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RadioAR: Autoregressive Modeling for Accurate Radio Map
Estimation
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Abstract
Radio map estimation (RME) is a key enabler for environment-
aware wireless systems, supporting tasks such as coverage plan-
ning, interference management, and context-aware resource allo-
cation. Accurate RME is challenging because radio maps exhibit
both smooth, large-scale variations (e.g., path loss and shadowing)
and rapidly changing, high-frequency details induced by multipath
propagation. This paper presents RadioAR, a multi-scale autore-
gressive framework that predicts radio maps from coarse to fine res-
olutions. We design a radio-map tokenizer based on residual Lapla-
cian pyramid decomposition and continuous tokens, which preserves
subtle signal variations while avoiding the quantization artifacts
introduced by discrete tokenizers. On top of the tokenizer, RadioAR
employs a conditional transformer to progressively refine token
maps under building and transmitter conditions. Experiments on
RadioMapSeer (IRT4) show that RadioAR achieves better accuracy
than representative convolutional, transformer, GAN, diffusion, and
Mamba baselines, while maintaining inference latency compatible
with real-time deployment.

CCS Concepts
• Computing methodologies→ Computer vision.

Keywords
radio map estimation, autoregressive modeling, multi-scale tok-
enization, transformer, wireless propagation, 6G

1 Introduction
Radio maps (Fig. 1(a)) describe the spatial distribution of radio-
frequency metrics such as received signal strength (RSS), interfer-
ence, and channel gain over a geographic area. They support a
wide range of downstream tasks, including network planning [9],
spectrum allocation [48], interference management [7], and path
planning for autonomous platforms [43]. As wireless systems move
toward higher carrier frequencies and denser deployments [32], ac-
curate and low-latency radio map estimation becomes increasingly
important.

Accurate radio map estimation (RME) is difficult in realistic en-
vironments because propagation is shaped by both multipath and
blockage. Reflections, diffractions, and refractions create multiple
propagation paths (Fig. 1(b)), leading to rapid spatial fluctuations in
received power (small-scale fading; Fig. 1(c)). At the same time, ob-
stacles attenuate the dominant paths and introduce slower but pro-
nounced large-scale variations (shadowing; Fig. 1(d)). An effective
RME model must therefore capture global trends and fine-grained
textures within a tight latency budget.

Conference’17, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a) Illustration of a radio map (b) Multi-path propagation

(c) Small-scale fading (d) Large-scale fading or shadowing

Figure 1: Spatial distribution of radio signals and challenges
in radio map estimation. This figure presents an overview
of radio signal behavior and the primary obstacles in radio
map estimation arising from the intricate nature of electro-
magnetic wave propagation.

Classical RME approaches often rely on physics-based propa-
gation models [26] or empirical formulas [21]. While these meth-
ods provide interpretability, they are either too computationally
demanding for large-scale deployment or insufficiently accurate
when detailed scene information is unavailable.

Spatial statistical methods [1, 2, 4, 11, 13, 18, 24, 25, 27, 29–31,
33, 40] infer the full map from sparse measurements via structured
interpolation or completion. These techniques are attractive when
measurements are available, but their accuracy can degrade under
sparse sampling and when the map exhibits strong multi-scale
non-stationarity.

With modern compute, deep models have become the dominant
approach for RME, learning mappings from scene context to radio
maps. CNN-based estimators provide fast inference but can strug-
gle to capture long-range dependencies due to limited effective
receptive fields [17]. Transformer-based models improve global
context modeling, yet often incur substantial compute and mem-
ory overhead at high resolution. Diffusion models can generate
high-fidelity maps, but their iterative denoising procedure leads to
high inference cost [10], which is undesirable for latency-sensitive
settings. GAN-based approaches may offer efficient sampling but
can be sensitive to training instability and mode collapse.

These trade-offs motivate a model class that is both multi-scale
and computationally efficient. Visual AutoregressiveModels (VAR) [34]
predict token maps scale-by-scale from coarse to fine, and generate
tokens in parallel within each scale, providing a favorable accuracy–
latency profile. However, existing conditional VAR variants typ-
ically rely on discrete tokenizers, which introduce quantization
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errors [20]. For RME, such discretization is particularly problem-
atic as it acts as a low-pass filter, blurring the sharp spatial gradi-
ents caused by multipath-induced small-scale fading. Preserving
these high-frequency transitions is a physical necessity for accurate
signal mapping; otherwise, the resulting "blocking" artifacts can
significantly bias downstream tasks.

We address this gap by proposing RadioAR, a multi-scale au-
toregressive framework tailored to radio map estimation. RadioAR
combines a continuous-token, multi-scale tokenizer with a condi-
tional transformer that progressively refines the map from coarse
to fine resolutions.

Our contributions are:

(1) We introduce RadioAR, a multi-scale autoregressive model
for radio map estimation that adapts VAR-style next-scale
prediction to continuous-valued radio maps under building
and transmitter conditions.

(2) We design a radio-map tokenizer based on residual Lapla-
cian pyramid decompositionwith continuous tokens, which
preserves fine-grained variations while avoiding quantiza-
tion artifacts.

(3) We evaluate RadioAR on RadioMapSeer (IRT4) against rep-
resentative convolutional, transformer, GAN, diffusion, and
Mamba baselines, and provide ablations that isolate the
effects of model scaling and token representations.

2 Related Work
2.1 Radio Map Estimation

Traditional Methods. Traditional radio map estimation methods
are primarily model-based, relying on physical models of radio
wave propagation for prediction. Specific techniques include solv-
ing Maxwell’s equations for simple geometries [12], utilizing empir-
ical models such as ITU-R recommendations [28], and employing
computational methods like finite-element analysis [8] and ray
tracing [6, 47].

Spatial Statistical Methods. Spatial statistical methods estimate
the complete radio map from measurements collected at spatially
dispersed locations. Representative techniques in this category
include Kriging interpolation [2, 25], radial basis function inter-
polation [11, 13], tensor completion [18, 27], and matrix comple-
tion [31, 40].

Deep Learning Approaches. Deep learning approaches are in-
creasingly adopted for radio map estimation, offering a practi-
cal accuracy–latency trade-off. CNN-based models, such as Ra-
dioUNet [14] and FadeNet [23], leverage U-Net-style architectures
for fast prediction at meter-level resolution. Graph neural networks
(e.g., GNN-MDAR [41]) model non-Euclidean spatial relationships,
while transformer-based models such as Radionet [36] use attention
to capture global context. Generative formulations have also been
explored: GAN-based methods (e.g., RME-GAN [49], ACT-GAN [3])
learn a conditional generator, and diffusion-based models such
as RadioDiff [39] cast RME as conditional denoising to improve
perceptual quality.

Figure 2: Scaling behavior and inference speed performance
of different model families on the IRT4 dataset benchmark.

2.2 Autoregressive Models in Image Generation
Autoregressive (AR) models [44] have advanced image genera-
tion by treating images as sequences of discrete tokens or pixels,
employing various architectures, often transformers, to predict
subsequent elements. Early models like Vector Quantized Varia-
tional Autoencoder (VQVAE) [38] encode image patches into dis-
crete tokens, modeled autoregressively using PixelCNN [37] in a
raster-scan order. Vector Quantized Generative Adversarial Net-
work (VQGAN) [5] enhances this by combining vector quantization
with GANs and transformers for high-resolution image synthesis.
Recent advancements in autoregressive image modeling include
VAR, which employs transformer architectures to progressively
predict higher-resolution token maps from lower-resolution inputs.
Building upon this foundation, researchers have developed condi-
tional VAR variants such as Controllable Autoregressive Modeling
(CAR) [45] and ControlVAR [15]. These enhanced frameworks in-
corporate conditional mechanisms to facilitate controlled image
generation through guided synthesis processes.

3 Method
3.1 Preliminary: Visual Autoregressive via

Next-scale Prediction
Unlike traditional AR models, VAR operates on a multi-scale rep-
resentation of an image, generating it from coarse to fine resolu-
tions. An image is first encoded into a series of token maps 𝑇 =

(𝑡1, 𝑡2, . . . , 𝑡𝐾 ) using a multi-scale VQVAE, where 𝑡𝑘 ∈ [𝑉 ]ℎ𝑘×𝑤𝑘
denotes the token map at scale 𝑘 , with ℎ𝑘 × 𝑤𝑘 increasing as 𝑘
grows from 1 (coarsest) to 𝐾 (finest). The auto-regressive likelihood
is then expressed as

𝑝 (𝑡1, 𝑡2, . . . , 𝑡𝐾 ) =
𝐾∏
𝑘=1

𝑝 (𝑡𝑘 | 𝑡1, 𝑡2, . . . , 𝑡𝑘−1), (1)

where each 𝑡𝑘 is predicted based on all previous scales 𝑡1, . . . , 𝑡𝑘−1,
and tokens within 𝑡𝑘 are generated in parallel.

2
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Figure 3: Method motivation illustration. A case illustrates the Residual Laplacian Pyramid Decomposition’s ability to cleanly
separate low-frequency trends from high-frequency details in a radio map. The decomposition comprehensively captures
multi-scale signal characteristics, from broad, low-frequency patterns to fine, high-frequency textures, demonstrating its
effectiveness for hierarchical modeling of radio propagation.

VAR utilizes a transformer architecture akin to GPT-2, as de-
tailed in [22], employing a block-wise causal attention mask during
inference to effectively manage multi-scale tokens. Unlike tradi-
tional methods that flatten token maps, VAR operates directly on
2D token structures, preserving spatial locality and maintaining the
relationships between tokens. Additionally, by generating tokens
in parallel within each scale, VAR reduces the number of autore-
gressive steps to 𝐾 , where 𝐾 denotes the number of scales. This
optimization lowers the computational complexity to O(𝑛4) for an
𝑛 × 𝑛 image, significantly improving efficiency.

By generating token maps in a coarse-to-fine manner and paral-
lelizing token generation within each scale, VAR provides an effi-
cient alternative to raster-scan autoregressive decoding. Prior work
also reports favorable scaling behavior and competitive zero-shot
transfer in visual generation, which motivates adapting next-scale
prediction to conditional radio map estimation.

3.2 Autoregressive Modeling for Accurate RME
Inspired by the visual autoregressive framework, we propose Ra-
dioAR, a next-scale prediction paradigm for radio map estimation.
The overall framework of our model is illustrated in Fig. 4, offering a
high-level depiction of its key components and their interactions. In
this section, we present our problem formulation for conditional ra-
dio map estimation and introduce the architecture of our proposed
model.

Problem Formulation. In this work, we address the task of
conditional radio map estimation, where the goal is to predict a
radio map 𝑥 ∈ R𝐻×𝑊 based on a two-channel input condition
𝐶 = (𝑐building, 𝑐transmitter). The input condition consists of:

• 𝑐building ∈ {0, 1}𝐻×𝑊 : a binary mask image representing the
building shape, where white pixels indicate the presence of
a building.

• 𝑐transmitter ∈ {0, 1}𝐻×𝑊 : a binary mask image representing
the transmitter’s position, featuring a single white pixel to
precisely indicate the transmitter’s location.

The generated radio map 𝑅 should accurately reflect the Received
Signal Strength (RSS) across the area, accounting for the building
structures and transmitter location specified in 𝐶 .

Algorithm 1 Residual Laplacian Pyramid Decomposition

Input: Latent image 𝑧, resolutions (𝑛𝑘 )𝐾𝑘=0
Output: Components {𝑓0, 𝑓1, . . . , 𝑓𝐾 }
𝑔0 = downsample1×1 (𝑧)
𝑓0 = FEM(𝑔0) ⊲ DC component
𝑢0 = upsample𝐻×𝑊 (𝑓0)
Δ𝑧0 = 𝑧 − 𝑢0
for 𝑘 = 1 to 𝐾 do

g𝑘 = downsample𝑛𝑘×𝑛𝑘 (Δ𝑧𝑘−1)
𝑓𝑘 = FEM(𝑔𝑘 ) ⊲ Feature Enhancement Module
𝑢𝑘 = upsample𝐻×𝑊 (𝑓𝑘 )
Δ𝑧𝑘 = Δ𝑧𝑘−1 − 𝑢𝑘

end for
return {𝑓0, 𝑓1, . . . , 𝑓𝐾 }

Multi-Scale Radio Map Tokenizer. In autoregressive models
for image generation, the tokenizer serves as a critical component,
transforming complex image data into a sequence of tokens that
can be processed sequentially by models like transformers. Un-
like VAR’s discrete tokenization via a multi-scale VQVAE, we em-
ploy continuous tokens to avoid quantization errors and instability,
which are particularly problematic for radio maps with continuous
signal patterns and sharp transitions. A VAE encoder encodes the
radio map 𝑥 into the latent representation 𝑧, preserving spatial con-
tinuity and signal details critical for accurate radio map estimation,
as confirmed in our ablation study. Furthermore, our VAE-based
tokenizer inherently facilitates noise robustness. By mapping the
radio map onto a compact latent representation 𝑧, the encoder
learns to capture the underlying signal manifold. During this in-
formation bottleneck process, stochastic measurement noise and
non-structural irregularities are effectively filtered out, ensuring
that the autoregressive transformer operates on a denoised physical
representation of the radio environment.

To capture multi-scale signal characteristics in radio maps, we
draw inspiration from VAR’s discrete multi-scale tokenizer and
design the Residual Laplacian Pyramid Decomposition algorithm
(algorithm 1) to align with our continuous token framework. We
begin by simplifying VAR’s multi-scale VQVAE Encoding process.

3
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Table 1: Performance comparison of various models for RME. Metrics include NMSE, RMSE, SSIM, PSNR, number of parameters
(#Params) and inference time (Time).

Type Model #Params NMSE ↓ RMSE ↓ SSIM ↑ PSNR ↑ Time

Conv. RadioUnet [14] 13.27M 0.0135 0.0377 0.9133 28.52 0.004s
Conv. EDSR-L32-D64 [35] 2.40M 0.0819 0.0807 0.7873 22.06 0.004s
Conv. EDSR-L64-D64 4.77M 0.0412 0.0571 0.8466 25.13 0.008s

Trans. Radionet-L3-D128 [35] 1.79M 0.1427 0.1095 0.7246 19.40 0.002s
Trans. Radionet-L3-D256 3.72M 0.0301 0.0474 0.8439 26.80 0.003s
Trans. Radionet-L6-D128 2.97M 0.0334 0.0502 0.8396 26.29 0.004s

Diff. RadioDiff-S50 [39] 315.13M 0.0195 0.0399 0.8923 28.16 4.572s
Diff. RadioDiff-S1000 315.13M 0.0165 0.0359 0.9101 29.13 75.692s

GAN RME-GAN [49] 13.27M 0.0454 0.1076 0.8442 27.65 0.003s

Mamba UVM-Net [50] 1.01B 0.0339 0.0492 0.8657 26.59 0.141s

AR RadioAR-L16 290.11M 0.0308 0.0459 0.8770 26.75 0.229s
AR RadioAR-L24 778.18M 0.0168 0.0382 0.9195 28.35 0.691s
AR RadioAR-L30 1.43B 0.0132 0.0331 0.9217 29.58 1.210s

Specifically, applying a stripped-down version of algorithm 1—with-
out the Feature Enhancement Module (FEM)—to a sample radio
map reveals its ability to separate low-frequency trends from high-
frequency details. For visualization, each residual Δ𝑧𝑘 is processed
with a Laplacian sharpening filter to enhance texture features across
different frequency scales, as demonstrated in a toy case (Fig. 3).
This clearly demonstrates how 𝑓𝑘 captures progressively higher-
frequency components, transitioning from broad, low-frequency
patterns to intricate, high-frequency textures as the pyramid levels
increase. This multi-scale decomposition hierarchically dissects the
radio map into spatial frequency components, enabling detailed
modeling of signal propagation.

To be specific, our complete decomposition processes the la-
tent representation 𝑧 into components 𝐹 = (𝑓0, 𝑓1, . . . , 𝑓𝐾 ). It starts
with the DC component 𝑓0, obtained by downsampling 𝑧 to 1 × 1,
representing the global signal baseline. Residuals Δ𝑧𝑘 are then re-
cursively computed across increasing resolutions 𝑛𝑘 (where 𝑛0 = 1,
𝑛𝑘 < 𝑛𝑘+1), capturing finer details at higher scales. The Feature
Enhancement Module (FEM) is a lightweight component designed
to amplify subtle spatial variations. It consists of three residual
convolutional layers with 64 channels and ReLU activations. By
processing each downsampled residual 𝑔𝑘 , the FEM refines the la-
tent features across scales with minimal computational overhead,
enhancing the overall decomposition precision.

Within our RadioAR framework, this multi-scale decomposition
hierarchically models spatial frequency components of radio maps.
Initial levels encapsulate coarse, low-pass structures, while higher-
level residuals delineate fine, high-frequency variations, facilitating
precise and comprehensive radio propagation modeling.

Radio Autoregressive Transformer. RadioAR leverages the
conditional input 𝐶 to guide the estimation of the radio map 𝑥 .
𝑥 represented as multi-scale token maps 𝐹 = (𝑓0, 𝑓1, . . . , 𝑓𝐾 ) by
Multi-Scale Radio Map Tokenizer, with resolutions increasing from
𝑘 = 0 (coarsest) to 𝑘 = 𝐾 (finest). The conditional autoregressive
likelihood is factorized as

𝑝 (𝐹 | 𝐶) =
𝐾∏
𝑘=0

𝑝 (𝑓𝑘 | 𝑓<𝑘 ,𝐶), (2)

where 𝑓<𝑘 = (𝑓0, . . . , 𝑓𝑘−1) captures prior scales. To predict the
token maps progressively, a Radio Autoregressive Transformer is
employed, as shown in Fig. 4, starting from the smallest scale and
refining details at higher resolutions. Additionally, the Conditional
Integration Module consists of a Condition Encoder that maps the
input condition 𝐶 to a conditional embedding 𝑠 and a DC Predictor
that estimates the DC component (global signal baseline) from 𝐶 .
The training objective minimizes the negative log-likelihood:

L = −
𝐾∑︁
𝑘=0

log 𝑝 (𝑓𝑘 | 𝑓<𝑘 ,𝐶) . (3)

The Radio Autoregressive Transformer is built upon the GPT-2
architecture, a transformer-based model widely recognized for its
proficiency in autoregressive sequence modeling. After generating
all token maps 𝐹 = (𝑓0, 𝑓1, . . . , 𝑓𝐾 ), the radio map 𝑥 is reconstructed
using the decoder 𝐷 of the Multi-Scale Radio Map Tokenizer, as
detailed in algorithm 2.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

RadioAR Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 4: Overview of our proposed RadioAR architecture for radio map estimation. Stage 1 illustrates the training of the
multi-scale radio map tokenizer, encoding the input radio map into a latent representation and decomposing it into multi-scale
token maps using a Residual Laplacian Pyramid. Stage 2 depicts the training of the RadioAR transformer, with the DC Predictor
estimating the global signal baseline, the Conditional Encoder processing input conditions 𝐶 = (𝑐building, 𝑐transmitter) into an
embedding, and the transformer progressively refining tokens into the final radio map.

4 Experimental Results
4.1 Dataset
We use the RadioMapSeer dataset [46], which provides simulated
path-loss radio maps for tasks including RSS radio map estima-
tion and wireless localization. The maps are generated with Altair
WinProp ray-tracing and cover 701 city regions extracted from
OpenStreetMap (OSM) [19]; each region spans 256 × 256 meters at
1m/pixel resolution.

We focus on the IRT4 subset, generated by the Intelligent Ray
Tracing (IRT) model [42] with up to four interactions (reflections /
diffractions). Transmitters are placed at 1.5m height (one location
permap). Maps are stored as PNG images where path-loss values are
linearly mapped to grayscale intensities in [0, 255]. Unless stated
otherwise, we follow the dataset configuration (transmit power
23 dBm, center frequency 5.9 GHz, bandwidth 10MHz, noise figure
0 dB), and clip path loss below −127 dB.

4.2 Performance Evaluation
Setup. We evaluate RadioAR with depths 16/24/30 on the IRT4

subset of RadioMapSeer. Baselines include convolutional models

(RadioUnet [14], EDSR-Lx-Dy [16]), transformers (Radionet-Lx-
Dy [35]), diffusion (RadioDiff-S50 [39], RadioDiff-S1000), GAN
(RME-GAN [49]), and Mamba (UVM-Net [50]). All experiments
are conducted on an NVIDIA A40 GPU; inference time is measured
with batch size 1. We train the tokenizer in two stages: (i) train a
VAE to obtain a compact latent representation, and (ii) freeze the
VAE and train the feature enhancement module (FEM) within the
residual Laplacian pyramid to stabilize decomposition.

Algorithm 2 Reconstruction of Radio Map from Components
Input: Components {𝑓0, 𝑓1, . . . , 𝑓𝐾 }, original resolution 𝐻 ×𝑊
Output: Reconstructed radio map 𝑥
Initialize 𝑓 = 0 ⊲ Zero tensor of size 𝐻 ×𝑊
for 𝑘 = 0 to 𝐾 do

𝑢𝑘 = upsample𝐻×𝑊 (𝑓𝑘 )
𝑓 = 𝑓 + 𝑢𝑘

end for
𝑥 = 𝐷 (𝑓 ) ⊲ Decoder of multi-scale radio map tokenizer
return reconstructed radio map 𝑥
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Figure 5: Visual comparison of RME from RME-GAN [49], UVM-Net [50], RadioUnet [14], RadioDiff [39], Radionet (L3-
D256) [35], and RadioAR (L30) against the GT across four test scenarios.

EstimationAccuracyComparison. The RadioARmodels demon-
strate superior estimation accuracy compared to state-of-the-art
deep learning approaches for radio map estimation, as evidenced
by comprehensive performance metrics. As presented in Tab. 1,
RadioAR-L30 achieves performance comparable to the best convo-
lutional models while surpassing them in key quality metrics, such
as PSNR, indicating enhanced preservation of spatial details. In com-
parison to transformer-based models, RadioAR exhibits lower error
rates, showcasing its ability to capture complex spatial patterns
effectively. Diffusion-based models, while competitive in quality
metrics, require significantly more computational resources, limit-
ing their practicality. Even at shallower depths, RadioAR maintains
robust performance, outperforming most baseline models across
error and quality metrics. This consistent accuracy across varying
model complexities underscores the effectiveness of the multi-scale
autoregressive framework in balancing precision and generalization
for radio map estimation tasks.

Inference Efficiency Comparison. The performance compari-
son illustrated in Tab. 1 highlights that RadioAR effectively balances
inference speed and estimation precision, making it particularly
suitable for real-time deployment in 6G networks. Its inference
times, while higher than those of lightweight convolutional and
transformer-based models, remain within practical limits for dy-
namic environments. In contrast, diffusion-based models exhibit
significantly longer inference times due to their iterative sampling

Table 2: Performance comparison of RadioAR variants in
the ablation study for radio map estimation. Metrics include
NMSE, RMSE, SSIM, and PSNR.

Description Model NMSE↓ RMSE↓ SSIM↑ PSNR↑

Discrete token L16 0.0226 0.0503 0.8992 25.97
+Scale up L30 0.0217 0.0412 0.8931 27.68
+Continuous token L30 0.0132 0.0331 0.9217 29.58

processes, rendering them less viable for latency-sensitive applica-
tions. The progressive generation mechanism of RadioAR enables
efficient computation, with inference times scaling predictably with
model depth. This scalability ensures that RadioAR can deliver high-
fidelity radiomapswithout excessive computational overhead. Com-
pared to convolutional models, which prioritize speed but sacrifice
accuracy, RadioAR provides an optimal trade-off. While our largest
model (RadioAR-L30) defines the performance ceiling for RME,
the framework is intrinsically scalable. For resource-constrained
edge deployment, we consider research into knowledge distillation
and pruning to transfer the high-fidelity spatial knowledge of the
transformer decoder into compact student networks, a strategy that
balances SOTA accuracy with real-time requirements in smart-city
nodes.
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Visual Comparison. As illustrated in Fig. 5, our RadioAR (L30)
model demonstrates superior visual fidelity in radio map estima-
tion compared to baseline models, including RME-GAN, UVM-Net,
RadioUnet, RadioDiff (S1000), and Radionet. The visual outputs of
RadioAR closely resemble the Ground Truth (GT) across multiple
test scenarios, exhibiting sharper boundaries and a more accurate
representation of signal intensity variations. Convolutional mod-
els, such as RadioUnet, tend to produce smoother maps that may
obscure fine-grained spatial details, while diffusion-based models,
such as RadioDiff, achieve competitive visual quality but occasion-
ally exhibit inconsistencies in signal continuity due to their iterative
sampling nature. In contrast, the multi-scale autoregressive frame-
work of RadioAR effectively captures both global structures and
local details, resulting in visually coherent and precise radio maps.

4.3 Ablation Study
In this ablation study, we evaluate the impact of two critical com-
ponents on the performance of RadioAR: model scaling and the
choice between discrete and continuous tokens.

Effect of Model Scaling. We assess the impact of model scaling
by comparing RadioAR-L16 with discrete tokens to RadioAR-L30
with discrete tokens, as presented in Tab. 2. Scaling the model depth
from 16 to 30 layers improves key performance metrics: NMSE
decreases from 0.0226 to 0.0217, RMSE reduces from 0.0503 to 0.0412,
and PSNR increases from 25.97 to 27.68. These enhancements reflect
improved accuracy and signal quality attributable to the increased
model capacity.

Discrete vs. Continuous Tokens. We compare our RadioAR-L30
model using discrete tokens against its counterpart with continuous
tokens to assess the impact of token representation on performance.
Continuous tokens enable themodel to better capture the inherently
continuous nature of radio signal propagation, avoiding the quanti-
zation errors introduced by discrete representations. This results
in enhanced precision across error metrics and improved quality
in SSIM and PSNR. The adoption of continuous tokens allows for
finer-grained modeling of spatial variations, which is critical for
accurate radio map estimation in dynamic wireless environments.

5 Limitations and Future Work
While RadioAR achieves state-of-the-art performance on the Ra-
dioMapSeer (IRT4) benchmark, several limitations remain. First,
our current evaluation relies on high-fidelity simulations; the tran-
sition to stochastic real-world measurements represents a primary
research frontier. Second, the framework does not yet explicitly
incorporate differentiable Maxwell-based physical priors within the
loss function. Future work will focus on integrating these physical
constraints and investigating model distillation to enhance scalabil-
ity for diverse, resource-constrained 6G deployment scenarios.

6 Conclusion
We presented RadioAR, a multi-scale autoregressive approach to
conditional radio map estimation. By bridging the gap between
multi-scale prediction and continuous signal continuity, RadioAR
ensures the integrity of the learned electromagnetic field, preserv-
ing critical multipath gradients that discrete methods often blur.

Our results demonstrate that RadioAR provides a favorable balance
between accuracy and inference latency, supporting high-precision
radio cartography in emerging wireless networks.
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