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Abstract

As the quality of image generators continues to improve, deepfakes become a topic
of considerable societal debate. Image watermarking allows responsible model own-
ers to detect and label their AI-generated content, which can mitigate the harm.
Yet, current state-of-the-art methods in image watermarking remain vulnerable to
forgery and removal attacks. This vulnerability occurs in part because watermarks
distort the distribution of generated images, unintentionally revealing information
about the watermarking techniques.

In this work, we first demonstrate a distortion-free watermarking method for im-
ages, based on a diffusion model’s initial noise. However, detecting the watermark
requires comparing the initial noise reconstructed for an image to all previously
used initial noises. To mitigate these issues, we propose a two-stage watermarking
framework for efficient detection. During generation, we augment the initial noise
with generated Fourier patterns to embed information about the group of initial
noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii)
search within the given group for an initial noise that might match our image. This
watermarking approach achieves state-of-the-art robustness to forgery and removal
against a large battery of attacks. The project code is anonymously available at
https://github.com/anonymousiclr2025submission/Hidden-in-the-Noise.

1 Introduction

Generative AI is capable of synthesizing high-quality images indistinguishable from real ones. This
capability can be used to deliberately deceive. These fake image generations, called deepfakes, have
the potential to cause severe societal harms through the spread of confusion and misinformation
(Peebles & Xie, 2022; Esser et al., 2024; Chen et al., 2024; Ramesh et al., 2021). In addition,
owners of different models and images may want to control the spread of their derivatives for
copyright reasons and safeguard their intellectual property. One way to mitigate these harms is
model watermarking. The study of watermarking has a rich history and has recently been adopted
for AI-generated content. (Pun et al., 1997; Langelaar et al., 2000; Craver et al., 1998). For an
extended discussion of recent work in this area, we direct the reader to Appendix C. Unfortunately,
most current image watermarking methods are not robust to watermark removal attacks utilizing
image diffusion generative models Zhao et al. (2023a).

Recently, new watermarking methods utilize the inversion property of DDIM to achieve more ro-
bust watermarking (Wen et al., 2023; Ci et al., 2024; Yang et al., 2024b). These methods embed
patterns in a diffusion model’s initial noise and then detect them in the noise pattern reconstructed
from the generated image. This technique provides strong robustness against various attacks, making
it effective at resisting watermark removal. Yet, prior methods using these techniques are vulnerable
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Figure 1: The WIND method for robust image watermaking. The method is designed to use
N possible initial noises splitted to M groups. Generation: Using a secret salt and an index i∗, we
securely and reproducibly generate initial noise zi∗ . We then embed a group index g∗ of that noise
to make easier retrieval possible and embed it using a Fourier pattern. Finally, we run diffusion
with the embedded latent noise to produce a watermarked image. Detection: We reconstruct the
initial noise z̃. Next, we search over the possible group indices g for the closest Fourier pattern to
the one embedded in z̃. We then look over initial noises in group g̃ to find the match.

to other types of attacks. Wen et al. (2023) add a pattern to the initial noise, making it distinct
from a random Gaussian initial noise, in a way that an attacker can detect (Yang et al., 2024a).
On the other hand, Yang et al. (2024b) does not distort single image generation, but induces a
distribution shift to the set of generated images. Namely, when examining a few images together,
information about the used watermark is leaked and can be used to remove or forge the watermark
(Yang et al., 2024a). Forgery attacks are often even more concerning than removal attacks, as they
can cause severe damage to model owners if their models are associated with illegal content.

Therefore, there is a need for robust image watermarking methods that distort less the distribu-
tion of generated images. Following previous works, we use initial random noise already used by
the model (Wen et al., 2023; Yang et al., 2024b). Similarly, we reconstruct an approximation of the
inital noise pattern used in the diffusion process from a given image. Although this reconstructed
noise is not completely identical to the initial noise used to generate that image, it is much more
similar to the initial noise than it is to other randomly distributed noise patterns. Thus, it can serve
on its own as a watermark by comparing it to a set of initial noises associated with the watermarked
model. We demonstrate that a set of initial noises provides a watermark that remains robust against
various types of attacks. More discussion on the relation to these works can be found in App.D.

Yet, given a sufficiently small set of initial noises (denoted as N) and an enormous number of images
generated by a model; an attacker could potentially still collect many images sharing the same initial
noise in order to perform removal and forgery attacks as was applied to previous methods (Yang
et al., 2024a). Using many initial noises (a large value of N) will make such attacks much more
difficult, if not infeasible. Surprisingly, we find a very large number of random initial-noises are
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still distinguishable from one another, even after inversion. However, a large value of N might
incur a negative effect on the runtime and accuracy of the approach. In order to lower the effective
quantity of noises we need to scan while retaining strong robustness, we propose a two-stage efficient
watermarking framework. We supplement our N initial noise samples with M Fourier patterns as a
group identifier - a unique identifier of a subset of initial-noises we might have used for generating
a given image (Figure 1). During detection, we may first recover the group identifier (stage 1) and
use it to find an exact match (stage 2). Thus, we reduce our search space to the number of initial
noises per group.

Our key contributions are as follows:

1. We demonstrate that the initial noise used in the diffusion process is itself a distortion-free
watermarking method for images (Section 3).

2. We present WIND, our two-stage method for effectively using the initial noise as a water-
mark (Section 4).

3. We demonstrate that WIND achieves state-of-the-art results for its robustness to removal
and forgery attempts (Section 5).

2 Preliminaries

2.1 Threat Model

In a watermarking scheme we usually consider the owner, trying to mark images as an output of
their model; and an attacker, trying to remove or forge the watermark on unrelated images.

The Owner releases a private model (diffusion model in our case) that clients can access through
an API, allowing them to generate images that contain a watermark. The watermark is designed to
have a negligible impact on the quality of the generated images. There are a few settings regarding
the watermark detection, including public infomation and private information watermarking (Cox
et al., 2007; Wong & Memon, 2001). We focus on the setting where the watermark is detectable
only by the owner, enabling them to verify whether a given image was generated by their model
using private information.

The Attacker uses the API to generate an image and subsequently attempts to launch a malicious
attack aimed at either removing or forging the embedded watermark, with the intention of using
the image or watermark for unauthorized purposes.

2.2 Diffusion Models Inversion

Diffusion model inversion aims to find the reconstructed noise representation of a given data point,
effectively reversing the generative process. Let T be the number of diffusion steps, in both the
generation and inversion processes. In the standard generation process, we start with noise x̃T

drawn from an appropriately scaled Gaussian and iteratively apply x̃t = x̃t+1+ ϵΘ(x̃t+1), where ϵΘ
is a trained model that predicts the noise to be removed and t ∈ [T ] is the time step describing how
much noise should be removed in each stage. Conversely, the inversion process begins with a data
point x̂0 and moves towards its reconstructed noise representation by applying x̂t+1 = x̂t − ϵΘ(x̂t).
This process relies on the assumption that ϵΘ(x̂t+1) ≈ ϵΘ(x̂t), allowing us to approximately invert
the diffusion process by adding the predicted noise (Ho et al., 2020; Song et al., 2022). DDIM’s
efficient sampling allows this technique to be particularly useful. (Song et al., 2022).

2.3 Tree-Ring and RingID Watermarks

In order to watermark images in a human-imperceptible and robust way, previous works have
encoded specific patterns in the Fourier space of the initial noise. Tree-Ring Wen et al. (2023) first
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Figure 2: Cosine similarity distribution between initial noise, and: (i) a noise reconstructed from
a watermarked image (reconstructed noise) (ii) a noise reconstructed from a forged image using a
public model to imitiate our watermarked image (reconstruction attack, described in Section 3).
(iii) Random noise. These results are reliant on the approximate inversion of DDIM without the
ground-truth prompt .

transforms the initial noise into the Fourier space. A key pattern is then embedded into the center of
the transformed noise. The noise is subsequently transformed back into the spatial domain. During
the detection phase, the diffusion process is inverted, and the Fourier domain is examined to verify
the presence of the imprinted pattern. RingID Ci et al. (2024) shows that Tree-Ring struggles to
distinguish between different keys. Therefore, the number of unique keys (distinguishable from one
another) that can be embedded with Tree-Ring is low. They increase the possible number of unique
keys that can be encoded using Fourier patterns.

Systematic Distribution Shifts in Generated Images Enable Attacks. Systematic dis-
tribution shifts in the generated content make it easier to verify the existence of a watermark.
However, in the case of Tree-Ring and other watermarking techniques, it also opens up an avenue
of attack (Wen et al., 2023; Yang et al., 2024b; Xian et al., 2024; Bui et al., 2023). Emblematic
is the method of Yang et al. (2024a), whose attack approximates the difference between water-
marked and non-watermarked images. Increasing the number of images with the watermark can
improve the accuracy of the approximation. The impact of distribution shifts is significant, as the
attack remains effective even when the watermarked and non-watermarked images are not paired
(Figure 3).

3 Initial Noise is a Distortion Free Watermark

Watermarks which systematically perturb the distribution of image generations are more vulnerable
to removal and forgery attacks. A distortion-free watermarking method, by contrast, is more
robust (Kuditipudi et al., 2023). Our first finding is that the initial noise already in standard use
in diffusion models can be such a watermark.

Let N be the number of initial noises we can generate. We will secure our watermarking process
with a long, secret salt s. We begin by sampling a random (and reproducible) initial noise. Let
i∗ ∼ Unif([N ]) be the index of the initial noise. We will use a hash function to get a seed hash(i∗, s).
Plugging the seed into a pseudorandom generator, we generate a reproducible initial noise vector
zi∗ ∼ N (0, I) drawn from a centered Gaussian distribution. When we generate fewer than N
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images, we can use each initial noise at most once and the noise appears distortion-free. We discuss
the case when the number of images exceeds N in Appendix G.

Algorithm 1 Generation Algorithm

1: Input: N : number of initial noises, M : number of groups, s: secret salt, p: prompt, Θ: private
model weights

2: Sample initial noise index i∗ ∼ Unif([N ])
3: Compute group identifier g∗ = i∗%M ▷ Modulus of initial noise index
4: Calculate embedding of the group identifier gemb(g

∗)
5: Securely generate seed = hash(i∗, s) ▷ Apply cryptographic hash function
6: Sample zi∗ ∼ N (0, I) from a pseudorandom generator with seed
7: Add the identifier embedding gemb(g

∗) to zi∗ to get zi∗ emb

8: return image = GΘ(zi∗ emb, p) ▷ Diffusion process G with weights Θ

Algorithm 2 Detection Algorithm (WINDfast)

1: Input: image: (possibly) watermarked image, N : number of initial noises, M : number of
groups, s: secret salt, Θ: private model weights, τ : threshold for detection

2: Recover reconstructed noise z̃ = G−1
Θ (image) ▷ Inverse diffusion with private weights

3: Extract closest group identifier g̃ from group identifier embedding in z̃
4: for i ∈ [N ] such that i%M = g̃ do ▷ Search over subset of initial noise indices
5: Build initial noise zi using secret salt s and hash ▷ As in Algorithm 1
6: Compare zi to z̃ after removing Fourier embedding g̃
7: end for
8: if any noises are closer than threshold τ then
9: Declare “watermarked”

10: else
11: Declare “not watermarked”
12: end if

Empirical validation of initial noise watermarking. To empirically validate our claim that
the initial noise can serve as a watermark, we compute the cosine similarity between the initial noise
zi∗ and (i) random noise z ∼ N (0, I), (ii) the reconstructed noise z̃ when we have access to the
private model weights, and (iii) the reconstructed noise z̃attack from an image imitating our noise
pattern without access to the private model weights. The imitation attempt is done by inversing
our watermarked image back into noise, and generating a new image from it; where both steps are
done using a public model as described in reconstruction attack below (we used Stable Diffusion-v2
Rombach et al. (2022) for the experiment, as it is the most similar model to our watermarking
model).

During the watermarking process, we create an image image through diffusion with the private
model weights Θ conditioned on a private text prompt p. Formally, image = GΘ(zi∗ , p). We obtain
the reconstructed noise that we use for detection via an inverse diffusion process G−1. Formally,
z̃ = G−1

Θ (image).

Reconstruction Attack. An attacker trying to forge the watermarked image will not have access
to our private weights, instead they will have some other weights Θ′. Using the same starting
watermarked image, they will attempt to recover the initial noise. Let z̃′ = G−1

Θ′ (image). Then,
with this initial noise, they will generate a forged image with (possibly offensive) text prompt p′,
producing image’ = GΘ′(z̃′, p′). Finally, the model owner will attempt to detect whether the forged
image is watermarked by applying the inverse diffusion process with the private model weights to
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(a) Forgery Performance (b) Removal Performance

Figure 3: Detection accuracy for forgery and removal attacks using Yang et al. (2024a). A value
of 0 represents complete failure (the attacker successfully removed the watermark or forged it onto
another image), while 100 indicates perfect defense (no watermark removal or forgery occurred).

the forged image. Let z̃attack = G−1
Θ (image’). As an upper bound on the capability of this attack,

we perform it with the same prompt. Also, Keles & Hegde (2023) demonstrates that inverting a
generative model is a significantly challenging task.

Strikingly, we find that the similarity between the true noise and the noise reconstructed with the
model weights is almost always greater than a relatively large threshold τ = 0.5 (p value < 10−3,
Figure 2). At the same time, the reconstructed similarity from the image made by an attacker using
the reconstruction attack sim(zi∗ , z̃

attack), along with the similarity to random vectors sim(zi∗ , z)
are both much smaller. Namely, they are respectively z = 5.3 and z = 9.4 standard deviations
away from the mean (Table 4). Taken together, these results mean that the probability p of a non-
watermarked image mistakenly labeled as watermarked is very low in both cases. For the random

noise, the probability to confuse it is as the initial noise is p < e(
τ2

2σ2 ) < 10−19, allowing practically
a perfect distinction between any pair of unrelated noises.

Runtime considerations. Our method requires searching over all N watermarks, leading to a
naive runtime complexity of O(N). However, more efficient algorithms for similarity-based search,
such as HNSW Malkov & Yashunin (2018), can reduce this complexity to O(logN), at the expense
of additional memory usage. We provide empirical runtime analysis of our method in Appendix I.
For large enough values of N , this cost may eventually become undesirable. Together with our
aim to maintain high robustness with an increasing number of keys, it motivates a more efficient
method, which is presented in the next section.

4 Method

4.1 WIND: Two-stage Efficient Watermarking

While always using a single initial noise for our model might imply good robustness properties,
to make forgery and removal more difficult, it is generally preferable to maintain a large set of N
initial noises to be used by the model. More importantly, using a large number of different noises
N may serve as different keys, encoding some metadata about each image. This metadata might
include information about the specific model that generated it, as well as additional information
about the generation for further validation of the image source, once detected.

In order to make the search over a large number of noises more efficient, we introduce a two-
stage efficient watermarking approach we name WIND (Watermarking with Indistinguishable
and Robust Noise for Diffusion Models). First, we initialize M groups of initial noise, each group
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associated with its own Fourier-pattern key. In contrast to prior work, we employ these Fourier
patterns not as a watermark, but as a group identifier to reduce the search space.

Figure 4: Qualitative results of watermarked
images generated using WIND, Tree-Ring, and
RingID. See Appendix E for quantitative results.
See Appendix J for additional qualitative results.

For each image generation, we randomly se-
lect an index for the initial noise, denoted as
i∗ ∈ [N ]. We use a group identifier g∗ = i∗%M ,
where % denotes the modulus operation. We
embed g∗ in the Fourier space of the latent
noise (similar to Wen et al. (2023)). During
detection, we reconstruct the latent noise and
find the group identifier g̃ that is closest to
the Fourier pattern embedded in the image.
We then search over all indices i such that
g̃ = i%M . In this way, the search space has
size N/M rather than N . We include an al-
gorithm box for generation (Algorithm 1) and
detection (Algorithm 2).

In the following part, we refer to two variants
of our method: (i) WINDfast where we assume
the used initial noise belongs to the identified
group g̃ and check similarity only to noise pat-
terns in this group. (ii) WINDfull where we
check all N possible initial noises if we can’t
find a match within the detected group (the gap
between the similarity of the correct noise and
random noises, as shown in Figure 2, allows us
to determine whether the correct noise has been
identified). This method is slower but more ro-
bust to removal attacks that might interfere with the Fourier pattern. Additional ablations and
results can be found in Appendix E.

4.2 Resilience to Forgery

In addition to empirical evaluations of specific attacks as in Figures 2 and 3; we discuss below the at-
tacker’s ability to infer knowledge about the used noise pattern across different watermarked images.

Even if the attacker is able to obtain information about a specific initial noise zi for an index i
(which is an extreme case), the other noise vectors for j ̸= i are still safe1. This is because we use
a cryptographic hash function and a secret salt. Formally, Theorem 4.1 shows that, as long as the
cryptographic hash function remains unbroken and the secret salt is kept private, the watermarking
algorithm maintains its security properties against even very powerful adversaries.

Theorem 4.1. [Cryptographic Security] Let hash: 0, 1∗ → 0, 1ℓ be an unbroken cryptographic hash
function used in our watermarking algorithm, with inputs i∗ ∈ [N ] and a secret salt s. Assume s
is sufficiently long and randomly generated. Then, even if an adversary obtains: the group number
g∗, the initial noise index i∗, the initial noise zi∗ , and even the corresponding output of the hash
function seed, the adversary cannot:

1. Recover the secret salt s,

1We note that obtaining a single noise pattern might not be enough to effectively forge the watermark,
as the model owner may encode this pattern with additional metadata as described in Section 4.1
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Table 1: Comparison of correct watermark detection accuracy between WIND and previous image
watermarking approaches under various image transformation attacks. WINDM denotes the use
of M groups, with the total number of noises (N) specified in the “Keys” column. A broader
comparison with additional methods can be found in Table 15.

Method Keys Clean Rotate JPEG C&S Blur Noise Bright Avg ↑

Tree-Ring
32 0.790 0.020 0.420 0.040 0.610 0.530 0.420 0.404
128 0.450 0.010 0.120 0.020 0.280 0.230 0.170 0.183
2048 0.200 0.000 0.040 0.000 0.090 0.070 0.060 0.066

RingID
32 1.000 1.000 1.000 0.530 0.990 1.000 0.960 0.926
128 1.000 0.980 1.000 0.280 0.980 1.000 0.940 0.883
2048 1.000 0.860 1.000 0.080 0.970 0.950 0.870 0.819

WINDfast128 100000 1.000 0.780 1.000 0.470 1.000 1.000 0.960 0.887
WINDfast2048 100000 1.000 0.870 0.960 0.060 0.960 0.950 0.900 0.814

WINDfull128 100000 1.000 0.780 1.000 0.850 1.000 1.000 1.000 0.947
WINDfull2048 100000 1.000 0.880 1.000 0.930 1.000 0.990 0.980 0.969

2. Generate valid reconstructed noise zj for any other initial noise index j ̸= i

We defer the proof to Appendix F.

4.3 Watermarking Non-Synthetic Images.

Until now, we have addressed watermarking only for AI-generated synthetic images. Yet, protecting
copyrights, or preventing the spread of misinformation, may also apply to modified natural images.
Most previous approaches to watermark diffusion models overlook attempting to expand their
method to non-generated images. To allow using our framework for non-generated images, we
expand our framework. By using diffusion inpainting, our watermark can be applied to a natural
image. Later, by inverting the inpainted image we can verify the presence of the watermark.

To examine the performance of our inpainting method, we report the Fréchet Inception Distance
(FID) Heusel et al. (2018) on the MS-COCO-2017 Lin et al. (2015) training dataset in Table 3.
Notably, our method achieves the lowest FID among the compared methods, indicating a closer
alignment with real images.

As demonstrated in Figure 5, our inpainting method injects a watermark with minimal visual
impact, preserving the original image’s integrity. Please see Appendix E for additional results.

5 Experiments

5.1 Watermark Robustness

Setting. For a fair comparison with previous methods Ci et al. (2024); Wen et al. (2023), we
employed Stable Diffusion-v2 Rombach et al. (2022), with 50 inference steps for both generation
and inversion. Other implementation-details can be found in Appendix B.

Image Transformation Attacks. Following previous methods Wen et al. (2023); Ci et al. (2024)
we applied the following image transformations to the generated images: 75◦ rotation, 25% JPEG
compression, 75% random cropping and scaling (C & S), Gaussian blur with an 8 × 8 filter size,
Gaussian noise with σ = 0.1, and color jitter with a brightness factor uniformly sampled between 0
and 6. In Table 1 we compare our methods to both Tree-Ring and RingID. As the results demon-
strate, using multiple keys with RingID Ci et al. (2024) is possible. Yet, it remains vulnerable to
cropping and scaling attacks. In contrast, WIND effectively addresses this challenge. It enables
accurate watermark detection under all image transformation attacks. We note that the incorpo-
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Table 2: Cosine similarity between the
initial noise and the inversed noise be-
fore and after the regeneration attack.
Also see Appendix E

Condition Mean STD

Original Image 0.888 0.053
Attacked Image 0.824 0.062
Unrelated Image 0.000 0.008

Table 3: FID scores of WIND compared
to previous watermarking approaches.

Method FID ↓
DwtDctSvd 25.01
RivaGAN 24.51
Tree-Ring 25.93
RingID 26.13
WIND 24.33

ration of the keys in the RingID method not only allows us to embed keys but also increases the
robustness of the full method to certain attacks.

Steganalysis Attack. We assess the robustness of our method against the attack proposed by
Yang et al. (2024a), which is capable of forging and removing the Tree-Ring and RingID keys.
As discussed in Section 2.3, this attack attempts to approximate the watermark by subtracting
watermarked images from non-watermarked images. The results, presented in Figure 3, indicate
that while the attack could be able to forge or remove our group identifier, it is unable to forge or
remove our watermark (initial noises). Even when the Fourier pattern type key is removed through
an exhaustive search, our method remains robust in identifying the correct initial noise.

Regeneration Attacks. Recently, Zhao et al. (2023a) introduced a two-stage regeneration attack:
(i) adding noise to the representation of a watermarked image, and (ii) reconstructing the image
from this noisy representation. To assess the resilience of our approach to regeneration attacks, we
applied the attack from Zhao et al. (2023a) to watermarked images generated by our model. As
shown in Table 2, the attack has a minimal impact on the distribution of the cosine similarities
between the initial noise and the inverted noise. The attacked noise similarity still maintains a
significant gap compared to random noise.

Finally, to assess the quality of the generated images we include some images generated by our
framework in Figure 4.

Table 4: Cosine similarity between the first initial noise used for generation and the inversed noise
obtained through three inversion approaches. “Private” refers to models owner’s model, while
“Public” denotes external model.

Approach Mean Std

Gen (private) → Rev (private) 0.888 0.053

Gen (private) → Rev (public) → Gen (public) → Rev (private) 0.166 0.063

Random Noise 0.000 0.053

6 Discussion and Limitations

Editing a Given Image vs. Forging. While forging our watermark by obtaining the initial noise
is hard (Section 3), an easier path to obtaining harmful watermarked images might be to apply
a slight edit to an already watermarked image. An harmful image in this context might include
a copy-right infringing image, NSFW image, or any other content the model owner wish to avoid
being associated with. Naturally, there is a trade-off between the severity of the applied edit, and
the edit ability to preserve the initial watermark. We present one solution to mitigating this issue
in the next discussion point.

Storing a Database of Generations. Model owners wishing to protect themselves from an
attacker modifying a watermark image may keep a database of the past generations by their model.

9
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Before After Before After

Figure 5: Comparison of COCO images before and after watermarking via inpainting.

For these extreme cases, the model owner might only save the used prompts and initial-noise seeds,
and use the reconstructed noise to retrieve the entire set of prompts used with that specific seed
Huang & Wan (2024).While this process may be resource-intensive, it is only required in the rare
event that an attacker intentionally modifies a benign image into a harmful one while preserving
the watermark.

Private Model. Our watermark robustness is based to a large extent on the inability of an
attacker to invert a model, which is empirically validated but not a mathematically proven. Yet,
as discussed in Section 2.2, the ability to successfully invert our model may be nearly equivalent
to the ability to steal the forward diffusion process, effectively stealing the model (in which case,
any watermarking attempt might be deemed quite useless anyhow). Still, a better framing of the
mathematical assumptions behind this claim is a limitation of this work, as well as of previous
works on watermarking using inversion of the diffusion generative process.

Attacker’s Advantage. There exists a large set of diverse attacks aimed at watermark removal
Zhang et al. (2023); Yang et al. (2024a); Zhao et al. (2023a), along with image transformations such
as rotation and crops that also achieve some limited success against our watermark. As in many
security applications, we suspect that an attacker capable enough will still be able to remove the
watermark using new techniques we might not expect. However, a more robust watermark may
nevertheless help to decrease the spread of false information.

Additional discussion and limitations can be found in Appendix D.

7 Conclusion

In this work, we present a robust and distortion-free watermarking method that leverages the
initial noises employed in diffusion models for image generation. By integrating existing techniques,
we enhanced the approach to achieve improved efficiency and robustness against various types of
attacks. Furthermore, we outlined a strategy for applying our method to non-generated images
through inpainting.
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A Notation

Table 5: Notations used in the paper.

N Number of initial noises

M Number groups

s Secret salt for cryptographic security

i Index of initial noise: i ∈ [N ]

g Index of group: g = i%M

hash A cryptographic hash function

z Initial noise

τ Threshold for declaring an image is watermarked

T Number of diffusion steps

Θ Weights of a diffusion model

p Text prompt for diffusion

GΘ Diffusion model with weights Θ

G−1
Θ Inverse diffusion model with weights Θ

B Implementation Details

For all evaluation we used the set of prompts taken from (Gustavosta, 2024).

For the first variant WINDfast (see Section 4) we use a threshold of min ℓ2 norm > 160. The sec-
ond variant (WINDfull) does not use a threshold, but rather, we choose the noise pattern within
the group that has the lowest ℓ2 as our candidates for the identified noise.

C Related Works

Memorization in Diffusion Models. Diffusion models Ho et al. (2020); Sohl-Dickstein et al.
(2015) have demonstrated a capacity not only to generalize but also to memorize training data. This
can lead to the reproduction of specific patterns or, in some cases, exact content from the training
set, including sensitive or proprietary information. This memorization poses significant risks of
unintended intellectual property leakage, particularly in large-scale generative models. Several
studies have shown that information from training data can be extracted from diffusion models
(Carlini et al., 2023b; Somepalli et al., 2023b; Carlini et al., 2023a; Gu et al., 2023; Somepalli et al.,
2023a).

Image Watermarking. Image watermarking is essential for protecting intellectual property, ver-
ifying content authenticity, and maintaining the integrity of digital media. The field has ranges
from traditional signal processing techniques to recent deep learning methods. (Potdar et al., 2005;
Singh & Singh, 2023)
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Table 6: Inpainting correct watermark detection accuracy.

Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
1.000 1.000 1.000 0.880 1.000 0.950 0.950 0.969

Among Early watermarking strategies, one of the simplest methods was Least Significant Bit (LSB)
embedding, which modifies the least significant bits of image pixels to imperceptibly embed water-
marks (Wolfgang & Delp, 1996). Another classical approach utilized frequency-domain transfor-
mations and Singular Value Decomposition (SVD) to hide watermarks within image coefficients.
(Chang et al., 2005; Al-Haj, 2007).

Recent developments leverage deep learning for watermarking. For instance, HiDDeN Zhu et al.
(2018) introduced an end-to-end trainable framework for data hiding. RivaGAN Zhang et al. (2019)
utilizes adversarial training to embed watermarks, while Lukas & Kerschbaum (2023) proposed an
embedding technique that optimizes efficiency by avoiding full generator retraining.

Watermarking for Diffusion Models. Existing watermark methods for diffusion models can be
divided into three categories:

(i) Post-processing methods which adjust image features to embed watermarks (Zhao et al., 2023c;
Fernandez et al., 2023b). This approach alters the image and changes its distribution and can result
in significant changes to the generated image. However, recent work Zhao et al. (2023b) shows that
pixel-level perturbations are removable by regeneration attacks makes. To date, this approach is
not robust.

(ii) Fine-tuning-based approaches combine the watermark within the generation process (Zhao
et al., 2023c; Xiong et al., 2023; Liu et al., 2023; Fernandez et al., 2023a; Cui et al., 2023). To date,
these methods have robustness issues as well Zhao et al. (2023a).

(iii) Tree-Ring introduced an approach to proposing a method to imprint a tree-ring pattern into
the initial noise of a diffusion model (Wen et al., 2023). Each pattern is used as a key, which is added
in the Fourier space of the noise. The verification of the presence of the key involves recovering the
initial noise from the generated image and checking if the key is still detectable in Fourier space.
This approach makes Tree-Ring and its follow-up works the most robust approach against attacks
(Zhao et al., 2023a; An et al., 2024).

Recently, Yang et al. (2024a) took advantage of the distribution shift present in Tree-Ring that
occurs with impainting keys and arranged the first successful black box attack against it, as we
detailed in Section 2.3.

D Additional Discussion and Limitations

Relation to other initial noise watermarking methods. The seminal work by
(Wen et al., 2023) innovated the use of initial noise in DDIMs for watermarking. Most relatedly
to our work, (Yang et al., 2024b) also embeds a watermark in the initial noise already used by a
DDIM diffusion model. Yet, while (Yang et al., 2024b) proposes a watermark that is distortion-free
for a single image, it is not distortion-free when examining sets of images; therefore it is vulnerable
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Figure 6: Image sequence from 0 to 50 regeneration attack iterations.

to attacks such as (Yang et al., 2024a). We aim to be robust to attacks even when many images are
examined together.

There are additional technical differences between our approach and (Yang et al., 2024b). Most
notably: (i) Our work also studies applying our watermark to non-synthetic (natural) images, or
images coming from other generative models. (ii) While (Yang et al., 2024b) design a function to
embed specific bits into the initial noise, we take another approach. Namely, we view the entire
initial noise (with generation and inversion) as a noisy channel. Inspired by (Shannon, 1949), we
use a random encoding of the watermark identities into the channel.

Computational Requirements. As discussed in Section 3 our similarity search can be accelerated
given well-known methods. Yet, the computational requirements of our method might be limiting
when trying to use our method on edge devices. However, similarly to Tree-Ring and Ring-ID Wen
et al. (2023); Ci et al. (2024) our method assumes a private model, which is usually not deployed
on edge devices anyhow.

Trade-Offs Between the Watermarking Overhead, and Detection Accuracy. We suggest
the following variants of our method for different possible requirements of runtime scaling, detection
robustness, and ease of adaptation.

A. Detection of the group identifier alone: This operation takes a search of O(M), but is vulnerable
to both removal and forgery attempts, as we use a weaker watermark for group identifiers.

B. Detection of the Fourier pattern, followed by a validation of the exact initial noise (WINDfast):
within the group. This operation takes O(N/M) search. It is vulnerable to removal attempts, but
more resilient to forgery attempts (see Table 1).

C. An exhaustive search of the initial noise, also outside the identified group (WINDfull): This op-
eration takes O(N) search. It is more resilient to both removal and forgery attempts (see Figure 3,
and Table 1).

This method, while slower is also easier to adapt. A user that wishes to use a fast version of this
variant may apply a similar algorithm to the one described above using only a few possible random
noises. This would replace the distinguishability of many different watermarks with the ability to
rapidly and simply detect the watermarked images.

Practically, an NN search can be accelerated using many methods, and can
be scaled to tens of millions without significantly affecting the detection time
(Wei et al., 2024; Douze et al., 2024; Malkov & Yashunin, 2018; Andoni et al., 2018).

Image Quality Considerations. Our method relies on using an initial random noise, drawn
from the same distribution of initial noises already used by the model. Therefore, the core of our
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method (the initial noise stage) is not compromising the visual quality of the generated images at
all.

The only effect on visual quality comes from the group identifier, where we use existing off-the-shelf
watermarking images. In our implementation, we used the RingID Ci et al. (2024) method that
adds the Fourier pattern to the initial noise.

When a model owner wishes to preserve image quality even better, they may use any other existing
watermarking method for the group identifier stage. This will still not compromise the security
provided by the initial noise stage.

Inversion Attack. As discussed in Section 2.2 in our paper, accurately inverting the model is as
difficult as copying the forward process of the model (image generation). While hard, an attacker
able to do so is effectively also capable of generating novel images using the same diffusion process.
Therefore, At this stage, the model itself is effectively compromised (and not only the watermark
signature). We believe that being as hard to forge as the model itself, is a reasonable level of security
for almost all use cases.

Yet, approximately inverting the model might also be a threat. While even approximately inverting
a model is also very hard, it might be easier than stealing the model. Still, we would like to empha-
size that our method is more secure than other diffusion-process based watermarking techniques,
where image distortion themselves may allow easier forging Yang et al. (2024a).

E Additional Results

E.1 Applicability to Other Types of Models

We expect our watermark to be effective directly for any model for which some inversion to the
original noise is possible. Namely, as the correlation between random noises in a very high dimension
is very much concentrated around 0, even a very slight success in the inversion process is enough to
be distinguishable. In higher generation resolutions the dimensionality of the noise is even higher,
and therefore the separation would be even better El Karoui (2009).

Empirically, to validate the generality of our method, we also report results for the SD 1.4
model (Rombach et al., 2022). Using N = 10000 noises andM = 2048 group identifiers, our method
achieved a detection accuracy of 97% to identify the correct watermark (initial noise).

In any case, our method of the reported SD 2.1 model can also be used to watermark images
collected from other sources (please see Section 4.3, Appendix E.2).

E.2 Non-Synthetic Images Watermark Detection

Our inpainting method allows us to watermark both images generated by any model and non-gen-
erated images. To evaluate the robustness of the inpainting watermarking approach, we present
results in Table 1 for this method, utilizing N = 100 noises. Results are shown in Table 6.

E.3 Further Exploration of the Regeneration Attack Perturbation Strength

In Section 5.1, we discussed the robustness of WIND against regeneration attacks. However, using
it iteratively might still be a stronger adversary. We applied the regeneration attack proposed by
Zhao et al. (2023a), up to 50 times. We see that iterative regeneration indeed decreases the similar-
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Table 7: Impact of different inference steps on detection accuracy.

Steps Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
20 1.000 0.780 1.000 0.880 0.920 1.000 0.960 0.934
50 1.000 0.930 1.000 0.940 1.000 0.980 0.980 0.976
100 1.000 0.930 1.000 0.940 1.000 1.000 0.990 0.980
200 1.000 0.850 1.000 0.940 1.000 1.000 1.000 0.970

ity between the original noise and the reconstructed one. This happens as the image becomes less
and less correlated to the original generation Figure 6.

Yet, the detection rate of our algorithm remains very high Table 13. We attribute this to the fact
that even a slight remaining correlation between the attacked image and the initial noise remains
significant with respect to the correlation expected from non-watermarked images. This happens
because of the very low correlation between random (non-watermarked) noises (Figure 2).

E.4 Quantitative Analysis of the Effect on Image Quality

We reported that the FID of our model on Table 3. To further assess the effect of WIND watermark
on image quality we report the CLIP score Hessel et al. (2021) before and after watermarking on
Table 11. Results indicate that adding the watermark has a negligible effect on the CLIP score,
reducing it by only 0.006.

E.5 Robustness Comparison to Different Number of Inference Steps

We evaluate the impact of inference steps on detection accuracy, as shown in Table 7. The re-
sults indicate that using 100 steps yields better detection accuracy compared to other step counts,
including the 50 steps used in our main experiments.

E.6 True Positive and AUC

Expanding on the detection assessment settings discussed in Section 5, we reported WIND’s error
bars. AUC and True Positive (TPR@1%FPR) results are available on Table 10. Demonstrate strong
performance, emphasizing WIND’s robustness and reliability.

E.7 Evaluation Against Additional Attacks

We evaluate WIND against a diverse set of attacks, including transfer-based, query-based, and
white-box methods. Specifically, we employ the WeVade white-box attack Jiang et al. (2023),
the transfer attack described in Hu et al. (2024), a black-box attack utilizing NES queries
Ilyas et al. (2018), and a random search approach discussed in Andriushchenko et al. (2024),
adopted to attempt watermark removal. The success rates of these attacks are detailed in Table 8.
Notably, none of these methods succeed against WIND, as the correct watermark remains detectable
in over 97% of cases even after applying these attacks.
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Table 8: Success rate of additional attacks.

WeVade Random Search Transfer Attack NES Query

1% 2% 3% 2%

Table 9: Success rate of new attacks.

WeVade Random Search Transfer Attack NES Query

1% 2% 3% 2%

F Proof of Resilience to Forgery

The WIND method is an approach for generating multiple watermarked images. Theorem 4.1 tells
us that compromising one or more watermarked images does not give away any information about
any other watermarked images. E.g., the adversary cannot “generate valid reconstructed noise for
any other initial noise index j ̸= i”. That said, Theorem 4.1 does leave open the possibility that an
adversary can take a watermarked image, reconstruct the initial noise only for that image, and use
it to attack the method, which we evaluate empirically.

Cryptographic Background Consider a cryptographic hash function hash: {0, 1}∗ → {0, 1}ℓ
with ℓ output bits. E.g., ℓ = 256 for SHA-256. We will describe properties of the hash function
in terms of ‘difficulty’; we say a task is ‘difficult’ if, as far as we know, finding a solution is
almost certainly beyond the computational capabilities of any reasonable adversary. An unbroken
cryptographic hash function satisfies the following properties: Pre-image resistance requires that
given a hashed value v, it is difficult to find any message m such that v =hash(m). Second pre-
image resistance requires that given an input m1, it is difficult to find a different input m2 such
that hash(m1)= hash(m2). Collision resistance requires that it is difficult to find two different
messages m1 and m2 such that hash(m1)= hash(m2).

Theorem 4.1. [Cryptographic Security] Let hash: 0, 1∗ → 0, 1ℓ be an unbroken cryptographic hash
function used in our watermarking algorithm, with inputs i∗ ∈ [N ] and a secret salt s. Assume s
is sufficiently long and randomly generated. Then, even if an adversary obtains: the group number
g∗, the initial noise index i∗, the initial noise zi∗ , and even the corresponding output of the hash
function seed, the adversary cannot:

1. Recover the secret salt s,

2. Generate valid reconstructed noise zj for any other initial noise index j ̸= i

Proof of Theorem 4.1. We will prove each part of the theorem separately:

1. The adversary cannot recover the secret salt s: Given the output seed = hash(i∗, s) and partial
input i∗ the adversary aims to find s. This is equivalent to finding a pre-image of given partial
information about the input. By the pre-image resistance property of cryptographic hash functions,
this task is computationally infeasible. Even if the adversary knows all possible values of i, the
space of possible secret salts s is too large to search exhaustively (as s is a sufficiently long random
string). Therefore, the adversary cannot recover s.
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Table 10: Error bars of WIND.

AUC TP@1%

0.971 1.000

Figure 7: Cosine Similarity from 0 to 50 regeneration attack iterations.

2. The adversary cannot generate valid reconstructed noise for any other initial noise index j ̸= i.
This security guarantee is ensured by two properties of hash: a) Second pre-image resistance: Given
(i∗, s), it’s computationally infeasible to find (i′, s) where i′ ̸= i∗ such that hash(i∗, s) = hash(i′, s).
b) Collision resistance: It’s computationally infeasible to find any two distinct inputs that hash to
the same output. These properties ensure that the adversary cannot find alternative inputs that
produce the same hash output, and thus cannot generate valid reconstructed noise for different
index numbers j.

Theorem 4.1 leaves open the possibility that an adversary can recover the noise from a watermarked
image and use that noise to forge a new watermarked image. However, empirically we show that
this attack fails without access to the weights of the private diffusion model.

Table 11: Effect of WIND on CLIP score.

CLIP Before Watermark CLIP After Watermark

0.366 0.360
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Figure 8: Effect of the number of groups on the average accuracy of retrieving initial noise from
10,000 samples under various image transformation attacks.

G Further Discussion on Distortion

Using the same initial-noise for multiple generations is not distortion-free when examining groups
of images. For example, all images with the same prompt p and the same initial noise z will
be identical, distorted away from the distribution of groups of images generated with i.i.d noises.
Luckily, the huge gap between the similarities distribution of (i) reconstructed vs. used noise and
(ii) reconstructed vs. another noise, allows us to use as many different noise patterns, while still
keeping the noise we used distinguishable more similar to the reconstructed noises. Therefore,
limiting the level of distortion in practice.

H Number of Groups

In our framework, we divide the initial noises into N groups and associate a Tree-Ring-type key
with each group. The use of Fourier Pattern keys enables robustness against rotation, and grouping
reduces the search space for inverted noise.

To investigate the impact of the number of groups, we performed an experiment with 10, 000
noises and varied the number of groups from 32 to 2048. As expected, Figure 8 demonstrates
that increasing the number of groups leads to better accuracy in detecting the correct initial noise.
This is because a larger number of groups results in fewer noises per group, which facilitates more
accurate detection. Detailed results for each number of groups under transformation attacks are
reported in Table 12.

Table 12: Accuracy of retrieving the initial noise from 10,000 noise samples, divided into varying
numbers of groups, under different image transformation attacks.

Groups Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
32 1.000 0.540 1.000 0.700 1.000 0.990 0.960 0.884
128 1.000 0.810 1.000 0.820 1.000 1.000 0.980 0.944
512 1.000 0.890 1.000 0.880 1.000 0.980 1.000 0.964
2048 1.000 0.930 1.000 0.940 1.000 0.980 0.980 0.976
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Table 13: Correct watermark detection after iterative regeneration attack.

Iteration Cosine Similarity Detection Rate

10 0.493 100%
20 0.342 100%
30 0.243 100%
40 0.170 100%
50 0.121 100%

I Empirical Runtime Analysis

However, the runtime is highly sensitive to the available computational resources. To provide a
practical estimate, we measured the detection time using a single NVIDIA GeForce RTX 3090.
Specifically, we divided 100,000 initial noise samples into 32 groups and reported the detection.
Under these conditions, the detection phase for 100,000 noise samples takes approximately 22
seconds per detection. We include a comparison with other methods in Table 14.

Table 14: Detection time (second)

WIND Tree-Ring RingID

22 20 14
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Table 15: Comparison of correct watermark detection accuracy between WIND and previous image
watermarking approaches under various image transformation attacks. WINDM denotes the use of
M groups, with the total number of noises (N) specified in the column.

Method Keys Clean Rotate JPEG C&S Blur Noise Bright Avg ↑
DwtDct 1 0.974 0.596 0.492 0.640 0.503 0.293 0.519 0.574
DwtDctSvd 1 1.000 0.431 0.753 0.511 0.979 0.706 0.517 0.702
RivaGan 1 0.999 0.173 0.981 0.999 0.974 0.888 0.963 0.854

Tree-Ring
32 0.790 0.020 0.420 0.040 0.610 0.530 0.420 0.404
128 0.450 0.010 0.120 0.020 0.280 0.230 0.170 0.183
2048 0.200 0.000 0.040 0.000 0.090 0.070 0.060 0.066

RingID
32 1.000 1.000 1.000 0.530 0.990 1.000 0.960 0.926
128 1.000 0.980 1.000 0.280 0.980 1.000 0.940 0.883
2048 1.000 0.860 1.000 0.080 0.970 0.950 0.870 0.819

WINDfast128 100000 1.000 0.780 1.000 0.470 1.000 1.000 0.960 0.887
WINDfast2048 100000 1.000 0.870 0.960 0.060 0.960 0.950 0.900 0.814

WINDfull128 100000 1.000 0.780 1.000 0.850 1.000 1.000 1.000 0.947
WINDfull2048 100000 1.000 0.880 1.000 0.930 1.000 0.990 0.980 0.969
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J Additional Qualitative Results

Figure 9: More watermarked images generated with WIND.
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Figure 10: More watermarked images generated with WIND.
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Before After Before After

Figure 11: More comparisons of COCO images before and after watermarking with WIND.
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Figure 12: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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Figure 13: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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Figure 14: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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Figure 15: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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Figure 16: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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Figure 17: More qualitative results of watermarked images generated using WIND, Tree-Ring, and
RingID.
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