILP-FBGen

(a) Training set (b) η=0.01 (c) η=0.05 (d) η=0.1

Figure 4. The t-SNE visualization of instance representations for MIK.

mance with the Baseline. We report the solving time from
HiGHS after feeding the predicted initial basis from these
two methods to the solver and task-oriented selection strat-
egy leads to the best performance in both two datasets. It
is quite reasonable because constraints are selected based
on their performance in downstream tasks. Constraints with
worse performance are much easier to be chosen, thus more
instances are generated around these hard cases and sub-
sequent training can be more adequate. We also compare
their preservation capacities of computational hardness and
the results are shown in Table 12 of Appendix. It can be
observed that these two selection strategies both perform
well in this aspect and task-oriented selection shows more
superiority in the downstream tasks.

Is maximizing the tightness of constraints important?
To demonstrate the necessity of maximizing the tightness
when generating b̂ and ĉ for the constraints of primal and
dual instances, we define a variant MILP-FBGen-V1, which
generates them without the sampling bounds of Eq. 8. Table
6 presents the results of MILP-FBGen with replacement
ratio η = 0.01 and the results with more ratios can be found
in Appendix D.2.3. We can observe that the performance
of MILP-FBGen is better than MILP-FBGen-V1, which
indicates that simply setting the constraints by Eq. 7 is
insufficient and the generated constraints are more likely to
be removed during presolving, leading to a shift compared
with the solving time of training set.

Is the diffusion model a better choice to preserve the
structures? To validate the superiority of the diffusion
model in instance generation, we replace it with another
generative model variational autoencoder (VAE) in our
structure-preserving generation module, while maintain-
ing the subsequent feasibility/boundedness-constrained sam-
pling module. We denote this version as MILP-FBGen-V2

and the comparative results can be seen in Table 6. The
improved performance of MILP-FBGen over MILP-FBGen-
V2 implies that the diffusion model has better generative
capacity.

t-SNE visualization. To visually verify the claim that
the generated instances by MILP-FBGen can well extend
the original problem space, we provide the instance rep-
resentations for MIK, utilizing the visualization technique
in (Van der Maaten & Hinton, 2008). The results are shown
in Fig. 4, where each point represents an instance. Red
points are from the training set and blue points are instances
generated by MILP-FBGen. The generated instances, while
closely resembling the training set, contribute to a broader
and more continuous exploration of the problem space,
thereby enhancing model robustness and generalization. Ad-
ditionally, by increasing η, it can explore a wider problem
space beyond the confines of the training sets.

6. Conclusions
In this paper, we have emphasized three pivotal proper-
ties - computational hardness, feasibility, and boundedness
(especially the first two) for LP/MILP instances. The MILP-
FBGen is proposed to generate new instances endowed with
these essential attributes. Integrating MILP-FBGen into
downstream tasks through the task-oriented selection strat-
egy facilitates the creation of more refined instances, thereby
enhancing overall performance. Through extensive experi-
ments, we substantiate the effectiveness and superiority of
MILP-FBGen compared to other LP/MILP instance genera-
tion methods. Concurrently, it is identified that the reverse
diffusion process remains time-consuming. We anticipate
and advocate for further endeavors to expedite the diffusion-
based LP/MILP instance generation process.

9

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Impact Statement
This study in general belongs to the realm of generative AI
by extending it from classic image, and text data into the
(more complicated) constrained combinatorial optimization
problem instances, specifically Linear Programming (LP)
and Mixed-Integer Linear Programming (MILP). Like other
generative AI models, our techniques may also have some
potential to impact the world in many aspects, yet we believe
our results are less sensitive than those generating human
faces, etc.

Acknowledgements
The work was in part supported by NSFC (92370201,
62222607).

References
Atamtürk, A. On the facets of the mixed–integer knapsack

polyhedron. Mathematical Programming, 98(1-3):145–
175, 2003.

Balas, E. and Ho, A. Set covering algorithms using cut-
ting planes, heuristics, and subgradient optimization: a
computational study. Springer, 1980.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bowly, S., Smith-Miles, K., Baatar, D., and Mittelmann, H.
Generation techniques for linear programming instances
with controllable properties. Mathematical Programming
Computation, 12(3):389–415, 2020.

Bowly, S. A. Stress testing mixed integer programming
solvers through new test instance generation methods.
PhD thesis, School of Mathematical Sciences, Monash
University, 2019.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Chen, T., Zhang, R., and Hinton, G. Analog bits: Gen-
erating discrete data using diffusion models with self-
conditioning. arXiv preprint arXiv:2208.04202, 2022.

Chen, X., Li, Y., Wang, R., and Yan, J. Mixsatgen: Learning
graph mixing for sat instance generation. In The Twelfth
International Conference on Learning Representations,
2024.

Fan, Z., Wang, X., Yakovenko, O., Sivas, A. A., Ren, O.,
Zhang, Y., and Zhou, Z. Smart initial basis selection for

linear programs. In International Conference on Machine
Learning, pp. 9650–9664. PMLR, 2023.

Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convo-
lutional neural networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32, 2019.

Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin,
L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner,
A., Kazachkov, A. M., et al. The machine learning for
combinatorial optimization competition (ml4co): Results
and insights. In NeurIPS 2021 competitions and demon-
strations track, pp. 220–231. PMLR, 2022.

Geng, Z., Li, X., Wang, J., Li, X., Zhang, Y., and Wu, F. A
deep instance generative framework for milp solvers un-
der limited data availability. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Guo, W., Zhen, H., Li, X., Luo, W., Yuan, M., Jin, Y., and
Yan, J. Machine learning methods in solving the boolean
satisfiability problem. Machine Intelligence Research, 20:
640—-655, 2023.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A.,
and Bengio, Y. Hybrid models for learning to branch.
Advances in neural information processing systems, 33:
18087–18097, 2020.

Gurobi. Gurobi optimizer reference manual.
http://www.gurobi.com. 2020.

Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang, A.,
Sun, R., and Luo, X. A gnn-guided predict-and-search
framework for mixed-integer linear programming. arXiv
preprint arXiv:2302.05636, 2023.

He, H., Daume III, H., and Eisner, J. M. Learning to search
in branch and bound algorithms. Advances in neural
information processing systems, 27, 2014.

Helsgaun, K. An effective implementation of the lin–
kernighan traveling salesman heuristic. European journal
of operational research, 126(1):106–130, 2000.

HiGHS. Highs- high performance software for linear opti-
mization documentation. https://highs.dev/top. 2020.

Hill, R., Moore, J., Hiremath, C., and Cho, Y. Test problem
generation of binary knapsack problem variants and the
implications of their use. Int. J. Oper. Quant. Manag, 18
(2):105–128, 2011.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In Advances in neural information pro-
cessing systems, volume 33, pp. 6840–6851, 2020.

10

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
model-based optimization for general algorithm config-
uration. In Learning and Intelligent Optimization: 5th
International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers 5, pp. 507–523. Springer,
2011.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

Labassi, A. G., Chételat, D., and Lodi, A. Learning to
compare nodes in branch and bound with graph neural
networks. Advances in Neural Information Processing
Systems, 35:32000–32010, 2022.

Li, ., X, Chen, Guo, W., Li, X., Luo, W., Huang, J., Zeng,
H., Yuan, M., and Yan, J. Hardsatgen: Understanding
the difficulty of hard sat formula generation and a strong
structure-hardness-aware baseline. In Advances in neural
information processing systems, 2023a.

Li, A., Han, C., Guo, T., and Li, B. Generating linear pro-
gramming instances with controllable rank and condition
number. Computers & Operations Research, 162:106471,
2024.

Li, Y., Guo, J., Wang, R., and Yan, J. T2t: From distri-
bution learning in training to gradient search in testing
for combinatorial optimization. In Advances in neural
information processing systems, 2023b.

Malitsky, Y., Merschformann, M., O’Sullivan, B., and Tier-
ney, K. Structure-preserving instance generation. In
Learning and Intelligent Optimization: 10th Interna-
tional Conference, LION 10, Ischia, Italy, May 29–June 1,
2016, Revised Selected Papers 10, pp. 123–140. Springer,
2016a.

Malitsky, Y., Merschformann, M., O’Sullivan, B., and Tier-
ney, K. Structure-preserving instance generation. In
Learning and Intelligent Optimization: 10th Interna-
tional Conference, LION 10, Ischia, Italy, May 29–June 1,
2016, Revised Selected Papers 10, pp. 123–140. Springer,
2016b.

Mittelmann, H. Benchmark of simplex lp solvers. URL
https://plato.asu.edu/ftp/lptestset/.

Nair, V., Bartunov, S., Gimeno, F., Von Glehn, I., Li-
chocki, P., Lobov, I., O’Donoghue, B., Sonnerat, N.,
Tjandraatmadja, C., Wang, P., et al. Solving mixed in-
teger programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

Papageorgiou, D. J., Nemhauser, G. L., Sokol, J., Cheon,
M.-S., and Keha, A. B. Mirplib–a library of maritime
inventory routing problem instances: Survey, core model,
and benchmark results. European Journal of Operational
Research, 235(2):350–366, 2014.

Pilcher, M. G. and Rardin, R. L. Partial polyhedral descrip-
tion and generation of discrete optimization problems
with known optima. Naval Research Logistics (NRL), 39
(6):839–858, 1992.

Prouvost, A., Dumouchelle, J., Scavuzzo, L., Gasse, M.,
Chételat, D., and Lodi, A. Ecole: A gym-like library for
machine learning in combinatorial optimization solvers.
arXiv preprint arXiv:2011.06069, 2020.

Schrijver, A. Theory of linear and integer programming.
John Wiley & Sons, 1998.

SCIP. The scip optimization suite 8.0.
https://www.scipopt.org/. 2021.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference on
machine learning, pp. 2256–2265. PMLR, 2015.

Sun, Z. and Yang, Y. Difusco: Graph-based diffusion
solvers for combinatorial optimization. arXiv preprint
arXiv:2302.08224, 2023.

Tang, L., Liu, J., Rong, A., and Yang, Z. A review of
planning and scheduling systems and methods for inte-
grated steel production. European Journal of operational
research, 133(1):1–20, 2001.

Troncoso, J. J. and Garrido, R. A. Forestry production
and logistics planning: an analysis using mixed-integer
programming. Forest Policy and Economics, 7(4):625–
633, 2005.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Vander Wiel, R. J. and Sahinidis, N. V. Heuristic bounds and
test problem generation for the time-dependent traveling
salesman problem. Transportation Science, 29(2):167–
183, 1995.

Wang, H., Liu, J., Chen, X., Wang, X., Li, P., and Yin, W.
Dig-milp: a deep instance generator for mixed-integer
linear programming with feasibility guarantee. arXiv
preprint arXiv:2310.13261, 2023.

Wang, R., Yan, J., and Yang, X. Combinatorial learning
of robust deep graph matching: an embedding based
approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

Whitley, D. A genetic algorithm tutorial. Statistics and
computing, 4:65–85, 1994.

Ye, H., Xu, H., Wang, H., Wang, C., and Jiang, Y.
Gnn&gbdt-guided fast optimizing framework for large-
scale integer programming. In International Conference
on Machine Learning, pp. 39864–39878. PMLR, 2023.

11

https://plato.asu.edu/ftp/lptestset/

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Yehuda, G., Gabel, M., and Schuster, A. It’s not what
machines can learn, it’s what we cannot teach. In Interna-
tional conference on machine learning, pp. 10831–10841.
PMLR, 2020.

Zarpellon, G., Jo, J., Lodi, A., and Bengio, Y. Parameter-
izing branch-and-bound search trees to learn branching
policies. In Proceedings of the aaai conference on artifi-
cial intelligence, volume 35, pp. 3931–3939, 2021.

Zhang, J., Liu, C., Li, X., Zhen, H., Yuan, M., Li, Y., and
Yan, J. A survey for solving mixed integer programming
via machine learning. Neurocomputing, 519(28):205–217,
2023.

12

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

A. Dataset Description
To fully demonstrate the superiority of our method, we conduct comprehensive experiments on diverse datasets. Mainly
based on their solving time, we classify all the used datasets into three categories, i.e., easy, medium, and hard. Please note
the #Non-Zero represents the number of non-zero elements in the incidence matrix A, which is also a typical indicator
and directly reflects the problem scale. Please note that the MIRP dataset we use is actually an LP subset of the complete
dataset (Papageorgiou et al., 2014), which includes both LP and MILP instances, and this follows the way (Fan et al., 2023)
does.

Table 7. Statistics of datasets used in experiments.
Dataset SC MIK MIRP PDS WA Anonymous

Category easy easy medium medium hard hard
Data 1000 90 28 9 100 98
Variable 1000 387 28738 317105 61000 33999
Constraint 500 312 33085 188399 64305 55545
Non-Zero 25000 16950 226081 1668084 361774 1149037

B. Bipartite Graph Representation
To represent an LP or MILP instance, the weighted bipartite graph (Gasse et al., 2019) is used. This representation method
also enables both LP and MILP instances to serve as the input for deep learning neural networks and has been widely used
in recent research. A weighted bipartite graph G = (V,W,E) consists of two disjoint sets of vertices V and W , and a
collection E of weighted edges. Each edge connects exactly one vertex from V and one vertex from W . Each vertex in V
represents a variable, and each vertex in W represents a constraint. More specifically,

• Set V = {v1, v2, · · · , vn} contains n nodes, each representing a decision variable.

• Set W = {w1, w2, · · · , wm} is composed of m nodes and each of them represents a constraint.

• Set E = {eji} and eji = Aij , for all (i, j) ∈ [m]× [n].

We follow the method in (Fan et al., 2023) and construct 7-dim features for constraint node i and variable node j, based
on extracting the information in c, A, lx, ux, ls and us. Denote Ai· and A·j respectively the i-th row and j-th column
in the incidence matrix A. Denote by ⟨·, ·⟩ the cosine similarity between two vectors. The specific description for each
feature dimension is shown in Table 8. To ensure numerical stability, tag dimensions (feature index=5,7) are added. If the
lower/upper bound does not exist, the tag dimensions will be marked as -1/+1.

Table 8. Feature for each constraint node i and variable node j.

Feature index Constraint node i Variable node j

1 ⟨Ai·, c⟩ cj
2 ⟨Ai·, l

x⟩ ⟨ls,A·j⟩
3 ⟨Ai·, u

x⟩ ⟨us,A·j⟩

4
{

lsi if lsi ̸= −∞
0 else

{
lxj if lxj ̸= −∞
0 else

5
{

0 if lsi ̸= −∞
−1 else

{
0 if lxj ̸= −∞

−1 else

6
{

us
i if us

i ̸= ∞
0 else

{
ux
j if ux

j ̸= ∞
0 else

7
{

0 if us
i ̸= ∞

1 else

{
0 if ux

j ̸= ∞
1 else

13

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

C. Training and Inference Process
The detailed descriptions of training and inference (instance generation) processes are provided in Algorithm 1. With regard
to the two different constraint/variable vector selection strategies, we take the task-oriented selection as an example and
choose the node-level k− classification as the downstream task.

Algorithm 1 MILP-FBGen with task-oriented selection strategy.
Input: Original dataset D and node-level k-classification as downstream task.

/∗ Training Phase
1: Randomly select constraint vectors to form batches.
2: Structure-preserving generator training (Eq. 12).

/∗ Inference Phase
3: Pretrain the task network using the original dataset D.
4: The softmax output of node i is o ∈ R1×k with label index c.
5: The confidence level for correct classification is oc and selection probability is pi = 1− oc.
6: Take the softmax for {pi, i ∈ [1,m]} and denote as P .
7: Select constraint vectors based on P to form batches.
8: for instance← 1 to N do
9: Select constraint index i ∼ P and generate Âi in parallel until ηm vectors are processed (SPGM).

10: Replace with Âi∈{1,...,ηm} to obtain Â.
11: Sample b̂ and ĉ (FBCSM).
12: Generate new instance MILP(Â, b̂, ĉ).
13: end for

D. Supplementary Experimental Results
D.1. Computational Hardness

We report the average numbers of branching nodes or iterations in Table 9, which can also reflect the computational hardness
besides the average solving time. The conclusion is the same as that of average solving time that we have the better ability to
preserve the computational hardness and thus the generated instances can closely resemble the original training data. Please
note that for this part of the experiments, we set the running time limit of Gurobi as 900 seconds and set the hyperparameter
Params.Method as 2. We double the original dataset and use all the generated instances of each method to calculate the
computational hardness indicators.

D.2. Downstream Tasks

One direct approach to verify the effectiveness of generated data is through downstream task experiments, which is also
the motivation for instance generation. Therefore, we choose three representative application scenarios, i.e., initial basis
prediction task, predict and search task, and hyperparameter tuning task. For each task, 60% of the original dataset is used
as the training set, 15% as the validation set, and the left 25% acts as the test set. Our reported results are all based on the
unseen test set. When some methods generate unfeasible instances for specific datasets, we repeat them multiple times
until a specified number of generated instances are collected to ensure the fairness of the comparison experiments. Without
specification, we randomly select from the generated instances with three replacement ratios (0.01, 0.05, and 0.01), and use
them to construct an augmented dataset with a mixed ratio for downstream tasks. As for some datasets with extremely large
instances, we always keep one proper replacement ratio.

D.2.1. INITIAL BASIS PREDICTION

As for the initial basis prediction task, it is performed on the MIRP and PDS datasets. Initial basis prediction is quite an
effective task in the simplex method. Hence, starting with a basis that is much closer to an optimal one can significantly
boost the solving process. We follow the model structure from (Fan et al., 2023). To efficiently handle the large-scale
sparse constraint-variable bipartite graph, one graph convolutional layer is implemented as two sparse matrix multiplication
respectively for message passing from constraint to variable node and back. By default, five-layer GNN is used, and the size
of the hidden layers is 128 and the dropout ratio is 0.1. We train for 800 epochs and select the best checkpoint based on the

14

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Table 9. Average numbers of branching nodes for MILP and iterations for LP. η is the replacement ratio.
Easy: SC Easy: MIK Medium: MIRP

n=1000,m=500,#1000 n=387,m=312,#90 n=28738,m=33085,#28
Nums of Node Gap(%) ↓ Num of Node Gap(%) ↓ Nums of iter Gap(%) ↓

Training Set 730.945 131.570 4422.178

η = 0.01
DIG-MILP 13714.000 1776.20 17.089 87.01 5910.036 33.65
G2MILP 760.475 4.04 108.000 17.91 3910.176 11.58

MILP-FBGen 731.715 0.11 141.200 7.32 4873.930 10.22

η = 0.05
DIG-MILP 5634.900 671.25 21.244 83.85 5692.429 28.72
G2MILP 761.640 4.20 372.000 182.74 3555.250 19.60

MILP-FBGen 762.485 4.31 152.130 15.63 5162.007 16.73

η = 0.1
DIG-MILP 3271.000 347.51 65.111 50.51 5831.750 31.88
G2MILP 762.010 4.25 331.400 151.88 1969.110 55.47

MILP-FBGen 708.710 3.04 218.930 66.40 5471.257 23.72

Medium:PDS,η = 0.0001 Hard:Anonymous,η = 0.01 Hard:WA,η = 0.001
n=317105,m=188399,#9 n=33999,m=55545,#98 n=61000,m=64305,#100
Nums of Iter Gap(%) ↓ Nums of Node Gap(%) ↓ Nums of Node Gap(%) ↓

Training Set 38185.556 355232.898 60288.22

DIG-MILP - - - - 0 100
G2MILP - - 187037.849 47.35 7089.93 88.24

MILP-FBGen 43474.889 13.85 202429.398 43.02 44453.71 26.26

validation accuracy.

We report the end-to-end solving time by HiGHS after feeding the predicted basis to the solver. During this process, the
maximum running time is set to 3600 seconds. Besides that, we also provide the direct classification accuracy, because
initial basis prediction is actually a 3-classification task. As shown in Table 10, the classification accuracy of our method is
approximately inversely proportional to the end-to-end solving time, because accurately predicted the initial basis boost
solving process more significantly.

Table 10. Classification accuracy(%) of initial basis prediction models.
MIRP, mixed ratio PDS, η = 0.0001

1:1 1:2 1:3 1:1 1:2 1:3

Baseline 81.73 81.73 81.73 73.68 73.68 73.68

MILP-FBGen 83.60 82.45 82.33 73.69 74.30 74.71

D.2.2. HYPERPARAMETER TUNING

Table 11 is the detailed description of used hyperparameters. Please note that part of the hyperparameters is not built-in to
HiGHS, but we have extracted and renamed them ourselves. During this experiment, we set the maximum running time of
HiGHS as 3600 seconds.

D.2.3. ABLATION EXPERIMENTS

Constraint/variable vector selection. We compare the effect of different selection strategies on downstream tasks and
verify the effectiveness of the task-oriented selection strategy. Meanwhile, we also provide the comparison on preservation
capacities of computational hardness, and the results are shown in Table 12. We can observe that both of them have good
preservation capacities compared with current methods and their results only have slight differences.

Source of gain. Besides the results with η = 0.01, we also provide the results with more replacement ratios for full
demonstration. The conclusion is similar that for most datasets, MILP-FBGen performs better than those two versions.

15

MILP-FBGen: LP/MILP Instance Generation with Feasibility/Boundedness

Table 11. Detailed description of hyperparameters in HiGHS.
Hyperparameter Value Type Selecting Range Description

crashStrategy category {0, 1, 2} strategy for simplex startup basis
simplexStrategy category {0, 1, 2} to choose primal or dual simplex method
dualizeStrategy category {0, 1, 2} whether to solve the dualized problem
tightenStrategy category {0, 1, 2} whether to tighten primal bound
matrixStrategy category {0, 1} try to use sparse matrix with only ± 1

PrimalPricingStrategy category {0, 1, 2, 3} pricing strategy in primal
DualPricingStrategy category {0, 1, 2, 3} pricing strategy in dual

PricingWiseThv float [0, 1] density threshold for column-wise or row-wise
PricingDenseThv float [0, 1] density threshold for sparse or dense method

dualizePresolveStrategy category {0, 1, 2} strategy for cowork between dualize and presolve
crashPresolveStrategy category {0, 1, 2} strategy for cowork between crash and presolve

Table 12. Preservation capacities of computational hardness with different constraint vector selection strategies on MIRP and PDS.

MIRP, η = 0.01 PDS, η = 0.0001

Time(s) Gap(%) ↓ Time(s) Gap(%) ↓
Baseline 1.629 11.236

FBGen-Random 1.582 2.89 12.273 9.22
FBGen-Task 1.589 2.45 12.210 8.63

Table 13. Source of gain evaluated by Gurobi on SC, MIK and MIRP with η = 0.05

Method SPGM FBCSM SC MIK MIRP

Duffision VAE Eq. 7 Eq. 8 Time(s) Gap(%) ↓ Time(s) Gap(%) ↓ Time(s) Gap(%) ↓
Training set - - - - 0.790 0.164 1.629 -

MILP-FBGen ✓ ✓ ✓ 0.780 0.90 0.128 21.76 1.57 3.60
MILP-FBGen-V1 ✓ ✓ 0.794 0.54 0.224 36.60 1.43 12.20
MILP-FBGen-V2 ✓ ✓ ✓ 0.760 3.77 0.126 22.94 1.70 4.40

Table 14. Source of gain evaluated by Gurobi on SC, MIK, and MIRP with η = 0.1

Method SPGM FBCSM SC MIK MIRP

Duffision VAE Eq. 7 Eq. 8 Time(s) Gap(%) ↓ Time(s) Gap(%) ↓ Time(s) Gap(%) ↓
Training set - - - - 0.790 0.164 1.629 -

MILP-FBGen ✓ ✓ ✓ 0.770 2.50 0.122 25.88 1.580 3.20
MILP-FBGen-V1 ✓ ✓ 0.768 2.80 0.219 33.60 1.410 13.50
MILP-FBGen-V2 ✓ ✓ ✓ 0.770 2.58 0.141 14.13 1.530 6.30

16

