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Abstract

Federated learning (FL) enables privacy-
preserving distributed machine learning by
sharing gradients instead of raw data. However,
FL remains vulnerable to gradient inversion
attacks, in which shared gradients can reveal
sensitive training data. Prior research has mainly
concentrated on unimodal tasks, particularly
image classification, examining the reconstruc-
tion of single-modality data, and analyzing
privacy vulnerabilities in these relatively simple
scenarios. As multimodal models are increasingly
used to address complex vision-language tasks,
it becomes essential to assess the privacy
risks inherent in these architectures. In this
paper, we explore gradient inversion attacks
targeting multimodal vision-language Document
Visual Question Answering (DQA) models
and propose GI-DQA, a novel method that
reconstructs private document content from
gradients. Through extensive evaluation on
state-of-the-art DQA models, our approach
exposes critical privacy vulnerabilities and
highlights the urgent need for robust defenses to
secure multimodal FL systems. Project page at:
https://AlonZolfi.github.io/GI-DQA/.

1. Introduction
Federated learning (McMahan et al., 2017) has emerged as
a popular paradigm for privacy-preserving distributed ma-
chine learning. In FL, multiple clients collaboratively train a
global model under the coordination of a central server over
several rounds. During each round, clients update the local
model using their private training data and transmit only
the computed gradients to the server. The server aggregates
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Figure 1: Gradient inversion attack on DQA models in FL.
Left: document with private data from a benign client. Right:
zoomed-in section shown in three versions (top to bottom):
original, adversary’s reference (public document template),
and GI-DQA reconstruction—demonstrating private data
recovery using only gradients and a document template.

these gradients to update the global model, reducing pri-
vacy risks by avoiding the exchange of raw data (Banabilah
et al., 2022). This paradigm has been successfully applied
in real-world scenarios, including Google Keyboard (Yang
et al., 2018), Apple’s Siri (Paulik et al., 2021), and criti-
cal domains such as healthcare (Thrasher et al., 2023) and
finance (Shi et al., 2023).

Despite its privacy-preserving design, FL remains vulner-
able to gradient inversion attacks (Du et al., 2024), which
exploit the gradients shared by clients to reconstruct sensi-
tive information from clients’ private training data. Prior
research has primarily focused on recovering private im-
age data using optimization-based methods, including iter-
ative optimization to minimize gradient differences (Zhu
et al., 2019; Zhao et al., 2020), enhancements through co-
sine similarity and regularization (Geiping et al., 2020), and
leveraging batch normalization for improved recovery in
batches (Yin et al., 2021). More recent efforts have extended
these attacks to complex architectures such as vision trans-
formers (Lu et al., 2021; Hatamizadeh et al., 2022). While
gradient inversion attacks have been extensively studied
in unimodal tasks like image classification, their potential
impact on multimodal applications remains unexplored.

Recently, multimodal models have gained significant atten-
tion for their ability to process and integrate diverse sources
of information, including text, images, and spatial features,
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enabling improved performance across a wide range of
vision and language tasks (Wang et al., 2023). Among
these, DQA models stand out for their focus on addressing
document-related queries by leveraging multimodal capa-
bilities. Broadly, DQA models can be categorized as either
Optical Character Recognition (OCR)-based or OCR-free
approaches. OCR-based models, such as the LayoutLM
family (Xu et al., 2020a;b; Huang et al., 2022), rely on the
extraction of textual information prior to processing and
the combination of it with spatial and visual representa-
tions to achieve state-of-the-art performance. In contrast,
OCR-free models, such as Donut (Kim et al., 2022), bypass
external OCR modules by directly learning from document
images. Compared to unimodal models, which process only
a single type of data, multimodal models excel at captur-
ing intricate cross-modality relationships, offering richer
semantic and contextual understanding. This capability not
only enhances their effectiveness in handling sophisticated
applications, but also underscores their growing prominence
in cutting-edge research. Despite their effectiveness, train-
ing multimodal models requires access to large, privacy-
sensitive datasets that often contain confidential text and
images. Centralizing such data for training poses privacy
risks, regulatory concerns (e.g., GDPR, HIPAA), and logis-
tical challenges. FL offers a promising solution by enabling
multimodal models to be trained collaboratively across de-
centralized data sources without exposing raw data (Nguyen
& Karatzas, 2024).

Despite the increasing popularity of multimodal models,
gradient inversion attacks on them remain significantly un-
derexplored, particularly in decentralized learning environ-
ments such as FL. To address this gap, we present a compre-
hensive study of gradient inversion attacks targeting DQA
models. DQA is particularly interesting due to the sensitive
and private nature of the documents it processes, such as
medical records, financial statements, and legal contracts,
making privacy concerns especially critical in real-world
applications. Specifically, we propose GI-DQA, a novel
method that reconstructs sensitive document content (e.g.,
personal identifiable information) from shared gradients in
an FL setup. To reflect realistic attacker capabilities, we as-
sume access to standardized document templates, which are
common in real-world domains (e.g., invoices, and medical
forms). These templates follow fixed layouts with only a
few variable fields, allowing the attacker to focus reconstruc-
tion efforts on regions likely to contain private information,
as shown in Figure 1. By leveraging the unique structure
of multimodal models, GI-DQA exposes critical privacy
vulnerabilities inherent in these models, providing deeper in-
sight into the risks associated with multimodal architectures
and emphasizing the need for robust countermeasures to pro-
tect sensitive information. DQA-specific gradient inversion
presents unique challenges: (i) reconstructing small-sized

words in document images is significantly harder than re-
covering large objects in natural images. Unlike large-scale
structures that provide strong spatial cues, fine-grained text
is densely packed, making even slight variations in gradients
highly disruptive to reconstruction, (ii) text-based gradients
are inherently sparse, which limits the amount of recover-
able information. This sparsity makes it difficult to distin-
guish meaningful features from noise, further complicating
precise recovery. These factors make DQA-specific gradient
inversion uniquely challenging and require more advanced
techniques than those used in standard vision-based attacks.

To evaluate the effectiveness of our proposed method, we
conduct extensive experiments on state-of-the-art DQA
models, including both OCR-based and OCR-free archi-
tectures. Our evaluation demonstrates the feasibility of
reconstructing private data with high fidelity, shedding light
on the weaknesses of existing privacy-preserving mecha-
nisms in multimodal FL setups. For example, on the Donut
model, our attack is able to perfectly reconstruct 70.1% of
the documents’ words.

Our contributions can be summarized as follows:

• To the best of our knowledge, we present the first gra-
dient inversion attack on multimodal models, introduc-
ing a novel method specifically tailored for multimodal
DQA models.

• A thorough evaluation of privacy vulnerabilities in
state-of-the-art OCR-based and OCR-free DQA archi-
tectures.

• Insights into the unique challenges of performing gradi-
ent inversion on multimodal tasks, highlighting critical
areas for future research.

• An exploration of potential defense mechanisms to
mitigate privacy risks, offering a roadmap to enhance
the robustness of multimodal models in FL systems.

2. Background & Related Work
2.1. Gradient Inversion in Federated Learning

Gradient inversion attacks in FL aim to reconstruct private
data by exploiting shared gradients. Prior attacks can be
categorized by: (i) server’s trustworthiness: adversaries lo-
cated on the server may be honest-but-curious (Zhu et al.,
2019; Zhao et al., 2020; Geiping et al., 2020; Hatamizadeh
et al., 2022; Lu et al., 2021), passively analyzing gradients
without interfering, or malicious (Fowl et al., 2021; Chu
et al., 2022; Pasquini et al., 2022; Fowl et al., 2022; Wen
et al., 2022), actively disrupting the training process; and
(ii) attack strategy: in optimization-based (Geiping et al.,
2020; Yin et al., 2021; Hatamizadeh et al., 2022; Gupta
et al., 2022; Lu et al., 2021) attacks, the ground-truth sam-
ples are approximated through iterative refinement, while
in analytic-based (Fan et al., 2020; Zhu & Blaschko, 2020)
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attacks, systems of equations are solved between gradients
and inputs to precisely reconstruct the data. In this work,
we address the more challenging and realistic honest-but-
curious setting, leveraging a combination of optimization-
and analytic-based strategies.

Most prior research has focused on recovering private im-
age data through optimization-based approaches. Zhu et al.
(2019) (DLG) first formulated the attack as an iterative op-
timization problem, where attackers restore data samples
by minimizing the distance between shared gradients and
dummy gradients. Zhao et al. (2020) (iDLG) proposed
extracting the label of a single sample from the gradients,
which further improved the attack. Geiping et al. (2020) (In-
verting Gradients) reconstructed higher-resolution images
from ResNet-based models (He et al., 2016) by modifying
the distance metric to cosine similarity and incorporating
total variation as a regularization term. Yin et al. (2021)
primarily focused on recovery for larger batch sizes. Their
method assumes access to normalization (BN) statistics,
which enabled partial image recovery at larger batch sizes.
Hatamizadeh et al. (2022) (GradViT) and Lu et al. (2021)
(APRIL) extended these attacks to vision transformers.

These works primarily address unimodal classification mod-
els, where reconstructed images typically contain a single
prominent object. In contrast, our study focuses on an under-
explored domain: the reconstruction of visual data from mul-
timodal DQA models, where images consist of numerous
fine-grained textual elements, introducing unique challenges
for inversion. A recent related work (Liu et al., 2024) consid-
ers gradient inversion in a multimodal FL setting; however,
it employs independently trained, modality-specific models
without shared representations, coordinated through mutual
knowledge distillation. This approach fundamentally dif-
fers from our setting, which involves deeply fused, jointly
trained architectures typical of modern multimodal models.

2.2. Document Visual Question Answering

DQA has emerged as a prominent area of interest in the
machine learning research community due to its ability to
answer natural language questions by extracting meaningful
information from documents. The importance of efficient
management of document workflows spans multiple indus-
tries, including banking, insurance, public administration,
impacting virtually all aspects of business operations. A
key differentiating factor among DQA models is their re-
liance on OCR technology. OCR-based models, such as the
LayoutLM family (Xu et al., 2020a;b; Huang et al., 2022),
TILT (Powalski et al., 2021), and UDOP (Tang et al., 2023),
use OCR to integrate textual, layout, and visual features,
achieving impressive performance. In contrast, OCR-free
models adopt end-to-end architectures that bypass external
OCR modules. These models, including Donut (Kim et al.,
2022), Pix2Struct (Lee et al., 2023), and Dessurt (Davis

et al., 2022), incorporate reading-oriented pretraining objec-
tives to directly process document images, offering competi-
tive performance while reducing dependency on OCR tools.
Both OCR-based and OCR-free approaches highlight the
diverse methodologies in DQA, addressing trade-offs be-
tween interpretability, robustness, and performance across
various document understanding tasks.

3. Method
3.1. Preliminaries

DQA Federated Learning. A FL framework for DQA
consists of a server that coordinates K clients, each with a
private dataset Dk of N samples (x, y), where x represents
the input data (visual document xD and question xQ), and
y the target (corresponding answer). Clients collaboratively
train a global DQA model fθ with weights θ without ex-
changing raw data. In each round t, the server sends the
current global model fθt to the clients for local training, for
a total of T rounds. Each participating client computes the
average gradient ∇kθt on its local data using the current
global model:

∇kθt = E(x,y)∈Dk
[∇L(θt;x, y)] (1)

where L(·) represents the standard DQA training loss. Fi-
nally, the server aggregates the collected gradients and up-
dates the global model as follows:

fθt+1 ← fθt + η

K∑
k=1

∇kθt (2)

where η is the learning rate.

Gradient Inversion. Given a gradient ∇kθt computed by
client k using the original data (x, y) ∈ Dk, an adversary
generates randomly initialized data (x̂, ŷ) which are itera-
tively updated to approximate (x, y) by solving the follow-
ing optimization problem:

x̂∗ = argmin
x̂

d(∇L(θ, x̂, ŷ),∇kθt) +
∑
j

αjRj (3)

where d is a distance metric (e.g., euclidean distance), R
represents a regularization term (e.g., total variation (Cham-
bolle et al., 2010)), and α is a weighting factor. Note that
an adversary can perform the attack in any iteration t ∈ T .

3.2. Threat Model

Adversary’s Capabilities. We consider an honest-but-
curious adversary (Section 2.1) who has access to the gra-
dients returned by an arbitrary client k, either by being
physically located on the server or by eavesdropping on the
communication between the central server and the client.
At iteration t, the adversary has access to: (i) the gradients
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Document 𝑥𝐷
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“What is the advertiser’s name?”

Ground-Truth Answer 𝑦
“Priorities USA Action”
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Figure 2: Overview of the FL setup with a benign client and an honest-but-curious attacker. The benign client computes
gradients on their private document and shares them with the server, where the attacker is positioned. The attacker, equipped
with a document template (without private data), computes their own gradients and optimizes a loss function comprising
gradient matching and auxiliary priors to reconstruct the client’s document.

∇kθt shared by the client, (ii) the current model parame-
ters θt, and (iii) a collection of publicly available document
image templates (e.g., healthcare forms), which represent
standard formats with private fields (such as names, dates,
or amounts) left empty. These templates provide additional
structural and contextual information that closely resemble
the input documents, significantly narrowing the adversary’s
search space. This allows the adversary to focus on specific
regions of interest within the documents, such as fields
where private information is typically located. In many
document-based applications, such as invoices, medical
forms, boarding passes, or receipts, the layout and struc-
ture are highly standardized across users, with only a small
number of sensitive fields varying. Therefore, this setup is
practically grounded and reflects realistic scenarios. Fig-
ure 2 presents an overview of the attack pipeline.

Adversary’s Objective. The adversary aims to reconstruct
the private fields contained within the client’s documents.
These private fields may include personally identifiable in-
formation (PII), such as names (e.g., patients), ID numbers
(e.g., SSNs), financial details (e.g., account balances), and
sensitive textual data (e.g., medical diagnoses). The adver-
sary seeks to exploit both the structure of the document (i.e.,
templates) and contextual information encoded in the shared
gradients. This combination of prior knowledge and gradi-
ent leakage significantly increases the likelihood of a privacy
breach, posing a serious threat to client confidentiality.

3.3. Multimodal Gradient Inversion Attack

In this section, we describe our proposed approach, which
consists of two components: document reconstruction and
text reconstruction. The document reconstruction follows an
optimization-based approach, while the text reconstruction
employs an analytic-based approach.

Prior work on image classification models has demonstrated
that using the ground truth label y (rather than a randomly
initialized one) significantly improves the quality of recon-
struction (Zhao et al., 2020). This improvement is achieved
by leveraging the negative sign traces of the gradient in the
classification head. The enhancement arises because the
computed gradients depend on the loss function, which is di-
rectly influenced by the ground-truth label, thereby reducing
the distance between the adversary’s and client’s gradients
and simplifying the optimization process. However, in our
case, as we employ question-answering models, this ap-
proach is not applicable. Furthermore, the input x in our
setting comprises both the document xD and its correspond-
ing question xQ. The input question xQ also affects the
calculated gradients, as it provides contextual information
that guides the model to understand the relationship between
the document xD and the target answer y. Consequently,
reconstructing both the question xQ and the answer y is crit-
ical for the success of the attack (discussed in Section 4.2.2).
To achieve this, we build on previous works that propose
analytic-based methods to first extract the question-answer
pairs (Petrov et al., 2024; Deng et al., 2021; Balunovic et al.,
2022). Once these pairs are reconstructed, we then optimize
the document reconstruction to refine the overall results.

3.3.1. DOCUMENT RECONSTRUCTION

For visual text reconstruction, we propose the following
optimization objective:

x̂∗ = argmin
x̂
Lgrad(∇L(θ, x̂, ŷ),∇kθt) + φ(t)Raux

Raux = αtxtRtxt + αgauRgau + αTVRTV

(4)

where Lgrad represents the matching loss, andRaux is a set
of auxiliary priors. The scheduling term φ(t) dynamically
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adjusts the influence of the auxiliary priors throughout the
optimization process. We incorporate three auxiliary priors
to improve reconstruction fidelity: (i) a visual text prior
based on the Laplacian filter, which enhances fine-grained
text boundaries, (ii) a Gaussian prior, which encourages
spatial smoothness and reduces high-frequency noise, and
(iii) a total variation (TV) prior, which combines spatial
smoothness with a channel-wise consistency constraint that
encourages grayscale reconstructions, aligning with the typ-
ical appearance of text and background in documents. In
the remainder of this section, we describe each prior and
scheduler in detail.

Gradient Matching. The gradient matching loss serves as
the primary component of the optimization, minimizing the
discrepancy between the client’s gradients and those of the
adversary. Previous works have used distance metrics such
as Euclidean distance and cosine similarity. In our approach,
we combine both metrics for improved effectiveness: Eu-
clidean distance is used to account for the magnitude of
the gradient vectors, while cosine similarity attends to their
directional alignment. This loss is defined as:

Lgrad =
∑
l

LMSE

(
∇lL(θ, x̂, ŷ),∇l

kθt

)
+

LCS

(
∇lL(θ, x̂, ŷ),∇l

kθt

)
(5)

where l denotes the l-th layer, LMSE is the mean squared
loss, and LCS is the cosine similarity loss.

Visual Text Prior. Accurately reconstructing small-sized
words (∼1% of the full image) is a highly challenging task
due to their minimal contribution to the overall gradient and
their low visibility in the reconstructed image. To address
this, we introduce a new text prior based on the Laplacian fil-
ter (Paris et al., 2011). The Laplacian filter is a second-order
derivative filter that emphasizes regions of rapid intensity
changes in an image, such as edges and fine-grained details.
It is particularly effective for extracting high-frequency fea-
tures, such as the boundaries of text and intricate patterns,
which are crucial for reconstructing specific word details.
The discrete form of the Laplacian filter measures the sum
of curvature in both the horizontal and vertical directions,
which is expressed as:

∇2x̂D(i, j) =
∂2x̂D

∂i2
+

∂2x̂D

∂j2
(6)

where ∂2x̂D

∂i2 and ∂2x̂D

∂j2 are the second derivatives of the
image intensity x̂D with respect to spatial coordinates i and
j. In practice, the Laplacian filter is implemented using a

convolution operation with a fixed kernel:

Rtxt(x̂D) =
1

|x̂D|
∑
i

∑
j

|(Klap ∗ x̂D)(i, j)|

Klap =

 0 −1 0
−1 4 −1
0 −1 0

 (7)

where KLap is the 4-neighbor Laplacian kernel, (Klap ∗
x̂D)(i, j) is the convolution operation at a specific pixel
(i, j), and |x̂D| is the total number of pixels in the image.

Gaussian Prior. To enhance the reconstruction quality of
fine-grained details, we introduce a Gaussian prior, which
leverages the properties of a Gaussian smoothing filter to
regularize the optimization process. The Gaussian prior
enforces spatial consistency by penalizing high-frequency
noise while preserving key structures, such as edges and text
regions, acting as a low-pass filter. Similar to the Laplacian
filter, the Gaussian filter is implemented using a convolution
operation with a Gaussian kernel:

Rgau(x̂D) =
1

|x̂D|
∑
i

∑
j

|(Kgau ∗ x̂D)(i, j)− x̂D(i, j)|

Kgau(i, j) =
1

2πσ2
exp

(
− i2 + j2

2σ2

)
(8)

By applying the Gaussian filter to the reconstructed image
and computing the difference with the unfiltered one, this
prior quantifies deviations in smoothness. This encourages
the optimization to focus on preserving the natural smooth-
ness of the input image while avoiding overfitting to noise
or artifacts. The Gaussian prior is particularly effective for
ensuring smoother transitions in reconstructed document
regions, facilitating a more realistic and accurate recon-
struction. Compared to the commonly used total variation
prior (Chambolle et al., 2010), which focuses on differences
between neighboring pixel values, the Gaussian prior applies
a smoothing filter globally across larger regions, reducing
variations uniformly, including at edges.

Total Variation Prior. The TV prior is widely used in
image reconstruction tasks to enforce smoothness while pre-
serving important structures. Following prior works (Geip-
ing et al., 2020; Hatamizadeh et al., 2022), we adopt the
standard spatial TV formulation, which measures the varia-
tion between neighboring pixels in the spatial dimensions
of an image (i.e., width and height). For an image x̂D with
spatial dimensions (i, j), the spatial TV is defined as:

RTV-S(x̂D) =
∑
i,j

|x̂D(i+1,j) − x̂D(i,j)|+

|x̂D(i,j+1) − x̂D(i,j)| (9)
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Figure 3: Color palette where the RGB channels have iden-
tical intensity (R=G=B). The palette ranges from black
(R=G=B=0) to white (R=G=B=255), illustrating colors that
vary solely in brightness without hue or saturation. This
reflects the effect of the TV channel prior, which enforces
RGB consistency and promotes grayscale reconstructions,
aligning with the typical appearance of text and backgrounds
in documents.

In addition to spatial smoothness, we introduce a channel
TV prior, which operates on the color channels (i.e., red,
green, and blue) at each pixel. The channel TV penalizes
variations in color intensity within a pixel across the RGB
channels, helping suppress chromatic artifacts and reduc-
ing color noise. For an image where the RGB channels
are forced to have equal intensity (R=G=B), the resulting
colors belong to the grayscale spectrum. This spectrum
consists of shades that vary only in brightness, ranging from
black (R=G=B=0) to white (R=G=B=1), without any hue
or saturation, as shown in Figure 3. The channel TV prior
leverages this property to encourage grayscale consistency
across the reconstructed image, aligning with the nature of
text reconstruction tasks, where content (e.g., text or back-
ground) is predominantly black, white, or gray. The channel
TV is defined as:

RTV-C(x̂D) =
∑
i,j

|x̂D(i,j,R) − x̂D(i,j,G)|+

|x̂D(i,j,G) − x̂D(i,j,B)|+ |x̂D(i,j,B) − x̂D(i,j,R)| (10)

Combining both spatial and channel priors, the overall TV
prior is expressed as:

RTV(x̂D) = RTV-S(x̂D) +RTV-C(x̂D) (11)

By combining spatial and channel priors, the overall TV
prior enforces both local smoothness across neighboring
pixels and consistency in color channels. The inclusion
of the channel TV prior ensures that reconstructed images
adhere to the grayscale spectrum, effectively promoting
natural and visually coherent reconstructions that align with
the characteristics of text or background.

Priors Scheduler. Unlike prior work (Hatamizadeh et al.,
2022) that delayed the activation of auxiliary priors until
later stages of optimization to avoid suboptimal conver-
gence, we propose a scheduler that assigns high weights to
priors early in training. This approach stems from our obser-
vation that auxiliary priors play a critical role in stabilizing
the early stages of optimization, where the synthesized in-
puts are far from convergence. By emphasizing priors early

on, our scheduler ensures that the optimization process is
guided toward realistic reconstructions from the start. We
adopt an exponential decay strategy for φ(t), defined as
φ(t) = α exp(−λt), where α is the initial weighting coeffi-
cient and λ is the scaling factor that determines the decay
rate. This allows the contribution of auxiliary priors to
diminish gradually as optimization progresses, letting the
gradient matching loss take precedence in later stages for
fine-tuning. This shift enables the priors to shape the overall
structure early on, while the gradient matching loss refines
details as optimization converges.

4. Evaluation
4.1. Evaluation Setup

Models. We use state-of-the-art DQA models, covering
both OCR-free and OCR-based models: (i) Document
Understanding Transformer (Donut) (Kim et al., 2022)
- an OCR-free model that employs a transformer-based
encoder-decoder architecture. Consists of a vision encoder
(Swin Transformer (Liu et al., 2021)) and a text decoder
(BART (Lewis, 2019)). We use the base-size model with
156M parameters. (ii) LayoutLMv3 (Huang et al., 2022)
- an OCR-based model and the latest version of the Lay-
outLM family models (Xu et al., 2020a), which employs
a transformer-based architecture with visual patch embed-
dings and incorporates textual input along with bounding
box coordinates for spatial context (i.e., OCR). We use the
base-size model, which consists of 133M parameters.

Datasets. We use the PFL-DocVQA (Tito et al., 2024)
dataset, designed to perform DocVQA in a FL environment,
with the aim of exposing privacy leakage issues in a realis-
tic scenario. It comprises invoice document images and a
set of question/answer pairs. The documents contain sensi-
tive data of the invoice provider identity, including provider
name, address, and other sensitive fields. For our experi-
ments, we use a subset of the original dataset containing 395
documents. The subset includes 90 templates, each with
approximately five distinct documents (the sensitive data
differs between the documents of the same template).

Metrics. In our evaluation, performance is measured with
metrics commonly used in the visual gradient inversion do-
main (Hatamizadeh et al., 2022; Lu et al., 2021; Geiping
et al., 2020): (i) Peak Signal-to-Noise Ratio (PSNR) - qual-
ity of reconstructed images by quantifying the ratio between
the maximum possible signal value and the distortion intro-
duced by the reconstruction. (ii) Cosine similarity in the
Fourier space (FFT2D) - similarity between the original
and reconstructed images in the frequency domain. (iii)
Mean Squared Error (MSE) - average squared difference
between corresponding pixels in the original and recon-
structed images.
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Table 1: Main results. Evaluation of our attack and prior works on the Donut and LayoutLMv3 models. ↓ indicates that
lower values are better, and ↑ indicates that higher values are better. Bold indicates superior results.

Method Donut LayoutLMv3
PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio ↑ PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio ↑

Random 6.989 0.113 96.591 0% 0 7.041 0.124 105.169 0.9% 0
DLG (Zhu et al., 2019) 6.984 0.110 96.574 0% 0.001 7.015 0.127 105.185 1.1% 0

iDLG (Zhao et al., 2020) 6.984 0.110 96.574 0% 0.001 7.015 0.127 105.185 1.1% 0
Inverting Gradients (Geiping et al., 2020) 11.386 0.042 95.314 0% 0.006 10.596 0.044 98.281 0% 0

APRIL (Lu et al., 2021) 13.652 0.027 85.329 5.8% 0.283 9.825 0.060 98.946 0.6% 0
GI-DQA (Ours) 24.194 0.003 60.403 70.1% 0.909 22.713 0.005 72.508 82.1% 0.681

Table 2: Effect of different loss components on the recon-
struction quality. ↓ indicates that lower values are better,
and ↑ indicates that higher values are better.

Loss Reconstruction Metrics
Component PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio ↑
Lgrad 17.872 0.012 75.008 42.6% 0.759
+RTV-C 22.555 0.006 63.823 61.0% 0.856
+RTV-S 24.540 0.003 58.063 70.2% 0.894
+Rtxt 23.855 0.003 61.655 70.6% 0.913
+Rgau 24.194 0.003 60.403 70.1% 0.909

Lgrad +RTV-C +RTV-S +Rtxt +Rgau Original

We also include metrics specifically designed for the DQA
domain and visual text reconstruction. To achieve this, we
use Trocr (Li et al., 2023), an OCR model to extract the re-
constructed text, and measure: (i) Exact Match (Binary) -
percentage of text segments that are perfectly reconstructed,
reflecting the attack’s ability to recover textual information
without any character-level errors. (ii) Fuzz Ratio (FR) - A
similarity score based on character-level differences using
fuzzy string matching, allowing for a more flexible evalu-
ation of partial reconstructions where minor distortions or
OCR errors may still preserve semantic meaning. This ap-
proach evaluates the attack’s effectiveness in an automated
end-to-end scenario.

Implementation Details. The optimized pixels in the recon-
structed document image are randomly initialized and up-
dated using the Adam optimizer with an initial learning rate
of 2.0, applying exponential decay with a rate of λ = 0.999
over 5,000 iterations. The auxiliary loss terms (Equation 4)
are weighted using the coefficients αtxt = 0.1, αgau = 0.01,
and αTV = 0.1. These values were selected using the grid
search approach over the values {0, 0.001, 0.01, 0.1, 1}, op-
timizing for PSNR performance.

4.2. Results

Here, we present the results for our proposed attack. We
report additional results in Appendix A.1 and provide exam-
ples of reconstructed documents in Appendix A.3.

4.2.1. ATTACK EFFECTIVENESS

Table 1 presents the results of our proposed attack in com-
parison to prior works, including DLG (Zhu et al., 2019),
iDLG (Zhao et al., 2020), Inverting Gradients (Geiping et al.,
2020), and APRIL (Lu et al., 2021). As shown, existing
methods designed for unimodal models fail to reconstruct
meaningful content when applied to multimodal architec-
tures. DLG and iDLG attack performance is identical to that
of a random baseline. Even APRIL, which is designed for
transformer-based models, lacks the capability to capture
the intricate interactions between visual and textual modal-
ities, leading to incomplete or incoherent reconstructions.
These methods struggle to extract fine-grained document
features, as they are not designed to handle the fusion of
structured text and image embeddings present in multimodal
systems. In contrast, our proposed attack effectively exploits
the unique properties of multimodal DQA models, leverag-
ing both pre-fusion gradients (explained in Section 5) and
cross-modal dependencies to reconstruct sensitive document
content with significantly higher fidelity. Furthermore, our
approach is specifically designed to better fit the domain of
visual text, ensuring more accurate recovery of structured
textual elements that are critical in documents. For example,
on the Donut model, our approach accurately reconstructs
70.1% of the set of words in all the documents combined,
compared to 5.8% in APRIL, demonstrating its effective-
ness in recovering fine-grained textual details. Examples
are shown in Figure 4.

4.2.2. ABLATION STUDIES

Priors Effect. We analyze the contribution of each train-
ing loss term by evaluating its impact on reconstruction
quality. Table 2 presents these results, providing quantita-
tive comparisons alongside qualitative examples to illustrate
their effectiveness. We observe that while optimizing Lgrad
alone enables partial reconstruction, it struggles to eliminate
the random noise introduced by the adversary’s document
initialization, achieving a binary match of 42.6%. Intro-
ducing the channel-wise total variation priorRTV-C yields a
substantial improvement, increasing the binary accuracy to
61.0% and the PSNR to 22.56 by promoting grayscale con-
sistency and reducing chromatic noise. Adding spatial TV
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Original Censored Inverting Gradients APRIL GI-DQA (Ours)

Figure 4: Examples of zoomed-in sections of documents where private information is reconstructed using different gradient
inversion techniques on the Donut model. Censored represents the document with redacted private data, which serves as the
adversary’s initial reference before optimization.

priorRTV-S further enhances smoothness across neighbor-
ing pixels, leading to the best overall PSNR of 24.54, which
indicates its strong contribution to local structural coherence.
The text priorRtxt slightly improves the binary match and
fuzz ratio, sharpening edges and enhancing text legibility.
The Gaussian priorRgau helps suppress the remaining high-
frequency noise, leading to an improved PSNR over Rtxt,
stabilizing the reconstruction, and maintaining performance
gains across all metrics.

Question-Answer Effect. As discussed in Section 3.3, the
effectiveness of document reconstruction depends on prior
access to the question-answer (QA) pair. Table 3 evaluates
the attack’s performance under different attacker knowledge
scenarios: (i) black-box setting – both the question and an-
swer are unknown (random tokens are used). (ii) gray-box
setting – only one of the question or answer is known. (iii)
white-box setting – both the question and answer are ac-
curately reconstructed and used in the attack. The results
demonstrate that document reconstruction is infeasible with-
out first recovering both the question and answer, even when
one component is known. In contrast, when the question-
answer pair is fully known, the attack significantly improves,
enabling the successful reconstruction of private document
details. This reliance on the question-answer pair high-
lights a unique characteristic of multimodal models, where
the fusion of different modalities plays a crucial role in pre-
serving and extracting information. Unlike unimodal attacks
that rely solely on direct feature recovery, multimodal gradi-
ent inversion depends on cross-modal interactions, making
the reconstruction process inherently dependent on both
textual and visual components. Although the answer in the
QA pair may contain a piece of personally identifiable in-

Table 3: Impact of question and answer knowledge on doc-
ument reconstruction ability. ↓ indicates that lower values
are better, and ↑ indicates that higher values are better.
*Original question and answer were replaced with random tokens.

Known Reconstruction Metrics
Question Answer PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio ↑

✘ ✘ 5.237 0.196 87.212 0.8% 0
✘ ✔ 6.956 0.124 88.743 0.7% 0
✔ ✘ 5.240 0.195 87.207 1.0% 0
✔ ✔ 24.194 0.003 60.403 70.1% 0.909
✔* ✔* 24.439 0.002 59.677 71.9% 0.920

formation (PII), it typically reflects only a small portion of
the overall sensitive content. Additional PII fields, unmen-
tioned in the QA, can still be inferred from the gradients
(further discussed in the following section). Interestingly,
our findings reveal that the semantic content of the question
and answer is not critical to the attack’s success. Instead,
effective document reconstruction relies on the adversary
having access to the exact token identities and their posi-
tions used by the client, regardless of their meaning. To
demonstrate this, we replaced the original QA pair with ran-
dom tokens of the same length and structure. The resulting
reconstructions showed nearly identical quality across all
metrics, as shown in Table 3 (bottom row). This indicates
that gradient inversion exploits the precise token represen-
tations encoded in the model’s gradients, rather than their
semantic interpretation.

Training Stage Effect. We conduct a systematic evalua-
tion of the attack’s effectiveness at different stages of model
training to understand how the evolution of learned represen-
tations influences reconstruction quality. Our findings reveal
a clear trend: as the model becomes more optimized, inver-
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Figure 5: Cross-attention maps from the decoder for the
input “06/05/22” split into tokens in a fine-tuned model
(left) and a randomly initialized model (right). The fine-
tuned model exhibits sharply focused attention, while the
randomly initialized model attends to broader regions, en-
abling more recoverable information during inversion.

sion quality degrades significantly (full results can be found
in Appendix A.1.2). This suggests that, early in training, the
model encodes a broader and more spatially distributed set
of features, as its cross-attention tends to be more diffuse
and less focused on specific regions. In contrast, as train-
ing progresses, attention and token representations become
increasingly concentrated on task-relevant areas, particu-
larly those directly associated with the question and answer,
thereby narrowing the gradient signal, as shown in Figure 5.
This focused representation reduces the diversity of infor-
mation available in the gradients, making it more difficult to
reconstruct PII beyond the QA scope. This observation also
helps explain why our attack remains effective even when
QA tokens are replaced with random tokens, as long as the
adversary has access to the same input tokens.

5. Discussion
A key aspect of understanding privacy risks in multimodal
models is identifying which gradients are most susceptible
to inversion. In our analysis, we find that only a subset of the
gradients meaningfully contribute to successful reconstruc-
tion. Multimodal vision-language models typically follow
three stages: (i) extracting features from visual and tex-
tual inputs, (ii) fusing these modalities, and (iii) generating
the output. Our findings show that gradients from the pre-
fusion stage, where the model still processes each modality
independently, carry the most informative signal for recon-
struction. In contrast, post-fusion gradients are significantly
less revealing. In Donut, relying only on post-fusion gradi-
ents makes reconstruction slower and less accurate, while in
LayoutLMv3, reconstruction fails entirely. These findings
suggest that multimodal fusion acts as an implicit safeguard.

Post-fusion gradients lack the fine-grained details of the
input document, indicating that future privacy-preserving
strategies may focus on protecting pre-fusion layers rather
than all layers indiscriminately.

6. Defense
In response to the threats posed by GI-DQA, we introduce
Safe Template, a mitigation strategy that targets the adver-
sary’s dependence on publicly available document templates.
Since organizations control these templates, they can proac-
tively embed subtle, human-imperceptible perturbations into
published versions to hinder reconstruction efforts. This de-
fense is based on a key insight: gradient inversion attacks
heavily depend on gradient matching, wherein the adversary
aligns their reconstructions with the observed shared gradi-
ents. By maximizing gradient divergence at the input level,
Safe Template disrupts this alignment without altering the vi-
sual appearance of the document. Unlike prior defenses that
manipulate or obfuscate the gradients themselves (Li et al.,
2022; Zhu et al., 2019), Safe Template perturbs the input
images used to compute those gradients. We evaluate two
strategies for introducing perturbations: (i) random noise,
and (ii) adversarial noise crafted using projected gradient
descent (PGD) (Madry et al., 2017), with a custom objective
Ldefender = −Lgrad that explicitly maximizes gradient diver-
gence. Both approaches prove to be effective in reducing the
success of the attack. Random noise is effective for ϵ > 32

255 ,
while PGD-based perturbations provide comparable defense
even at ϵ > 8

255 , where ϵ denotes the perturbation budget,
which controls the intensity of modifications applied to the
images. Importantly, Safe Template is applied offline, im-
poses no computational overhead on the training process,
and preserves full model utility, since benign clients train on
clean, unmodified documents. This makes it a lightweight
and practical defense for safeguarding multimodal FL sys-
tems. For detailed results and analysis, see Appendix A.2.

7. Conclusion
In this work, we introduced GI-DQA, a gradient inversion
attack that reveals critical privacy vulnerabilities in multi-
modal federated learning (FL) systems. By exploiting pre-
fusion gradients and cross-modal interactions, GI-DQA suc-
cessfully reconstructs private document content, exposing a
significant threat overlooked by prior unimodal approaches,
which fail in such settings. To address this risk, we proposed
Safe Template, an input-level defense that perturbs shared
templates to disrupt gradient alignment, effectively mitigat-
ing inversion without affecting model utility. Our findings
underscore the need for privacy-aware architectural design
and robust defensive strategies in multimodal FL deploy-
ments. Future work should investigate adaptive defenses
and training protocols that preserve both utility and privacy
in cross-modal learning environments.
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Impact Statement
This paper presents a study on gradient inversion attacks in
FL, specifically targeting DQA models. Our work exposes
significant privacy vulnerabilities in FL systems, particularly
in scenarios where sensitive document data are involved,
such as medical records, financial statements, and legal
contracts.

Potential Ethical Concerns. Federated learning, despite
its privacy-preserving design, remains susceptible to gradi-
ent inversion attacks that can reconstruct private training
data, posing a risk to individuals whose confidential infor-
mation may be leaked. This is especially concerning for
applications involving sensitive or personal documents. Al-
thoughugh our research aims to improve the security of FL
systems by exposing these vulnerabilities, it also carries the
risk of adversarial actors misusing our findings to develop
more effective attacks against real-world deployments.

Mitigation and Responsible Use. Our work underscores
the urgent need for robust defenses, such as gradient ob-
fuscation techniques, differential privacy mechanisms, and
secure aggregation strategies, to mitigate the identified risks.
We also present a defense mechanism to mitigate the risks
posed by such attacks. We encourage the research commu-
nity to use our findings to strengthen privacy-preserving
methods in FL rather than to exploit them maliciously. Fur-
thermore, we adhere to responsible disclosure practices and
have framed our research in a way that prioritizes defense-
oriented contributions.

Broader Societal Implications. By demonstrating vulnera-
bilities in multimodal FL systems, we contribute to ongoing
efforts to enhance the security and privacy of decentral-
ized machine learning frameworks. Furthermore, our study
informs policymakers, developers, and researchers about
potential risks in privacy-sensitive AI applications, helping
to shape future regulatory and technical safeguards. In con-
clusion, this research seeks to advance the field of machine
learning by improving the understanding of privacy risks
in FL, with the ultimate goal of fostering more secure and
privacy-aware AI systems.

References
Balunovic, M., Dimitrov, D., Jovanović, N., and Vechev,
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A. Appendix
A.1. Additional Results

A.1.1. ATTACK PERFORMANCE ON BATCHES

Table 4: Effect of different batch sizes on the re-
construction quality. ↓ indicates that lower values
are better, and ↑ indicates that higher values are
better.

Batch Reconstruction Metrics
Size PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio ↑

2 15.967 0.014 83.57 49.6% 0.452
4 7.155 0.132 90.461 0.7% 0
6 8.215 0.094 94.001 0.6% 0

We also examine the effect of different batch sizes on the quality of
reconstruction, as it reflects a more complex scenario in which the
shared gradients are averaged over the entire batch. In our experi-
ments, we demonstrate the ability to reconstruct a single document
when the shared gradients are computed using various batch sizes.
Table 4 presents the results of the reconstruction using batch sizes
of two, four, and six. Our experiments demonstrate that our attack
remains effective when gradients are computed from up to two sam-
ples, successfully reconstructing a single document in these cases.
However, with larger batch sizes, the quality of reconstruction di-
minishes. This effect stems from the nature of text-based gradients,
which tend to be more sparser and localized compared to visual features. When gradients are averaged over larger batches,
the document-specific signal becomes more diffused, making it harder to isolate fine-grained textual details. Nevertheless,
despite this increased complexity, our approach remains capable of extracting meaningful information, demonstrating its
robustness in multi-sample scenarios.

A.1.2. TRAINING STAGE EFFECT

As noted in Section 4.2.2, we conducted a comprehensive evaluation of the effectiveness of the attack at various stages
of model training. As shown in Figure 6, the ability to reconstruct document pixels progressively degrades as the model
converges. For example, at initialization (iteration 0), approximately 70.1% of words are perfectly reconstructed, whereas by
iteration 30, the success rate drops below 10%.

Figure 6: Attack success rate (Binary accuracy) as a function of training iteration. The results show a clear downward trend
in reconstruction performance as the model converges.

A.1.3. EFFECT OF PRIOR SCHEDULING STRATEGY

To assess the impact of the prior scheduling strategy on reconstruction quality, we compare our proposed approach with
two alternatives: (i) the delayed scheduling strategy of GradViT (Hatamizadeh et al., 2022), and (ii) a baseline without any
scheduling mechanism, where prior weights are kept constant throughout the optimization. GradViT delays the introduction
of auxiliary priors until the later stages, allowing the model to initially optimize solely based on the gradient matching
loss. In contrast, our scheduler assigns higher weights to auxiliary priors during early iterations and gradually reduces their
influence via an exponential decay schedule. This design aims to stabilize the early stages of optimization, especially in
settings where the template reduces the gradient signal in sensitive regions, by encouraging visually coherent structures
from the outset.

Table 5 summarizes the results. Our scheduler is the only one to produce viable reconstructions, achieving strong visual and
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semantic fidelity across all metrics. In contrast, both GradViT and the constant-weight baseline fail to guide the optimization
meaningfully: GradViT’s delayed prior activation leads to noisy and fragmented outputs, while constant weighting results
in low-fidelity reconstructions that collapse semantically (i.e., near-zero binary accuracy and fuzz ratio). These findings
highlight the importance of strong early guidance from auxiliary priors when gradient signals are weak or ambiguous.

Table 5: Comparison of prior scheduling strategies. Our early-weighted scheduler leads to significantly improved recon-
structions across visual and semantic metrics.

Scheduler PSNR ↑ FFT2D ↓ MSE ↓ Binary ↑ Fuzz Ratio↑
None 10.854 0.048 94.781 5.1% 0
GradViT 8.871 0.080 79.440 0.1% 0.042
Ours 24.194 0.003 60.403 70.1% 0.909

A.1.4. EFFECTIVENESS OF INDIVIDUAL PRIORS

To better understand the role of each auxiliary prior in our reconstruction objective, we evaluate them independently rather
than cumulatively (Section 4.2.2). Table 6 presents the results of optimizing each loss term in isolation. The Laplacian prior
(Rtxt) and the spatial TV prior (RTV-S) achieve the strongest overall performance, significantly improving both perceptual
quality (highest PSNR) and textual fidelity (lowest fuzz ratio, highest binary match). The channel TV prior (RTV-C) also
performs well, particularly in maintaining semantic consistency. In contrast, the Gaussian prior (Rgau) achieves relatively
modest performance when used alone. However, this does not reflect its true value; when used in combination with other
priors (as shown in our main ablation), it plays a critical role in stabilizing optimization and suppressing noise. Finally,
attacks without any regularization (Lgrad only) exhibit degraded results across all metrics, highlighting the necessity of
auxiliary priors for successful reconstruction.

Table 6: Performance of individual priors based on reconstruction metrics.

Loss PSNR ↑ FFT2D ↓ MSE ↓ Binary Test ↑ Fuzz Ratio ↑Component
Lgrad 17.872 0.012 75.008 42.6% 0.759
Rgau 18.246 0.010 74.701 45.1% 0.771
Rtxt 21.182 0.005 71.783 66.6% 0.896
RTV-C 20.519 0.007 71.501 60.8% 0.874
RTV-S 20.508 0.006 72.915 64.2% 0.888
All Combined 24.194 0.003 60.403 70.1% 0.909

A.2. Defense

We propose Safe Template, a practical defense mechanism designed to mitigate gradient inversion attacks on multimodal
models, particularly DQA models within FL setups. This defense is motivated by a key vulnerability exploited in our attack:
the adversary’s access to publicly available document templates. These templates are frequently shared by organizations
for standardization and accessibility purposes, and their consistent structure enables adversaries to significantly narrow
the search space during reconstruction. The success of a gradient inversion attack depends on the similarity between
gradients computed on the attacker’s reference template and those generated by the actual client. Safe Template disrupts this
similarity by embedding small, targeted perturbations into publicly released templates, thereby diminishing their usefulness
for adversarial inversion.

A.2.1. DEFENSE OVERVIEW

Safe Template introduces perturbations into the document template that maximize the distance between the gradients
computed on clean versus perturbed inputs. These perturbations are generated offline, prior to FL training and do not
interfere with client utility. The benign client continues to use the unperturbed document during FL training, ensuring model
accuracy and gradient integrity.
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Algorithm 1 Safe Template
Input: Model fθ, visual document xD, question xQ, answer yans, perturbation budget ϵ, norm p, step size α
Output: Perturbed Template

1: δ := 0
▷ Step 1:

2: ŷans = fθ(xD, xQ)
3: Lclean = ℓmodel(ŷans, yans)
4: ∇θclean = ∂Lclean

∂θ
▷ Step 2:

5: repeat
6: xper

D = xD + δ
7: ŷper = fθ(x

per
D , xQ)

8: Lper = ℓmodel(ŷper, yans)

9: ∇θper =
∂Lper

∂θ
▷ Step 3:

10: Ldef = −Lgrad ▷ see Section 3.3.1
11: ∇θdef =

∂Ldef
∂θ

12: δ =
∏

||δ||p<ϵ

(δ + α · sign(∇θdef))

13: until Convergence
14: Return δ

The method consists of three steps, outlined in Algorithm 1, which can be summarized as follows:

• Step 1: Clean Gradient Computation. Given a document-question pair (xD, xQ), the model performs a forward pass
and predicts an answer ŷ. The loss is computed with respect to the ground-truth answer y, and the gradients∇θclean are
obtained by backpropagation. This step is performed once per template.

• Step 2: Adversarial Gradient Computation. A perturbation δ is added to the document, yielding (xD + δ, xQ). The
model performs a forward pass and backpropagation to compute∇θper, the gradients on the perturbed template.

• Step 3: Perturbation Update. The perturbation δ is optimized to maximize the gradient discrepancy, using the
defender’s loss Ldef = −Lgrad. Gradients with respect to Ldefender are computed, and δ is updated via Projected Gradient
Descent (PGD) to remain within an ℓp norm ball of radius ϵ:

δt+1 =
∏

∥δ∥p≤ϵ

(δt + α · sign (∇Ldef)) ,

where α is the step size and
∏

denotes projection under norm constraint ∥ · ∥p. Steps 2 and 3 are repeated iteratively
until convergence.

A.2.2. KEY PROPERTIES

Safe Template provides several practical advantages:

• Offline and Efficient. The perturbation generation process is performed once per template and does not interfere with
FL training, making it computationally efficient.

• Accuracy Preservation. Since benign clients use the original, unperturbed documents during training, model accuracy
and utility are fully preserved. Gradients transmitted to the server remain unaffected.

• Scalable and Deployable. Organizations can embed perturbations directly into the public template files they distribute,
requiring no client-side or server-side modification.

A.2.3. RANDOM VS. ADVERSARIAL PERTURBATIONS

To evaluate the robustness of SafeTemplate, we explore two strategies for perturbation generation: (i) adversarially crafted
perturbations, and (ii) random noise; Both approaches modify document pixels directly in a way that remains imperceptible
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to the human eye, preserving the visual integrity of the template. To investigate the trade-off between privacy and document
fidelity, we experiment with varying perturbation budgets, denoted by ϵ, which control the maximum allowable pixel
modification. Table 7 reports the effectiveness of both strategies on the Donut model.

The results demonstrate that both methods substantially reduce the success of the attack. Random perturbations become
effective at ϵ > 32

255 , lowering the reconstruction success rate to just 0.3%. In contrast, adversarial perturbations achieve
similar protection at a much smaller budget (ϵ > 8

255 ), highlighting that even minimal, strategically crafted modifications
are sufficient to disrupt gradient inversion.

Table 7: ↓ indicates that lower values are better, and ↑ indicates that higher values are better. Bold indicates superior results.

Strategy ϵ
Reconstruction Metrics

PSNR ↓ FFT2D ↑ MSE ↑ Binary ↓ Fuzz Ratio ↓
No Defense - 24.194 0.003 60.403 70.1% 0.909

Random 12/255 13.905 0.024 80.876 11.6% 0.064
32/255 9.036 0.073 84.946 0.3% 0

PGD
8/255 12.027 0.037 84.550 0.25% 0.01
12/255 10.210 0.056 86.014 0.4% 0.002
16/255 9.004 0.075 86.961 0.4% 0.001

A.2.4. FL WITH LOCAL DIFFERENTIAL PRIVACY (LDP)

To assess the effectiveness of standard FL defenses, we conducted a complementary experiment simulating a typical LDP
mechanism. Specifically, we added Gaussian noise directly to the shared gradients, a widely adopted strategy for per-client
privacy preservation in FL. As shown in Table 8, increasing the noise scale σ leads to a gradual reduction in attack success.
At lower noise levels (σ = 1 · 10−9 and 1 · 10−8), the gradients still retain enough signal for partial reconstruction, with
binary match rates around 44–46%. At a higher noise scale (σ = 1 · 10−7), the attack is largely neutralized, although
this level of perturbation may adversely affect model convergence and utility in practice. These findings highlight the
limitations of gradient-level defenses: stronger privacy comes at the cost of model performance. In contrast, Safe Template
operates entirely at the input level without modifying gradients, preserving training stability while substantially degrading
the adversary’s ability to extract sensitive information.

Table 8: Effectiveness of LDP under different noise scales. Higher σ implies stronger noise added to shared gradients.

σ PSNR ↓ FFT2D ↑ MSE ↑ Binary ↓ Fuzz Ratio ↓
No Defense 24.194 0.003 60.403 70.1% 0.909
1 · 10−9 19.566 0.007 74.516 45.9% 0.786
1 · 10−8 17.805 0.010 77.412 44.0% 0.825
1 · 10−7 7.013 0.119 82.807 0% 0.001

A.3. Visualizations

In Figure 7, we visualize full-sized reconstructed documents where private information is recovered.
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Original Censored GI-DQA (Ours)

Figure 7: Examples of documents where private information is reconstructed using our proposed attack. Censored represents
the document with redacted private data, which serves as the adversary’s initial reference before optimization.
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