
Published as a conference paper at ICLR 2025

FLAT POSTERIOR FOR BAYESIAN MODEL AVERAGING

Sungjun Lim1∗ Jeyoon Yeom1 Sooyon Kim2 Hoyoon Byun1 Jinho Kang3

Yohan Jung4† Jiyoung Jung3† Kyungwoo Song1†
1Yonsei University 2Ohio State University 3University of Seoul 4KAIST

ABSTRACT

Bayesian neural networks (BNNs) estimate the posterior distribution of model
parameters and utilize posterior samples for Bayesian Model Averaging (BMA)
in prediction. However, despite the crucial role of flatness in the loss landscape
in improving the generalization of neural networks, its impact on BMA has been
largely overlooked. In this work, we explore how posterior flatness influences BMA
generalization and empirically demonstrate that (1) most approximate Bayesian
inference methods fail to yield a flat posterior and (2) BMA predictions, without
considering posterior flatness, are less effective at improving generalization. To
address this, we propose Flat Posterior-aware Bayesian Model Averaging (FP-
BMA), a novel training objective that explicitly encourages flat posteriors in a
principled Bayesian manner. We also introduce a Flat Posterior-aware Bayesian
Transfer Learning scheme that enhances generalization in downstream tasks. Em-
pirically, we show that FP-BMA successfully captures flat posteriors, improving
generalization performance1.

1 INTRODUCTION

Bayesian neural networks (BNNs) provide a theoretically grounded framework for modeling uncer-
tainty in deep learning by approximating the posterior distribution of model parameters (MacKay,
1992; Hinton & Van Camp, 1993; Neal, 2012). The approximated posterior is used for making
predictions through Bayesian Model Averaging (BMA) (Wasserman, 2000; Fragoso et al., 2018;
Wilson & Izmailov, 2020; Zeng & Van den Broeck, 2024). It allows BNNs to account for uncertainty
in predictions, leading to more reliable outcomes compared to the deterministic neural networks
(DNNs) (Kapoor et al., 2022; Kristiadi et al., 2022b). The accuracy and robustness of BNN pre-
dictions are heavily dependent on the quality of the approximated posterior (Kristiadi et al., 2022a;
Wenzel et al., 2020).

The flatness of loss landscape has been strongly associated with better generalization ability, as they
represent solutions that are less sensitive to small perturbations in model parameters (Hochreiter &
Schmidhuber, 1997; Keskar et al., 2016; Neyshabur et al., 2017). The flatness has been extensively
studied in the context of DNNs, but no comprehensive analysis has been conducted on its role in
BNNs or its impact on BMA. SA-BNN (Nguyen et al., 2023) incorporated a flat-seeking optimizer
into BNNs but merely adapted a DNN-based optimizer without considering the probabilistic nature
of BNNs, leading to only limited improvements. On the other hand, E-MCMC (Li & Zhang, 2023)
introduced a guidance model to achieve flat posteriors, but this approach is less suited for large-scale
models.

In this work, we first demonstrate that BNNs often struggle to capture the flatness. In detail, we
compare the flatness of various BNN frameworks against that of DNNs and demonstrate that (1)
most approximate Bayesian inference methods fail to yield a flat posterior and (2) BMA predictions,
without considering posterior flatness, are less effective at improving generalization. These findings
highlight the need for an optimization strategy that accounts for the probabilistic nature of BNNs to
estimate flat posteriors effectively.

∗Correspondence to: lsj9862@gmail.com
†Corresponding Authors
1Code is available at https://anonymous.4open.science/r/SA-BMA-A890

1

https://anonymous.4open.science/r/SA-BMA-A890

Published as a conference paper at ICLR 2025

Therefore, we propose Flat Posterior-aware Bayesian Model Averaging (FP-BMA), a novel optimiza-
tion that explicitly targets the flat posterior. We first compute an adversarial posterior in the vicinity
of the current posterior, which maximizes the BNN loss. After that, we update the posterior by
employing the gradient of the adversarial posterior with respect to the loss. In addition, we introduce a
Flat Posterior-aware Bayesian Transfer Learning scheme integrated with FP-BMA, enabling effective
capture of flatness. This approach enhances robustness against model misspecification, when the
prior is not well-suited for fine-tuning BNNs on downstream tasks. We show that FP-BMA improves
the generalization performance of BNNs, particularly in few-shot classification and distribution shift,
by ensuring a flat posterior.

2 PRELIMINARY

2.1 BAYESIAN NEURAL NETWORKS

Training Let w ⊆ Rp be the model parameter of BNN and D = {(x, y)} be the datasets with
inputs x and outputs y. In principle, training BNNs aims to estimate the posterior distribution p(w|D)
based on Bayes’ Rule:

p(w|D) =
p(D|w)p(w)∫

w
p(D|w)p(w)dw

, (1)

where p(D|w) and p(w) denote the likelihood of data D and the prior distribution over w, respectively.

However, the posterior of BNNs p(w|D) is intractable in general. Hence, many approximate inference
methods, including Markov Chain Monte Carlo (MCMC) (Welling & Teh, 2011; Chen et al., 2014)
and Variational Inference (VI) (Graves, 2011; Blundell et al., 2015), and other variants (Ritter
et al., 2018; Daxberger et al., 2021a; Gal & Ghahramani, 2016; Maddox et al., 2019), have been
employed to obtain approximate posterior qθ(w|D), with distribution’s parameter θ ⊆ Rq , pursuing
qθ(w|D) ≈ p(w|D).

Prediction For the approximate posterior q(w; θ), BNNs make predictions on unobserved data
(x∗, y∗):

p(y∗|x∗,D) ≈
∫
w

p(y∗|fw(x∗))qθ(w|D)dw (2)

≈ 1

M

M∑
m=1

p(y∗|fwm(x∗)), wm ∼ qθ(w|D),

where fw(·) is predictions with parameter w and M denotes the number of sampled model; the first
approximation uses qθ(w|D) and second approximation in Eq. 2 employs Monte Carlo integration.
It is known to be effective for improving generalization ability, as BMA leverages diverse samples
{wm}Mm=1 from the posterior for prediction (Wilson & Izmailov, 2020).

2.2 FLATNESS AND OPTIMIZATION

As the flatness of loss surface has been known to be connected to the model generalization (Hochreiter
& Schmidhuber, 1994; 1997; Neyshabur et al., 2017), new training methods have been presented to
find the flat local optimum.

One direction is to employ the entropy to find a local optimum (Baldassi et al., 2015; 2016). Specifi-
cally, Entropy-SGD and Entropy-SGLD (Chaudhari et al., 2019; Dziugaite & Roy, 2018) employ the
idea of a nested chain to elaborate the local entropy search. On the other hand, SAM (Foret et al.,
2020) finds adversarial parameter in the γ-neighborhood for training, as follows:

ℓγSAM(w) = min
w

max
∥∆w∥p≤γ

ℓ(fw+∆w(x), y),

where ℓ(·) is the empirical loss function (e.g., cross-entropy for classification tasks) and p is practically
set to p = 2, yielding ∆w = γ∇wℓ(w)/∥∇wℓ(w)∥2. Furthermore, FSAM (Kim et al., 2022a)
improves SAM by replacing the Euclidean ball of SAM with non-Euclidean ball induced by Fisher
information:

ℓγFSAM(w) = min
w

max
∥Fy(w)∆w∥p≤γ2

ℓ(fw+∆w(x), y),

2

Published as a conference paper at ICLR 2025

(a) Correlation between flatness and
generalization within sampled models

(b) Flatness and generalization according to the
training methods

Figure 1: (a) Flatness, measured via the maximal Hessian eigenvalue (λ1), is highly correlated with
generalization ability (classification error, ECE, and NLL), suggesting that the flatness of models
sampled from the posterior is correlated with generalization ability. (b) The existing inferences of
BNNs (SWAG, VI, and MCMC) with SGD struggle to capture the flatness compared to DNNs. In
contrast, the proposed Bayesian flat posterior-aware optimizer FP-BMA allows BNNs to seek flat
minima, improving performance.

where Fy(w) denotes the Fisher information matrix (FIM) and is approximated as Fy(w) =
1/|B|∇w log p(y|x,w)2 with |B| batch size. SAM and FSAM are both derived under determin-
istic w, and Fy(w) is defined over the predictive distribution p(y|fw(x)), not in the parameter
space.

3 FLATNESS DOES MATTER FOR BAYESIAN MODEL AVERAGING

In this section, we explore the flatness of BNNs’ posterior obtained from the widely-used approximate
Bayesian inferences and demonstrate that flatness should be considered for BNNs based on both
empirical and theoretical grounds.

Experimental Setup We empirically inspect the flatness of BNNs and observe that the generaliza-
tion ability of BMA prediction improves as weight samples are drawn from a flatter posterior. To
this end, we train ResNet18 (He et al., 2016) without Batch Normalization (Ioffe & Szegedy, 2015)
on CIFAR10 (Krizhevsky et al., 2009) using following Bayesian inference methods-VI (Blundell
et al., 2015), SWAG (Maddox et al., 2019), and MCMC (Welling & Teh, 2011)-to yield the approxi-
mate posterior qθ(w|D). We then compare the generalization ability, classification error, negative
log-likelihood (NLL), and expected calibration error (ECE) with the flatness of the approximate
posterior.

Flatness criterion for BNNs To evaluate the flatness of the posterior, we use the average of
Hessian’s eigenvalues, unlike in DNNs, where flatness is assessed using individual eigenvalues. This
difference stems from the fact that the loss of BNNs is formulated as the marginal likelihood over the
posterior, incorporating multiple parameter samples {wm}Mm=1 drawn from wm ∼ qθ(w|D). We use
the averaged i-th maximal eigenvalue of Hessian:

λi ≈ 1/M

M∑
m=1

λi(Hfm), Hfm = ∇2ℓ
(
fwm

(x), y
)
, (3)

where ℓ
(
fwm(x), y

)
:= − log p(y|fwm(x)) denotes the likelihood using m-th parameter sample

wm ∼ qθ(w|D). The Hfm denotes the Hessian of the loss ℓ
(
fwm

(x), y
)

and λi(Hfm) denotes the
i-th maximal eigenvalue of Hessian. Notably, the smaller largest eigenvalues of the Hessian indicate
that the model parameters lie in a flatter region of the loss surface. Therefore, the maximal eigenvalue
λ1 or the eigenvalue ratio λ1/λ5 is often used to assess the flatness of model parameters (Keskar
et al., 2016; Foret et al., 2020; Jastrzebski et al., 2020).

3

Published as a conference paper at ICLR 2025

3.1 NEED FOR FLATNESS IN BMA

Takeaway 1: The flatness of models sampled from the posterior is correlated with generalization
ability. Figure 1a compares normalized generalization ability—measured by Error, ECE, and
NLL—against flatness of BMA models sampled from posterior trained with SWAG. The results
reveal a strong positive correlation between flatness and generalization ability, suggesting that models
sampled from the posterior is correlated with generalization ability, same as DNNs.

Takeaway 2: It is essential to approximate a flat posterior for BMA. We also show that the
flatness of BMA is determined by that of individual BMA samples, highlighting the necessity of a
flat posterior for effective BMA performance. Specifically, we demonstrate the flatness bound of
simple weight averaging and connect it to that of BMA based on Hessian eigenvalues in Theorem 1
(Detailed proof in Appendix A.1).

Theorem 1. Let twice differentiable loss ℓ(·), predictions of model fm(·) parameterized by wm, and
predictions of BMA fBMA(·). With M model sample {wm}Mm=1, the maximal eigenvalue of averaged
Hessian of loss λmax(HfBMA) is bounded as follow:

max

{
1

M

(
λmax(Hfm) +

M∑
n=1
n ̸=m

λmin(Hfn)

)}M

m=1

 ≤ λmax(HfBMA) ≤
∑M

m=1 λmax(Hfm)

M
.

(4)

Theorem 1 implies that as λmax(Hfm) decreases in Eq. 4, where it appears in both the lower and upper
bounds, the corresponding λmax(HfBMA) also decreases. This decrease in λmax(HfBMA) represents
the reduction in the flatness of the BMA prediction. This suggests that it is important to ensure each
Hessian Hfm of a BMA models sampled from the flat posterior, which can improve generalization, as
demonstrated in the previous section.

3.2 INSUFFICIENT FLATNESS OF BMA

Takeaway 3: Most approximate Bayesian inference methods struggle to produce a flat posterior.
We investigate whether existing approximate Bayesian inference methods can produce the flat
posterior of BNNs. Figure 1b illustrates how NLL and posterior flatness vary depending on whether
flatness in the loss surface is taken into account during optimization. We observe that the approximate
posteriors of BNNs do not show better flatness compared to that of DNNs, obtained from the SAM
optimizer. On the other hand, the proposed FP-BMA, which will be described in Section 4.1, allows
BNNs to seek flat minima and thus leads to better performance.

4 BAYESIAN MODEL AVERAGING WITH FLAT POSTERIOR

To obtain the flat posterior, we propose a flat posterior-aware optimizer (Section 4.1) and Bayesian
transfer learning combined with diverse BNN frameworks (Section 4.2).

4.1 FLAT POSTERIOR-AWARE OPTIMIZER

To deal with the probabilistic nature of BNNs, we suggest a new objective function based on VI:

ℓγFP-BMA(θ) = min
θ

max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ) + βDKL[qθ(w|D)||p(w)] (5)

s.t. d|θ +∆θ, θ| = DKL
[
qθ+∆θ(w|D) || qθ(w|D)

]
, (6)

where θ and ∆θ denote the variational parameters and perturbation on them, respectively. ℓ(θ +∆θ)
denotes empirical loss, such as NLL under qθ+∆θ(w|D), and β is a hyperparameter that controls the
influence of the prior. KL divergence allows quantifying perturbations in parameter distributions and,
in the typical case of Gaussian distributions, offers the advantage of accounting for total variance and
generalized variance beyond just the L2 norm.

Given new objective ℓγFP-BMA(θ) in Eq. 5, the variational parameter θ is updated using the approximate
gradient

∇θℓ
γ
FP-BMA(θ) ≈ ∇θℓ(θ +∆θFP-BMA), (7)

4

Published as a conference paper at ICLR 2025

Table 1: Performances (ACC, ECE, and NLL) of learning from scratch with ResNet18 and modified
ViT-B/16†. FP-BMA (VI), FP-BMA (MCMC), and FP-BMA (SWAG) indicate the specific BNN
framework combined with FP-BMA. Bold highlights the best performance within each BNN frame-
work, while red indicates the overall best performance across all frameworks. FP-BMA achieves
superior performance across all BNN frameworks on both CIFAR10 and CIFAR100.

Backbone ResNet18 ViT-B/16†

Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 83.28±0.49 0.058±0.005 0.540±0.006 50.33±0.62 0.123±0.016 1.976±0.055 81.20±1.31 0.050.±0.002 0.569±0.027 48.66±0.21 0.062±0.013 1.956±0.021

SAM 87.59±3.10 0.031±0.017 0.389±0.065 51.48±0.05 0.096±0.026 1.873±0.042 81.25±0.10 0.020±0.003 0.550±0.002 54.91±4.20 0.053±0.020 1.709±0.148

FSAM 83.38±0.86 0.052±0.003 0.540±0.010 50.87±1.29 0.114±0.008 1.963±0.058 81.57±1.49 0.046±0.006 0.563±0.036 48.75±0.42 0.055±0.010 1.956±0.003

bSAM 84.28±0.32 0.051±0.010 0.502±0.012 52.55±0.30 0.087±0.011 1.802±0.027 80.33±0.88 0.037±0.007 0.588±0.012 57.75±0.29 0.040±0.014 1.573±0.015

VI 82.61±0.51 0.067±0.003 0.632±0.008 51.45±0.32 0.037±0.007 1.874±0.007 75.81±0.88 0.027±0.021 0.715±0.038 48.97±0.20 0.037±0.012 1.965±0.002

FP-BMA (VI) 85.34±0.18 0.028±0.006 0.431±0.001 54.49±0.82 0.016±0.003 1.699±0.021 76.23±0.44 0.018±0.006 0.692±0.010 51.62±1.12 0.038±0.013 1.884±0.026

MCMC 84.82±0.13 0.049±0.001 0.523±0.008 58.38±0.16 0.090±0.002 1.742±0.014 81.80±0.46 0.014±0.003 0.542±0.023 51.79±0.29 0.081±0.001 2.068±0.016

E-MCMC 85.45±0.27 0.037±0.002 0.479±0.006 60.38±0.21 0.074±0.003 1.574±0.002 81.97±0.49 0.034±0.004 0.545±0.014 50.48±0.13 0.068±0.005 2.010±0.007

FP-BMA (MCMC) 86.98±0.19 0.030±0.004 0.393±0.001 61.94±0.37 0.029±0.003 1.467±0.006 82.49±1.95 0.012±0.003 0.528±0.067 61.10±1.44 0.046±0.005 1.461±0.067

SWAG 88.95±0.09 0.044±0.015 0.349±0.013 59.48±0.19 0.030±0.002 1.594±0.011 83.70±0.30 0.044±0.011 0.493±0.020 54.76±2.20 0.151±0.025 2.008±0.136

F-SWAG 89.35±0.19 0.028±0.013 0.323±0.010 60.44±0.20 0.074±0.023 1.566±0.006 83.57±0.41 0.046±0.015 0.498±0.029 56.80±1.44 0.061±0.017 1.733±0.073

FP-BMA (SWAG) 89.84±0.30 0.019±0.002 0.306±0.006 63.63±0.60 0.052±0.007 1.342±0.003 84.44±0.58 0.028±0.008 0.464±0.011 57.64±1.42 0.032±0.005 1.590±0.050

where the parameter perturbation ∆θFP-BMA is first computed as:

∆θFP-BMA = γ
Fθ(θ)

−1∇θℓ(θ)√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

, (8)

using FIM Fθ(θ)=Ew,D[∇θ log qθ(w|D)∇θ log qθ(w|D)T], and then the gradient ∇θℓ(θ) is evalu-
ated at θ +∆θFP-BMA.

Notably, as the FIM Fθ(θ) is defined over variational parameter θ, we obtain the adversarial posterior
directly. This allows BNNs to find the flat posterior in a Bayesian principle. We notate our objective
as FP-BMA and provide a detailed formula derivation in Appendix A.2.

4.2 FLAT POSTERIOR-AWARE BAYESIAN TRANSFER LEARNING

Additionally, we extend the proposed objective to seek the flat posterior for Bayesian transfer learning.
For the given approximate posterior qpr

θ (w|Dpr) on source or downstream task Dpr, we set our
objective:

ℓγFP-BMA(θ) = min
θ

max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ) + βDKL[qθ(w|Dft)||qpr
θ (w|D

pr)] (9)

s.t. d|θ +∆θ, θ| = DKL
[
qθ+∆θ(w|Dft) || qθ(w|Dft)

]
,

where Dft is the downstream dataset. Intuitively, this objective replaces the prior distribution of
Eq. 6 by the approximate posterior qpr

θ (w|Dpr) on source dataset. Notably, the proposed objective
ℓγFP-BMA(θ) can be effective in general transfer learning where the model misspecification (Müller,
2013; Wilson & Izmailov, 2020) exists; the prior is not suitable for the BNNs to be fine-tuned on
downstream tasks, and flat parameters have been shown to improve the model’s robustness (Kim
et al., 2022b; Zhang et al., 2023). Indeed, we demonstrate that the proposed method achieves superior
generalization under distributional shifts in Section 5.3.

For computational efficiency, we adopt a sub-network BNN strategy, focusing training on normaliza-
tion and last-layer parameters, as explored in prior works (Izmailov et al., 2020; Daxberger et al.,
2021b; Sharma et al., 2023). During fine-tuning, we reinitialize the last layer with a Gaussian
distribution, N (0, αI), where α is a hyperparameter to control variance. This approach ensures
scalable and stable training by leveraging pre-trained DNNs. The complete FP-BMA procedure is
given in Algorithm 1 (Appendix B.4).

5 EXPERIMENTS

5.1 LEARNING FROM SCRATCH

We verify the effectiveness of FP-BMA in improving the performance of BNNs trained from scratch.
Specifically, we use Bayesian ResNet18 and a modified ViT-B/16† (Dosovitskiy et al., 2020; Liu et al.,
2021; Zhu et al., 2023a) on CIFAR10 and CIFAR100. We adopt the modified ViT-B/16† to address
the underfitting issue of ViTs on small datasets. Due to computational constraints in large-scale

5

Published as a conference paper at ICLR 2025

Table 2: Downstream task performances (ACC, ECE, and NLL) with ResNet18 and ViT-B/16 pre-
trained on IN 1K. Bold highlights the best performance within each BNN framework, while red
indicates the overall best performance across all frameworks. FP-BMA shows superior performance
both on the CIFAR10 and CIFAR100 10-shot, with the sole exception being the ECE on the CIFAR100
10-shot in ResNet18.

Backbone ResNet18 ViT-B/16

Dataset CIFAR10 10-shot CIFAR100 10-shot CIFAR10 10-shot CIFAR100 10-shot

Method ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓ ACC ↑ ECE ↓ NLL ↓

SGD 55.52±0.32 0.062±0.006 1.302±0.020 44.29±0.83 0.025±0.005 2.133±0.043 84.37±1.47 0.056±0.061 0.503±0.038 68.78±0.21 0.143±0.007 1.193±0.019

SAM 56.54±2.57 0.129±0.013 1.354±0.089 44.51±0.07 0.065±0.007 2.089±0.013 84.35±0.81 0.035±0.012 0.486±0.023 68.93±0.37 0.153±0.005 1.200±0.021

FSAM 54.04±4.11 0.139±0.010 1.432±0.068 44.07±1.21 0.056±0.005 2.159±0.064 84.51±0.50 0.073±0.085 0.517±0.061 68.74±0.39 0.110±0.007 1.166±0.024

bSAM 56.56±1.18 0.083±0.006 1.280±0.027 43.93±0.48 0.060±0.003 2.167±0.026 82.85±2.10 0.113±0.008 0.583±0.062 68.42±0.40 0.148±0.019 1.219±0.031

MOPED 57.29±1.20 0.093±0.006 1.297±0.045 44.30±0.42 0.047±0.006 2.127±0.005 84.50±1.36 0.023±0.009 0.474±0.038 68.80±0.77 0.111±0.001 1.165±0.029

FP-BMA (VI) 64.98±1.37 0.016±0.007 0.997±0.046 49.09±1.38 0.071±0.004 1.893±0.036 87.56±1.10 0.044±0.012 0.397±0.026 71.37±0.36 0.060±0.007 1.023±0.012

MCMC 56.31±1.27 0.083±0.003 1.305±0.063 44.28±0.95 0.021±0.002 2.155±0.038 83.93±1.33 0.069±0.010 0.523±0.039 66.48±1.18 0.077±0.011 1.224±0.044

PTL 57.26±1.44 0.116±0.003 1.345±0.004 43.00±1.05 0.120±0.006 2.383±0.062 85.76±1.37 0.080±0.014 0.482±0.027 65.52±2.45 0.056±0.006 1.260±0.095

E-MCMC 56.69±2.14 0.142±0.004 1.266±0.054 41.57±0.04 0.046±0.012 2.370±0.175 83.91±1.16 0.333±0.010 0.877±0.044 63.40±0.01 0.280±0.008 1.655±0.024

FP-BMA (MCMC) 57.49±0.64 0.039±0.00. 1.248±0.048 45.72±0.56 0.016±0.003 2.062±0.050 84.82±1.84 0.051±0.018 0.449±0.048 68.73±1.09 0.061±0.004 1.117±0.042

SWAG 56.31±0.60 0.094±0.013 1.315±0.056 44.14±1.28 0.034±0.010 2.161±0.058 83.51±2.22 0.022±0.015 0.510±0.072 68.72±0.45 0.065±0.005 1.136±0.014

F-SWAG 57.65±1.20 0.075±0.003 1.249±0.038 46.09±0.44 0.062±0.006 2.089±0.002 83.87±1.28 0.013±0.005 0.492±0.040 68.84±0.77 0.076±0.012 1.137±0.020

FP-BMA (SWAG) 61.79±4.34 0.026±0.004 1.214±0.119 47.45±0.60 0.055±0.018 2.044±0.022 86.81±0.78 0.010±0.003 0.399±0.034 70.10±0.18 0.045±0.015 1.063±0.023

Table 3: Downstream task accuracy with ResNet50 and ViT-B/16 pre-trained on IN 1K. Bold
and underline denote best and second best performance each. FP-BMA demonstrates superior
performance across all 16-shot datasets.

Backbone ResNet50 ViT-B/16

Method EuroSAT Flowers102 Pets UCF101 Avg EuroSAT Flowers102 Pets UCF101 Avg

SGD 86.75±1.47 93.16±0.27 89.95±0.51 66.34±0.59 84.05±0.33 81.25±1.03 91.24±0.83 88.68±0.92 68.64±0.51 82.45±0.56

SAM 87.85±0.49 94.80±0.17 90.23±0.78 70.40±0.76 85.82±0.25 82.53±0.65 93.08±0.87 90.66±0.74 70.66±1.03 84.23±0.60
SWAG 88.97±1.56 93.27±0.15 89.95±0.46 66.41±0.30 84.65±0.37 81.62±0.66 91.21±0.91 88.67±0.42 67.65±0.45 82.29±0.31

F-SWAG 90.03±1.08 94.84±0.26 90.12±0.57 70.00±0.87 86.25±0.19 82.72±0.49 92.93±0.93 90.60±0.55 68.67±0.39 83.73±0.35

MOPED 85.21±3.14 92.15±0.73 89.25±0.61 65.85±0.99 83.11±0.86 83.97±0.49 91.71±0.87 89.90±0.54 69.66±0.53 83.81±0.51

PTL 90.01±0.39 92.55±0.53 89.43±0.41 65.00±1.24 84.25±0.30 83.76±0.61 88.43±1.27 88.54±0.53 60.38±1.84 80.28±0.03

FP-BMA 90.16±1.04 95.85±1.26 90.23±0.58 71.57±0.27 86.95±0.65 84.60±0.25 94.15±0.80 91.30±0.25 72.63±1.12 85.67±0.14

models, we apply variational distributions to the parameters of normalization and last layers. For
comparison, we consider SGD, SAM (Foret et al., 2020), and FSAM (Kim et al., 2022a) seeking flat
minima in DNNs. For the training of BNNs, we consider SWAG, VI, F-SWAG (Nguyen et al., 2023),
bSAM (Möllenhoff & Khan, 2022), and E-MCMC (Li & Zhang, 2023), which utilizes SGLD. For
fair comparison, we use the same BNN architecture employed for FP-BMA.

Table 1 shows that FP-BMA consistently improves performances when integrated with VI, MCMC,
and SWAG. Also, The FP-BMA leads to superior performances compared to other baselines of SGD,
SAM, FSAM, and bSAM. Additional experimental details are provided in Appendix B.1.

5.2 BAYESIAN TRANSFER LEARNING

Table 4: Downstream task accuracy of CLIP with visual
encoder, RN50 and ViT-B/16. Bold and underline denote
best and second best performance each. SA-BMA shows
superior performance in average over five datasets.

Backbone Method IN IN-V2 IN-R IN-A IN-S Avg

RN50

Zero-Shot 59.83±0.00 52.89±0.00 60.73±0.00 23.25±0.00 35.45±0.00 46.43±0.00

SGD 61.70±0.01 54.31±0.01 60.87±0.01 22.74±0.01 35.68±0.00 47.06±0.01

SAM 61.73±0.01 54.35±0.01 60.86±0.01 22.76±0.01 35.67±0.00 47.07±0.01

SWAG 61.77±0.22 54.10±0.19 61.25±0.21 23.25±0.08 35.55±0.27 47.18±0.19
SA-BMA 63.33±0.92 55.06±0.79 61.14±0.37 22.78±0.68 35.82±0.11 47.63±0.17

ViT-B/16

Zero-Shot 68.33±0.00 61.91±0.00 77.71±0.00 49.93±0.00 48.22±0.00 61.22±0.00

SGD 69.97±0.00 62.97±0.01 78.05±0.00 50.31±0.02 48.76±0.00 62.01±0.00

SAM 70.01±0.01 63.03±0.02 78.03±0.01 50.37±0.00 48.75±0.00 62.04±0.00

SWAG 70.11±0.02 63.44±0.06 78.33±0.03 50.55±0.02 48.95±0.01 62.28±0.02
SA-BMA 72.41±0.33 64.85±0.11 78.14±0.31 50.52±0.25 49.25±0.03 63.03±0.04

Finetuning on CIFARs We vali-
date the effectiveness of the FP-BMA
on a transfer learning task. We first
adopt RN18 and ViT-B/16 pre-trained
on ImageNet (IN) 1K (Russakovsky
et al., 2015) as a backbone. The pre-
trained models are fine-tuned on CI-
FAR10 and CIFAR100 10-shot, using
10 data instances per class.

For comparison, we consider the
following Bayesian transfer learn-
ing methods: MOPED (Krishnan
et al., 2020) and Pre-Train Your Loss
(PTL) (Shwartz-Ziv et al., 2022). We describe additional configurations in Appendix B.2.

Table 2 shows FP-BMA with diverse BNN frameworks consistently outperforms existing baselines
in terms of both accuracy and uncertainty quantification. Unlike scratch learning, FP-BMA (VI)
outperforms FP-BMA (SWAG) in few-shot image classification tasks. This can be attributed to
the nature of few-shot tasks, where VI, which only learns a diagonal covariance, is less prone to
underfitting due to the limited amount of data.

6

Published as a conference paper at ICLR 2025

Figure 2: Accuracy under distributional shift. We evaluate the accuracy of RN18 and ViT-B/16
models trained on CIFAR10 and CIFAR100 10-shot across all severity levels of CIFAR10C and
CIFAR100C. FP-BMA consistently outperforms all baseline methods across all levels of corruption.

Fine-tuning on fine-grained image classification tasks Furthermore, we confirm the effectiveness
of FP-BMA on general fine-grained image classification tasks, including EuroSAT (Helber et al.,
2019), Flowers102 (Nilsback & Zisserman, 2008), Pets (Parkhi et al., 2012), and UCF101 (Soomro
et al., 2012). All experiments were conducted using a 16-shot setting across all datasets. From this
point forward, we perform all experiments using FP-BMA with SWAG only. Table 3 shows that the
FP-BMA achieves the best accuracy. Table 11 (Appendix B.6) shows that the FP-BMA achieves the
best NLL, as well. This implies that FP-BMA seeking the flat posterior during fine-tuning procedure
is effective in improving the performance of Bayesian transfer learning.

Fine-tuning with CLIP We also show the effectiveness of FP-BMA on the pre-trained vision
language models. We fine-tune only the last layer of the CLIP visual encoder on the IN 1K 16-
shot dataset. Then, we evaluate the trained model on IN and its variants—IN-V2 (Recht et al.,
2019), IN-R (Hendrycks et al., 2021a), IN-A (Hendrycks et al., 2021b), and IN-S (Wang et al.,
2019)—following the protocols outlined in Radford et al. (2021); Zhu et al. (2023b). Table 4 shows
that FP-BMA outperforms baselines on IN set. Also, FP-BMA shows superior or comparable
accuracy on out-of-distribution datasets, representing the effectiveness of robustness.

5.3 ROBUSTNESS ON DISTRIBUTION SHIFT

We evaluate the trained models on CIFAR10 and CIFAR100 10-shots using the corrupted datasets
CIFAR10C and CIFAR100C (Hendrycks & Dietterich, 2019) to demonstrate the robustness of
FP-BMA.

Figure 2 presents the accuracy on the corrupted datasets CIFAR10C and CIFAR100C (Hendrycks &
Dietterich, 2019), demonstrating that FP-BMA outperforms baselines on corrupted datasets across
all corruption levels. FP-BMA consistently outperforms all baselines in NLL, as shown in Figure 4
(Appendix B.7). Detailed results are provided in Appendix B.7.

The results on IN variants in Table 4 and the corrupted datasets in Figure 2 show that FP-BMA
enhances the robustness of trained BNNs under distribution shifts, suggesting that the Flat Posterior-
aware Bayesian Transfer Learning scheme with FP-BMA effectively improves robustness.

5.4 FLATNESS ANALYSIS

Figure 3: Comparison of the loss surfaces of FP-BMA (grey) and PTL (light blue) models. The
comparison of loss surface shows that FP-BMA allows the posterior to be placed on a lower and
flatter loss surface compared to that of PTL.

7

Published as a conference paper at ICLR 2025

Table 5: Hessian analysis on ResNet18 trained with CIFAR10 10-shot. FP-BMA shows the lowest
score on both λ1 and λ1/λ5, proving it leads the model to flatter minima.

SGD SAM FSAM bSAM MOPED PTL E-MCMC SWAG F-SWAG FP-BMA
λ1 ↓ 559.62 381.74 561.15 532.74 686.90 559.16 540.83 602.34 362.33 275.21

λ1/λ5 ↓ 2.59 2.23 2.24 2.09 2.41 2.23 1.98 2.13 2.44 1.69

We analyze whether FP-BMA encourages the posterior of BNNs to lie in a flatter loss basin. Using
ResNet18 trained on CIFAR10 with 10-shot, we compare weight samples from the approximate
posterior obtained by FP-BMA and PTL and compare the Hessian’s eigenvalue of model.

Figure 3 presents different views of loss surface using sampled weights of FP-BMA and PTL. This
result confirms that the posterior of FP-BMA is placed on a flatter loss basin with lower loss.

6 RELATED WORKS
6.1 FLATNESS AND BNN

Recent works have suggested flat-seeking optimizers combined with BNN. First, SWAG (Maddox
et al., 2019) implicitly approximated posterior toward flatter optima based on SWA (Izmailov et al.,
2018). However, SWAG can fail to find flat minima, leading to limited improvement in generalization,
as shown in Section 3.2. bSAM (Möllenhoff & Khan, 2022) showed that SAM can be interpreted as a
relaxation of the Bayes and quantified uncertainty with SAM. Yet, bSAM only focused on uncertainty
quantification by simply modifying Adam-based SAM (Khan et al., 2018), not newly considering
the parametric geometry for perturbation. Moreover, scaling the variance with the number of data
points hampers the direct implementation of bSAM in few-shot settings. SA-BNN (Nguyen et al.,
2023) proposed a sharpness-aware posterior derived directly from the variational objective and proved
the effectiveness experimentally and theoretically. However, they simply employ the L2 norm to
calculate the perturbation of SAM without considering the difference between the nature of DNN and
BNN. Moreover, in contrast to FP-BMA, SA-BNN did not take into account the prior, which is a
fundamental component of BNNs, in its pursuit of flatness. On the other hand, E-MCMC (Li & Zhang,
2023) proposed an efficient MCMC algorithm capable of effectively sampling the posterior within a
flat basin by removing the nested chain of Entropy-SGD and Entropy-SGLD. However, E-MCMC
necessitates a guidance model, which doubles the parameters and heavily hinders its employment
over large-scale models. FP-BMA is the first approach to explicitly promote flat posteriors within a
rigorous Bayesian framework, providing a principled way to enhance robustness and generalization.

6.2 BAYESIAN TRANSFER LEARNING

There are several works on performing transfer learning on BNN with prior. PTL (Shwartz-Ziv et al.,
2022) constructs BNN by learning closed-form posterior approximation of the pre-trained model
on the source task and uses it as a prior for the downstream task after scaling. The work requires
additional training on the source task, making it restrictive when accessing the source task dataset
is impossible. MOPED (Krishnan et al., 2020) employs pre-trained BNN as a prior for VI based
on the empirical Bayes method. Using pre-trained DNN, MOPED enhances accessibility to BNN;
however, it is only applicable to Mean-field VI. Non-parametric transfer learning (Lee et al., 2024)
suggested adopting non-parametric learning to make posterior flexible in terms of distribution shift.
The proposed Flat Posterior-aware Bayesian Transfer Learning utilizes a pre-trained model as a prior,
improving robustness to model misspecification by promoting a flat posterior.

7 CONCLUSION
This study shows the limitations of BNNs in capturing the flatness, which is crucial for generalization
ability. We also show that BMA can fail to yield optimal results without explicitly considering flatness.
To address this issue, we introduce Flat Posterior-aware Bayesian Model Averaging (FP-BMA), which
seeks to find a flat posterior by capturing flatness in the parameter space. FP-BMA is the generalized
version of existing sharpness-aware optimizers for DNN and aligns with the intrinsic nature of BNN.
We further propose a Flat Posterior-aware Bayesian Transfer Learning scheme, which effectively
enhances robustness against model misspecification, combined with FP-BMA. Through extensive
experiments, we demonstrate that FP-BMA significantly enhances the generalization performance of
BNNs in diverse scenarios. Our work highlights the importance of flatness in posterior approximations
and provides a practical solution to improve the predictive robustness and accuracy of BNNs.

8

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT)(RS-2024-00457216).

REFERENCES

Carlo Baldassi, Alessandro Ingrosso, Carlo Lucibello, Luca Saglietti, and Riccardo Zecchina. Sub-
dominant dense clusters allow for simple learning and high computational performance in neural
networks with discrete synapses. Physical review letters, 115(12):128101, 2015.

Carlo Baldassi, Christian Borgs, Jennifer T Chayes, Alessandro Ingrosso, Carlo Lucibello, Luca
Saglietti, and Riccardo Zecchina. Unreasonable effectiveness of learning neural networks: From
accessible states and robust ensembles to basic algorithmic schemes. Proceedings of the National
Academy of Sciences, 113(48):E7655–E7662, 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021a.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian deep learning via subnetwork inference. In International Conference on Machine
Learning, pp. 2510–2521. PMLR, 2021b.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-bayes bound:
Generalization properties of entropy-sgd and data-dependent priors. In International Conference
on Machine Learning, pp. 1377–1386. PMLR, 2018.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Tiago M Fragoso, Wesley Bertoli, and Francisco Louzada. Bayesian model averaging: A systematic
review and conceptual classification. International Statistical Review, 86(1):1–28, 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

James E Gentle. Matrix algebra. Springer texts in statistics, Springer, New York, NY, doi, 10:978–0,
2007.

Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

9

Published as a conference paper at ICLR 2025

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217–2226, 2019.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021a.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15262–15271, 2021b.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13, 1993.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
Advances in neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace inference for bayesian deep learning. In Uncertainty in Artificial
Intelligence, pp. 1169–1179. PMLR, 2020.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks. arXiv preprint arXiv:2002.09572, 2020.

Sanyam Kapoor, Wesley J Maddox, Pavel Izmailov, and Andrew G Wilson. On uncertainty, tempering,
and data augmentation in bayesian classification. Advances in Neural Information Processing
Systems, 35:18211–18225, 2022.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava. Fast
and scalable bayesian deep learning by weight-perturbation in adam. In International conference
on machine learning, pp. 2611–2620. PMLR, 2018.

Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
and sharpness aware minimisation. In International Conference on Machine Learning, pp. 11148–
11161. PMLR, 2022a.

Taero Kim, Subeen Park, Sungjun Lim, Yonghan Jung, Krikamol Muandet, and Kyungwoo Song.
Sufficient invariant learning for distribution shift. arXiv preprint arXiv:2210.13533, 2022b.

Ranganath Krishnan, Mahesh Subedar, and Omesh Tickoo. Specifying weight priors in bayesian
deep neural networks with empirical bayes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 4477–4484, 2020. URL https://ojs.aaai.org/index.
php/AAAI/article/view/5875.

10

https://ojs.aaai.org/index.php/AAAI/article/view/5875
https://ojs.aaai.org/index.php/AAAI/article/view/5875

Published as a conference paper at ICLR 2025

Agustinus Kristiadi, Runa Eschenhagen, and Philipp Hennig. Posterior refinement improves sample
efficiency in bayesian neural networks. Advances in Neural Information Processing Systems, 35:
30333–30346, 2022a.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being a bit frequentist improves bayesian
neural networks. In International Conference on Artificial Intelligence and Statistics, pp. 529–545.
PMLR, 2022b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hyungi Lee, Giung Nam, Edwin Fong, and Juho Lee. Enhancing transfer learning with flexible
nonparametric posterior sampling. arXiv preprint arXiv:2403.07282, 2024.

Bolian Li and Ruqi Zhang. Entropy-mcmc: Sampling from flat basins with ease. In NeurIPS 2023
Workshop on Symmetry and Geometry in Neural Representations, 2023.

Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri, and Marco Nadai. Efficient training of
visual transformers with small datasets. Advances in Neural Information Processing Systems, 34:
23818–23830, 2021.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural computa-
tion, 4(3):448–472, 1992.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. Advances in Neural Information
Processing Systems, 32, 2019.

Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes. arXiv
preprint arXiv:2210.01620, 2022.

Ulrich K Müller. Risk of bayesian inference in misspecified models, and the sandwich covariance
matrix. Econometrica, 81(5):1805–1849, 2013.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

Van-Anh Nguyen, Tung-Long Vuong, Hoang Phan, Thanh-Toan Do, Dinh Phung, and Trung Le. Flat
seeking bayesian neural networks. arXiv preprint arXiv:2302.02713, 2023.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 35:10821–10836, 2022.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International conference on machine learning, pp. 5389–5400. PMLR,
2019.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, volume 6. International Conference on Representation Learning, 2018.

11

Published as a conference paper at ICLR 2025

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:211–252, 2015.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do bayesian neural
networks need to be fully stochastic? In International Conference on Artificial Intelligence and
Statistics, pp. 7694–7722. PMLR, 2023.

Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, and
Andrew Gordon Wilson. Pre-train your loss: Easy bayesian transfer learning with informative
priors. arXiv preprint arXiv:2205.10279, 2022.

Avram Sidi. Vector extrapolation methods with applications. SIAM, 2017.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations
by penalizing local predictive power. Advances in Neural Information Processing Systems, 32,
2019.

Larry Wasserman. Bayesian model selection and model averaging. Journal of mathematical
psychology, 44(1):92–107, 2000.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? arXiv preprint arXiv:2002.02405, 2020.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgle-
ichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische Annalen,
71(4):441–479, 1912.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Peter Wynn. Acceleration techniques for iterated vector and matrix problems. Mathematics of
Computation, 16(79):301–322, 1962.

Zhe Zeng and Guy Van den Broeck. Collapsed inference for bayesian deep learning. Advances in
Neural Information Processing Systems, 36, 2024.

Xingxuan Zhang, Renzhe Xu, Han Yu, Yancheng Dong, Pengfei Tian, and Peng Cui. Flatness-aware
minimization for domain generalization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5189–5202, 2023.

Haoran Zhu, Boyuan Chen, and Carter Yang. Understanding why vit trains badly on small datasets:
an intuitive perspective. arXiv preprint arXiv:2302.03751, 2023a.

Yao Zhu, Yuefeng Chen, Wei Wang, Xiaofeng Mao, Yue Wang, Zhigang Li, Jindong Wang, Xi-
angyang Ji, et al. Enhancing few-shot clip with semantic-aware fine-tuning. arXiv preprint
arXiv:2311.04464, 2023b.

12

Published as a conference paper at ICLR 2025

A PROOF AND DERIVATION

A.1 PROOF OF THEOREM 1

The derivation of Theorem 1 can be straightforward using Wely’s inequality (Weyl, 1912). We
assume M model wm,m = 1, ..,M , whose Hessian matrices Hfm (defined in Eq. 3) are Hermitian.
wWA = 1/M

∑M
m=1 wm is simple weight averaging and the Hessian of wWA, HfWA , also be a

Hermitian matrix. Weyl’s inequality (Theorem 2) is known to bound the eigenvalues of Hermitian
matrices.
Theorem 2. (Weyl’s Inequality) For Hermitian matrices Cm ∈ Cp×p, k, l = 1, ..., p,

λk+l−1(Ci + Cj) ≤ λk(Ci) + λl(Cj) ≤ λk+l−N (Ci + Cj).

(10)

Let k = 1 and l = 1, then Eq. 10 can be written as:

λ1(Ci + Cj) ≤ λ1(Ci) + λ1(Cj).

As we have M Hermitian matrices, it can be expanded as:

λ1(
1

M

M∑
m=1

Hfm) ≤ 1

M

M∑
m=1

λ1(Hfm). (11)

One the other hand, we can let (k, l) = {(1, p), (p, 1)} and rewrite the Eq. 10 as:

max{λ1(Ci) + λp(Cj), λp(Ci) + λ1(Cj)} ≤ λ1(Ci + Cj).

Again, set M Hermitian matrices we have, it can be expanded as:

max

{
1

M

(
λ1(Hfm) +

M∑
n=1
n ̸=m

λp(Hfn)

)}M

m=1

 ≤ λ1(
1

M

M∑
m=1

Hfm). (12)

By combining Eq. 11 with Eq. 12 and substituting λ1 to λmax and λp to λmin, the flatness of averaged
weight parameter is bounded as:

max

{
1

M

(
λmax(Hfm) +

M∑
n=1
n ̸=m

λmin(Hfn)

)}M

m=1

 ≤ λmax(
1

M

M∑
m=1

Hfm) ≤
∑M

m=1 λmax(Hfm)

M
.

(13)

However, Eq 13, as a bound for weight averaging (WA), cannot be directly applied to BMA, which
marginalizes diverse predictions. To bridge this gap, we leverage Lemma 1. which characterized
the close relation between WA and BMA (Izmailov et al., 2018; Wortsman et al., 2022; Rame et al.,
2022).
Lemma 1. ((Rame et al., 2022)) Given predictions of model fm(·) parameterized by wm, those
of weight averaged model fWA parameterized by wWA = 1

M

∑M
m=1 wm, those of BMA fBMA, and

arbitrary twice differentiable loss function ℓ(·), let ∆ = ∥fBMA(x)− fWA(x)∥2. Then, ∀(x, y)

ℓ(fWA(x), y) = ℓ(fBMA(x), y) +O(∆).

Lemma 1 shows that the predictions of BMA can be approximated with those of WA linearly. The
error term is discarded in the process of obtaining the Hessian:

HfWA = HfBMA (14)

By putting Eq. 14 into Eq. 13, it leads to Theorem 1.

13

Published as a conference paper at ICLR 2025

A.2 DERIVATION OF BAYESIAN FLAT-SEEKING OPTIMIZER

A.2.1 SETTING

Let model parameter w ⊆ Rp and w ∼ N (µ,Σ). While fully-factorized or mean-field covariance
is de facto in Bayesian Deep Learning, it cannot capitalize on strong points of Bayesian approach.
Inspired from SWAG, we approximate covariance combining diagonal covariance σ ⊆ Rp and
low-rank matrix L ⊆ Rp×K with low-rank component K. Then, we can simply sample w =
µ+ 1√

2
(σz1 + Lz2), where z1 ∼ N (0, Ip) and z2 ∼ N (0, IK) where p, K denotes the number of

parameter, low-rank component, respectively. We treat flattened µ, σ, and L, and concatenate as
θ = Concat(µ;σ;L).

A.2.2 OBJECTIVE FUNCTION

We compose our objective function with probabilistic weight, using KL Divergence as a metric to
compare between two weights.

ℓγFP-BMA(θ) = max
d|θ+∆θ,θ|≤γ2

ℓ(θ +∆θ) + βDKL(pθ(w|D)||p(w)) (15)

s.t. d|θ +∆θ, θ| = DKL
[
pθ+∆θ(w|D)||pθ(w|D)

]
. (16)

A.2.3 OPTIMIZATION

From KL Divergence to Fisher Information Matrix We can consider three options of perturbation
on mean and covariance parameters of w: 1) Perturbation on mean, 2) perturbation on mean and
diagonal variance, 3) Perturbation on mean and whole covariance. All of them can be approximated
to Fisher Information Matrix. Here, we show the relation between KLD and FIM considering the
probation option 3.

Following FSAM, we deal with parameterized and conditioned as same notation:

pθ+∆θ(w|D) = p(w|D, θ +∆θ).

By definition of KL divergence, we rewrite Eq. 16 as:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)] =

∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw. (17)

In Eq. 17, we apply first-order Taylor Expansion:

p(w|D, θ +∆θ) ≈ p(w|D, θ) +∇θp(w|D, θ)T∆θ.

log p(w|D, θ +∆θ) ≈ log p(w|D, θ) +∇θ log p(w|D, θ)T∆θ.
(18)

Substitute right terms of Eq. 17 with Eq. 18:∫
w

p(w|D, θ +∆θ) log
p(w|D, θ +∆θ)

p(w|D, θ)
dw

=

∫
w

(
p(w|D, θ) + ∆θT∇θp(w|D, θ)

)
∇θ log p(w|D, θ)T∆θ dw

=

∫
w

p(w|D, θ)∇θ log p(w|D, θ)T∆θdw

+

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ dw. (19)

14

Published as a conference paper at ICLR 2025

First term of Eq. 19 is equal to 0:∫
w

p(w|D, θ)∇θ log p(w|D, θ) dw

=

∫
w

p(w|D, θ)
∇θp(w|D, θ)

p(w|D, θ)
dw

=

∫
w

∇θp(w|D, θ) dw = ∇θ

∫
w

p(w|D, θ) = 0.

(20)

Using Eq. 19 and Eq. 20, Eq. 17 can be rewritten as Fisher information matrix by the definition of
expectation:

DKL[p(w|D, θ +∆θ)||p(w|D, θ)]

=

∫
w

∆θT p(w|D, θ)∇θ log p(w|D, θ)∇θ log p(w|D, θ)T∆θ

= ∆θTEw[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T]∆θ

= ∆θTFθ(θ)∆θ,

(21)

where Fθ(θ) = Ew,D[∇θ log p(w|D, θ)∇θ log p(w|D, θ)T].

It’s too expensive to calculate Fisher information matrix F (θ) in practice. We introduce a pseudo
inverse for Fisher information matrix Fθ(θ)

−1 with Samelson inverse of a vector (Gentle, 2007; Sidi,
2017; Wynn, 1962) :

Fθ(θ)
−1 =

∇θ log p(w|D, θ)∇θ log p(w|D, θ)T

∥∇θ log p(w|D, θ)∥4
. (22)

Lagrangian Dual Problem From the result of Eq. 21, we can rewrite the Eq. 15:

ℓγFP-BMA(θ) = max
∆θTFθ(θ)∆θ≤γ2

ℓ(θ +∆θ). (23)

We can reach the optimal perturbation of FP-BMA ∆θ∗ by using Taylor Expansion on l(θ +∆θ) of
Eq. 15:

ℓ(θ +∆θ) = ℓ(θ) +∇θℓ(θ)
T∆θ. (24)

Using Eq. 24, we can rewrite Eq. 15 as Lagrangian dual problem:

L(∆θ, λ) = ℓ(θ) +∇ℓθ(θ)
T∆θ − λ(∆θTFθ(θ)∆θ − γ2). (25)

Differentiating Eq. 25, we get ∆θ∗:
αL(∆θ, λ)

α∆θ
= ∇θℓ(θ)

T − 2λ∆θTFθ(θ) = 0

∴ ∆θ∗ =
1

2λ
Fθ(θ)

−1∇θℓ(θ). (26)

Putting ∆θ∗ of Eq. 26 into ∆θ of Eq. 25, we can rewrite Eq. 25:

L(∆θ∗, λ) = l(θ) +
1

2λ
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ)

− 1

4λ
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) + λγ2.

(27)

15

Published as a conference paper at ICLR 2025

By taking derivative of Eq. 27 w.r.t. λ, we can also get λ∗:

αL(∆θ∗, λ)

αλ
= − 1

2λ2
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) +

1

4λ2
∇θℓ(θ)

TFθ(θ)
−1∇θℓ(θ) + γ2 = 0

4λ2γ2 = ∇θℓ(θ)
TFθ(θ)

−1∇θℓ(θ)

∴ λ∗ =

√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

2γ
. (28)

Finally, we get our ∆θFP-BMA by substituting Eq. 28 into Eq. 26:

∆θFP-BMA = γ
Fθ(θ)

−1∇θℓ(θ)√
∇θℓ(θ)TFθ(θ)−1∇θℓ(θ)

. (29)

16

Published as a conference paper at ICLR 2025

B EXPERIMENTS

B.1 LEARNING FROM SCRATCH

B.1.1 FP-BMA WITH DIVERSE BNN FRAMEWORKS

In Eq. 5, FP-BMA can be applied with various BNN frameworks by using an empirical loss function
ℓ(·) and adjusting the parameter β. We commonly set ℓ(·) as cross-entropy loss in context of image
classification task. Note that FP-BMA was applied only to the normalization layers and the last layer,
while all other layers were trained using SGD.

FP-BMA (VI) For VI, we follow the loss function of Eq. 5.

FP-BMA (MCMC) We mainly adopt SGLD for MCMC in this work. For SGLD, we incorporated
noise into Eq. 5 without KLD term (β = 0) based on the learning rate and the hyperparameter,
temperature. In this approach, during the first step, the adversarial posterior is computed without any
noise (Eq. 8). In the second step, both the noise and the adversarial posterior are used together in the
learning process.

FP-BMA (SWAG) SWAG updates the first and second moments along the trajectory of SWA and
uses these moments to approximate the posterior with a Gaussian distribution. In Eq. 5, β is fixed
to 0, and as the trajectory of SWA is optimized through FP-BMA, posterior approximation can be
performed accordingly.

B.1.2 HYPERPARAMETERS FOR EXPERIMENTS

In this section, we provide the details of the experimental setup for Section 5.1. In the other
experiments, the range of hyperparameters, excluding the number of epochs, is shared across different
backbones and methods. For all experiments, the hyperparameters are selected using grid-search.
Configuration of best hyperparameters for each baseline is summarized in Table 6 and Table 7.

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient
Descent with Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay.
We run 300 epochs. The hyperparameter tuning range included learning rate in [1e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of
SAM. It also ran upon a cosine decay learning rate scheduler. All the range of hyperparameters is
shared with SGD with Momenmtum. Additional hyperparameter γ, the ball size of perturbation, is in
[1e-2, 5e-2, 0.1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran
upon a cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD
with Momenmtum. Additional hyperparameter η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme.
We run 300 epochs with fixed β1 and β2. The hyperparameter tuning rage included: learning rate in
[1e-1, 3e-1, 5e-1, 8e-1, 1], weight decay in [1e-4, 5e-4, 1e-3, 1e-2], damping in [1e-1, 1e-2, 1e-3],
and γ in [1e-3, 1e-2, 5e-2, 1e-1, 5e-1]. Damping parameter stabilizes the method by adding constant
when updating variance estimate.

Variational Inference (VI) We use MOPED to change DNN into BNN, first. We set prior mean
and variance as 0 and 1, respectively. Besides, we set the posterior mean as 0 and variance as 1e-3.
We adopt Reparameterization as type of VI. The essential hyperparmeter for MOPED is δ, which
adjusts how much to incorporate pre-trained weights. The δ was searched in [1e-3, 5e-3, 1e-2].
Moreover, we add a hyperparameter β for MOPED that can balance the loss term in VI. The β is in
range [1e-2, 1e-1 ,1]

17

Published as a conference paper at ICLR 2025

Table 6: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 5e-2 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 5e-2 9e-1 × 1e-2 5e-4
bSAM 8e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 5e-2 9e-1 × 1e-1 5e-4

MCMC 1e-1 × × × 5e-4
E-MCMC 1e-1 × × × 5e-4

FP-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 5e-2 5e-4

FSAM 1e-1 9e-1 × 1e-1 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 5e-3 9e-1 × 5e-3 5e-4

MCMC 2e-2 × × × 5e-4
EMCMC 2e-2 × × × 5e-4

FP-BMA (MCMC) 3e-2 9e-1 × 1e-2 5e-4
SWAG 5e-2 9e-1 × × 5e-4

F-SWAG 5e-2 9e-1 × 5e-4
FP-BMA (SWAG) 5e-2 9e-1 × 1e-2 5e-4

MCMC We consistently use SGLD (Welling & Teh, 2011) for MCMC in this work. It ran upon a
cyclic cosine decay learning rate scheduler. The number of cycles was ranged in [2, 4]. The number
of sampled models is in [10, 20, 28]. We search temperature in [1e-5, 5e-4, 1e-4, 5e-3, 1e-3, 1e-2].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning
rate to zero. We run 300 epochs. We search η in [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] and a system
temperature T in [1e-4, 5e-4, 1e-3, 5e-3, 1e-2]. Note that the η handles flatness, and the system
temperature adjusts the weight update’s step size.

SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is
shared with SGD with Momenmtum. Additionally, we search for three additional hyperparameters
for SWAG, capturing DNN snapshots and calculating statistics. First, the epoch to start SWA is in
[161, 201], and epoch is 300. Second, the frequency of capturing the model snapshot is in [1, 2, 3].
Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].

Flat Posterior-aware Bayesian Model Averaging (FP-BMA) In case of FP-BMA (VI), we set
N (0, 1e − 3) as prior and δ as 1e-3 to make DNN to BNN using MOPED. After getting prior
distribution, we search three hyperparameters: learning rate and γ. The hyperparameter tuning range
included: learning rate in [1e-3, 5e-3, 1e-2, 5e-2], γ in [1e-2, 5e-2, 1e-1, 5e-1]. We set weight decay
as 5e − 4 for all backbones and train the model over 300 epochs with early stopping. We fix β as
1e-8 for all experiments. In case of FP-BMA (MCMC), we search learning rate, temperature for
learning rate scheduling, and γ. The hyperparameter ranges are [1e-3, 5e-3, 1e-2, 5e-2] for learning
rate, [1e-4, 5e-3, 1e-3, 5e-2, 1e-2, 1e-1] for temperature, and [5e-3, 1e-2, 5e-2, 1e-1, 5e-1] for γ. In
case of FP-BMA (SWAG), we follow the hyperparameter for SWAG, except γ in [1e-2, 5e-2, 1e-1].

18

Published as a conference paper at ICLR 2025

Table 7: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 1e-1 9e-1 × × 5e-4
SAM 5e-2 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 1 9e-1 0.999 1e-1 5e-4

VI 5e-3 9e-1 × × 5e-4
FP-BMA (VI) 8e-3 9e-1 × 2e-1 5e-4

MCMC 5e-1 × × × 5e-4
E-MCMC 5e-1 × × × 5e-4

FP-BMA (MCMC) 1e-1 9e-1 × 3e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 3e-1 9e-1 × 2e-1 5e-4

ViT-B/16†

SGD 1e-1 9e-1 × × 5e-4
SAM 1e-1 9e-1 × 1e-1 5e-4

FSAM 1e-1 9e-1 × 1e-2 5e-4
bSAM 5e-1 9e-1 0.999 1e-1 5e-4

VI 3e-2 9e-1 × × 5e-4
FP-BMA (VI) 8e-3 9e-1 × 1e-1 5e-4

MCMC 2e-1 × × × 5e-4
EMCMC 1e-1 × × × 5e-4

FP-BMA (MCMC) 5e-2 9e-1 × 5e-2 5e-4
SWAG 1e-1 9e-1 × × 5e-4

F-SWAG 1e-1 9e-1 × 1e-1 5e-4
FP-BMA (SWAG) 1e-1 9e-1 × 1e-1 5e-4

19

Published as a conference paper at ICLR 2025

B.2 FEW-SHOT IMAGE CLASSIFICATION WITH BAYESIAN TRANSFER LEARNING

B.2.1 FP-BMA WITH DIVERSE BNN FRAMEWORKS

Diverse BNN frameworks can be adopted for Bayesian Transfer Learning. Specifically, there are
several options for making pre-trained DNN into BNN. In this work, we mainly adopt MOPED and
SWAG for the converting.

In addition, FP-BMA can be applied with various BNN frameworks by using an empirical loss
function ℓ(·) and adjusting the parameter β in Eq. 9. We commonly set ℓ(·) as cross-entropy loss in
context of image classification task.

FP-BMA (VI) First, we convert pre-trained DNN into BNN with MOPED. We set the converted
BNN as prior, qpr

θ (w|Dpr) in Eq. 9, and initial point of model. We only train parameters of normaliza-
tion and last layer and freeze others. We train them with the loss function of Eq. 9.

FP-BMA (MCMC) For SGLD, it is unnecessary to convert pre-trained DNN into BNN. Instead,
we directly set the pre-trained DNN as initialization. We incorporated noise into Eq. 9 without the
KLD term (β = 0) based on the learning rate and the hyperparameter, temperature. During the first
step, the adversarial posterior is computed without any noise (Eq. 8). In the second step, both the
noise and the adversarial posterior are used together in the learning process.

FP-BMA (SWAG) SWAG is also one of the options to convert pre-trained DNN into BNN.
Specifically, we run a few epochs with source or downstream datasets to make BNN from pre-trained
DNN. After this step, we set the BNN as the prior, qpr

θ (w|Dpr) in Eq. 9. We also let the converted
BNN as initialization and train with downstream dataset. We optimize model with the loss function
in Eq. 9.

B.3 HYPERPARAMETERS FOR EXPERIMENTS

In this section, we provide the details of the experimental setup for Section 5.2. In the other
experiments, the range of hyperparameters, excluding the number of epochs, is shared across different
backbones and methods.

First, we provide remarks for each baseline method, followed by the tables of hyperparameter
configuration with respect to downstream datasets and the baselines. For all experiments, the
hyperparameters are selected using grid-search. Configuration of best hyperparameters for each
baseline is summarized in Table 8 and Table 9. We ran all experiments using GeForce RTX 3090 and
NVIDIA RTX A6000 with GPU memory of 24,576MB and 49,140 MB.

Stochastic Gradient Descent with Momentum (SGD) In this study, we adopt Stochastic Gradient
Descent with Momentum as an optimizer for DNN. Learning rate schedule is fixed to cosine decay
with warmup length of 10. We tested [100, 150] epoch and set 100 epoch as the best option. In
overall experiments, we set momentum as 0.9. The hyperparameter tuning range included learning
rate in [1e-4, 1e-3, 1e-2], and weight decay in [1e-4, 5e-4, 1e-3, 1e-2].

Sharpness Aware Minimization (SAM) We set SGD with momentum as the base optimizer of
SAM. It also ran upon a cosine decay learning rate scheduler. All the range of hyperparameters is
shared with SGD with Momenmtum. Additional hyperparameter γ, the ball size of perturbation, is in
[1e-2, 5e-2, 1e-1].

Fisher SAM (FSAM) We set SGD with momentum as the base optimizer of FSAM. It also ran
upon a cosine decay learning rate scheduler. All the range of hyperparameters is shared with SGD
with Momenmtum. Additional hyperparameter η, regularize Fisher impact, is in [1e-2, 1e-1, 1].

SAM as an optimal relaxation of Bayes (bSAM) We use a cosine learning rate decay scheme,
annealing the learning rate to zero. We fine-tuned pre-trained models for 150 epochs with fixed β1

and β2. The hyperparameter tuning range included: learning rate in [1e-3, 1e-2, 5e-2, 1e-1, 0.25,
0.5, 1], weight decay in [1e-3, 1e-2, 1e-1], damping in [1e-3, 1e-2, 1e-1], noise scaling parameter in

20

Published as a conference paper at ICLR 2025

Table 8: Hyperparameter Configuration for CIFAR10

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 5e-3 9e-1 × × 1e-3
SAM 1e-2 9e-1 × 1e-1 1e-4

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1e-1 9e-1 0.999 5e-2 1e-1

MOPED 1e-2 9e-1 × × 1e-4
SA-BMA (VI) 1e-2 9e-1 × 7e-1 1e-3

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 5e-3 9e-1 × × 1e-5
F-SWAG 5e-3 9e-1 × 5e-2 5e-4

SA-BMA (SWAG) 5e-2 9e-1 × 1e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-4
SAM 1e-3 9e-1 × 1e-2 1e-3

FSAM 5e-3 9e-1 × 1e-2 1e-3
bSAM 1e-1 9e-1 0.999 1e-2 1e-1

MOPED 1e-3 9e-1 × × 1e-4
SA-BMA (VI) 1e-2 9e-1 × 1e-1 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 6e-2 × × × 1e-3

EMCMC 5e-3 × × × 1e-2
SA-BMA (MCMC) 5e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-3
F-SWAG 1e-3 9e-1 × 1e-2 1e-3

SA-BMA (SWAG) 5e-3 9e-1 × 5e-1 5e-4

[1e-4, 1e-3, 1e-2, 1e-1], and γ in [1e-3, 1e-2, 5e-2, 1e-1]. Damping parameter stabilizes the method
by adding constant when updating variance estimate. Since SAM as Bayes optimizer depends on the
number of samples to scale the prior, we introduced additional noise scaling parameters to mitigate
the gap between the experimental settings, where SAM as Bayes assumed training from scratch and
our method assumed few-shot fine-tuning on the pre-trained model. We multiplied noise scaling
parameter to the variance of the Gaussian noise to give strong prior, assuming pre-trained model.

Model Priors with Empirical Bayes using DNN (MOPED) MOPED was a baseline to compare
for Bayesian Transfer Learning. It employs pre-trained DNN and transforms it into Mean-Field
Variational Inference (MFVI). We set prior mean and variance as 0 and 1, respectively. Besides,
we set the posterior mean as 0 and variance as 1e-3. We adopt Reparameterization as type of VI.
The essential hyperparameter for MOPED is δ, which adjusts how much to incorporate pre-trained
weights. The δ was searched in [5e-2, 1e-1, 2e-1]. Moreover, we add a hyperparameter β for MOPED
that can balance the loss term in VI. The β is in range [1e-2, 1e-1, 1].

MCMC We consistently use SGLD (Welling & Teh, 2011) for MCMC in this work. It ran upon a
cyclic cosine decay learning rate scheduler. The number of cycles was ranged in [2, 4]. The number
of sampled models is in [10, 20, 28]. We search temperature in [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1].

Pre-train Your Loss (PTL) The backbones both ResNet18 and Vit-B/16 were refined through
fine-tuning with a classification head for the target task, leveraging a prior distribution learned from
SWAG on the ImageNet 1k dataset using SGD. First, the hyperparameter tuning range of the pre-
training epoch is [2, 3, 5, 15, 30] to generate the prior distribution on the source task, ImageNet 1k.
The learning rate was 0.1. We approximated the covariance low rank as 5. Second, in the downstream
task, the fine-tuning optimizer is SGLD with a cosine learning rate schedule, sampling 30 in 5 cycles.
The hyperparameter tuning range included: learning rate in [1e-4, 1e-3, 1e-2, 5e-2, 6e-2, 1e-1, 5e-1],

21

Published as a conference paper at ICLR 2025

Table 9: Hyperparameter Configuration for CIFAR100

Backbone Baseline learning rate β1

(momentum) β2 γ weight decay

RN18

SGD 1e-2 9e-1 × × 5e-3
SAM 1e-2 9e-1 × 5e-2 1e-2

FSAM 1e-2 9e-1 × 1e-1 1e-4
bSAM 1 9e-1 0.999 1e-2 1e-2

MOPED 1e-2 9e-1 × × 1e-3
SA-BMA (VI) 5e-2 9e-1 × 1e-2 5e-4

MCMC 3e-2 9e-1 × × 5e-4
PTL 5e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 1e-2 9e-1 × 1e-1 5e-4

SWAG 1e-2 9e-1 × × 1e-4
F-SWAG 1e-2 9e-1 × 5e-2 1e-2

SA-BMA (SWAG) 5e-2 9e-1 × 5e-1 5e-4

ViT-B/16

SGD 1e-3 9e-1 × × 1e-2
SAM 1e-3 9e-1 × 1e-2 1e-2

FSAM 5e-3 9e-1 × 1e-2 1e-4
bSAM 2.5e-1 9e-1 0.999 1e-2 1e-3

MOPED 1e-3 9e-1 × × 1e-3
SA-BMA (VI) 1e-2 9e-1 × 5e-2 5e-4

MCMC 5e-2 9e-1 × × 5e-4
PTL 1e-1 × × × 1e-3

E-MCMC 5e-2 × × × 1e-3
SA-BMA (MCMC) 8e-3 9e-1 × 8e-3 5e-4

SWAG 1e-3 9e-1 × × 1e-2
F-SWAG 1e-3 9e-1 × 1e-2 1e-2

SA-BMA (SWAG) 1e-2 9e-1 × 5e-1 5e-4

weight decay in [1e-4, 1e-3 ,1e-2 ,1e-1], and prior scale in [1e+4, 1e+5, 1e+6]. Prior scaling in the
downstream task is to reflect the mismatch between the pre-training and downstream tasks and to add
coverage to parameter settings that might be consistent with the downstream. Training was conducted
over 150 epochs; tuning range of fine-tuning epoch is [100, 150, 200, 300, 1000].

Entropy-MCMC (E-MCMC) We use a cosine learning rate decay scheme, annealing the learning
rate to zero. We set the range of the hyperparameter sweep to the surroundings of the best hyperpa-
rameter in E-MCMC for ResNet18: learning rate in [5e-3, 5e-2, 5e-1], weight decay in [1e-4, 1e-3,
1e-2], η in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 4e-4, 5e-3, 8e-3, 1e-2] and a system temperature T in [1e-5,
1e-4, 1e-3]. In this study, we performed an extensive exploration of the hyperparameter space of
ViT-B/16, as it has a mechanism different from the CNN family and may not be found near the best
hyperparameter range of ResNet18: learning rate in [1e-3, 5e-3, 1e-2, 5e-2, 5e-1], weight decay in
[1e-5, 1e-4, 5e-4, 1e-3, 1e-2, 5e-2], η in [5e-7, 1e-6, 5e-6, 5e-5, 1e-4, 4e-4, 5e-4, 1e-3, 8e-3, 1e-2,
1e-1] and a system temperature T in [1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 1e-3, 1e-2, 1e-1]. We fine-tuned
pre-trained models for 150 epochs. Note that the η handles flatness, and the system temperature
adjusts the weight update’s step size.

SWAG We use a cosine learning rate decay scheme for SWAG. All the range of hyperparameters is
shared with SGD with Momenmtum. Additionally, we search three additional hyperparameters for
SWAG, capturing DNN snapshots and calculating statistics. First, the epoch to start SWA is in [51,
76, 101] and epoch is in [100, 150]. Second, the frequency to capture the model snapshot is in [1, 2,
3]. Third, the low rank for covariance is in [2, 3, 5, 7, 10].

F-SWAG F-SWAG shares hyperparameter with SWAG, except γ. We search γ in [1e-2, 5e-2, 1e-1].

22

Published as a conference paper at ICLR 2025

Flat Posterior-awre Bayesian Model Averaging (FP-BMA) In case of FP-BMA (SWAG), we
train SWAG on source task IN 1K to make prior distribution and follow the pre-training protocol of
PTL. In case of employing MOPED to make prior distribution, we do not go through any training
step. In case of FP-BMA (VI), we just set δ as 0.05 for MOPED and make DNN into BNN. In case of
FP-BMA (MCMC), we just set pre-trained weight as initialization and run experiments. After getting
prior distribution, we search three hyperparameters: learning rate, γ, and α. The hyperparamter
tuning range included: learning rate in [1e-3, 5e-3, 1e-2, 5e-2], γ in [5e-3, 8e-3, 1e-2, 5e-2, 1e-1,
5e-1, 7e-1], and α in [1e-6, 1e-5, 1e-4, 1e-3]. We set weight decay as 5e− 4 for all backbones and
train the model over 150 epochs with early stopping. We fix β as 1e-8 for all experiments.

B.4 ALGORITHM OF FP-BMA

Training algorithm of FP-BMA with Bayesian transfer learning can be depicted as Algorithm 1. In
the first step, load a model pre-trained on the source task. Note that the pre-trained models do not
have to be BNN. Namely, it is capable of using DNN, which can be easier to find than pre-trained
BNN. Second, change the loaded DNN into BNN on the source or downstream task. Every BNN
framework, containing VI, SWAG, LA, etc., can be adopted to make DNN into BNN. This study
mainly employs PTL (Shwartz-Ziv et al., 2022) and MOPED (Krishnan et al., 2020) for this step.
We can skip this second step if you load a pre-trained BNN model before. Third, train the subnetwork
of the converted BNN model with the proposed flat-seeking seeking optimizer. It allows model to
converge into flat minina efficiently.

Algorithm 1 FP-BMA with Bayesian Transfer Learning

Require: Variational parameter θ, Neighborhood size γ, Epochs E, and Learning rate ηFP-BMA
1) Load pre-trained DNN
2) Make pre-trained DNN model into BNN qpr

θ (w|Dpr) and set as prior
for t = 1, 2, ..., E do

3-1) w ∼ qθ(w|Dft) ▷ Sample weight from posterior
3-4) Forward and calculate the loss l(θ) with the sampled w
3-5) Backward pass and compute ∇θ log pθ(w|D)

3-6) Compute F−1
θ (θ) = ∇θ log pθ(w|D)∇θ log pθ(w|D)T

∥∇θ log pθ(w|D)∥4

3-7) Compute the perturbation ∆θFP-BMA = γ Fθ(θ)
−1∇θl(θ)√

∇θl(θ)TFθ(θ)−1∇θl(θ)

3-8) Compute gradient approximation for the FP-BMA ∇θlFP-BMA(θ) =
∂l(θ)
∂θ |θ+∆θFP-BMA

3-9) Update θ → θ − η∇θlFP-BMA(θ)
end for

B.5 EFFICIENCY OF FP-BMA WITH BAYESIAN TRANSFER LEARNING

Table 10: Efficiency of FP-BMA with
Bayesian Transfer Learning.

Method Optim Num. of Tr Param.

DNN
SGD p
SAM p

FSAM p

SWAG SGD p
F-SWAG SAM p

VI bSAM p
MOPED SGD 2p

E-MCMC SGLD 2p
PTL SGLD p

FP-BMA FP-BMA (K + 2)p1

BNN often struggles with high computation and mem-
ory complexity, which makes optimizing large-scale BNN
hard. However, FP-BMA only optimizes the last (classi-
fier) and normalization layer, which only requires vector-
sized learnable parameters. Table 10 provides the scala-
bility of FP-BMA and baselines in the fine-tuning stage
given pre-trained model. FP-BMA only requires fewer
learnable parameters since p1 ≪ p and low rank K are
even fewer than DNN, where p1 denotes the number of
parameters in normalization and last layers. It only needs
1% of learnable parameters compared to other methods in
case of RN18 and ViT-B/16. FP-BMA efficiently adapts
the model in a few-shot setting.

23

Published as a conference paper at ICLR 2025

B.6 FINE-GRAINED IMAGE CLASSIFICATION

In addition to classification accuracy, FP-BMA shows superior performance compared to the baseline
in NLL metric, indicating that FP-BMA effectively quantifies uncertainty.

Table 11: Downstream task NLL with RN50 and ViT-B/16 pre-trained on IN 1K. FP-BMA (SWAG)
denotes using SWAG to convert pre-trained model into BNN. Bold and underline denote best and
second best performance each. FP-BMA demonstrates superior performance across all 16-shot
datasets, including EuroSAT , Oxford Flowers, Oxford Pets, and UCF101.

Backbone RN50 ViT-B/16

Method EuroSAT Oxford Flowers Oxford Pets UCF101 Avg EuroSAT Oxford Flowers Oxford Pets UCF101 Avg

SGD 0.416±0.043 0.265±0.010 0.367±0.008 1.331±0.024 0.595±0.010 0.573±0.044 0.361±0.027 0.385±0.044 1.246±0.044 0.641±0.020

SAM 0.376±0.003 0.190±0.001 0.344±0.014 1.157±0.035 0.517±0.005 0.522±0.023 0.276±0.029 0.287±0.022 1.140±0.034 0.556±0.020
SWAG 0.343±0.046 0.264±0.011 0.367±0.007 1.347±0.022 0.580±0.009 0.547±0.021 0.361±0.027 0.366±0.010 1.286±0.045 0.640±0.006

F-SWAG 0.301±0.039 0.190±0.002 0.351±0.010 1.186±0.034 0.507±0.008 0.514±0.018 0.276±0.033 0.297±0.030 1.234±0.031 0.580±0.017

MOPED 0.481±0.100 0.347±0.019 0.388±0.007 1.367±0.029 0.646±0.028 0.484±0.018 0.354±0.025 0.309±0.015 1.180±0.028 0.582±0.017

PTL 0.319±0.006 0.307±0.010 0.360±0.015 1.391±0.036 0.594±0.010 0.493±0.012 0.616±0.066 0.381±0.008 1.670±0.050 0.790±0.013

FP-BMA 0.297±0.038 0.147±0.037 0.339±0.023 1.113±0.009 0.474±0.023 0.455±0.006 0.219±0.037 0.272±0.006 1.071±0.036 0.504±0.012

B.7 PERFORMANCE UNDER DISTRIBUTION SHIFT

We adopt the corrupted dataset CIFAR10/100C to test the robustness over distribution shift. The
corrupted dataset transform the CIFAR10/100-test dataset, which has been modified to shift the
distribution of the test data further away from the training data. It contains 19 kinds of corrupt
options, such as varying brightness or contrast to adding Gaussian noise. The severity level indicates
the strength of the transformation and is typically expressed as a number from 1 to 5, where the
higher the number, the stronger the transformation. In Figure 4, our method ensures relatively robust
performance in the data distribution shift, even as the severity increases.

Figure 4: NLL performance of ResNet 18 and ViT-B/16 on corrupted CIFAR10 and CIFAR100,
respectively (Hendrycks & Dietterich, 2019).

We also provide the detailed results of three repeated experiments with corrupted sets.

24

Published as a conference paper at ICLR 2025

(a) RN18 CIFAR10C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 49.57±0.97 1.49±0.02 45.78±1.43 1.62±0.04 43.78±1.44 1.69±0.04 40.83±1.59 1.80±0.06 36.30±1.79 1.96±0.08

SAM 50.23±2.11 1.62±0.07 46.56±2.00 1.76±0.03 44.59±2.26 1.83±0.03 41.85±2.42 1.94±0.04 37.33±2.52 2.12±0.07

FSAM 48.76±4.00 1.63±0.03 45.11±3.91 1.78±0.01 42.94±3.88 1.87±0.03 40.06±3.85 2.00±0.08 35.70±3.50 2.20±0.12

SWAG 50.05±0.76 1.55±0.09 46.31±1.16 1.70±0.11 44.17±1.07 1.78±0.11 41.20±1.13 1.90±0.13 36.64±1.26 2.09±0.15

F-SWAG 51.37±1.08 1.49±0.05 47.35±0.71 1.64±0.04 45.16±0.66 1.72±0.06 42.01±0.57 1.85±0.06 37.27±0.64 2.03±0.07

bSAM 49.20±2.40 1.46±0.05 45.35±1.93 1.57±0.04 43.07±2.10 1.63±0.04 40.12±1.74 1.71±0.03 35.50±1.36 1.84±0.02

VI 50.72±0.80 1.58±0.11 46.87±0.32 1.74±0.11 44.52±0.39 1.85±0.12 41.38±0.29 2.00±0.12 36.73±0.17 2.20±0.10

E-MCMC 49.86±1.54 1.49±0.03 46.17±1.55 1.60±0.04 44.07±1.72 1.67±0.07 41.05±1.65 1.77±0.10 36.53±1.74 1.91±0.13

PTL 50.44±1.65 1.45±0.06 46.22±1.96 1.58±0.09 44.06±1.67 1.65±0.09 41.02±1.66 1.75±0.11 36.14±1.51 1.91±0.13

FP-BMA 58.53±0.75 1.19±0.02 53.72±0.70 1.33±0.00 50.61±0.84 1.42±0.01 46.76±1.15 1.55±0.03 40.70±1.34 1.75±0.05

(b) RN18 CIFAR100C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 36.01±0.86 2.55±0.06 31.81±0.73 2.79±0.06 29.75±0.57 2.91±0.04 26.73±0.25 3.11±0.02 22.20±0.08 3.40±0.00

SAM 37.94±0.52 2.46±0.02 33.57±0.50 2.69±0.03 31.46±0.67 2.82±0.03 28.19±0.75 3.02±0.05 23.32±0.69 3.33±0.06

FSAM 36.46±0.44 2.53±0.05 32.24±0.36 2.77±0.04 30.19±0.42 2.90±0.03 27.12±0.37 3.10±0.02 22.48±0.39 3.42±0.01

bSAM 36.20±0.59 2.73±0.03 32.48±0.34 2.99±0.03 30.66±0.33 3.12±0.02 27.94±0.14 3.32±0.05 23.66±0.29 3.66±0.06

SWAG 35.84±5.17 2.62±0.30 32.43±4.55 2.81±0.27 30.71±4.21 2.89±0.25 28.13±3.81 3.05±0.22 24.24±2.99 3.29±0.17

F-SWAG 37.10±0.60 2.49±0.03 32.84±0.62 2.72±0.03 30.59±0.72 2.86±0.04 27.43±0.91 3.06±0.06 22.74±0.93 3.38±0.08

VI 38.20±0.57 2.47±0.02 33.77±0.59 2.71±0.03 31.70±0.75 2.83±0.03 28.56±0.77 3.03±0.04 23.72±0.78 3.33±0.05

E-MCMC 36.49±0.89 2.57±0.06 32.25±0.76 2.83±0.06 30.22±0.63 2.97±0.05 27.17±0.38 3.19±0.03 22.54±0.27 3.54±0.01

PTL 36.43±0.35 2.53±0.03 32.24±0.40 2.76±0.03 30.20±0.42 2.87±0.03 27.17±0.55 3.06±0.04 22.56±0.54 3.36±0.05

FP-BMA 39.41±0.72 2.44±0.04 35.07±0.64 2.70±0.05 32.75±0.71 2.86±0.05 29.41±0.67 3.10±0.05 24.25±0.70 3.44±0.05

(c) VIT-B/16 CIFAR10C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 79.62±0.56 0.64±0.06 76.47±0.67 0.73±0.06 74.10±0.83 0.79±0.05 70.42±1.23 0.90±0.05 64.41±1.85 1.08±0.05

SAM 79.78±0.49 0.61±0.01 76.59±0.64 0.70±0.02 74.58±0.94 0.75±0.02 71.12±1.06 0.86±0.03 65.26±1.46 1.03±0.04

FSAM 79.87±0.83 0.62±0.02 76.78±0.78 0.70±0.02 74.70±0.60 0.76±0.01 71.29±0.49 0.86±0.01 65.53±0.56 1.03±0.03

bSAM 78.80±1.18 0.64±0.04 75.43±1.14 0.74±0.04 73.45±1.43 0.80±0.04 70.07±1.50 0.91±0.05 64.21±1.57 1.09±0.05

SWAG 76.58±1.69 1.21±0.04 73.45±1.98 1.25±0.04 71.20±2.18 1.29±0.04 67.54±2.46 1.35±0.04 61.65±2.82 1.44±0.04

F-SWAG 81.03±2.20 0.60±0.05 77.73±2.63 0.69±0.06 75.45±2.96 0.76±0.07 71.82±3.31 0.87±0.08 66.05±3.59 1.03±0.10

E-MCMC 78.91±2.31 0.65±0.08 75.78±2.36 0.74±0.08 73.94±2.56 0.79±0.09 70.66±2.63 0.89±0.10 65.07±2.77 1.06±0.11

PTL 76.26±2.46 0.74±0.06 72.36±2.41 0.83±0.06 69.61±2.46 0.90±0.07 65.47±2.52 1.01±0.07 59.04±2.26 1.18±0.06

FP-BMA 82.89±1.09 0.53±0.04 79.68±1.26 0.62±0.04 77.30±1.43 0.69±0.05 73.41±1.62 0.81±0.06 66.94±1.79 1.01±0.07

(d) VIT-B/16 CIFAR100C

Method
Severity

1 2 3 4 5

ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓ ACC ↑ NLL ↓
SGD 62.19±0.52 1.42±0.02 57.81±0.37 1.61±0.02 55.04±0.14 1.73±0.02 50.73±0.24 1.93±0.01 44.12±0.39 2.24±0.01

SAM 61.90±0.53 1.47±0.02 57.49±0.43 1.65±0.02 54.80±0.29 1.76±0.01 50.52±0.25 1.96±0.01 44.04±0.24 2.26±0.01

FSAM 61.70±0.52 1.47±0.02 57.16±0.44 1.65±0.02 54.46±0.37 1.77±0.02 50.11±0.39 1.97±0.01 43.53±0.42 2.28±0.01

bSAM 62.36±0.73 1.40±0.03 57.97±0.70 1.58±0.03 55.32±0.61 1.70±0.03 51.09±0.49 1.90±0.03 44.77±0.42 2.21±0.03

SWAG 59.19±0.90 2.00±0.03 55.45±0.88 2.12±0.03 53.34±0.94 2.19±0.03 49.44±0.81 2.33±0.03 43.71±0.93 2.53±0.03

F-SWAG 59.55±2.94 1.49±0.11 55.10±2.82 1.70±0.10 52.37±2.80 1.82±0.10 48.18±2.63 2.04±0.09 41.84±2.43 2.37±0.09

E-MCMC 62.28±0.47 1.40±0.02 57.84±0.46 1.59±0.02 55.14±0.29 1.71±0.02 50.87±0.21 1.91±0.02 44.49±0.13 2.22±0.02

PTL 61.84±0.33 1.47±0.02 57.36±0.22 1.66±0.02 54.47±0.08 1.78±0.01 50.03±0.23 1.98±0.01 43.34±0.36 2.29±0.01

FP-BMA 63.91±0.02 1.33±0.00 59.70±0.00 1.51±0.00 57.00±0.01 1.63±0.00 52.51±0.03 1.84±0.00 45.39±0.04 2.18±0.00

25

Published as a conference paper at ICLR 2025

B.8 LOSS SURFACE OF SAMPLED MODEL

(a) seed 1

(b) seed 2

(c) seed 3

(d) seed 4

Figure 6: Four instances of sampled weights, including (b) as presented in Figure 3. Across all plots,
it is consistently observed that FP-BMA converges to a flatter loss surface compared to PTL.

As shown in Figure 3, we sampled four model parameters from the posterior, which were trained
on CIFAR10 with RN18. It shows the consistent and robust trend of flatness of FP-BMA in the
loss surface. In Figure 6, commencing with the leftmost panel, a 3D surface plot illustrates the loss
surface, revealing the FP-BMA model’s comparatively flatter topology against the PTL model. This
initial plot intuitively demonstrates that the FP-BMA model exhibits a flatter loss surface compared to
the PTL model. Following this, the second visualization compresses the information along a diagonal
plane into a 1D scatter plot. This transformation reveals areas obscured in the 3D view, highlighting
that FP-BMA maintains a considerably flatter and lower-loss landscape. The third and fourth images
showcase the loss surface through 2D contour plots, from which one can easily discern that the area
representing the lowest loss is significantly more expansive for FP-BMA than for PTL.

26

	Introduction
	Preliminary
	Bayesian Neural Networks
	Flatness and Optimization

	Flatness Does Matter For Bayesian Model Averaging
	Need for Flatness in BMA
	Insufficient Flatness of BMA

	Bayesian Model Averaging with Flat Posterior
	Flat Posterior-aware Optimizer
	Flat Posterior-aware Bayesian Transfer Learning

	Experiments
	Learning from scratch
	Bayesian Transfer Learning
	Robustness on Distribution Shift
	Flatness Analysis

	Related Works
	Flatness and BNN
	Bayesian Transfer Learning

	Conclusion
	Proof and Derivation
	Proof of Theorem 1
	Derivation of Bayesian Flat-Seeking Optimizer
	Setting
	Objective function
	Optimization

	Experiments
	Learning From Scratch
	FP-BMA with diverse BNN frameworks
	Hyperparameters for Experiments

	Few-shot Image Classification with Bayesian Transfer Learning
	FP-BMA with diverse BNN frameworks

	Hyperparameters for Experiments
	Algorithm of FP-BMA
	Efficiency of FP-BMA with Bayesian Transfer Learning
	Fine-Grained Image Classification
	Performance under Distribution shift
	Loss Surface Of Sampled Model

