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ABSTRACT

City-scale road volume prediction is a fundamental task in traffic management.
However, the observation data are often incomplete and biased, posting a chal-
lenge for accurate prediction. Existing methods address this issue through in-
terpolation techniques or manual priors, but they typically provide only a deter-
ministic restoration, overlooking the influence of other potential scenarios. To
overcome these limitations, we propose a novel neural network-based probabilis-
tic model, the Trajectory Probability Network (TraPNet), which predicts traffic
volume through the aggregation of the joint distribution of potential trajectories.
TraPNet makes full use of current observations, historical data, and road network
information to offer a comprehensive inference of road volumes. Unlike autore-
gressive methods, TraPNet makes predictions in a single step, substantially reduc-
ing computational time while maintaining high predictive accuracy. Experiments
on real-world road networks demonstrate that TraPNet outperforms state-of-the-
art methods, and can keep the advantage with only 20% observation ratio. The
code will be made publicly available.

1 INTRODUCTION

Traffic volume prediction is a crucial task in urban traffic management, offering valuable insights
into traffic congestion, road safety, and infrastructure planning. This task involves estimating the
number of vehicles passing through each road at specific times, with predictions derived from current
observations, historical data, and road network information.

Researchers have developed various methods to predict traffic volume, including traditional time
series models Vlahogianni et al. (2014), deep learning models Lv et al. (2014), and graph neural
networksYu et al. (2017); Li et al. (2017). Many of these methods rely on historical in-route data
collected via sensors deployed across road networks or GPS services Fang et al. (2020); Chen et al.
(2024). However, gathering complete, city-wide traffic data remains a challenge: GPS data cannot
capture all vehicles, and sensors are typically deployed only at key intersections, resulting in data
that is both incomplete and unevenly distributed.

To address this challenge, some studies have focused on checkpoint-based data, providing a more
accessible alternative Chen et al. (2023). Traditional methods often rely on prior probabilities to
estimate missing traffic volumes Yu et al. (2023); Bao et al. (2023), while deep learning-based
approaches reconstruct missing trajectories using current observations Zhang et al. (2019); Guo
et al. (2024). However, the majority of these methods provide only deterministic reconstructions of
the missing data, overlooking the inherent uncertainty in other potential scenarios. Furthermore, in
some underdeveloped areas, observational data can be extremely sparse, rendering these methods
less applicable.

To provide a more comprehensive prediction, we propose a novel probabilistic road volume predic-
tion model. In our approach, we treat the volume on each road as the sum of random variables, with
probabilities determined by individual vehicles on the road network. For each vehicle, we estimate
the probability of its presence on any given road at each time step, rather than determining a single
fixed trajectory. By accumulating these probabilities for all vehicles, we aggregate the distributions
of all potential trajectories, leading to a more thorough prediction of road volumes. The posterior
probability given incomplete observations is inferred using a neural network.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In addition to the integration mechanism, we enhance the model’s robustness by fully utilizing dif-
ferent views of the data. Our model, Trajectory Probability Network (TraPNet), integrates current
observations, historical trajectories, and road network information to provide a comprehensive in-
ference of road volumes. All heterogeneous data are embedded into a unified latent space, and
trajectory probabilities are estimated through a multi-view attention mechanism. Experiments on
real-world road networks demonstrate that TraPNet outperforms state-of-the-art methods in both
accuracy and efficiency. Notably, even when the observation ratio is as low as 20%, our model
maintains its advantage. The primary contributions of this paper are as follows:

• We propose TraPNet, a neural network that leverages diverse sources of information, inte-
grating the joint distribution of all potential trajectories to predict road volume.

• TraPNet performs complete volume prediction in a single step, significantly reducing com-
putational time while maintaining high predictive accuracy.

• TraPNet demonstrates exceptional tolerance to missing data. With only 20% observations,
TraPNet outperforms other models that require 50% observation ratio. This makes TraPNet
applicable to a wider range of urban traffic scenarios.

2 RELATED WORK

Traffic volume prediction is a crucial task in urban traffic management, with various approaches
developed over the years. These approaches can be broadly categorized into three types: traditional
methods Vlahogianni et al. (2014), deep learning methods Ma et al. (2015); Yu et al. (2017), and
checkpoint-based methods Chen et al. (2023). Traditional methods typically rely on historical in-
route data collected by sensors or GPS services, utilizing models such as ARIMA. Deep learning
methods, which use models like LSTM and GNN, also require complete volume data for accurate
prediction. In contrast, checkpoint-based methods focus on incomplete data collected from key
intersections, making them more applicable to real-world scenarios.

Despite their effectiveness, these methods face several challenges. Both traditional and deep learning
approaches struggle with acquiring complete citywide data, limiting their practicality in real-world
scenarios. Although checkpoint-based methods are more accessible, they also fail to handle ex-
tremely incomplete data scenarios. Furthermore, many existing methods overlook historical data or
road network information, which can lead to inaccurate predictions.

2.1 TRAFFIC VOLUME PREDICTION

Traffic volume prediction has traditionally relied on historical in-route data, captured by sensors
deployed across road networks or GPS service, using models like LSTMs and GNNs Zhang et al.
(2017); Li et al. (2017); Yu et al. (2017); Diao et al. (2019). However, the challenge of acquiring
complete, citywide data makes these methods impractical in real-world settings. To address this
challenge, some studies focus on checkpoint-based data from key intersections, offering a more
accessible alternative Liu et al. (2020); Kalander et al. (2020); Liu et al. (2018). While these methods
predict traffic for regions or entire cities, they often lack the granularity to forecast at a city-wide
per-road level. In addition, time series models, though effective at capturing temporal dependencies,
suffer from cumulative errors and long inference times, limiting their scalability for large urban
networks Ma et al. (2015); Zhao et al. (2019); Wong et al. (2022); Huang et al. (2023).

2.2 TRAJECTORY INTERPOLATION

In many real-world scenarios, incomplete trajectories are the primary source of data, necessitating
the use of interpolation or reconstruction methods. One common approach relies on prior probabil-
ities, assuming that missing trajectories follow specific patterns, such as the shortest route Patterson
et al. (2020); Hunter et al. (2013); Iio et al. (2023). However, this approach can be inaccurate, as
real vehicles often deviate from these assumptions. Another approach utilizes deep learning-based
reconstruction, which, while effective, often relies solely on current observations without incorpo-
rating historical data or road network information. Additionally, both probabilistic and deep learn-
ing methods typically assume that vehicles follow a single fixed path, overlooking the possibility of
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multiple potential routes Tang et al. (2023). Moreover, these methods remain inadequate in handling
scenarios with extremely sparse data.

3 PROBLEM DEFINITION

3.1 BASIC NOTATIONS

Suppose the road network is represented as a graph G = (V,E), where V is the set of nodes and
E is the set of edges. V = {1, 2, ..., V }, which are the number of intersections (node). E =
{e1, e2, ..., eE}, ei = (oi, di, li), which represents the origin, destination and weight of the ith road
(edge). The weight can be length, average speed, traffic level or any other information of the road.

Considering that the number of nodes is much smaller than the number of edges, we use nodes to
represent trajectories. A trajectory can be represented as a sequence of nodes, [v1, v2, ..., vT ], where
vi is a rearrangement of {0, 1, ..., V }, T is the maximum time step, 0 means that the car disappears.
To indicate the time spent on each road, we repeat vi in the trajectory, e.g. [1, 2, 2, 2, 2, 3, 4, 0] means
that a car spend 1 time step on edge (1,2), 4 steps on (2,3), 1 step on (3,4), and finally disappear. We
denote all the trajectories as X ∈ {0, 1, ..., V }B,T , where B is the number of observed trajectories.

3.2 ROAD-LEVEL VOLUME PREDICTION

In real-world scenarios, traffic is recorded by a limited number of unevenly distributed sensors,
such as cameras at intersections, resulting in incomplete observations. For example, assume that
only node 1 and node 3 are observable, in the former case where the complete trajectory is
[1, 2, 2, 2, 2, 3, 4, 0], the corresponding observation should be [1, 0, 0, 0, 0, 3, 0, 0]. Given all the ob-
served trajectories during T time steps, Road-Level Volume Prediction is to estimate the volume of
each road at each time, where the volume is defined as the number of vehicles passing through a
given road. The volume is denoted as Vol ∈ RE,T , where Vol[i, t] is the volume of road i at time t.

Trajectory Probability is the distribution of X . We assume that each trajectory is independently dis-
tributed, and denote the trajectory probability as Y ∈ [0, 1]B,T,V , where Y [b, t, v] is the probability
that the bth vehicle at time t is on v. Once the trajectory probability distribution is obtained, the vol-
ume can be either calculated by the expectation or the MAP estimation. In this paper, we focus on
predicting volume by the aggregation of qθ(Y |X,Xhis, A), where θ is the parameter of our model,
Xhis is the historical trajectory information and A is the road network information.

4 METHOD

In this section, we introduce our model, Trajectory Probability Network (TraPNet). First, we in-
troduce the overall architecture of the model in section 4.1. The process of embedding different
types of information is described in section 4.2. The core component of our model, the Multi-view
Attention Block, is detailed in section 4.3. Finally, we discuss the model’s optimization and the
aggregation to inference road volume in section 4.4.

4.1 OVERALL ARCHITECTURE

The overall architecture of our model is shown in fig. 1. The model consists of three components:
embedding layers, multi-view attention blocks, and linear projections. The embedding layers project
the observed trajectories, road network, and historical trajectories into the same hidden space. These
different sources of embeddings are then aggregated within the multi-view attention block, which
captures complex relationships across different views. The output from the multi-view attention
block is passed through a linear projection layer with softmax activation to compute the trajectory
probabilities. Finally, the trajectory probabilities are used to estimate the road volume.

4.2 EMBEDDING LAYERS

As shown in fig. 2, the embedding layers project all the real-world information into the aligned token
space. The embedding layers consist of three parts: observation embedding, history embedding
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Figure 1: Overview of the proposed TraPNet. (a, b, c) represent the embedding layers for road
network data, observation data, and historical data, respectively. (d) denotes the multi-view attention
block. (e) corresponds to the output projection.

Figure 2: Embedding layers of TraPNet.

and road network embedding. The observation embedding and history embedding share the same
weights, while the road network needs other embedding tables.

Given a batch of observed trajectories X ∈ {0, 1, ..., V }B,T , we first project the discrete node into
continuous tokens by an embedding matrix Etraj ∈ RV+1,C , where C is the dimension of the
latent space. Combined with the positional encoding over the time steps, the tokens are further
passed through an MLP layer to get the final observation tokens. The MLP layer consists of a linear
projection, a layer normalization, and a SiLU activation function. The output of the MLP layer is
denoted as zobs ∈ RB,T,C . To be specific, the observation embedding is calculated as follows:

zobs = SiLU(LN(Linear(Etraj(X) + ET
pos))) (1)

where LN denotes LayerNorm. ET
pos ∈ RB,T,C is the positional encoding over T.

The historical data consist of past trajectories, which may be either complete or incomplete. Incom-
plete trajectories refer to past observations of the target vehicle recorded at checkpoints. Complete
trajectories, on the other hand, can be obtained from sources such as GPS data, past trajectory prob-
ability estimations, or other relevant datasets. If no historical data are available, they are set to
zeros. Since historical data are also in the form of trajectories, they are processed similarly to the
observation data. The history embedding is computed as follows:

zhis = SiLU(LN(Linear(Etraj(Xhis) +N × ET
pos))) (2)
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where Xhis ∈ {0, 1, ..., V }B,N,T is the historical data, N is the number of historical trajectories.
ET

pos is repeat N times to match the dimension.

The road network data are represented as adjacency tables, denoted as A = [A0, A1, ..., AM ], where
M is the number of adjacency tables. A0 ∈ {0, 1, ..., V }B,V,L is a special adjacency table that rep-
resents the road network connections, where L is the max connectivity. A0[b, v, l] is the lth neighbor
of node v for the bth trajectory, and 0 indicates no additional neighbors. The other adjacency tables
provide information about roads, such as speed limits, distances, or road types, and are aligned with
A0 to ensure that Ai[b, v, l] corresponds to the same road as A0[b, v, l]. If Ai contains continuous
data, it can be projected into tokens by MLP layers; if Ai contains discrete data, an embedding ma-
trix is used. To reduce computation, the continuous data could be discretized into several bins, and
an embedding matrix is then applied. The road network embedding is calculated as follows:

zadj = AvgPooling(Etraj(A0) +

M∑
i=1

Eadj(Ai) + EV,L
pos ) (3)

where Ai ∈ {1, ...,K}V,L is the discretized road weights, K is the discretization level, Eadj ∈ RK,C

is the embedding matrix of the adjacency tables, EV,L
pos ∈ RB,V,L,C is the positional encoding over

(V, L). We use average pooling to reduce the computation load.

4.3 MULTI-VIEW ATTENTION BLOCK

Figure 3: Multi-view attention block of TraPNet.

The multi-view attention block is the core component of our model, which integrates the observation
information, history information, and road network information. As shown in fig. 3, the multi-view
attention block consists of two cross-attention blocks and one self-attention block, each wrapped
with residual connections and LayerNorm. We adopt multi-head attention and multi-query attention
Ainslie et al. (2023) mechanism to capture the complex relationship between different views. The
adjacency tokens represent the information of each node, which is comprehensive but not efficient.
To address this problem, we adopt the multi-query attention mechanism to reduce the computation.
The adjacency tokens are linearly projected into the key and value tokens, while the observation
tokens are linearly projected into the query tokens. As demonstrated in our ablation study, the
multi-query attention mechanism effectively reduces computation with minimal impact on model
performance. The multi-view attention block is computed as follows:

z
′

adj = MQA(zobs, zadj , zadj)

z
′

his = MHA(zobs, zhis, zhis)

z
′

obs = zobs + z
′

adj + z
′

his

z
′

obs = MQA(z
′

obs, z
′

obs, z
′

obs) + z
′

obs

z
′′

obs = FFN(z
′

obs) + z
′

obs

(4)

where MQA and MHA denote the multi-query attention and multi-head attention, which project the
inputs into query, key, and value tokens accordingly. FFN denotes the feed-forward network, which
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consists of two linear projections and a SiLU activation function. z
′

adj , z
′

his, z
′

obs are intermediate
tokens and z

′′

obs is the output of the multi-view attention block.

4.4 OPTIMIZATION AND AGGREGATION

After the multi-view attention block, the hidden tokens are projected into the trajectory probability
by a linear projection and a softmax activation function. The output is calculated as follows:

qθ(Y |X,Xhist, A) = Softmax(Linear(z
′′

obs)) (5)

where θ is the parameter of our model, Y ∈ [0, 1]B,T,V is the estimated trajectory probability.
Given the ground truth trajectory probability p(Y ), we optimize the KL-divergence between p(Y )
and qθ(Y |X,Xhist, A) to train our model. The loss function is calculated as follows:

L =

B∑
b=1

T∑
t=1

V∑
v=1

p(Y [b, t, v]) log
p(Y [b, t, v])

qθ(Y [b, t, v]|X[b], Xhist[b], A[b])
(6)

where p(Y [b, t, v]) and qθ(Y [b, t, v]|X[b], Xhist[b], A[b]) are both Bernoulli distributed.

We train TraPNet using complete trajectories. Given a road network, we randomly assign check-
points with a ratio α. The complete trajectories are masked according to the checkpoints. When
N + 1 trajectories of the same vehicle are available, we randomly select one trajectory as the
observation and use the remaining as historical data. Since the real trajectory is complete, the
probability degenerates into a one-point distribution: p(Y [b, t, v]) = 1 if v = X[b, t], otherwise
p(Y [b, t, v]) = 0. Consequently, the loss function simplifies to the cross-entropy loss. The final loss
function is calculated as follows:

L = −
B∑

b=1

T∑
t=1

V∑
v=1

Ỹ [b, t, v] log qθ(Y [b, t, v]|X[b], Xhist[b], A[b]) (7)

where Ỹ [b, t, v] is one-hot encoding of the real trajectory. Details of the training process are shown
in section 5.1.1.

The road volume is aggregated by the expectation of the trajectory probabilities. First, the node-
represented trajectory probability is transformed into edge-represented trajectory probability by the
multiplication of the origin and destination node probabilities. To be specific:

Ẏ [b, t, i] = Y [b, t, oi]× Y [b, t+ 1, di] + Y [b, t, oi]× Y [b, t+ 1, oi] (8)

where Ẏ [b, t, i] is the probability that the bth car is on edge ei at time t. This edge probability consists
of two components: (1) the probability that the vehicle moves to edge ei, and (2) the probability
that the vehicle remains on edge ei. The term Y [b, t, oi] × Y [b, t + 1, di] corresponds to the first
situation, representing the probability that the vehicle moves from node oi to node di. The term
Y [b, t, oi]×Y [b, t+1, oi] represents the second situation, where the vehicle stays on edge ei. Since
the volume is the number of cars that pass through the road, it can be estimated by summing the
expected contributions of each vehicle. To be specific:

Vol[i, t] =

B∑
b=1

(
Ẏ [b, t, i]∑E
j=0 Ẏ [b, t, j]

) (9)

where Vol[i, t] is the volume of road i at time t. We apply normalization to make sure that the total
volume contribution from each car sums to 1.

5 EXPERIMENTS

In this section, we comprehensively evaluate the proposed method on real-world road networks. We
begin by describing the experiment setup in section 5.1, including the data preparing and hyperpa-
rameters. Next, we present the main results in section 5.2, offering both an overall comparison and
a detailed analysis of performance. Finally, we conduct an ablation study in section 5.3 to assess the
impact of different computation-efficient mechanisms.
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5.1 EXPERIMENT SETTINGS

5.1.1 DATA PREPARING

The experiment is conducted on two real-world cities: Boston and Jinan. The Boston road network
consists of 241 nodes and 369 edges. We randomly select the origin and destination of each vehi-
cle, assign random weights to the roads, and simulate the trajectories using the shortest path. The
maximum time step is set to 60. For each pair of origin and destination, we simulate 5 trajectories,
meaning that each observed trajectory is accompanied by 4 historical trajectories. In total, we sim-
ulate 500,000 trajectories for training and 10,000 trajectories for testing. The weighted adjacency
matrix for each simulation is recorded as the road network input.

The Jinan road network data is obtained from Yu et al. (2023), consisting of 8,908 nodes and 23,312
edges. In addition to position and connectivity information, this dataset includes road length, road
type, and complete trajectories of 963,125 individual vehicles. We randomly select 800,000 trajec-
tories for training, with the remaining trajectories used for testing. For each vehicle, we randomly
select 1 trajectory as the observation and 4 trajectories as historical inputs. When necessary, we
apply repeatable sampling to obtain the 4 historical trajectories. We use road length as the road
weight for the road network inputs. The time scales of the trajectories vary significantly, ranging
from seconds to hours. To standardize the data, we rescale the time scope to 60 time steps.

5.1.2 PARAMETERS AND COMPUTATIONAL SETTING

Table 1: Default hyperparameters.

Model Parameters Training Parameters

Dataset Blocks Hidden
size Heads FFN expansion

factor
Discretization

factor
Batch
size Lr Epochs

Boston 8 64 16 2 w/o 512 0.01 20
Jinan 8 64 16 2 30 50 0.01 100

The experiments are conducted on a server equipped with 4 NVIDIA A30 GPUs. We use Stochastic
Gradient Descent (SGD) as the optimizer, along with a Cosine Annealing learning rate scheduler.
The default hyperparameters are presented in table 1. For the Boston road network, being relatively
small, we utilize an MLP as the tokenizer rather than employing the discretization mechanism.
For the larger Jinan road network, we apply the discretization mechanism to reduce computational
overhead.Since most trajectories do not reach the maximum of 60 steps, we apply a mask over the
loss function to ignore the padding steps. The masked value for the loss between the prediction
and padding steps is set to 0.0001, ensuring that the training primarily focuses on real steps while
allowing the output trajectories to terminate at the padding steps. The training for the Boston dataset
takes approximately 8 GPU hours, while training on the Jinan dataset takes about 100 GPU hours.
Each training process is repeated 3 times, and we report the average results. During each training
iteration, the checkpoints are randomly selected with the default ratio α = 0.5.

5.2 MAIN RESULTS

In this section, we present the main results of our model on the Boston and Jinan road networks. We
compare TraPNet with two state-of-the-art methods: Cam-Traj-Rec Yu et al. (2022) and Traj2Traj
Liao et al. (2023). Cam-Traj-Rec assigns prior distributions to the missing trajectories based on
road weights and infers the posterior distribution given the observed trajectories. Traj2Traj is a deep
learning method for trajectory reconstruction. We provide the overall Mean Absolute Error (MAE)
comparison in section 5.2.1 and visualize the road volume predictions in sections 5.2.2 and 5.2.3.

5.2.1 OVERALL MAE COMPARISON

The overall MAE comparison is presented in table 2 and fig. 4, where we show the MAE of different
methods under varying checkpoint ratios. TraPNet consistently achieves lower MAE compared to
the other two methods. When the checkpoint ratio is 0.1, the MAE of TraPNet is approximately
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Table 2: Overall MAE comparisons under different checkpoint ratios.

Boston Jinan
Checkpoint ratio 0.1 0.2 0.3 0.5 Time 0.1 0.2 0.3 0.5 Time

Cam-Traj-Rec 7.29 4.08 3.33 1.63 93.2 s 0.355 0.300 0.248 0.179 83.7 s
Traj2Traj 4.71 3.15 2.56 1.25 41.5 s 0.297 0.249 0.232 0.143 57.6 s
TraPNet 2.24 1.22 1.07 0.667 3.35 s 0.214 0.125 0.126 0.071 18.1 s

(a) Boston (b) Jinan

Figure 4: Overall MAE comparison under different checkpoint ratios.

20% lower than that of the other methods. With 10% observation ratio, TraPNet can get the similar
performance as Cam-Traj-Rec with 50% observation ratio. With 20% observation ratio, TraPNet
already outperforms other methods with 50% observation ratio. In addition, TraPNet is significantly
faster than the other two methods, and on Boston it can achieve almost real-time performance.

Cam-Traj-Rec is a prior-based method that assigns prior distributions to the missing trajectories
based on road weights. The prior distribution is calculated according to the length of different routes
between the origin and destination. As an interpolation-based method, Cam-Traj-Rec struggles to
handle missing trajectory segments at the beginning and end, making its MAE highly sensitive to
the checkpoint ratio, which affects the length of the missing parts.

Traj2Traj is an LSTM-based trajectory reconstruction method that can address missing segments at
both the beginning and end of trajectories. However, as an autoregressive method, Traj2Traj suffers
from error accumulation as the time step increases. Additionally, since it relies solely on current
observations and the road network, its predictions become less reliable when the observation data
are highly incomplete.

5.2.2 VOLUME PER ROAD COMPARISON

(a) Ground Truth (b) Cam-Traj-Rec (c) Traj2Traj (d) TraPNet

Figure 5: Volume per road comparison. Blue means low volume and Red means high volume. We
focus on the downtown areas, the visualization of the whole city can be found in appendix A

As shown in fig. 5(b), in the central part of the downtown area, a major issue of Cam-Traj-Rec is
that the predicted volume is biased by the prior distribution. This results in misjudgments regarding
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which roads are the busiest. In contrast, the deep learning-based method Traj2Traj provides pre-
dictions that are closer to the ground truth, but they still lack accuracy. As seen in the top-left part
of fig. 5(c), while Traj2Traj correctly captures the relationships between roads, the absolute volume
predictions are not precise. For a more detailed view, please refer to the supplementary material,
where we provide videos showing the volume distribution across roads at each time step.

5.2.3 VOLUME PER TIME STEP COMPARISON

(a) Cam-Traj-Rec

(b) Traj2Traj

(c) TraPNet

Figure 6: Volume per time step comparison. Blue bars are the ground truth volumes of all the roads
and orange bars are predictions.

We visualize the volume per time step in fig. 6. As shown in fig. 6(a), Cam-Traj-Rec performs
poorly at the beginning. This is a common limitation of interpolation-based methods, which strug-
gle to handle missing data at the beginning and end of a trajectory. In contrast, fig. 6(b) demonstrates
that Traj2Traj performs better than Cam-Traj-Rec, but its performance becomes unstable as the time
step increases. A possible explanation is that LSTM-based methods are sensitive to long-term de-
pendencies. Additionally, autoregressive methods face challenges in determining when a trajectory
should end, especially when the input is highly incomplete. According to fig. 6(c), TraPNet’s perfor-
mance is both stable and accurate. The predictions closely match the ground truth, and early-stage
errors do not adversely influence later predictions. There are, however, some minor inaccuracies at
the beginning, likely because the softmax function makes it difficult for the model to confidently
predict a value of 1.

5.3 ABLATION STUDY

We conduct an ablation study to assess the impact of various computation-efficient mechanisms.
These experiments are limited to the Boston dataset, as the ”BVLC” token shape is too large for the
Jinan dataset. The results are summarized in table 3.

From lines (2) and (3), we observe that introducing both historical data and road network informa-
tion significantly reduces the MAE, with the road network information playing a more crucial role.
Lines (4) and (5) demonstrate that the discretization mechanism effectively reduces computation
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Table 3: Ablation Study on Boston.

Data hyperparameters Structure hyperparameters Performance
Index History Adjacency Discretization Adj embedding shape Adj attention type MAE Time

(1) w/ w/ w/o BV1C Multi-query 0.667 3.35 s

(2) w/o w/ w/o BV1C Multi-query 1.12 3.01 s
(3) w/ w/o - - - 2.21 1.13 s
(4) w/ w/ 10 BV1C Multi-query 0.716 2.22 s
(5) w/ w/ 20 BV1C Multi-query 0.683 2.41 s

(6) w/ w/ w/o BVLC Multi-query 0.451 12.7 s
(7) w/ w/ w/o B11C Multi-query 0.894 1.77 s
(8) w/ w/ w/o BV1C Multi-head 0.538 9.50 s

without significantly impacting performance. Additionally, lines (6) and (7) show that the token
shape of the adjacency table has little effect on performance but significantly affects time complex-
ity. Finally, line (8) indicates that the multi-query attention mechanism also reduces computation
while maintaining performance stability.

6 DISCUSSION

6.1 BALANCE BETWEEN PERFORMANCE AND EFFICIENCY

TraPNet is designed to achieve a balance between performance and computational efficiency. The
multi-view attention mechanism effectively integrates observational data, historical information, and
road network information, enhancing performance but also introducing a substantial computational
burden. The discretization mechanism and multi-query attention mechanism mitigate this burden by
slightly compromising performance. Similarly, the pooling mechanism strikes a balance between
efficiency and GPU memory usage. On smaller road networks, these mechanisms may be optional,
depending on specific requirements, but for larger road networks, they are essential for practical
deployment.

6.2 THE CHOICE OF ONE-HOT LABELS

Our primary goal is to estimate trajectory probabilities given incomplete observations. However,
during the training process, we rely exclusively on complete trajectories as the ground truth. An
alternative approach would be to use prior distributions as the ground truth, which can be derived
from road weights. However, as demonstrated in section 5, manually assigned prior distributions can
introduce bias. To ensure accuracy and reliability, we use only complete trajectories as the ground
truth. In the future, we aim to explore the potential of adapting manual prior distributions to more
closely reflect real-world distributions.

7 CONCLUSION

In this paper, we proposed a novel probabilistic approach to address the challenge of city-scale road
volume prediction with incomplete observations. We introduced Trajectory Probability Network
(TraPNet), a model capable of estimating trajectory probabilities based on incomplete observations,
historical trajectories, and road network information. The road volume can be comprehensively
estimated by aggregating the trajectory probabilities. TraPNet’s one-step road volume prediction,
combined with various computation-efficient mechanisms, ensures both high performance and com-
putational efficiency. We conducted extensive experiments on real-world road networks, demon-
strating that TraPNet outperforms state-of-the-art methods. With only 20% observations, TraPNet
outperforms other models that require 50% observation ratio. Furthermore, our ablation study high-
lights the impact of different computation-efficient mechanisms. TraPNet is highly adaptable to
real-world scenarios, as its inputs can be flexibly defined.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yinxin Bao, Jiali Liu, Qinqin Shen, Yang Cao, Weiping Ding, and Quan Shi. Pket-gcn: prior knowl-
edge enhanced time-varying graph convolution network for traffic flow prediction. Information
Sciences, 634:359–381, 2023.

Jian Chen, Li Zheng, Yuzhu Hu, Wei Wang, Hongxing Zhang, and Xiping Hu. Traffic flow matrix-
based graph neural network with attention mechanism for traffic flow prediction. Information
Fusion, 104:102146, 2024.

Jing Chen, ZhaoChong Zhang, GuoWei Yang, Wei Wang, JiaJia Zhang, and ChunHui Wu. Vehi-
cle flow prediction at checkpoint considering trajectory based on convolutional long short-term
memory network. In 2023 Asia Symposium on Image Processing (ASIP), pp. 136–140. IEEE,
2023.

Zulong Diao, Xin Wang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He. Dynamic spatial-
temporal graph convolutional neural networks for traffic forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 890–897, 2019.

Shen Fang, Xianbing Pan, Shiming Xiang, and Chunhong Pan. Meta-msnet: Meta-learning based
multi-source data fusion for traffic flow prediction. IEEE Signal Processing Letters, 28:6–10,
2020.

Xiaoyu Guo, Weiwei Xing, Xiang Wei, Weibin Liu, Jian Zhang, and Wei Lu. M-mix: Patternwise
missing mix for filling the missing values in traffic flow data. Neural Computing and Applications,
pp. 1–18, 2024.

Yuzhu Huang, Awad Abdelhalim, Anson Stewart, Jinhua Zhao, and Haris Koutsopoulos. Recon-
structing transit vehicle trajectory using high-resolution gps data. In 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC), pp. 5247–5253. IEEE, 2023.

Timothy Hunter, Pieter Abbeel, and Alexandre Bayen. The path inference filter: model-based low-
latency map matching of probe vehicle data. IEEE Transactions on Intelligent Transportation
Systems, 15(2):507–529, 2013.

Kentaro Iio, Gulshan Noorsumar, Dominique Lord, and Yunlong Zhang. On the distribution of
probe traffic volume estimated from their footprints. arXiv preprint arXiv:2307.15274, 2023.

Marcus Kalander, Min Zhou, Chengzhi Zhang, Hanling Yi, and Lujia Pan. Spatio-temporal hybrid
graph convolutional network for traffic forecasting in telecommunication networks. arXiv preprint
arXiv:2009.09849, 2020.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Lyuchao Liao, Yuyuan Lin, Weifeng Li, Fumin Zou, and Linsen Luo. Traj2traj: A road network
constrained spatiotemporal interpolation model for traffic trajectory restoration. Transactions in
GIS, 27(4):1021–1042, 2023.

Lingbo Liu, Jiajie Zhen, Guanbin Li, Geng Zhan, Zhaocheng He, Bowen Du, and Liang Lin. Dy-
namic spatial-temporal representation learning for traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems, 22(11):7169–7183, 2020.

Zhidan Liu, Zhenjiang Li, Kaishun Wu, and Mo Li. Urban traffic prediction from mobility data
using deep learning. Ieee network, 32(4):40–46, 2018.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. Ieee transactions on intelligent transportation systems,
16(2):865–873, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang. Long short-term memory
neural network for traffic speed prediction using remote microwave sensor data. Transportation
Research Part C: Emerging Technologies, 54:187–197, 2015.

Andrew Patterson, Aditya Gahlawat, and Naira Hovakimyan. Learning probabilistic intersection
traffic models for trajectory prediction. arXiv preprint arXiv:2002.01965, 2020.

Yuanbo Tang, Zhiyuan Peng, and Yang Li. Explainable trajectory representation through dictionary
learning. In Proceedings of the 31st ACM International Conference on Advances in Geographic
Information Systems, pp. 1–4, 2023.

Eleni I Vlahogianni, Matthew G Karlaftis, and John C Golias. Short-term traffic forecasting: Where
we are and where we’re going. Transportation Research Part C: Emerging Technologies, 43:
3–19, 2014.

Conghao Wong, Beihao Xia, Ziming Hong, Qinmu Peng, Wei Yuan, Qiong Cao, Yibo Yang, and
Xinge You. View vertically: A hierarchical network for trajectory prediction via fourier spec-
trums. In European Conference on Computer Vision, pp. 682–700. Springer, 2022.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Fudan Yu, Wenxuan Ao, Huan Yan, Guozhen Zhang, Wei Wu, and Yong Li. Spatio-temporal vehicle
trajectory recovery on road network based on traffic camera video data. KDD ’22, pp. 4413–4421,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi:
10.1145/3534678.3539186. URL https://doi.org/10.1145/3534678.3539186.

Fudan Yu, Huan Yan, Rui Chen, Guozhen Zhang, Yu Liu, Meng Chen, and Yong Li. City-scale
vehicle trajectory data from traffic camera videos. Scientific data, 10(1):711, 2023.

Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks for citywide crowd
flows prediction. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Weibin Zhang, Yinghao Yu, Yong Qi, Feng Shu, and Yinhai Wang. Short-term traffic flow prediction
based on spatio-temporal analysis and cnn deep learning. Transportmetrica A: Transport Science,
15(2):1688–1711, 2019.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn:
A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent
transportation systems, 21(9):3848–3858, 2019.

12

https://doi.org/10.1145/3534678.3539186


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A FULL VISUALIZATION OF THE VOLUME DISTRIBUTION

(a) Ground Truth

(b) Cam-Traj-Rec

(c) Traj2Traj

(d) TraPNet

Figure 7: Volume per road comparison. Blue means low volume and Red means high volume.
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