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ABSTRACT

This paper investigates three different parameterizations of asymmetric uniform
quantization for quantization-aware training: (1) scale and offset, (2) minimum
and maximum, and (3) beta and gamma. We perform a comprehensive compara-
tive analysis of these parameterizations’ influence on quantization-aware training,
using both controlled experiments and real-world large language models. Our par-
ticular focus is on their changing behavior in response to critical training hyper-
parameters, bit width and learning rate. Based on our investigation, we propose
best practices to stabilize and accelerate quantization-aware training with learn-
able asymmetric quantization ranges.

1 INTRODUCTION

In settings with limited low-resources, such as on-device applications or in developing coun-
tries, model efficiency is critical. Quantization serves as a practical and effective solution to this
end (Kuzmin et al., 2023). In the field of deep learning, quantization refers to the method of map-
ping floating-point values (i.e., model weights or intermediate activations) to lower-bit integers.
The benefits are two-fold: it reduces memory footprint and accelerates computation. The demand
for quantization has increased as neural networks have grown in size to achieve state-of-the-art
performance. Large language models (LLMs) have been a driving force behind this trend in re-
cent years (Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Luccioni et al., 2023;
Hoffmann et al., 2022; Touvron et al., 2023), and similar patterns are also evident across various
domains (OpenAI, 2023; Dehghani et al., 2023; Chu et al., 2023).

Figure 1: Computational graph of asymmetric quantization.

Asymmetric uniform quantization and dequantization are defined as follows:

x̄ = Q(x, s, z, k) = clip
(⌊x

s

⌉
− ⌊z⌉, 0, k

)
,

x̂ = DQ(x̄, s, z) = s(x̄+ ⌊z⌉),

where k = 2b − 1, s =
θmax − θmin

k
, z =

θmin

s
.

(1)

Here, θmin and θmax are typically initialized to the minimum and maximum values of the input data
x, and b is the target bit width. While in quantization-aware-training (QAT) with learnable asym-
metric quantization ranges, the standard practice is to learn s and z (Bhalgat et al., 2020), one can
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opt to set other pairs of parameters as learnable, rather than s and z (denoted as scale/offset here-
after). The yellow boxes in Figure 1 illustrate that these learnable candidates could be either θmin

and θmax (denoted as min/max hereafter) or β and γ (denoted as beta/gamma hereafter) as well. In
this paper, we (1) demonstrate that the learning patterns of these asymmetric parameterizations can
be different from one another during QAT, (2) provide a comparative analysis of their differences,
and (3) propose best practices to stabilize and accelerate QAT.

Figure 2: Computational graph of symmetric quantization.

The exploration of differences between these parameterizations is timely, as an increasing number
of studies are focusing on learning-based optimization of quantization ranges, especially for extreme
low-bit quantization of LLMs. These efforts include not only conventional QAT approaches (Liu
et al., 2023b; Kim et al., 2023b; Wu et al., 2023), but also quasi-QAT methods based on local—
block-wise or layer-wise—optimization (Lin et al., 2023; Shao et al., 2023; Ding et al., 2023). Our
study has the potential to offer insights and benefits in both contexts.

2 RELATED WORKS

There are two uniform quantization schema that are widely employed: symmetric (depicted in Fig-
ure 2) and asymmetric (depicted in Figure 1). The quantization method can also be largely cate-
gorized into two: Post-training quantization (PTQ) and QAT. PTQ obtains effective quantization
ranges with no (or minimal) modification of model weights (Gong et al., 2018; Banner et al., 2019).
On the other hand, QAT learns model weights with the quantization effect taken into account. This
is commonly achieved by using the straight-through estimator for the non-differentiable rounding
operation (Bengio et al., 2013).

In QAT with range-leaning, the quantization ranges themselves are learned, either independently
with the model weights frozen (Kim et al., 2023a) or jointly with the model weights (Esser et al.,
2020). The idea of learning quantization ranges was initially introduced in symmetric form (Choi
et al., 2018; Esser et al., 2020). The concept of learnable range was then extended to asymmetric
quantization. Bhalgat et al. (2020) utilized the scale/offset, while Siddegowda et al. (2022) adopted
the min/max. Furthermore, Shao et al. (2023) introduced a novel beta/gamma parameterization
derived from min/max. For a more in-depth understanding of quantization fundamentals, please
refer to Krishnamoorthi (2018); Nagel et al. (2021); Siddegowda et al. (2022).

3 COMPARATIVE ANALYSIS OF ASYMMETRIC QAT PARAMETERIZATIONS

In symmetric quantization, all the learnable range parameters, s, θmax and γ, depend linearly on one
another, as shown in Figure 2. This results in gradients that are identical except for scaling factors
(see Table 3 in the Appendix). However, in asymmetric quantization, the two range parameters are
mutually dependent as in Figure 1, resulting in complex gradients as in Table 1. See A. 2 in the
Appendix why they can lead to different solutions after training.

scale/offset vs. min/max. Given the different QAT behaviors exhibited by the three parameteriza-
tions, the question naturally arises: which one should we use? Let us first compare scale/offset and
min/max. One potential problem with scale/offset is that s and z reside in different spaces, forming
an inverse relation to one another as in equation 1. Assigning identical learning rates to them would
thus not be sensible, and it is unclear how to appropriately assign different rates (see the Appendix
for three possible options). Another issue arises becasuse the gradients of s and z do not incorpo-
rate k, which means they cannot properly respond to changes in bit width. On the other hand, the
gradients of θmin and θmax incorporate k as in Table 1, reducing bit-width sensitivity.

An additional interesting observation about scale/offset is that it is prone to error in situations where
one of θmin and θmax is on its optimal point and the other is not. Once one quantization encoding
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Table 1: Gradients of asymmetric quantization ranges.

reaches a local minimum, oscillation starts due to the push-and-pull between the clipping error and
the quantization error. This could cause unwanted irregularities on the other encoding that has not
yet converged. A good example is ReLU. While min/max can simply fixate θmin at 0 and learn only
θmax, scale/offset is required to move both s and z simultaneously at all time, which makes it more
vulnerable to unstable oscillation (see Figure 8 in the Appendix).

To confirm whether the aforementioned issues indeed impede the QAT performance of scale/offset,
we perform a controlled toy experiment. We quantize a tensor of 10,000 values that follow a normal
distribution. To examine bit-width sensitivity, we try low bit (3 bit) and high bit (10 bit). We
also compare learning rates of 1e-2 and 5e-3, thereby ablating the impact of learning rate. The
quantization range is learned to minimize the mean-squared-error (MSE) between the original tensor
and the quantized-dequantized tensor:

argmin
enca,encb

1

N

N∑
i

(DQ(Q(xi, enca, encb, k), enca, encb)− xi)
2. (2)

Here, enca and encb are the learned quantization encodings (i.e. s and z or θmin and θmax). We
use the Adam optimizer with no weight decay (Kingma & Ba, 2015). The initial encoding θ0min is
set to the minimum value of the tensor while θ0max is set to three times larger than the maximum
value of the tensor. This is done to make the task sufficiently challenging by giving the quantizer
longer asymmetric distances to manage. As observed in Figure 3, scale/offset responds sensitively
to the learning rate and fails to converge in the high-bit case. On the other hand, min/max converges
consistently in all scenarios.

Figure 3: Learnable ranges of scale/offset and min/max (x-axis) changing over 5k steps of QAT
(y-axis). scale/offset and min/max are respectively color-coded as red and blue, and lighter shades
correspond to a learning rate of 1e-2 (darker shades to that of 1e-3). The left subfigure represents
3-bit quantization (10-bit on the right). Although we experimented with 16 bit as well, scale/offset
resulted in excessively large values that could not be effectively visualized.

Extending the comparison between scale/offset and min/max to a real-life scenario, we perform
QAT of GPT2-small on WikiText-2 (Merity et al., 2017), as shown in Figure 4. All the weights
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are quantized to symmetric 4-bit integers, and all the activations are quantized to asymmetric 12-bit
integers. The only exception is the layernorm weights, which follow the quantization scheme of
the activations. The quantization ranges for both the weights and the activations are learned using a
batch size of 8, while the model weights remain frozen. This experiment reaffirms the instability of
the scale/offset method. In contrast, min/max reduces the cross-entropy loss consistently, irrespective
of the different learning rates. We repeat the same experiment across GPT2 and OPT of different
sizes as in Table 2, observing similar patterns.

Figure 4: Cross-entropy loss of GPT2-small QAT (y-axis) over 2k training steps (x-axis). Left de-
picts QAT based on min/max and scale/offset. Right depicts QAT based on min/max and beta/gamma
(with and without sigmoid).

Given the apparent flaws of scale/offset, one might find it puzzling how it has become the de-facto
standard for QAT parameterization. Firstly, many QAT studies employ a symmetric quantization
scheme (Esser et al., 2020; Choi et al., 2018; He et al., 2023; Ding et al., 2023), which is free from
the instability of asymmetric scale/offset. Secondly, in LLM quantization, it is often the case that
only weights are quantized (Frantar et al., 2022; 2023; Shao et al., 2023; Ding et al., 2023). For
weight quantization, granularity is usually per-channel (as opposed to per-tensor activation quanti-
zation), and distributions tend to be symmetric with much regularized ranges compared to those of
activations. Under such conditions, we find that QAT converges well regardless of parameterizations
(see Figure 9 in the Appendix).

min/max vs. beta/gamma. Given its greater robustness to different bit widths/learning rates and its
independent control over each of the quantization encodings, is min/max the preferred parameteri-
zation? However, one caveat with min/max is its slow convergence when quantization ranges must
traverse large distances to reach their minima. This limitation has critical implications in practice,
as studies have observed that some activations of LLM contain extremely large values (Xiao et al.,
2023; Liu et al., 2023a).

beta/gamma effectively overcomes this difficulty. The idea is simple. Instead of learning θmin and
θmax themselves, new parameters β and γ are introduced to scale θmin and θmax:

s =
γθmax − βθmin

k
or

σ(γ)θmax − σ(β)θmin

k
, z =

βθmin

s
or

σ(β)θmin

s
. (3)

In Figure 5, we quantize a normal distribution with a standard deviation of 50 using both min/max
and beta/gamma. It is evident that beta/gamma converges quickly, in stark contrast to min/max. This
is because beta/gamma utilizes |θmin| and |θmax| (i.e. to scale the gradients of β and γ, as shown
in Table 1. In other words, it scales the gradients of the quantization ranges proportionally to the
expected distances they need to travel (i.e. by |min(xt)| and |max(xt)|).
As an astute reader may have noticed, beta/gamma is highly similar to min/max whose learning
rates are scaled by |θ0min| and |θ0max| (denoted as min/max+ hereafter). Their similarity is experi-
mentally verified in Figure 5; notice how the blue dashed line (min/max+) overlaps perfectly with
the green solid line (beta/gamma without sigmoid). They are, however, not equivalent in all cases.
(1) beta/gamma can dynamically set θmin and θmax to the true minimum/maximum values of x.
Such dynamism cannot be readily attained in min/max+. (2) beta/gamma enables per-channel scal-
ing of gradients by having θmin and θmax in vector forms. On the other hand, min/max+ requires
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Figure 5: Learnable ranges of min/max and beta/gamma changing over the course of QAT.
beta/gamma is color-coded in green (min/max in blue). min/max+ and sigmoid-applied beta/gamma
are depicted with dashed lines. The other details of the experiment are identical to those in Figure 3
except that we have omitted the case of lr = 1e− 2 for visual clarity.

those values to be passed as scalars to the optimizer outside the model. (3) Finally, Shao et al. (2023)
apply a sigmoid function to β and γ as in equation 3. Such additional treatment on the quantization
encodings further differentiates beta/gamma from min/max+.

Let us examine these three differences. The per-channel granularity from having β, γ, θmin, and
θmax as model states is a clear advantage. The benefits of dynamic θmin and θmax are also evident,
following the same logic as in dynamic versus static quantization. The sigmoid function on β and
γ is, however, a double-edged sword. It stabilizes the training process, but at the cost of constrain-
ing the quantization range not to expand beyond its initial value and of slowing down the training
process by compressing β and γ. We test the impact of the sigmoid function in beta/gamma with
the controlled toy example (Figure 5) and the LLM QAT (the right subfigure of Figure 4). In both
cases, the sigmoid-free approach converges more quickly, and in the LLM experiment, it finds a
lower minimum.

FP scale/offset min/max beta/gamma
1e-2 1e-3 1e-2 1e-3 1e-2 1e-3

GPT2-small 30.0 2349.1 50256.8 28.6 28.5 25.6 27.0
GPT2-XL 18.4 1712.5 266.6 17.5 16.6 15.5 15.8
OPT-125M 31.8 4825.7 746.1 2036.1 52.5 30.6 31.6
OPT-1.3B 16.8 3192.3 16.9 17.1 16.6 16.5 14.9

Table 2: Perplexity results of LLM QAT with learned asymmetric ranges, organized by model,
learning rate, and parameterization. The context length is 1024, with the exception of GPT2-XL, for
which a context length of 768 is used. beta/gamma is sigmoid-free.

4 CONCLUSION

Range-learning QAT is inherently unstable as it governs the rounding up/down of numerous el-
ements by modifying a pair of quantization encodings. Adding to the complexity is our limited
understanding of the impact of various parameterizations. In our efforts to stabilize and accelerate
this challenging QAT process, we have made the following contributions: (1) We experimentally
demonstrated that different asymmetric quantization parametrizations can behave differently during
QAT. (2) We conducted a comparative analysis between scale/offset and min/max, demonstrating
the favorable properties of the latter in terms of bit-width/learning-rate sensitivity and independent
control of two quantization encodings. (3) We conducted a comparative analysis between min/max
and beta/gamma, proposing their respective best QAT practices: min/max with adjusted learning
rates and sigmoid-free beta/gamma.

5



Published as a conference paper at ICLR 2024

REFERENCES

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A APPENDIX

A.1 APPROPRIATE LEARNING RATES FOR scale/offset

Given that s and z exist in different spaces, it becomes necessary for QAT to adjust their gradients
accordingly. A straightforward approach involves scaling them based on the absolute values of their
corresponding parameters (denoted as naive hereafter). For a more sophisticated method, we trace
the implicit θmin and θmax to determine the amount of updates for s and z. Let us first investigate
the learning rate for s. The one-step updates of θmin and θmax with Adam optimizer are as follows:

s(t+1) = s(t) − η
E[us]√
E[u2

s]

uadam
s =

E[us]√
E[u2

s]

s(t+1) = s(t) − ηuadam
s

θ
(t+1)
min = θ

(t)
min − η

E[− 1
pus]√

E[(− 1
pus)2]

θ
(t+1)
min = θ

(t)
min + ηuadam

s

θ(t+1)
max = θ(t)max − ηuadam

s (by the same logic).

(4)

The update of s under min/max can then be expressed as:

s′(t+1) =
(θ

(t)
max − ηuadam

s )− (θ
(t)
min + ηuadam

s )

k

=
(θ

(t)
max − θ

(t)
min)

k
− η

2

k
uadam
s

= s′(t) − η
2

k
uadam
s .

(5)

We can similarly derive a scaling factor in the case of Stochastic Gradient Descent (SGD) optimizer:

s′(t+1) =
(θ

(t)
max − η 1

ku
sgd
s )− (θ

(t)
min + η 1

ku
sgd
s )

k

=
(θ

(t)
max − θ

(t)
min)

k
− η

2

k2
usgd
s

= s′(t) − η
2

k2
usgd
s

(6)

To summarize, in the case of scale, we can scale the update of s under scale/offset by 2
k to emu-

late the update of the derived s under min/max for Adam optimizer. The matter is, however, not
straightforward for offset since the derivative of offset with respect to θmin (and θmax) is once again
complicatedly dependent on θmin and θmax:

z′(t+1) = k
θmin − uadam

min

(θmax − uadam
max )− (θmin − uadam

min )
(7)

One practical alternative is to use the relationship between scale and offset as defined in equation 1,
based on which one can scale gradient to offset as follows:

dL

dz
=

dL

dθmin

1

s
(8)
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The proposed scaling hold regardless of optimizers, given the premise that the relationship between
z and θmin in equation 1 should be maintained throughout QAT. We denote this particular scaling
of learning rates for s and z as sophisticated hereafter.

Besides naive and sophisticated, we can additionally devise a new parameterization that takes out
the bit-width component k out of the learnable parameters:

s′ = θmax − θmin, z′ =
θmin

θmax − θmin
. (9)

The scale and offset variables can then be trivially retrieved from s′ and z′ such that s = 1
ks

′ and
z = kz′. With the k taken out, s′ and z′ are now located in the same space, making any learning
rate adjustment unnecessary (denoted as kscale/koffset hereafter).

We perform the same experiment of quantizing a normal distribution as in Figure 6 with the three
aforementioned methods: naive, sophisticated, and kscale/koffset. The results are illustrated in Fig-
ure 6. While all the alternatives to scale/offset show better performance than the vanilla scale/offset
in 10-bit quantization, none shows the stability of min/max and beta/gamma.

Figure 6: Learnable ranges of (1) scale/offset (red), (2) kscale/koffset (orange), (3) naive (black),
and (4) sophisticated (gray) changing over the course of QAT. The other details of the experiment
are identical to those in Figure 3

A.2 FUNDAMENTAL DIFFERENCE BETWEEN scale/offset AND min/max

From equation 5 and equation 7, we observe that the relationship between s′(t) and s′(t+1) is not the
same as the relationship between z′(t) and z′(t+1). In other words, even if we make the update of
the derived scale under min/max and the update of the scale under scale/offset identical via linear
scaling, the updates of the offset will be different. After an indefinite number of updates, given
x = 0, quantization/dequantization can thus result in different answers for scale/offset and min/max
due to their discrepancy in z. This is one example that evinces scale/offset and min/max are not
one and the same. There exists no straightforward linear transformation that ensures both scale and
offset undergo identical updates under min/max and scale/offset across their entire domain.

A.3 SYMMETRIC QUANTIZATION

The symmetric correspondence of equation 1 is defined as follows:

x̄ = Q(x) = clip(⌊x
s
⌉,−k − 1

2
,
k − 1

2
),

x̂ = DQ(x̄) = s(x̄),

where k = 2b − 1, θmax = max(|x|), s =
2 ∗ θmax

k
.

(10)

One of s, θmax, and γ can be designated as a learnable parameter, as illustrated in Figure 2. Given
the gradients of these parameters appropriately scaled as in Table 3, it is evident that they would
behave identically during QAT. See Figure 7 for experimental verification, in which all the lines
perfectly overlap.
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Figure 7: Learnable ranges of scale/offset (red), min/max (blue), and beta/gamma (green), changing
over the course of symmetric 3-bit QAT. On the left, all parameterizations receive the same learning
rate of 5e-3. On the right, the learning rates are appropriately scaled.

n < x < p x < n x > p
dx̂
ds ⌊x

s ⌉ −
x
s n p

dx̂
dθmax

2
k (⌊

x
s ⌉ −

x
s )

2
kn

2
kp

dx̂
dγ θmax

2
k (⌊

x
s ⌉ −

x
s ) θmax

2
kn θmax

2
kp

Table 3: Gradients of symmetric quantization ranges.

A.4 RELU CASE

Figure 8: Learnable ranges of scale/offset and min/max changing over the course of QAT. The
details of the experiment are identical to those in Figure 5, except that the right subfigure involves
8-bit quantization instead of 10-bit. This adjustment was made because 10-bit quantization results
in values that are too large to be effectively visualized.

As discussed in the main body of this work, scale/offset is particularly unstable when one of θmin

and θmax has already converged to its optimum and the other is still moving. This is typical of
an activation after ReLU where θmin is likely to be placed on the near-optimal position 0.0 from
the beginning. We perform QAT on a ReLU-applied normal distribution in Figure 8, in which we
observe severe instabilities for scale/offset.

A.5 NORMAL QUANTIZATION

As discussed in the main body of the paper, it might seem puzzling that there are numerous suc-
cessful scale/offset cases for QAT with learned asymmetric ranges, despite the apparent risks. To
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Figure 9: Learnable ranges of scale/offset (red) and min/max (blue) changing over the course of
QAT. The details of the experiment are identical to those in Figure 3, except for the initial starting
points: θ0min = min(x) and θ0max = max(x).

investigate whether scale/offset can still converge successfully under less extreme conditions, we
conduct an experiment, as depicted in Figure 9, keeping the experimental setup consistent with that
in Figure 3. However, we quantize the tensor to 4 bits and 8 bits (rather than 3 bits and 10 bits)
and set θmin and θmax to min(x) and max(x) (instead of min(x) and 3 ∗max(x)), to alleviate the
difficulty of the task. The results indicate that θmin and θmax of all parameterizations converge to
the identical positions.
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