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ABSTRACT

Recent studies have shown that Graph Transformers (GTs) can be effective for
specific graph-level tasks. However, when it comes to node classification, train-
ing GTs remains challenging, especially in semi-supervised settings with a severe
scarcity of labeled data. Our paper aims to address this research gap by focus-
ing on semi-supervised node classification. To accomplish this, we develop a
curriculum-enhanced attention distillation method that involves utilizing a Local
GT teacher and a Global GT student. Additionally, we introduce the concepts of
in-class and out-of-class and then propose two improvements, out-of-class entropy
and top-k pruning, to facilitate the student’s out-of-class exploration under the
teacher’s in-class guidance. Taking inspiration from human learning, our method
involves a curriculum mechanism for distillation that initially provides strict guid-
ance to the student and gradually allows for more out-of-class exploration by a
dynamic balance. Extensive experiments show that our method outperforms many
state-of-the-art methods on seven public graph benchmarks, proving its effective-
ness.

1 INTRODUCTION

Graph-structured data is ubiquitous, and various real-world systems can be modeled as graphs. In
recent years, Graph Neural Networks (GNNs) (Wu et al., 2020; Chen et al., 2020) have shown
excellence in addressing graph-related tasks (e.g., node classification (Kipf & Welling, 2017), link
prediction (Yun et al., 2021), and graph classification (Errica et al., 2020)) and play a crucial role
in applications across diverse domains, including recommender systems (Ying et al., 2018), traffic
forecasting (Guo et al., 2019), and molecular property prediction (Kearnes et al., 2016).

GNNs follow the message passing paradigm (Gilmer et al., 2017), which updates the representation
of a node by iteratively aggregating messages from neighboring nodes and integrating them with its
representation. However, GNNs have some limitations, such as a) difficulty in capturing information
from distant nodes effectively and b) high requirements for the reliability of the input graph structure.
These limitations restrict, to some extent, the application of GNNs.

Due to the powerful representation capacity of the Transformer architecture (Vaswani et al., 2017),
it has found significant success in the fields of natural language processing (NLP) (Kenton &
Toutanova, 2019) and computer vision (CV) (Dosovitskiy et al., 2021; Liu et al., 2021). Researchers
have been exploring the generalization of Transformers into the field of graphs, commonly referred
to as Graph Transformers (GTs). GTs leverage the self-attention mechanism to capture global de-
pendencies among nodes in the graph. This enables each node to adaptively aggregate information
not only from its neighbors but also from distant nodes. As a result, this alleviates the limitations of
traditional GNNs mentioned above.

GTs can be classified into two main categories: Global Graph Transformers (GGTs) and Local
Graph Transformers (LGTs). GGTs, such as Graphormer (Ying et al., 2021) and SAT (Chen et al.,
2022), ignore the graph structure and treat each node as a token input to the Transformer module.
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However, preserving the original graph structure is critical for graph-related tasks, leading to various
studies exploring dedicated structural and positional encoding methods. On the other hand, LGTs,
such as GT (Dwivedi & Bresson, 2020) and HGT (Hu et al., 2020), perform attention mechanism
computations on the original graph structure, with a limited receptive field for each node to capture
neighborhood information.

Table 1: Node classification accuracy of GCN,
GT, and vanilla Transformer on Cora and Citeseer
(mean ± std %, the best results are bolded).

Method Cora Citeseer

GCN 82.06 ± 0.69 71.6 ± 0.32
GT 77.04 ± 0.05 66.22 ± 0.11

naive Transformer 54.24 ± 3.16 50.60 ± 3.83

Although GTs have achieved state-of-the-art
performance in some graph-level tasks, their ef-
fectiveness in node-level tasks, especially semi-
supervised node classification, has received
limited attention. This work aims to bridge
this research gap by enhancing the performance
of GTs in semi-supervised node classification
tasks. One of the challenges in training GTs is
the scarcity of labeled nodes, which can lead
to overfitting due to their increased number of
learnable parameters. Limited labeled data can
make GTs more vulnerable to noise or non-representative nodes, reducing model performance and
generalization.

To conduct an initial exploratory experiment, we select a set of representative models, including
GCN (Kipf & Welling, 2017) (a GNN model), GT (Dwivedi & Bresson, 2020) (an LGT model), and
the naive Transformer (Vaswani et al., 2017) (a GGT model), to investigate their node classification
accuracy on the Cora and Citeseer datasets. The results are shown in Table 1. It can be observed
that GCN outperforms GT and the naive Transformer. There exists a significant performance gap
between GT and the naive Transformer. GT can be viewed as a variant of the naive Transformer
since it restricts the receptive field of each node to the first-order neighbors, whereas the naive
Transformer considers global nodes. Despite the potential of the naive Transformer, its performance
falls significantly short. Unleashing the potential of the GTs, particularly the GGTs, is the focus of
our research.

To our knowledge, we are the first to propose attention distillation as a solution to address challenges
in training GTs, particularly their susceptibility to overfitting. Specifically, we utilize the attention
coefficients from each transformer layer in the LGT model (teacher model) to guide the learning
of attention coefficients in each transformer layer of the GGT model (student model), enhancing
the training process of the GGT model. The student model’s learning process consists of two key
components: in-class learning, where it benefits from the teacher’s guidance, and out-of-class ex-
ploration, where it leverages acquired implicit knowledge to seek more beneficial interactions. We
propose two improvements, out-of-class entropy and top-k pruning, to encourage the student model
to actively explore more refined interactions during out-of-class exploration. However, it’s impor-
tant to note that the distillation process mentioned above has certain limitations. To address them,
we introduce “curriculum distillation”, an enhanced method incorporating curriculum learning to
further unleash the potential of attention distillation.

The contributions of this paper are summarized as follows:

• We propose utilizing attention distillation to enhance the training process of GTs. This
involves selecting an LGT as the teacher model and a GGT as the student model for layer-
to-layer attention distillation. Furthermore, we propose two significant improvements, out-
of-class entropy and top-k pruning, to constrain the student’s behavior during out-of-class
exploration and enhance its generalization capability.

• To address the limitations of the aforementioned method, we further enhance the proposed
distillation method by integrating the concept of curriculum learning, which we refer to as
“curriculum distillation”.

• We validate the effectiveness of our proposed method on seven graph benchmark datasets.
Our method consistently outperforms existing GTs and GNNs, demonstrating enhanced
performance and improved generalization capability.

Lastly, we provide an overview of the structure of this paper. We introduce the necessary background
and preliminary concepts in Section 2. We present our proposed method in Section 3. Experimental
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results and discussions are provided in Section 4. Finally, we conclude the paper in Section 5. For a
review of related work on Transformers, knowledge distillation, and curriculum learning in the field
of graphs, please refer to Appendix A.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

Given a graph G = {V, E}, where V and E denote the sets of nodes and edges, respectively. The
graph’s structure can be represented by an adjacency matrix A ∈ RN×N , where N is the number of
nodes. If there exists an edge between node vi and vj , then Aij = 1; otherwise, Aij = 0. The nodes
are associated with a feature matrix X ∈ RN×dx , where dx denotes the dimension of the features.
Given the labels of a set of nodes VL, the goal of semi-supervised node classification is to predict
the labels of nodes in V\VL.

2.2 SELF-ATTENTION

Multi-head self-attention (MHA) is the de facto building block of Transformers. For simplicity, we
will describe the single-head self-attention module. Given an input sequence H = [h1, ..., hm]T ∈
Rm×dh , where m denotes the number of tokens, and dh denotes the hidden dimension. The self-
attention module firstly multiplies the input H by the weight matrices WQ ∈ Rdh×dk , WK ∈
Rdh×dk , WV ∈ Rdh×dv to obtain queries Q ∈ Rm×dk , keys K ∈ Rm×dk and values V ∈ Rm×dv :

Q = HWQ, K = HWK , V = HWV . (1)

The self-attention is then calculated as follows:

Attn(Q,K, V ) = Softmax(
QKT

√
dk

)V, (2)

where
√
dk is the scaling factor that avoids gradient vanishing. The attention matrix Softmax(QKT

√
dk

)

captures the pairwise interactions among nodes in the graph.

3 METHODOLOGY

In this section, we begin by detailing our motivation in Section 3.1. We then provide an in-depth
introduction to attention distillation in Section 3.2. Afterward, we present a specific training frame-
work in Section 3.3, which involves selecting an LGT model as the teacher and a GGT model as
the student for attention distillation. We also propose two improvements to constrain the student’s
behavior during out-of-class exploration in Section 3.4. To address the limitations of the above
distillation method, we introduce curriculum distillation in Section 3.5.

3.1 MOTIVATION

We view the model training process from the perspective of knowledge comprehension. During pre-
training, the teacher model learns knowledge from input data and generates downstream predictions
based on the acquired knowledge. Considering these predictions as a representation of knowledge,
there are inherent limitations even if they can provide guidance to the student model. When facing
familiar problems, the student model produces results similar to those of the teacher model. How-
ever, when encountering novel or complex problems, the student model often falls short because it
merely memorizes the teacher’s output without a deeper understanding of the underlying knowledge.
Furthermore, the teacher’s predictions may contain errors and biases.

Rather than guiding the student to imitate the teacher’s predictions, it is more beneficial to help it
learn the teacher’s “higher-level knowledge understanding” and encourage innovation on this basis.
However, extracting the “higher-level knowledge understanding” from the teacher model is a non-
trivial task, and considering the model’s unique characteristics is essential. The uniqueness of GT
models lies in their inherent ability to capture the dependencies among interacting objects (as sug-
gested by (Kim et al., 2022), GTs are good structural learning models). These dependencies support
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Figure 1: The F-norm dynamics of attention coefficients be-
tween GGT student and LGT teacher over time.
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Figure 2: Performance compari-
son: GGT student’s compliance to
LGT teacher’s guidance.

the powerful performance of GT models and establish the foundation for their interpretability. These
dependencies are effectively represented through the attention coefficients at each layer of the GT
models. We argue that these coefficients accurately represent the teacher’s “higher-level knowledge
understanding”, encompassing its deep comprehension of the problem and underlying reasons for
predictions. Transferring this knowledge to students enables them to engage in more fundamental
knowledge innovation, resulting in more reliable outcomes.

After discussing the core motivation, we establish the feasibility of our method with three points of
additional validation and correction:

a) Feasibility of teacher guidance: This refers to whether the student will follow the teacher’s
guidance under certain conditions. In experiments, we conduct attention distillation (in-
troduced in Section 3.2), where the student can accurately fit the teacher’s attention co-
efficients (as shown in Figure 1). This indicates a strong ability to retain the teacher’s
experience and closely adhere to the teacher’s guidance.

b) Effectiveness of knowledge comprehension: After learning the knowledge mentioned
above, whether the student will make predictions based on the acquired knowledge and
achieve comparable performance to the teacher model. Experimental results (as shown in
Figure 2) show that the student achieves performance comparable to that of the teacher
after following the guidance.

c) Secondary innovativeness: This refers to the student’s potential for secondary innovation,
surpassing the teacher’s performance, which will be thoroughly discussed in Section 4.

3.2 ATTENTION DISTILLATION

To enhance clarity, we introduce the teacher and student models as M[T ] and M[S], respectively.
Their attention coefficients for the layers l ∈ [1, ℓ] are denoted as α[T ](l) ∈ [0, 1]N×N and α[S](l) ∈
[0, 1]N×N , respectively, where ℓ is the number of layers, and N is the number of nodes. These
coefficients satisfy

∑N
j=1 α

[T ](l)
i,j =

∑N
j=1 α

[S](l)
i,j = 1,∀l ∈ [1, ℓ], i ∈ [1, N ]. We use the teacher

model’s attention coefficients to guide the student model’s training, which can be formalized as
follows:

θ∗[S] = argmin
d(α[S],α[T ])≤D0

L[S](M[S](A,X; θ)L, YL), (3)

where L[S](·, ·) denotes the loss function, such as cross-entropy loss. M[S](A,X; θ) ∈ [0, 1]N×C

is the probability distribution predicted by the student model, where C is the number of classes.
A ∈ RN×N and X ∈ RN×dx denote the adjacency matrix and node feature matrix of the input
graph, respectively, where dx is the feature dimension. YL denotes the ground truth labels for the
labeled training nodes in VL. θ∗[S] denotes the optimal parameters of the student model. d(·, ·)
denotes a distance metric between two matrices, such as Euclidean distance or Kullback-Leibler
divergence. D0 ≥ 0 is a predefined hyperparameter that indicates the level of constraint imposed by
the teacher model on the student model.

The essence of Equation 3 is introducing the teacher’s constraint into the student’s optimization
process, resulting in a constrained optimization problem. Designing the constraint as a penalty term
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(or regularization term) is a common implementation approach:

θ∗[S] = argminL[S](M[S](A,X; θ)L, YL) + γ · P (d(α[S], α[T ]), D0), (4)

where P (·, ·) is a penalty function that imposes a penalty when d(α[S], α[T ]) exceeds D0, and γ is
used to control the strength of the penalty. The penalty function P (·, ·) can be designed as:

P (d(α[S], α[T ]), D0) = max(d(α[S], α[T ])−D0, 0). (5)

Considering that the roles of γ and D0 are similar, for simplicity, we set D0 = 0 directly, and the
Equation 4 is simplified to:

θ∗[S] = argminL[S](M[S](A,X; θ)L, YL) + γ · d(α[S], α[T ]). (6)

3.3 DISTILLATION-BASED LGT-GGT TRAINING FRAMEWORK

Our method involves employing a GT teacher with limited representation capacity to guide a GT
student with a stronger representation capacity but challenging to optimize. We select a GGT model
as the student for its considerable potential, but it tends to overfit without proper guidance. Selecting
an LGT model as the teacher stems from two considerations: a) LGT’s attention coefficients are
more reliable and less prone to overfitting than GGT’s; b) Utilizing an LGT teacher to guide a GGT
student enhances interpretability, simulating a more effective teacher-student relationship.

Teachers often provide reliable guidance in specific fields in real life, and the “less is more” teach-
ing approach is highly valued. Therefore, we prefer that the teacher model’s attention coefficients
consider only a subset of nodes rather than all nodes, making LGT a preferable choice. For a spe-
cific node vi in the GGT student, the teacher guides its attention coefficients within its first-order
neighborhood (including itself). We define this region as the “in-class” region, denoted as C(in)

i . In
real-world datasets, this region is generally relatively small. Node vi also has a substantial unguided
region, defined as the “out-of-class” region, denoted as C(out)

i = V\C(in)
i .

For simplicity, we choose a naive LGT model as the teacher and a naive GGT model as the student.
Equation 6 can be refined as:

θ∗[S:GGT ] = argminL[S:GGT ](M[S:GGT ](A,X; θ)L, YL)

+γ · 1
ℓ

1

N

ℓ∑
l=1

N∑
i=1

d(α
[S:GGT ](l)

i,C(in)
i

, α
[T :LGT ](l)

i,C(in)
i

).
(7)

Furthermore, it’s worth noting that our framework can be easily extended to handle multi-head
attention.

3.4 OUT-OF-CLASS ENTROPY AND TOP-K PRUNING

In this subsection, we propose two improvements to simulate better “teacher-student learning” be-
havior and improve the student model’s performance based on our earlier discussions.

3.4.1 OUT-OF-CLASS ENTROPY

We introduce out-of-class entropy to address the following two issues:

a) Lack of motivation for student innovation: The student model often shows reluctance to-
wards out-of-class exploration. Increasing γ in Equation 7 encourages the student to focus
on in-class learning, but a small γ doesn’t motivate sufficient out-of-class exploration. In
other words, when γ is small, the student still follows the teacher’s guidance, as it reduces
both supervised and distillation losses. However, while reducing supervised loss, out-of-
class exploration may increase distillation loss, resulting in optimization difficulties. This
is the fundamental reason for the lack of innovation drive.

b) Distraction of out-of-class attention: During out-of-class exploration, for any given node
vi ∈ V , it interacts with all nodes in the out-of-class region. This results in a relatively even
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distribution of out-of-class attention across multiple nodes, which can lead to potentially
risky interactions. To mitigate this, we encourage the student model to focus its out-of-class
attention on specific and relevant nodes based on its acquired in-class knowledge.

Specifically, the out-of-class entropy Eout ∈ R is designed as follows:

Eout =
1

ℓ

1

N

ℓ∑
l=1

N∑
i=1

Entropy′
(
α
[S:GGT ](l)

i,C(out)
i

)

= −1

ℓ

1

N

ℓ∑
l=1

N∑
i=1

∑
j∈C(out)

i

α
′[S:GGT ](l)

i,j,C(out)
i

log
(
α
[S:GGT ](l)
i,j

)
,

(8)

where α
′[S:GGT ](l)

i,j,C(out)
i

denotes the normalized out-of-class attention coefficient from node vi to vj in

the l-th layer of the student model, which is defined as:

α
′[S:GGT ](l)

i,j,C(out)
i

=
α
[S:GGT ](l)
i,j∑

j∈C(out)
i

α
[S:GGT ](l)
i,j + ε

∈ [0, 1) , (9)

where ε is a sufficiently small positive constant.

From Equation 8, we can clearly observe that how the out-of-class entropy can alleviate the afore-
mentioned two issues:

a) For any node vi ∈ V , let s[S:GGT ](l)
i =

∑
j∈C(out)

i

α
[S:GGT ](l)
i,j + ε ∈ (0, 1), which represents

the total attention allocated by node vi in the out-of-class exploration. If this value is
smaller, Eout tends to be larger. Therefore, minimizing Eout will drive the student to engage
in out-of-class exploration.

b) If s[S:GGT ](l)
i is kept constant, minimizing Eout results in the sparsity of out-of-class at-

tention coefficient distribution {α[S:GGT ](l)
i,j }

j∈C(out)
i

. The detailed proof is provided in Ap-
pendix B.

We incorporate the out-of-class entropy into the loss function, and Equation 7 is improved as:

θ∗[S:GGT ] = argminL[S:GGT ](M[S:GGT ](A,X; θ)L, YL)

+ γ · 1
ℓ

1

N

ℓ∑
l=1

N∑
i=1

d(α
[S:GGT ](l)

i,C(in)
i

, α
[T :LGT ](l)

i,C(in)
i

) + β · Eout,
(10)

where β is a hyperparameter that controls the degree of out-of-class drive.

3.4.2 TOP-K PRUNING

For each node vi ∈ V , its out-of-class region C(out)
i is generally large, containing numerous nodes

due to the low average degree in real graph datasets. Using GT models for node classification tasks
can risk overfitting when normalizing attention coefficients, as seen in (Wu et al., 2022), due to the
large number of nodes involved in the normalization process.

To address the aforementioned issue, we propose top-k pruning, a simple yet practical improvement.
It prunes the out-of-class attention coefficients before computing out-of-class entropy. Specifically,
we first obtain {α[S:GGT ](l)

i,j }j∈C(out) , and then retain only the top k largest attention coefficients while
setting the rest to 0,

α
[S:GGT ](l)
i,j =

{
α
[S:GGT ](l)
i,j , j ∈ Index{k},

0, j /∈ Index{k},
, ∀l ∈ [1, ℓ], i ∈ [1, N ],

Index{k} = arg topk

(
{α[S:GGT ](l)

i,j }
j∈C(out)

i

)
,

(11)
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where the arg topk (·) operation selects the indices corresponding to the top k largest attention
coefficients in the out-of-class region for each node. k is a hyperparameter used to control the
number of nodes retained in the out-of-class region.

3.5 CURRICULUM DISTILLATION

Reviewing the previous method, the student model maintains a constant strategy, keeping γ and β
fixed throughout the learning process. We aim for larger values of γ and β to ensure that the student
receives effective guidance from the teacher while maintaining sufficient motivation for out-of-class
exploration. However, there exists a competition in the allocation of attention between in-class
learning and out-of-class exploration. When both γ and β are large, conflicts arise, leading to the
following two issues:

• Inadequate out-of-class exploration due to insufficient attention allocation.
• Excessive out-of-class exploration without a proper understanding of in-class knowledge,

hindering both in-class learning and out-of-class exploration.

Therefore, attention allocation should evolve dynamically during training to enhance the student
model’s performance. Initially, priority should be given to in-class knowledge, and as it consolidates,
attention to out-of-class exploration should gradually increase, ultimately achieving a balanced state.

Based on the above motivation, we propose “curriculum distillation”, which integrates the “curricu-
lum” concept into the distillation process. It allows for a structured teaching approach where the
teacher initially provides strict supervision and guidance to the student, then gradually allows the
student to engage in out-of-class exploration and innovation freely.

We present an abstract framework that dynamically manages the hyperparameter γ:
γ(t) = Scheduleγ(t), ∀t ∈ [1, Tepoch], (12)

where Tepoch denotes the total number of epochs, γ(t) denotes the value of γ at the t-th epoch, and
Scheduleγ(·) is a non-strictly decreasing schedule function.

We also need to manage the hyperparameter β dynamically for out-of-class exploration by designing
a similar schedule function, except that this function is non-strictly increasing:

β(t) = Scheduleβ(t), ∀t ∈ [1, Tepoch]. (13)

Equation 12 and Equation 13 can be implemented differently. Specifically, we adopt the following
design to calculate γ(t):

γ(t) = Scheduleγ
(
t, ep(begin), ep(end), γ(begin), γ(end)

)
, ∀t ∈ [1, Tepoch]

=


γ(begin), 1 ≤ t < ep(begin)

γ(begin) +
(
1 + cos

(
π ·
(
1− t−ep(begin)

ep(end)−ep(begin)

)))
· γ(end)−γ(begin)

2 , ep(begin) ≤ t ≤ ep(end)

γ(end), ep(end) < t ≤ Tepoch

(14)

Within the epoch interval [ep(begin), ep(end)], γ varies, while its values remain unchanged outside this
interval. The hyperparameters γ(begin) and γ(end) represent the initial and final values of γ, respec-
tively, with γ(begin) > γ(end) indicating non-strictly decreasing. Similarly, β follows Equation 14,
sharing the same epoch interval [ep(begin), ep(end)] with γ but having different initial and final values,
denoted as β(begin) and β(end), respectively, where β(begin) < β(end).

For an intuitive understanding, we present the curves illustrating the variations of hyperparameters
γ and β across epochs under different curriculum designs in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We briefly introduce the datasets and baselines in experiments. More details are in Appendix E.
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Datasets. We evaluate our method on seven benchmark datasets, including citation network datasets
Cora, Citeseer, and Pubmed (Sen et al., 2008); Actor co-occurrence network dataset (Chien et al.,
2021); and WebKB datasets (Pei et al., 2020) including Cornell, Texas, and Wisconsin. We apply
the standard splits for the citation network datasets, as in the previous work (Kipf & Welling, 2017).
For the remaining datasets, we set the train-validation-test split as 48%/32%/20%.

Baselines. We compare our method against ten baseline methods, including five GNN methods,
i.e., GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al.,
2017), SuperGATSD (Kim & Oh, 2021), and APPNP (Gasteiger et al., 2019), along with five Graph
Transformers, i.e., GT (Dwivedi & Bresson, 2020), SAN (Kreuzer et al., 2021), Graphormer (Ying
et al., 2021), ANS-GT (Zhang et al., 2022) and NodeFormer (Wu et al., 2022).

4.2 NODE CLASSIFICATION PERFORMANCE

We conduct five random runs and report the average and standard deviation of the experimental re-
sults. The results are shown in Table 2. We have the following observations: a) The proposed method
outperforms all models and shows significant improvements on multiple datasets compared to the
baselines. For example, it achieves a relative improvement of 6.70% over GCN on Citeseer. Com-
pared to Graphormer, it achieves relative improvements of 34.27% on Cora and 22.85% on Cornell.
b) GTs perform less effectively on node classification tasks than GNNs, which can be attributed to
two reasons: First, GTs have more parameters than GNNs, making them more challenging to train
with limited labeled data. Second, GTs lack local inductive biases, limiting their ability to leverage
the inherent structural information in the graph effectively.

Table 2: Node classification performance (mean ± std%, the best results are bolded and the runner-
ups are underlined).

Method Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

GCN 82.06 ± 0.69 71.60 ± 0.32 79.58 ± 0.26 27.88 ± 0.07 53.51 ± 1.21 69.19 ± 1.48 57.25 ± 1.25
GAT 82.84 ± 0.67 72.28 ± 0.72 78.52 ± 0.32 28.71 ± 0.25 55.14 ± 0.48 68.65 ± 1.48 58.82 ± 2.40

GraphSAGE 81.40 ± 0.52 71.68 ± 0.13 78.50 ± 0.44 36.24 ± 0.39 63.78 ± 2.42 75.14 ± 1.21 76.08 ± 0.88
SuperGATSD 82.70 ± 0.60 72.50 ± 0.80 81.30 ± 0.50 30.18 ± 0.25 54.59 ± 1.21 69.73 ± 1.21 58.04 ± 1.07

APPNP 84.10 ± 0.43 72.14 ± 0.22 80.02 ± 0.19 33.47 ± 0.38 61.08 ± 1.48 71.35 ± 1.48 65.10 ± 0.88

GT 77.58 ± 0.22 66.96 ± 0.36 76.48 ± 0.13 37.15 ± 0.40 61.62 ± 2.26 74.60 ± 1.48 71.76 ± 1.75
SAN 77.60 ± 0.23 68.64 ± 0.92 76.62 ± 0.22 37.79 ± 0.20 63.24 ± 1.48 75.14 ± 2.26 77.25 ± 1.75

Graphormer 63.08 ± 0.27 61.08 ± 0.04 OOM OOM 62.70 ± 2.26 76.76 ± 1.48 72.16 ± 0.88
ANS-GT 77.68 ± 0.81 64.16 ± 1.16 77.98 ± 1.38 38.29 ± 0.61 74.92 ± 1.86 76.22 ± 2.26 76.47 ± 1.96

Nodeformer 79.02 ± 0.57 69.66 ± 0.13 76.06 ± 0.98 34.80 ± 0.48 68.11 ± 1.21 77.84 ± 1.71 76.47 ± 4.80

Ours 84.70 ± 0.56 76.40 ± 0.70 83.10 ± 0.42 39.40 ± 0.09 77.03 ± 1.90 85.58 ± 1.56 81.95 ± 0.87

Table 3: Distillation performance comparison.

Model Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

Teacher (LGT) 77.40 ± 0.56 68.05 ± 1.06 79.05 ± 0.63 36.87 ± 0.14 68.46 ± 1.56 76.57 ± 1.56 75.48 ± 1.38
Student (GGT) 54.24 ± 3.16 50.60 ± 3.83 72.50 ± 0.87 35.97 ± 0.29 65.76 ± 5.62 77.03 ± 2.70 77.55 ± 3.93

Ours 84.70 ± 0.56 76.40 ± 0.70 83.10 ± 0.42 39.40 ± 0.09 77.03 ± 1.90 85.58 ± 1.56 81.95 ± 0.87

4.3 DISTILLATION COMPARATIVE STUDIES

Our method is meaningful only if the student model’s performance improves with teacher guidance
and surpasses the teacher model’s after training. We summarize the performance comparison of our
proposed method (Ours), the teacher model (LGT), and the unguided student model (GGT) on all
seven datasets, including average accuracy and standard deviation, as shown in Table 3.

From Table 3, we observe the following: a) On average, our proposed method exhibits an absolute
improvement of 6.61% compared to the teacher model. Specifically, on the Cornell dataset, a relative
performance of 12.51% is achieved; b) On average, our method achieves an absolute improvement of
13.50% compared to the unguided student model. Specifically, a relative performance improvement
of 56.16% is observed on the Cora dataset. Therefore, the proposed method significantly aids the
training process of the GGT student model despite both the selected teacher and student models
being naive GT models with notable limitations.
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4.4 ABLATION STUDIES

We conduct ablation studies to verify and understand the roles of different internal modules in our
method. The results are shown in Table 4.

Module Ablation. “w.o. γ” and “w.o. β” indicate the removal of the distillation loss and the
out-of-class entropy by setting them to 0, respectively. “w.o. top-k” indicates the removal of the
top-k pruning. Our proposed method exhibits an average absolute performance of 34.29%, 9.05%,
and 6.29% across these three variants on all datasets, demonstrating the significance and design
rationality of each module.

Curriculum Ablation. “w.o. curriculum” indicates the removal of the curriculum learning frame-
work. “w.o. epoch design” indicates the removal of the fine-grained interval range of the curriculum
by setting epbegin = 0 and epend = 500. Compared to these two variants, our proposed method
achieves an average absolute performance improvement of 10.01% and 1.74%, respectively, indi-
cating the importance and design rationality of the curriculum framework.

Distillation Ablation. “GGT → GGT” indicates using a GGT model as the teacher instead of an
LGT to guide the GGT student. “Local neighborhood uniform distribution” indicates degrading the
teacher’s attention coefficients at each layer to a fixed first-order neighborhood uniform distribution.
“Global uniform distribution” indicates degrading the teacher’s attention coefficients at each layer to
a fixed global uniform distribution. Compared to these three variants, our proposed method achieves
average absolute performance improvements of 12.88%, 15.13%, and 32.96%, respectively, on all
datasets, demonstrating the rationality of the selected teacher model and the significant importance
of the attention distillation compared to the degraded regularization.

Table 4: The performance evaluation of variants of our method.

Categories Method Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

Module Ablation
w.o. γ 31.90 18.10 40.70 25.59 54.05 64.86 52.94
w.o. β 81.20 72.70 81.00 36.18 59.46 67.57 66.67

w.o. top-k 82.00 71.20 82.85 36.18 67.57 75.68 68.62

Curriculum Ablation w.o. curriculum 82.10 72.10 79.90 34.74 64.86 67.57 56.80
w.o. epoch design 83.90 74.90 81.30 38.75 72.97 83.78 80.39

Distillation Ablation
GGT → GGT 56.60 56.23 OOM OOM 69.37 77.70 81.37

Local neighborhood uniform distribution 81.70 72.50 79.70 26.11 51.35 54.05 56.86
Global uniform distribution 31.90 18.10 OOM 25.46 54.05 64.86 52.94

Ours 84.70 76.40 83.10 39.40 77.03 85.58 81.95

4.5 ADDITIONAL ANALYSIS

We conduct a comparison between our method and other traditional knowledge distillation methods,
along with hyperparameter studies, interpretability studies, and visualization. For detailed experi-
mental results and analysis, please refer to Appendix F.

Additionally, we demonstrate the extension of our method to GNNs, such as GCN, by performing a
distillation experiment from GCN to GGT. For a comprehensive examination of results and analysis,
please refer to Appendix H.

5 CONCLUSION

In this paper, we propose a novel curriculum-enhanced attention distillation method to improve the
training process of Graph Transformers, which is both simpler and more interpretable. By utilizing
the attention coefficients within the Transformer layers as knowledge representations, we achieve
a more efficient knowledge transfer from the LGT teacher to the GGT student. Furthermore, we
introduce out-of-class entropy and top-k pruning as enhancements to promote active out-of-class
exploration by the student under the teacher’s guidance, enabling the student to surpass the teacher’s
performance and unleash its potential. Moreover, inspired by curriculum learning, we introduce
curriculum distillation to capture the dynamic evolution of the attention distribution between in-
class learning and out-of-class exploration during the student’s learning process, further improving
performance. Experimental results on multiple datasets demonstrate the effectiveness of our method
in improving the training process of GTs and enhancing their generalization capability.
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A RELATED WORK

A.1 TRANSFORMERS FOR GRAPH

The Transformer architecture (Vaswani et al., 2017) has achieved great success in many fields, such
as NLP and CV, stimulating researchers’ interest in generalizing it to graph-structure data. GTs are
designed to solve graph-related problems such as node and graph classification. Some pioneering
studies on GTs focus on node classification and have achieved competitive performance compared
to GNNs. ANS-GT (Zhang et al., 2022) adaptively selects a node sampling strategy from four strate-
gies (1-hop neighbors, 2-hop neighbors, KNN, and PPR) through a multi-armed bandit mechanism
to select the most informative nodes as input to the Transformer module. Graph-Bert (Zhang et al.,
2020) limits the receptive field of each target node to the top-k nodes in the intimacy matrix cal-
culated based on the PageRank algorithm. NodeFormer (Wu et al., 2022) approximates pairwise
similarity through kernel functions, and it also uses Gumble-Softmax to enable differentiable op-
timization of graph structures. Compared to the above methods, our method is more concise and
interpretable.

A.2 KNOWLEDGE DISTILLATION

Knowledge distillation was first proposed by Hinton (Hinton et al., 2015). It is a “teacher-student”
network training method that transfers the knowledge learned by a large model with a complex archi-
tecture and sufficient capacity (called the teacher model) to a small model with a simple architecture
and insufficient capacity (called the student model) to improve its performance.

Traditional knowledge distillation typically involves two main stages. Initially, the teacher model
undergoes pre-training, and its output or intermediate layer representations guide the student model.
For instance, KD (Hinton et al., 2015) utilizes the teacher’s logits as soft supervision, while Fit-
Nets (Romero et al., 2014) leverages the teacher model’s intermediate layer features as hints for
knowledge transfer, and AT (Zagoruyko & Komodakis, 2016) employs spatial attention maps for
guidance. Some current research focuses on enhancing the effectiveness of knowledge distillation.
NORM (Liu et al., 2023) focuses on many-to-one representation matching, introducing a Feature
Transform module for this purpose. DisWOT (Dong et al., 2023) addresses model capacity gaps
by using a neural network architecture without training to find the optimal student architecture. To
bridge the performance gap between offline and online distillation methods, SHAKE (Li & Jin,
2022) combines both approaches using a proxy teacher model with a shadow head and a student
model for bidirectional distillation. Furthermore, there are variants of knowledge distillation frame-
works. For example, Tf-FD (Li, 2022) introduces a teacher-free feature distillation method that
utilizes salient features within the student model for distillation.

Beyond its widespread use in the fields of CV and NLP, knowledge distillation is also gradually
being introduced into graph-related tasks. LSP (Yang et al., 2020) is the first knowledge distillation
framework tailored for homogeneous GNNs. It develops a local structure preserving module (LSP)
in GNNs to capture structural information and transfer the structural knowledge from the teacher
to the student by minimizing the distance between their distributions. HIRE (Liu et al., 2022) aims
to preserve relational knowledge in heterogeneous GNNs, which distills the correlation knowledge
between a single node soft label and different node types into the student model. G-CRD (Joshi
et al., 2022) employs a contrastive learning method to implicitly preserve the global topology by
aligning student node embeddings with teacher node embeddings in a shared representation space.

Differing from existing knowledge distillation methods that aim at model compression, our method
is designed to address the challenging task of training Graph Transformers in semi-supervised sce-
narios. The representation capacity of the teacher model we employ is weaker than that of the
student model. In this situation, the teacher’s guidance can be seen as a constraint on the student.
However, the student model possesses a significant potential that requires proper guidance for its full
realization. We intend to utilize knowledge distillation to alleviate issues encountered by the student
model during training, such as overfitting, and to improve the quality of learned representations.
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A.3 CURRICULUM LEARNING

As a mature strategy for training machine learning models, curriculum learning (Wang et al., 2021a;
Soviany et al., 2022), has gained widespread adoption in recent years across various fields, including
NLP(Sachan & Xing, 2016; Xu et al., 2020) and CV (Jiang et al., 2018; Zhou et al., 2020). It involves
organizing samples from easy to difficult (Bengio et al., 2009), enabling the model to gradually learn
from simple to complex knowledge, similar to human learning, and enhancing the learning effect.
Curriculum learning for graph-structure data is an emerging technology that aims to improve the
performance of graph-related tasks. To solve graph classification tasks, CurGraph (Wang et al.,
2021b) uses neural density estimation to model the distribution of graph-level embeddings. Then,
it calculates the difficulty scores of graphs based on their embeddings’ intra-class and inter-class
distributions. CuCo (Chu et al., 2021) combines curriculum learning with graph contrastive learning.
It uses a similarity measure function to score the negative samples and then ranks the negative
samples from easy to hard according to the scores. CuCo starts with easier-to-distinguish negative
samples during training and progressively introduces more challenging ones.

B PROOF: MINIMIZING OUT-OF-CLASS ENTROPY FOR SPARSE ATTENTION
COEFFICIENTS

In the main text, we introduce the out-of-class entropy. Notably, the normalized out-of-class atten-
tion coefficients α′[S:GGT ](l)

i,j,C(out)
i

approximately satisfies:

∀l ∈ [1, ℓ], i ∈ [1, N ],
∑

j∈C(out)
i

α
′[S:GGT ](l)

i,j,C(out)
i

= 1. (15)

Here, we prove that when the sum of out-of-class attention coefficients for node vi is held constant,
i.e., s[S:GGT ](l)

i =
∑

j∈C(out)
i

α
[S:GGT ](l)
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Thus, based on the principle that minimizing entropy corresponds to a sparser probability distribu-
tion, we conclude that this result is valid, thereby completing the proof.

C VARIATIONS OF HYPERPARAMETERS UNDER CURRICULUM DESIGN

Here, we present the curves of hyperparameters γ and β as they evolve over epochs (under different
curriculum designs), as shown in Figure 3.
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Figure 3: The variation curves of hyperparameters γ and β under different curriculum designs.

D COMPLEXITY ANALYSIS

The time and space complexity of pre-training the teacher model can be neglected compared to train-
ing the student model, and curriculum learning does not inherently increase complexity. Therefore,
we only discuss the time and space complexity of the student model.

The time complexity of a single forward propagation of the attention module is O(nd2 + n2d) =
O(n2d), and the space complexity is O(nd+n2). The feed-forward network (FFN) requires O(nd2)
time and O(nd) space per layer. Assuming each attention module is followed by ℓFFN layers of FFN
(typically ℓFFN is small), the overall time and space complexity of a single forward propagation of the
student model are O(ℓ×n2d+ℓ×ℓFFN×nd2) = O(ℓ×n2) and O(ℓ×n2+ℓ×nd+ℓ×ℓFFN×nd) =
O(ℓ× n2), respectively.

E EXPERIMENTAL DETAILS

E.1 DATASET STATISTICS

In Table 5, we show the detailed statistics of seven datasets.

Table 5: The statistics of the datasets.

Dataset #Nodes #Edges #Features #Classes Hom.ratio Train/Val/Test

Cora 2708 5429 1433 7 0.81 140/500/1000
Citeseer 3327 4732 3703 6 0.74 120/500/1000
Pubmed 19717 44338 500 3 0.8 60/500/1000

Actor 7600 33544 931 5 0.22 3648/2432/1520
Cornell 183 295 1703 5 0.30 87/59/37
Texas 183 309 1703 5 0.11 87/59/37

Wisconsin 251 499 1703 5 0.21 120/50/81
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E.2 IMPLEMENTATION DETAILS

In our experiments, we use cross-entropy as the distance metric. For the LGT model, we adopt the
GT model (Dwivedi & Bresson, 2020), which computes attention by considering only the first-order
neighborhood (including the node itself). As for the GGT model, we employ the vanilla Transformer
model(Vaswani et al., 2017). Specifically, the implementation of the Transformer layer in the GGT
model is identical to that of the encoder’s Transformer layer in the original Transformer.

We maintain fixed values for certain hyperparameters: the pre-training epochs of the teacher model
are set to 200, the training epochs of the student model to 500, and the weight decay to 5e-4.
We conduct hyperparameter tuning for other important hyperparameters on each dataset using grid
search. The hyperparameter ranges are presented in Table 6. We provide the specific configurations
of hyperparameters on each dataset in Table 7. We implement our method with Python and PyTorch
and use Adam as the optimizer. All experiments are conducted on one GeForce RTX 4090 GPU.

Table 6: The searching space of hyperparameters

Parameter Names Hyperparameter Ranges

hidden size 64, 128, 256

head number 1, 2, 4

dropout ratio 0.3, 0.4, 0.5, 0.6

k 10, 15, 20, 25, 30, 35, 40, 45, 50

ep(begin) 0, 50, 100, 150, 200, 250, 300

ep(end) 100, 200, 300, 400, 500

γ(begin) 2, 3, 4, 5, 6, 7, 8

γ(end) 1, 2, 3, 4

β(begin) 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

β(end) 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2

learning rate 0.01,0.005,0.001

F ADDITIONAL RESULTS AND ANALYSIS

F.1 COMPARATIVE ANALYSIS OF OUR METHOD AGAINST OTHER DISTILLATION METHODS

In this subsection, we conduct a comprehensive comparison between our method and traditional
knowledge distillation methods. Specifically, we select two well-established methods, KD (Hinton
et al., 2015) and FitNets (Romero et al., 2014), and perform a detailed evaluation against our method.

To ensure a fair and meaningful comparison, we consistently employ LGT as the teacher model,
ensuring their performances are comparable. As for the student model, we employ GGT throughout
the experiments. The results are shown in Table 8.

The results lead to a clear conclusion: our method significantly outperforms KD and FitNets in terms
of performance. On average, across all datasets, our method demonstrates an absolute performance
improvement of 6.39% and 7.14% compared to KD and FitNets, respectively. More specifically, on
the Cora dataset, our method achieves an absolute performance improvement of 7.36% and 7.51%
over KD and FitNets, respectively, further confirming the outstanding performance of our method in
practical tasks.

F.2 HYPERPARAMETER STUDIES

In this subsection, we investigate the impact of hyperparameters γ and β and their trade-off with the
supervised loss on the student model’s performance across the Cora and Citeseer datasets. In total,
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Table 7: Optimal hyperparameter configurations across seven graph datasets

Datasets Type Hyperparameters

Cora

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.5, lr = 0.001, weight decay = 0.0005,

Student

hidden size = 128, layers = 2, head number = 2,
dropout = 0.6, lr = 0.005, weight decay = 0.0005,
k = 25, γ((begin) = 3, γ(end) = 1.5, β(begin) = 0.1,

β(end) = 0.4, ep(begin) = 0, ep(end) = 400

Citeseer

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.4, lr = 0.003, weight decay = 0.0005,

Student

hidden size = 128, layers = 2, head number = 2,
dropout = 0.7, lr = 0.01, weight decay = 0.0005,
k = 15, γ((begin) = 8, γ(end) = 2.5, β(begin) = 0,

β(end) = 1.5, ep(begin) = 50, ep(end) = 150

Pubmed

Teacher hidden size = 128, layers = 2, head number = 1,
dropout = 0.3, lr = 0.001, weight decay = 0.0005,

Student

hidden size = 256, layers = 2, head number = 1,
dropout = 0.3, lr = 0.005, weight decay = 0.0005,
k = 20, γ((begin) = 2.5, γ(end) = 0.5, β(begin) = 0,

β(end) = 0.2, ep(begin) = 0, ep(end) = 50

Actor

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.5, lr = 0.001, weight decay = 0.0005,

Student

hidden size = 256, layers = 2, head number = 2,
dropout = 0.6, lr = 0.005, weight decay = 0.0005,
k = 30, γ((begin) = 5, γ(end) = 3.5, β(begin) = 0.2,

β(end) = 2.5, ep(begin) = 0, ep(end) = 50

Cornell

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.5, lr = 0.001, weight decay = 0.0005,

Student

hidden size = 256, layers = 2, head number = 2,
dropout = 0.5, lr = 0.01, weight decay = 0.0005,
k = 10, γ((begin) = 1.5, γ(end) = 1.5, β(begin) = 0.2,

β(end) = 0.8, ep(begin) = 300, ep(end) = 500

Texas

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.5, lr = 0.005, weight decay = 0.0005,

Student

hidden size = 256, layers = 2, head number = 2,
dropout = 0.6, lr = 0.01, weight decay = 0.0005,
k = 10, γ((begin) = 6, γ(end) = 2.5, β(begin) = 1,
β(end) = 2.5, ep(begin) = 100, ep(end) = 400

Wisconsin

Teacher hidden size = 128, layers = 2, head number = 2,
dropout = 0.3, lr = 0.001, weight decay = 0.0005,

Student

hidden size = 128, layers = 2, head number = 2,
dropout = 0.5, lr = 0.01, weight decay = 0.0005,
k = 10, γ((begin) = 1.5, γ(end) = 0.5, β(begin) = 0.3,

β(end) = 0.5, ep(begin) = 50, ep(end) = 100
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Table 8: Performance comparison across knowledge distillation methods. T: Teacher model, S:
Student model, Distilled: Distilled model.

type KD FitNets Ours

T S Distilled T S Distilled T S Distilled

Cora 77.40 55.90 77.34 77.40 54.80 77.19 77.40 54.24 84.70
Citeseer 68.60 55.80 70.27 68.6 57.5 69.51 68.05 50.60 76.40
Pubmed 77.60 73.30 78.12 77.8 77.2 78.42 79.05 72.50 83.10

Actor 37.17 37.50 37.78 37.17 37.04 38.20 36.87 35.97 39.40
Cornell 70.27 59.46 63.78 70.27 67.57 62.16 68.46 65.76 77.03
Texas 78.38 75.68 75.14 78.38 75.68 77.57 76.57 77.03 85.58

Wisconsin 76.47 80.39 80.98 76.47 78.43 75.10 75.48 77.55 81.95

we conduct three sets of studies: a) We vary the values of β while keeping γ fixed; b) We vary the
values of γ while keeping β fixed; c) We investigate the impact of r = γ

β > 0 by fixing the ratio r

and adjusting β accordingly.

Figure 4 illustrates the variation in the student model’s performance concerning the value of β while
keeping γ fixed. From the results, we can observe that: a) The curves generally exhibit a gradually
decreasing trend or a slight increase followed by a decrease. This indicates that for a fixed γ value,
there exists an appropriate threshold for β. The student’s out-of-class exploration yields benefit only
when β does not exceed this threshold. If the out-of-class exploration exceeds the range supported
by the in-class knowledge, the performance of the student model will decline; b) If γ slowly in-
creases, the downward trend of the curves is alleviated, suggesting that improving in-class guidance
facilitates the student’s ability to engage in more extensive out-of-class exploration.

Figure 5 illustrates the variation in the performance of the student model concerning the value of
γ while keeping β fixed. It can be seen that increasing γ while keeping β constant contributes
to improving performance. As the teacher’s in-class guidance exceeds a threshold, out-of-class
exploration becomes increasingly effective. However, an excessively high proportion of in-class
guidance may lead to performance degradation, as out-of-class exploration could be marginalized.
Furthermore, comparing the curves shows that higher values of β may require a correspondingly
higher γ, indicating a more substantial level of teacher guidance to elevate the student’s performance
from a lower level.

The study of the relationship between r = γ
β > 0 and performance essentially explores the balance

between supervised loss and distillation loss, investigating the benefits of applying distillation over
naive supervised learning. From Figure 6, it can be observed that regardless of the value of r, when
β is set to 0, γ must also be 0. In this case, the student model relies solely on the supervised loss
for learning, resulting in suboptimal performance. When r is small, the student receives weak in-
class guidance during out-of-class exploration, so applying distillation on top of supervised learning
does not improve performance, and higher values of β lead to worse performance. As r is appro-
priately increased, with an increasing β, the curves undergo a transition from a decreasing trend to
an increasing-then-decreasing trend. The initial performance improvement indicates that distillation
becomes effective with enhanced in-class guidance. However, the subsequent performance decline
is because the student primarily focuses on out-of-class exploration, and distillation cannot yet re-
place the supervised loss. As r further increases, the decreasing trend of the curves gradually slows
down, indicating a weakening effect of supervised loss. When r is relatively large, the downward
trend of the curves stabilizes, indicating that the teacher’s in-class guidance can somewhat substitute
for supervised loss, enabling the student to learn in an unsupervised manner.

F.3 INTERPRETABILITY STUDIES

To investigate the impact of our method on enhancing the global homophily of the GGT student
model during training, we plot the curves showing the average node homophily variation over time
(epochs) and compare them with those of the unguided GGT student model (Figure 7).
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Figure 4: The impact of hyperparameter β on the performance of the student model.
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Figure 5: The impact of hyperparameter γ on the performance of the student model.
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Figure 6: The impact of hyperparameter ratio r on the performance of the student model.
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Figure 7: Evolution of average global homophily for GGT student models: a comparison of un-
guided, guided, and curriculum-enhanced.

From Figure 7, it can be observed that the unguided student struggles to discover beneficial interac-
tions globally, leading to limited realization of its potential and overfitting. However, with teacher
guidance, the student’s capacity for independent exploration significantly improves, resulting in a
notable performance enhancement. Furthermore, incorporating curriculum design further enhances
the student’s learning outcomes.

F.4 VISUALIZATION

In this subsection, we present scatter plots of the original features and embeddings produced by GCN
and our method on the Cora and Citeseer datasets (Figure 8). The scatter plots show the following:
a) The original node features appear messy and exhibit cross-class fusion. b) The embeddings
generated by our method demonstrate more explicit classification boundaries and better separability
than those produced by GCN.

G FURTHER DISCUSSIONS

In this paper, we propose attention distillation for Graph Transformers, presenting a novel method to
the field of graphs. While similar works exist in NLP, such as MINILM (Wang et al., 2020), which
proposes distilling the attention coefficients of the last Transformer layer of the teacher model to the
student model, and MobileBERT (Sun et al., 2020), which performs attention distillation layer-to-
layer, their motivations differ significantly from ours. We primarily focus on GT models, aiming
to improve their training, mitigate overfitting, and enhance generalization abilities based on their
unique characteristics. We address a specific and specialized problem, whereas previous research
mainly focuses on model compression for generic models.

Further, we introduce “curriculum distillation” in our work. Although the term has been used in
previous works, our method differs significantly in context, motivation, and methodology from those
earlier studies. For example, this paper (Li et al., 2023) employs temperature control in the Softmax
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(a) Cora(Original) (b) Cora(GCN) (c) Cora(Ours)

(d) Citeseer(Original) (e) Citeseer(GCN) (f) Citeseer(Ours)

Figure 8: Scatter plots of original node features and embedding produced by GCN and our method
on the Cora and Citeseer datasets.

operator of the teacher’s output to gradually transit from fuzzy to clear teacher guidance, focusing
on model compression. It provides a relatively simple student model with knowledge ranging from
easy to complex. In contrast, we tackle the challenge of overfitting in a complex student model. Our
curriculum design captures a dynamic balance between strict guidance and independent innovation
over time. In terms of methodology, previous works tend to “constrain” the teacher initially and
gradually “release” it, while our method adopts a different method by “strictly guiding” the student
initially and allowing for “innovation” later. Therefore, these two methods differ significantly in
context, motivation, and methodology.

H THE EXTENSION OF OUR METHOD TO GNNS

While initially designed for Transformers and not specifically tailored for GNNs, our method is read-
ily adaptable and extendable to various GNN models, including GCN (Kipf & Welling, 2017) and
SGC (Wu et al., 2019), with minor adjustments. Specifically, we can generate similarity matrices for
non-attention models using their node embeddings. These matrices serve as rough approximations
of the attention matrices within our knowledge distillation framework.

To illustrate this adaptability, we present a preliminary experiment distilling knowledge from GCN
to GGT. The corresponding experimental results are summarized in Table 9.

Table 9: Distillation performance comparison.

Model Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

Teacher (GCN) 82.06 ± 0.69 71.60 ± 0.32 79.58 ± 0.26 27.88 ± 0.07 53.51 ± 1.21 69.19 ± 1.21 57.25 ± 1.25
Student (GGT) 54.24 ± 3.16 50.60 ± 3.83 72.50 ± 0.87 35.97 ± 0.29 65.76 ± 5.62 77.03 ± 2.70 77.55 ± 3.93
GCN → GGT 82.90 ± 0.76 72.46 ± 0.95 81.73 ± 0.92 38.08 ± 0.60 72.97 ± 2.20 81.08 ± 2.20 79.90 ± 1.87

The experimental results indicate that applying our method to knowledge distillation from GCN to
GGT can significantly improve the performance of the student model across all datasets, with an
average absolute performance gain of 10.78%. Specifically, on the Cora dataset, the absolute perfor-
mance gain reaches 28.66% compared to the unguided student model, demonstrating the superiority
of our method.
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However, it can be observed that the performance of “GCN → GGT” still exhibits a certain per-
formance gap compared to the “LGT → GGT” employed in the main text (refer to Table 3 for
performance details). We attribute this performance gap to the inherent advantages of using Trans-
former models as both teacher and student models. In transformer models, the internal attention
coefficients are automatically and inherently learned, eliminating the need to generate additional
relational structures based on embeddings, as required in GCN. This ensures the reliability of at-
tention mechanisms, as the teacher model strictly follows these learned coefficients for aggregation.
In contrast, considering other models (such as GCN), the similarity matrix is derived from their
node embeddings in a post-hoc manner, and thus, its reliability, interpretability, and quality heavily
depend on and are restricted by the embeddings. Therefore, subsequent construction of relational
structures (e.g., similarity matrix) cannot be guaranteed to be equally reliable, interpretable, and
high-quality. From this perspective, inherent attention-based models might be more suitable and can
benefit more from our distillation framework.
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