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ABSTRACT

One way to increase confidence in the outputs of Large Language Models (LLMs)
is to support them with reasoning that is clear and easy to check — a property
we call legibility. We study legibility in the context of solving grade-school math
problems and show that optimizing chain-of-thought solutions only for answer
correctness can make them less legible. To mitigate the loss in legibility, we propose
a training algorithm inspired by Prover-Verifier Game from Anil et al. (2021). Our
algorithm iteratively trains small verifiers to predict solution correctness, “helpful”
provers to produce correct solutions that the verifier accepts, and “sneaky” provers
to produce incorrect solutions that fool the verifier. We find that the helpful
prover’s accuracy and the verifier’s robustness to adversarial attacks increase over
the course of training. Furthermore, we show that legibility training transfers to
time-constrained humans tasked with verifying solution correctness. Over course
of LLM training human accuracy increases when checking the helpful prover’s
solutions, and decreases when checking the sneaky prover’s solutions. Hence,
training for checkability by small verifiers is a plausible technique for increasing
output legibility. Our results suggest legibility training against small verifiers as a
practical avenue for increasing legibility of large LLMs to humans, and thus could
help with alignment of superhuman models.

1 INTRODUCTION

As machine learning systems become increasingly powerful and find applications in high-stakes areas,
ensuring their outputs are trustworthy and understandable becomes crucial. One approach to building
trust is requiring systems to produce legible explanations—outputs that can be fully understood and
verified by humans or other trusted systems.

In this paper, we investigate whether we can make the outputs of capable Large Language Models
(LLMs) more legible to humans. One direct approach is to optimize model outputs for legibility
via human feedback (e.g., RLHF; Christiano et al. 2017), which has its limitations (Casper et al.,
2023). We study a complementary approach, and ask whether optimizing larger LLM provers to
produce Chain-of-Thought (CoT) solutions checkable by smaller LLM verifiers makes them more
legible to humans. We propose a novel approach: optimizing larger LLM "provers" to produce
Chain-of-Thought (CoT) solutions that are checkable by smaller LLM "verifiers," with the hypothesis
that this will improve legibility to humans. Our key motivations for using smaller verifiers as proxies
for humans include: (1) scalability compared to direct human feedback, (2) the ability to study
legibility as a function of the capability gap between prover and verifier, and (3) the potential to
incrementally aid human legibility when direct human feedback is limited for advanced systems.

We define checkability through two properties:

1. Completeness: The prover generates correct solutions that the verifier accepts.
2. Soundness: The verifier rejects incorrect solutions from adversarial provers.

To achieve checkability, we propose an iterative algorithm inspired by the Prover-Verifier Game
(PVG; Anil et al. 2021). Our method alternates between training a verifier to predict solution
correctness and optimizing a prover using reinforcement learning to produce convincing solutions,
conditioned on either a "helpful” or "sneaky" role.
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Figure 1: Key result. Optimizing for solution correctness leads to high accuracy, but poor legibility.
Initialization (pretrained on a variety of human-written math derivations) has higher legibility, but
worse accuracy. Our proposed method retains high legibility with an accuracy in between the
initialization and the correctness-only baseline. The resulting trade-off illustrates a legibility tax.
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Shawna's father is five times as old as Shawna. j

Shawna's father is five times as old as Shawna.
Shawna is currently three times as old as Aliya. If
Aliya is 3 years old, how old is Shawna's father?

Shawna's father is five times as old as Shawna.
Shawna is currently three times as old as Aliya. If
Aliya is 3 years old, how old is Shawna's father?

Shawna is currently three times as old as Aliya. If
Aliya is 3 years old, how old is Shawna's father?

(e itc

It follows that Shawna is currently $3*2 = 98 years First we need to determine the age of Aliya. From the
old. problem description, it says that Aliya is 3 years old.

We start by calculating the age of Aliya.

It says that Aliya is 3 years old

Subsequently this implies that Shawna's father is
currently $9 \cdot 5 = 45$ years old.

Then we need to determine the age of Shawna. From
the problem description, we know that Shawna is
currently three times as old as Aliya, so the age of
Shawna is 3 times 3, or <<3 * 3 = 9>>9.

Then, we need to calculate Shawna's current age.

Shawna is currently three times as old as Aliya.
Thus, Shawna's current age is 3*3 = <<3*3=9>>9.

Answer: 45

Next, we need to determine Shawna's father. The

problem states that Shawna's father is five times as
old as Shawna. Therefore, the age of Shawna's
father becomes 5 times 9, or <<5 * 9 = 45>>45.

Answer: 45

Now we need to calculate Shawna's father's age.

Shawna's father is five times as old as Shawna.
Therefore, Shawna's father's age is 5* 9 =
<<5*9=45>>45,

Therefore Shawna's father's age is 45.

Answer: 45

Figure 2: Checkability training produces legible and well structured solutions. Three sample
solutions produced by the helpful prover from different rounds of checkability training.

We demonstrate our approach in the domain of grade-school math problems (Cobbe et al., 2021),
showing that:

* Direct optimization for correctness leads to high performance but poor legibility (Fig. 1,
Fig. 4, and Sec. 4.1).

* The resulting verifiers show increasing robustness over training rounds (Fig. 5, Fig. 6, and
Sec. 4.3.1).

* The helpful prover produces increasingly legible solutions, as judged by humans (Fig. 8 and
Sec. 4.3.3).

 The sneaky prover generates increasingly subtle flaws, challenging both verifiers and humans
(Fig. 7 and Sec. 4.3.2).

Our results suggest that training for checkability by smaller verifiers is a promising technique for
increasing the legibility of large LLM outputs to humans. This approach could help with the alignment
of superhuman models in scenarios where direct human oversight becomes challenging.

2 RELATED WORK

Prover-Verifier Games, Computational Complexity. Our approach builds on verification proto-
cols for NP problems (Micali, 2000) and interactive proofs (Babai, 1985; Goldwasser et al., 2019).
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While previous work (Anil et al., 2021; Wildchen et al., 2024; Amit et al., 2024) applied these
concepts to PAC learning and alignment in toy settings, we extend this to training legible LLMs in
non-trivial domains. PVG is also similar to the Actor-Critic framework in reinforment learning (Wit-
ten, 1977; Barto et al., 1983), where the critic is trained to predict the value of an action and the actor
learns an optional policy.

Scalable oversight. The central hypothesis that discrimination is easier than generation is common
to many scalable oversight methods (Bowman et al., 2022) including critiques (Saunders et al., 2022;
McAleese et al., 2024) and debate (Irving et al., 2018). Parrish et al. (2022) showed negative results
for improving time-limited human judge accuracy though human debate. Previous works have also
studied using LL.Ms as judges or debaters, although they differ on whether ground truth labels are
available for training. Our setup is similar to single-turn simultaneous debate where the helpful and
sneaky provers try to convince the model judge of different answers, assuming that some ground
truth labels is available for improving both the provers and the verifier. Similarly, using supervised
training, Radhakrishnan (2023) trained model debaters and judges and showed that the optimization
makes the debaters more convincing and the judges more accurate. Michael et al. (2023) showed that
debate works better than consultancy (showing the argument from a helpful prover half the time and
sneaky half the time) for human judges. In our setup the judge does not see both sides at the same
time, so it is more similar to the consultancy approach. Khan et al. (2024) showed that LLMs trained
using persuasiveness signal only (no ground truth labels) can help both non-expert model and human
judges. All of those works mainly use the QUALITY dataset (Pang et al., 2022), where the task is
question-answering about a fictional story, so the justifications mainly consistent of verified quotes
from the text. In contrast, we focus on a less artificial, more challenging reasoning domain where the
difference between provers and verifiers isn’t privileged information but capability gap.

Chain-of-Thought. Prompting LLMs to produce Chain-of-Thought (CoT) solutions is useful for
boosting accuracy (Wei et al., 2022) and CoTs can be used as natural justifications for the final
answer. However, CoTs are not guaranteed to be legible a priori and our checkability training is
one way to train CoTs to be more legible. Many works guide the model to produce a specific type
of structured CoT, such as task decomposition (Christiano et al., 2018; Radhakrishnan et al., 2023;
Wen et al., 2024), recursive summarization (Wu et al., 2021), and symbolic reasoning (Lyu et al.,
2023). Lightman et al. (2024) use expensive step-wise human supervision to train models that can
solve math. In contrast, we do not enforce any output structure, and rely solely on final answer
supervision. Our checkability training method is general and can be readily studied in any domain
where we have some ground truth labels. Legibility emerges as a natural consequence of the training
dynamics (Figure 2).

Explainability Explainability (Zhao et al., 2024; Wu et al., 2024) tries to give an account of the
prover model’s reasoning, i.e. how it derived as the final answer. The resulting explanations can be
arbitrarily complex (Nanda et al., 2023). In contrast, legibility of a prover model’s output allows
to verify if a given solution is correct, ignoring how the prover reasoned about it. Consequently,
legibility requires model outputs that are coherent and accessible to human understanding (Rudin,
2019). It is possible to have either without the other, but especially in high-stakes settings correctness
is more important than understanding (Ziegler et al., 2022).

Adversarial Robustness. Our checkability training relates to adversarial training in neural net-
works (Szegedy et al., 2013; Biggio et al., 2013; Elsayed et al., 2018; Carlini et al., 2019). We
demonstrate that our approach improves verifier robustness against various attacks, contributing to
the broader goal of creating more reliable Al systems.

Legibility in Applications. We build on prior work studying legibility in various contexts, such
as robotics and coding (Dragan et al., 2013; Oliveira et al., 2020; Wen et al., 2024). Our focus on
solution correctness in time-limited settings offers a specific, practical measure of human legibility.
By addressing these interconnected areas, our work aims to advance the development of trustworthy
and understandable Al systems, particularly in scenarios where direct human oversight may be
challenging.
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Figure 3: Schematic illustrating the legibility problem. A poorly aligned, superhumanly capable
Al might produce highly efficient code that sacrifices legibility for conciseness or performance. Code
is slightly adapted from the bitonic sorter for parallelized sorting of elements in a list (Wikipedia
contributors, 2023).

3 SETUP

We consider a dataset of problems with ground truth answers (z,y) € X’ x ), where x is a problem
statement and y(x) is the unique correct answer. For a proposed solution z, 1 corect (2, 2) indicates
correctness. We use a SymPy grader (Meurer et al., 2017) for evaluating grade-school math (GSM)
problems.

3.1 CHECKABILITY AND THE PROVER-VERIFIER GAME

Our framework involves a prover 7(z|z) from model family H generating solutions and a verifier
v(z, z) € [0, 1] estimating solution correctness. We define checkability through two properties:

» Completeness: Vz € X, Lcorect (2, 7(2)) = v(z,7(2)) =1
* Soundness: V7' € H,Vx € X, Leoeet (7, 7' (2)) =0 = v(z,7'(z)) =0

In practice, we seek approximate completeness and soundness, comparing verifiers’ soundness via
their ranking on various attacks.

We formulate checkability training as a two-player game between a role-conditioned prover 7 (helpful
h(z) or sneaky s(x)) and the verifier v. The verifier’s utility and prover’s reward are defined as:
1 1

RV = *iEwaxl(U(Iv h(l‘)), ]lcorrect ('T> h(l‘))) - iEmexl(v(Iv S(I))v 1100”601 (‘T’ S(I)))

1 1
RP = i]EmNPXT(rU('Ia h(x))v ]lcorrect (Ia h(l’))) + iEszXT(v(Ia 5(:17))7 1- ]lcorrect (1’, S(ZL‘)))
where (v, q) satisfies conditions to prioritize role-aligned solutions (see Appendix A.1) and [(v, c) :
[0,1] x {0,1} — Ris a loss function minimized if and only if v = c.

We establish a connection between the prover-verifier game and checkability as defined above:

Theorem 1. Assuming H is the set of all deterministic mappings from X to Z, in the PVG where
verifier’s utility is Ry and the prover’s utility is Rp, the existence of a verifier-leading Stackelberg
equilibrium (v’h’s) is necessary and sufficient for the completeness and soundness properties to hold

Sor (vT™*).
The proof is provided in Appendix C.
3.2 CHECKABILITY TRAINING

We implement checkability training using models from the GPT-4 family (Achiam et al., 2023). In
particular, we leverage an augmented version of the GSM dataset (Cobbe et al., 2021) with 100k
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Figure 4: Learning from a binary grader leads to strong performance, but poor legibility. a
Model accuracy as a function of RL training steps. The pronounced drop at 8k steps is due to solutions
reaching the maximum completion length. b Mean accuracy of time-constrained human contractors
when evaluating solutions from the initialization (e), after 3k steps (A), or 7k steps (). ¢ Mean time
required by the time-constrained human contractor to correctly label solutions. d Mean accuracy
of contractors per solution as a function of model accuracy on the same solution for solutions from
the initialization (grey), the prover after 3k steps (dashed blue), or 7k steps (solid blue). For each
experiment, we separate data into quartiles according to the model accuracy before averaging. See
Appendix K for details on the experiment set-up.

additional synthetic examples generated by ChatGPT. The checkability training occurs over multiple
rounds, where each round consists of a verifier and a prover training phase. We randomly partitioned
the training dataset D into two equally-sized subsets D, and Dy, that are used for training the prover
« and the verifier V' respectively.

During verifier training, we minimize a regularized comparison loss (Bradley & Terry, 1952),
EwNDV [Ezl,zzwﬂ* - 1Og0 [(V(x, zl) - V(l‘, 2:2)) ' Sign(ﬂcorrect (Zl) — Leorrect (22))] +AE, V(-T; 2)2] 5

where V(z,z) € R is a scoring function and not restricted to range [0, 1] like the theoretical
formulation. o is the sigmoid function, A is a scaling constant, and the prover 7* used for sampling
solutions for verifier training is a mixture of an initial base prover and previous round provers,
each balanced to have equal number of correct and incorrect solutions. The first term is the reward
modeling objective that maximizes log likelihood of correct solutions being ranked higher than
incorrect solutions under the Bradley-Terry model, similar to Ouyang et al. (2022). The second term
is a regularizer that is meant to center V' at 0.

During the prover training phase, we use Proximal Policy Optimization (PPO Schulman et al. 2017)
to maximize expected reward minus a small KL regularization towards the initialization,

Emeﬂ,rolew{helpful, sneaky},zwﬂ(~\w,role)R(Z | x,role). (D

4 RESULTS

4.1 BASELINE: DIRECT OPTIMIZATION FOR CORRECTNESS

We establish a baseline by training the prover model to optimize solely for correctness using PPO
against a binary grader Havrilla et al. (2024). This approach achieves strong performance on grade-
school math problems (Fig. 4a), but leads to solutions that become increasingly difficult for humans
to evaluate.

To quantify this effect, we conducted a human evaluation study with time-constrained contractors
judging the validity of solutions from different training stages. While contractors could reliably
evaluate solutions from the prover’s initialization, their accuracy and speed deteriorated significantly
when assessing solutions from the trained prover (Fig. 4b,c). This decrease in human legibility is
most pronounced for questions the model struggles to solve consistently (Fig. 4d).
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Figure 5: Dynamics of the prover training phase across rounds for one pair of verifier and
prover. Mean verifier score of correct (solid) and incorrect (dashed) solutions (a) and accuracy (b) as
a function of RL training steps, for subsequent rounds (columns) and for the helpful (red) or sneaky
(brown) prover. Arrow indicates increasing number of steps before the accuracy of the sneaky prover
drops below 10%. We early stop when sneaky incorrect solutions become as convincing as helpful
correct solutions. This verifier is 10~2 the size of the prover. ¢ Average accuracy for the helpful (top)
and sneaky (bottom) provers as a function of the completed fraction of each round.

Inspection of the prover’s outputs reveals that solutions become longer and less coherent as training
progresses, often each question in multiple ways and later in training become largely unintelligible
(Appendix Fig. S3) despite still producing the correct answer.

This baseline demonstrates a critical challenge: as the model’s problem-solving accuracy improves,
the interpretability of its solutions decreases. Our findings highlight the need for training approaches
that balance performance with human legibility, especially in scenarios requiring oversight or collab-
oration between Al systems and humans.

4.2 DYNAMICS OF CHECKABILITY TRAINING

We investigate whether checkability training can improve performance while maintaining legibility,
focusing on results using the Signed Relative Convincingness (SRC; Eq. 3) reward, which proved
most effective for improving legibility.

Figure 5 illustrates the dynamics of prover training across rounds. Within each round, both sneaky
and helpful provers improve their convincingness to the verifier (Fig 5a). However, their accuracy
evolves differently: the helpful prover generally produces increasingly correct solutions, while the
sneaky prover’s accuracy decreases, eventually generating incorrect solutions that are as convincing
as the helpful prover’s correct ones (Fig 5b,c).

We explored these dynamics across various verifier sizes relative to the prover. The pattern holds
for verifiers ranging from 1073 to 10~-® times the prover’s compute. However, very small verifiers
(10~%) lead to unstable training and poor legibility, while verifiers matching the prover’s size (10°)
fail to become more robust over rounds (see Supplementary Figures S6 and S7). These outcomes
likely stem from fundamental limitations: extremely small verifiers may lack the capacity for effective
verification, while verifiers similar to provers may be too easily fooled by sneaky provers simulating
their decision process.

In summary, our checkability training demonstrates a characteristic dynamic where the helpful
prover improves at problem-solving while the sneaky prover finds it increasingly difficult to produce
convincing, incorrect solutions. This suggests that the approach can potentially balance performance
improvement with maintained legibility.

4.3 EVALUATIONS OF CHECKABILITY TO SMALLER VERIFIERS AND LEGIBILITY TO HUMANS

At the end of each round of checkability training, we obtain three artifacts:
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Figure 6: Verifiers increase in robustness as measured by difficulty of sneaky-only attacks and
balanced best-of-n accuracy a Number of steps until sneaky finds an exploit for the SRC (blue),
goodharting (orange), and CGC (green) adversaries as a function of verifier sizes. We declare an
attack ‘successful’ for the SRC and CGC adversaries when the sneaky becomes 95% incorrect and the
average verifier score of sneaky incorrect samples become as high as that of helpful correct samples
from the same round. We declare a goodharting adversary ‘successful’ when optimizing a prover on
the verifier score reaches accuracy < 0.2. b Fraction of correct solutions when selecting the most
convincing out of n balanced samples for varying n and different rounds. The solutions are from the
last checkpoints of current-round helpful provers, balanced to have 50% correctness.

1. a verifier trained on diverse adversarial examples,
2. asneaky prover that produces convincing, subtly incorrect solutions,

3. ahelpful prover that produces convincing, correct solutions.

In this section, we perform various evaluations of the soundness of verifiers and the legibility of
sneaky and correct solutions across rounds of training shown in Figure 5.

4.3.1 THE VERIFIER BECOMES MORE ROBUST THROUGHOUT CHECKABILITY TRAINING

A key aspect of legibility in our framework is the verifier’s ability to soundly evaluate adversarial
inputs from a sneaky prover of equal capability to the helpful prover. While we observe that the
sneaky prover requires increasingly many steps to discover convincing, incorrect solutions throughout
training (Fig. 5b), this could be due to weight sharing between the helpful and sneaky provers. To
address this, we conduct additional experiments with separately trained sneaky-only provers.

We performed three attacks with sneaky-only provers using the following reward functions:

1. the SRC reward (3) to ablate the effect of weight sharing between the helpful and the sneaky
prover.

2. the CGC reward (4) to test generalization of verifier soundness to different variations of
checkability training.

3. the goodharting reward (5) to straightforwardly test robustness to optimization for convinc-
ingness (Gao et al., 2023).

We apply these attacks to verifiers of different sizes across five rounds of checkability training. We
observe that the number of steps required for each adversary to find an exploit increases over rounds
and that larger verifiers are generally harder to exploit (Fig. 6a). In fact, verifiers of relative size 102
become unexploitable through PPO beyond round 0 within 8000 steps, while smaller verifiers (10~2)
remain vulnerable to some attacks until later rounds.

While these test attacks are not exhaustive, the increasing difficulty of exploitation suggests a general
improvement in verifier robustness. To further assess this, we evaluate the verifiers using balanced
best-of-n accuracy (Fig. 6b), where we analyze the correctness of the highest-scoring solution out of
n balanced samples. The improving performance at higher n and later rounds indicates that verifiers
become better at judging the helpful prover’s correctness, even when controlling for pass rates.
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Shawna's father is five times as old as Shawna. Shawna's father is five times as old as Shawna.
Shawna is currently three times as old as Aliya. If Shawna is currently three times as old as Aliya. I
Aliya is 3 years old, how old is Shawna's father? Aliya is 3 years old, how old is Shawna's father?

First we need to determine the age of Aliya. From the We are told that Shawna's father is five times as old
problem description, it says that Aliya is 3 years old. as Shawna.

Shawna is currently three times as old as Aliya.
Then we need to determine the age of Shawna. From So, if Aliya is 3 years old, then Shawnais 3* 5 =
the problem description, we know that Shawna is <<3*5=15>>15.

currently three times as old as Aliya, so the age of
Shawna is 3 times 3, or <<3*3=9>>9. And, we're asked to find how old is Shawna's father.

Shawna's father is five times as old as Shawna.

Next, we need to determine the father's age. It says So, the age of Shawna's fatheris 5* 15 =
that the father is five times as old as Shawna, so the <<5*15=75>>75.

age of the father becomes 5 times 9, which equals

<<5%9 =36>>36. Answer: 75

LUST

Figure 7: Flaws introduced by the sneaky prover become more localized and harder for time-
limited humans to spot. a Mean (circle) and minimum (triangle) validity score over portions of
correct (solid) and incorrect (dotted) solutions from the initialization (left) and from different rounds
of checkability training. b Mean accuracy of time-constrained human contractors when evaluating
solutions from the sneaky prover at different rounds of checkability training. This plot is from a
potentially flawed campaign (see Appendix K). ¢ Two examples of incorrect solutions with high
verifier score from different points of training. Flaws are highlighted in red. Note that for the second
example, the flaw is an incorrect translation of words into equations.

These results demonstrate that our checkability training process produces increasingly robust veri-
fiers, capable of better distinguishing correct from incorrect solutions across a range of adversarial
scenarios.

4.3.2 THE SNEAKY PROVER BECOMES INCREASINGLY SUBTLE THROUGHOUT CHECKABILITY
TRAINING

Having established the verifier’s increasing robustness, we now analyze the sneaky attacks that do
manage to fool the verifier.

While early-round sneaky solutions often contain obvious mistakes, later-round solutions feature
increasingly subtle flaws (Fig. 7c and Sup. Fig. S4). To quantify this evolution, we used GPT-4 to
assess the validity of small portions of sneaky solutions across training rounds (Fig. 7a). The results
show that while the minimum score remains low (indicating a detectable flaw), the average score
increases over rounds, suggesting improved overall soundness of the solutions.

We also investigated whether these increasingly subtle attacks transfer to human evaluators. Interest-
ingly, when time-constrained contractors assessed the sneaky solutions, their accuracy in correctly
labeling these solutions decreased throughout the rounds (Fig. 7b). This suggests that the sneaky
prover’s outputs become more challenging for humans to evaluate, mirroring the increased difficulty
for the verifier'.

These findings indicate that our checkability training produces a sneaky prover capable of generating
subtly flawed solutions that are non-trivial for both automated verifiers and time-constrained humans

'Fig. 7b is from a pilot study with potential design flaws (see Appendix K for details).
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Figure 8: Checkability training jointly increases model performance and legibility. a Mean
accuracy of the helpful prover at different rounds of checkability training. b,c Mean accuracy (b) and
time required to correctly label solutions (¢) of time-constrained human contractors when evaluating
solutions from the helpful prover at different rounds of checkability training.

to detect. This capability could potentially be leveraged for training more robust critique models in
future work.

4.3.3 THE HELPFUL PROVER BECOMES INCREASINGLY LEGIBLE THROUGHOUT
CHECKABILITY TRAINING

We now examine the helpful prover’s evolution across training rounds, focusing on both its accuracy
and the legibility of its solutions to human evaluators.

As checkability training progresses, the helpful prover’s accuracy improves (Fig 8a). Unlike the
correctness-only training approach, solutions from the helpful prover remain coherent throughout
training (Fig. 2), indicating effective use of verifier feedback to enhance problem-solving capabilities.

To assess human legibility, we conducted evaluations with time-constrained contractors. Results
show improvements in both the contractors’ mean accuracy in evaluating solutions (Fig. 8b) and the
time required for evaluation (Fig. 8c) as training advances. By the end of training, the helpful prover
matches the initialization’s legibility while achieving substantially stronger performance.

However, the helpful prover’s performance does not reach that of the correctness-only baseline
(Fig. 4), highlighting a tension between high performance and legibility (Leike, 2022). Potential
approaches to address this trade-off, such as separating the model’s chain-of-thought from proof of
correctness, are discussed in Appendix 5.1.

In summary, checkability training produces a helpful prover that generates increasingly correct and
legible solutions. This dual improvement is crucial for applications requiring human oversight and
collaboration with Al systems.

5 DISCUSSION

5.1 LIMITATIONS

Only domains that allow natural language justifications. We studied the math domain because
natural language explanations are common and often required for building trust in mathematical
conclusions. However, in some domains it is difficult to support conclusions with natural language ex-
planations. For example recognizing particular faces is easy for humans, but it’s hard to communicate
to others in natural language why a particular face belongs to a particular person.

Need for ground truth answers and reliance on generalization. One prerequisite for our setup
is being able to certify correctness of answers of solutions produced by the prover. For the grade
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school math domain we rely on having a training dataset of problems with known ground truth
answers (Cobbe et al., 2021). We anticipate this setup to be less relevant to domains where collecting
any ground truth is too hard or expensive. One possible approach in this case could be to hope for
favorable out-of-distribution generalization properties of legibility from solutions to problems with
known ground truth answers to other domains. We don’t study out-of-domain generalization in this
paper because we train on only one dataset, but we expect that training on a diverse set of domains
could potentially lead to good generalization from domains with ground truth labels to the domains
without labels (Burns et al., 2023).

Conflating the model’s chain-of-thought with legible solutions. By training the CoTs to be
legible, we potentially limited the provers’ accuracy. A better method could be training a first model
using CoT to maximize accuracy, and then training a second model to turn the CoT used to produce
the answer into a legible justification to humans. Hence, our measurement of accuracy-legibility
tradeoff may be overly pessimistic; the prover may be able to achieve legibility at less or no cost to
accuracy. For the correctness-only baseline, we could have early stopped at less accurate but more
legible checkpoint. However, we don’t know of a principled way to do early stopping for legibility.

Dataset diversity and difficulty. We conducted our empirical study on only one dataset (GSM).
The dataset is relatively easy and the solutions are quite standardized. Using ChatGPT to augment
this dataset could result in some incorrect labels, but based on preliminary data analysis we did not
see significant difference between verifier test accuracies trained on synthetic vs. real data. We would
like to extend the checkability training framework to harder math datasets and coding, as well as
fuzzier domains such as human preference data (Ouyang et al., 2022). Our method is fully general as
long as there is a finite set of final answer labels.

Initialization with human-written math derivations. Our prover initialization has relatively high
performance in GSM. We used a prover that has been lightly finetuned on a variety of math data
to learn the correct format, and the finetuning dataset contains some of the GSM trainset data. We
believe this doesn’t qualitatively affect our results and only makes it easier for the helpful prover
to produce correct answers. Figure S11 shows that initialization with a base model without math
finetuning leads to qualitatively similar training dynamics.

Heterogeneous experiment set-ups. We have different stopping criteria for different training
schemes presented throughout the paper. We trained the prover for a fixed number of RL steps in each
round for certain training schemes (4k steps in Fig. 6a, 5c, 8k steps in Fig. 4, 5c, S6, S7), whereas in
Fig. 5, S1, S2 we trained until early stopping criteria are met (the criteria are already discussed in
those section). We do not observe qualitative different between early stopping and non early stopping
rounds in our experiments.

Hyperparameters. We did not tune all hyperparameters thoroughly for all training schemes in
this paper. The main hyperparameter we tuned are the ratios of samples from each of the previous
rounds. We tuned the ratio for one verifier size (10~2) for the SRC reward based on whether training
robustness increases across rounds, and used the same ratio for other sizes with SRC and CGC
rewards, which could result in other training schemes being worse in robustness and legibility. We
separately tuned the ratio for one verifier size (10~3) for the iterative goodharting training. We
used the default ChatGPT post-training hyperparameters such as the optimizer, learning rate, or KL
regularization coefficient for prover and verifier training. 6 rounds of checkability training (Fig 5)
takes 2400 A100-40G GPU hours.

5.2 CONCLUSION

We presented a tension between model performance and solution legibility in a concrete setting of
judging grade-school math solutions, and proposed one way to address the tradeoff. Our results show
promising signs for establishing trust in LLM outputs even if they become more capable than humans
in the future. We hope to inspire future work on semi-supervised / unsupervised setups for improving
human judge legibility with few or no ground truth labels.

10
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A REWARD FUNCTIONS

A.1 REWARD FUNCTION CONDITION FOR THEOREM (1)

A reward function that prioritizes role-aligned solutions is a function (v, ¢) : [0,1] x {0,1} = R
that satisfies:

Yoy, vg € [0,1] : 7(v1, 1) > r(v,0),
Vur, vz € [0, 1], 01 > vg 1 7(v1, 1) > 7r(ve, 1), (2)

Here g € {0, 1} indicates that the correctness of the solution is role-aligned — it is 1 if the prover
is assigned to be helpful and the solution is correct, or the prover is assigned to be sneaky and the
solution is incorrect. The two assumptions on the prover reward functions above are: First, any role-
aligned solution gets higher reward than any role-misaligned solution; Second, for any role-aligned
solution, the prover gets higher reward when the verifier gives the solution higher score. In practice
we optimize Rp via reinforcement learning since we cannot differentiate with respect to the solution,
because it requires iterative auto-regressive sampling of LLM tokens, a non-differentiable operation.

A.2 REWARD FUNCTION VARIATIONS

We explore three reward variants, each designed to investigate different aspects of the prover-verifier
dynamics. The Signed Relative Convincingness (SRC) balances the importance of correctness and
convincingness. It’s designed to encourage the prover to produce solutions that are both correct (for
the helpful role) or incorrect (for the sneaky role) and convincing to the verifier. The Correctness-
Gated Convincingness (CGC) variant prioritizes role-alignment over convincingness. It’s meant to
explore whether strictly enforcing correctness for the helpful prover and incorrectness for the sneaky
prover leads to better overall performance and legibility. Finally, in the Iterative Goodharting setup,
both helpful and sneaky provers optimize solely for convincingness. This variant investigates the
robustness of the verifier against provers that are trying to maximize the verifier’s score without
regard for correctness, simulating a scenario where the prover might try to exploit weaknesses in the
verifier.

We experimented on three variants of R. We call the first reward variant the Signed Relative
Convincingness (SRC) reward. Given a problem , let the role indicator Lpejpsul (role) be 1 if the prover
is assigned to be helpful and O otherwise. Suppose conditioned on a role and z, the prover generated
a batch of solutions {zg,...,2p} ~ (- | x,role) with verifier scores {V (z, z9), ...,V (z, 2)}.
Since the scores are not normalized, we first batch-normalize the scores to mean 0, i,e. V'(z, z;) =

V(z,z) — (le’.:l V(z, z;))/b, and then set the reward as follows:

. —_ . J— . / . ] / .
Renc (2 | 2 10le) — (20 correct (@, 2) — 1) - (2L peipfur (role) — 1) - V' (x, 2;) if V (as., z;) >0
-1 otherwise
3)

Ignoring the verifier score range discrepancy, the first case is equivalent to setting (v, ¢) = v-(2¢—1),
i.e. when Legrect (@, 2i) = Lpeipfur (role), the reward equals the normalized verifier score, otherwise
it equals negative score. This case satisfies our assumptions (2) that any role-aligned solution has
higher score than any non-aligned one, and for any two role-aligned solutions, the one with higher
verifier score gets higher reward. However, the second case where any solution below average score
is directly assigned a score of -1 deviates from the theoretical formulation. The rationale for this case
is to prioritize convincingness over role-alignment. We show in section 4.2 that this is practically
useful for convergence.

The second reward variant that prioritizes role-alignment is the Correctness-Gated Convincingness
(CGC) reward:

V(ZL', Z) if llhelpful (1'016) = ﬂcorrecl (‘T; Z)
Vo otherwise

Rege(z | z,role) = { ()

where Vj is a constant that is practically lower than all verifier scores (we used -2 in our experiments).
This reward corresponds to (v, g) = qu + (1 — ¢) inf v which satisfies the reward assumptions (2)
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Supplementary Figure S1: Dynamics of the prover training phase with the CGC reward across
rounds. The average training verifier score (top), and the training prover accuracy for the helpful
and sneaky provers (bottom). The verifier is 10~ times the size of the prover in terms of pretraining
compute. The number of RL steps until sneaky incorrect become as convincing as helpful correct
decreases from round 1 to round 3 and increases from round 3 to round 5.

ignoring the discrepancy in verifier score range. Empirically, this reward leads to worse dynamics
than the SRC reward (Section A.3).

We also consider a setup that we call Iterative Goodharting where the helpful and sneaky provers
both use the following reward,

figoodharl(Z | -T) = V(xa Z) ©)

which means the reward encourages only convincingness, i.e. 7(v, ¢) = v. This version does not
satisfy assumptions (2) because r(v,0) = r(v, 1). The empirical results are in Section A.4.

We now investigate whether using the alternative rewards for prover training affects convergence as
well as legibility.

A.3 CHECKABILITY TRAINING WITH THE CORRECTNESS-GATED CONVINCINGNESS (CGC)
REWARD

The Correctness-Gated Convincingness (CGC) reward (4) prioritizes correctness (for the helpful
prover) and incorrectness (for the sneaky prover) over convincingness. When the helpful prover
produces incorrect answers (or the sneaky prover produces correct answers), the reward is set to a
constant penalty; otherwise it is the verifier score. In this section, we show that the CGC reward
empirically leads to worse training dynamics.

In each round of CGC reward training, we train the prover until the average verifier score of the
sneaky’s incorrect samples become as high as that of the helpful’s correct samples, and the sneaky
reaches low (< 5%) accuracy. Figure S1 shows the prover training dynamics — the number of RL
steps until the sneaky prover succeeds does not consistently increase over rounds. We observe that the
sneaky prover’s accuracy quickly decreases and the convincingness rises more slowly for the CGC
reward in comparison to the SRC reward. Our hypothesis is that in this case, the sneaky and helpful
players quickly exploits different modes with distinct styles, and hence there are obvious spurious
statistical clues that separates sneaky and helpful which won’t help the verifier learn the correctness
signal. See section E for more discussion. It is possible that we did not tune the hyperparameters
for the CGC reward optimally, or the verifier requires more rounds to become robust. We did not
perform human evaluation for the CGC reward training due to its worse training dynamics.
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Supplementary Figure S2: Iterative goodharting prover training dynamics across verifier sizes
10~% to 10°. Overoptimization happens later at higher rounds, with some degradation for one verifier
size (10~3). Larger verifiers lead to better maximum prover accuracy and reach better robustness in
fewer rounds.

Nevertheless, this alternative reward formulation serves as a strong attack for evaluating the robustness
of verifier trained using the SRC reward (Section 4.3.1).

A.4 ITERATIVE GOODHARTING TRAINING

We run an alternative training scheme where the prover does not have an assigned role. It is trained
with reward (5), which is just the verifier score. We call this the ‘goodharting’ baseline because
usually during Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), the
prover is directly optimized to maximize the score of a reward model. When the reward model is not
robust enough, it is easy to over-optimize so the prover overfits to the imperfect proxy reward. This
phenomenon is called ‘goodharting’ or ‘reward hacking’ (Gao et al., 2023; Skalse et al., 2022). The
verifier can learn from the incorrect and correct samples from the same prover.

In more details, for each round, we train the prover using PPO with reward (5) until its training
accuracy drops below 0.2. Next, we sample balanced correct and incorrect samples on the verifier
split of the training data for all prover checkpoints throughout PPO. The samples are then mixed into
the verifier training dataset for the next round. We still keep the total number of samples per problem
constant for training the verifier in each round.

Figure S2 shows the training dynamics. We early stop each round when the prover’s training accuracy
tanks below 0.2 on average in the last 80 RL steps. Across verifier sizes 10~4 to 10° of the prover,
the number of steps it takes for the prover to over-optimize generally increase. Up to size 10~2, the
larger the verifier is, the fewer number of training rounds it requires to reach perfect goodharting
robustness within 8k RL steps. Verifiers of medium size (3 x 10~3 ~ 1072) benefit most from the
iterative goodharting training, where as smaller (< 10~3) and larger (10°) verifiers benefit less. We
further evaluated the robustness of verifier trained using goodharting reward under attacks from the
SRC reward (3) and the alternative CGC reward (4), and the verifiers’ robustness go up sometimes
but not always (Figures S9a, S9b). The balanced best-of-n robustness increases (Figure S10).

However, when we showed the samples from the goodharting training to humans trainers, there
is no significant difference in human judge accuracy across rounds (Fig. S8), although Fig. S8 is
from a pilot study that has some design flaws (see Appendix K). Overall, our results on the iterative
goodharting training show that it increases verifier soundness to a certain extent, but we do not have
enough evidence showing that it improves human legibility.

B FUTURE WORK

We studied the setting in which correctness labels are available at training time for all problems. A
more realistic scenario is one where not all answers have a trusted final correctness label, in which
case the verifier would rely on unsupervised signals such as consistency (Wang et al., 2023) and
convincingness (Khan et al., 2024). Unsupervised methods for improving legibility are an important
future direction.
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Another direction is developing a method to turn an illegible solution into a legible one. The CoTs
that the model first uses to solve a problem are not legible to a smaller model per se but we could train
a translation model that turns the ‘scratch space’ CoT to a well-written proof. This approach might
be favorable over directly training the CoT to be legible since exerting any optimization pressure on
the CoT may limit prover performance as well as exacerbate deceptive alignment (i.e., the model
hiding its own intent) (Denison et al., 2024; Hubinger et al., 2024).

The training schemes we consider are adaptations of single-turn simultaneous games. With an
interactive tool such as ChatGPT, the verifier can interact with the prover in more rounds which
should increase the sample efficiency vastly based on complexity theory (Goldwasser et al., 2021).
An example of multi-turn prover game is a “mind-changing" game: for binary outcome predictions,
the prover maximally tries to convince the verifier that the answer is true / false alternatingly in
context. This is similar to the market-making proposal (Hubinger, 2020).

We mainly studied legibility to smaller models in this paper. However, legibility to humans is what
we eventually care about, so future work should more systematically study what type of assistance
better help humans judge the validity of large model solutions. We expect more extensive human
study to be fruitful.

C PROOF OF THEOREM 1 (VERIFIER-LEADING STACKELBERG EQUILIBRIUM
IS NECESSARY AND SUFFICIENT FOR COMPLETENESS AND SOUNDNESS)

We first make a few more mild assumptions. We restrict X’ to be the set of inputs where Px has
non-zero probability mass. We treat X as discrete for simplicity, although the same result can be
extended to continuous domain using measure theory. We remind the reader that z € X’ is the input,
v(x,z) : X x Z — [0,1] is the verifier, h(x), s(z) : X — Z are helpful and sneaky provers, and
Teorreet (€, 2) € {0, 1} is the indicator for the correctness of solution z given input x. We assume the
hypothesis class H is the set of all deterministic mappings from X — Z. We also assume that for
any x € X, there exists any least one correct solution and one incorrect solution in Z.

The verifier loss is
1 1
ly = gEml(U(xa h(l‘))7 Teorrect (x7 h(l’))) + i]Ewl('U($> S(l‘))7 Teorrect (xa S({L‘)))

where (v, ¢) is a loss function minimized if and only v = f (we assume without loss of generality
that (¢, ¢) = 0). The prover reward is

1 1
Rp = iErT(U(x» h(z)), Leoeet (2, h(2))) + iErT(U(xv 5(2)),1 = Leoreet (2, 8(2)))
where (v, q) satisfies:
Vi, vg € [0,1] : r(v1,1) > 7(v2,0),
Yy, vg € [0,1],v1 > vo : 7(v1,1) > r(vg, 1).
Define the completeness and soundness properties as follows

Fh st Vo € X, Leopreat (2, h(2)) = 1 and v(z, h(x))
Vs,V € X, z, Leoreet (7, 8(2)) =0 = v(z, s(x))

1.
0.

We prove that in the PVG where verifier’s utility is —[y- and the prover’s utility is R p, the existence of
a verifier-leading Stackelberg equilibrium (v*, h*, s*) is necessary and sufficient for the completeness
and soundness properties to hold for (v*, h*).

Proof. First, assuming that the completeness and soundness properties hold for v*, h*. We construct
s* as follows: For any z, let s* () be an arbitrary incorrect solution, i.e. s*(z) € {z | Lcomect (T, 2) =
0}. By the soundness property, we know that we will have v*(z, s*(z)) = 0 and Lcorrect (2, s*(x)) =
0 for all . We shall show that (v*, h*, s*) is a verifier-leading Stackelberg equilibrium. First, at
v = v*, the first term of Rp is already maximized since

1 * * * _ 1
iExr(v (z, h*(2)), Leorreet (z, K™ (2))) = iEzr(Ll)
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The second term is also maximized since

1 * * * _ 1
ilExr(v (2,8 (x)),1 — Leoreet (z, 8 ())) = iExr(O, 1)

and r(v’,0) < r(0,1) for any v' € [0, 1] hence the provers have no incentive to change. For the
verifier, it’s loss is at minimum since

1 1
ly = 3E:1(1,1) + 5E.1(0,0) = 0

so this is a Stackelberg equilibrium.

Next, assuming (v*, h*, s*) is any verifier-leading Stackelberg equilibrium. We already know that
the utility of the verifier is at its maximum at —[, (v*) = 0. Suppose the completeness property is not
satisfied, which means

3z, Leorreet (x, A*(x)) = 0 or v(x, h*(x)) = 0.

Suppose it is the first case, i.e. 3z, Leomeet (', h*(2’)) = 0. Then letting A’ to be identical to h*
except at ', where we pick an arbitrary correct solution b/ (x’) € {2 | Leomreet (', 2) = 1}. Then we
would have increased the first term of R p since

r(* (@', h* (@), Leorreet (2, 1 (') = r(v" (2, B*(2")), 0) < r(v™ (', B (2)), 1).

which contradicts Stackelberg equilibrium. Suppose it is the second case, i.e. 3z’, v* (2, h*(z)) =
0 but Teome (z/,h*(z")) = 1. Since Px has non-zero probability mass at z/,
Ex[l(v*(x, h* (), Leomect (x, h*(x))] > 0 which contradicts {,,(v*) = 0.

Suppose the soundness property is not satisfied, which means
s’ 2" Teoreet (27, 8’ (2')) = 0 and v* (2, s’ (2")) > 0.
Due to I,,(v*) = 0, s* has to satisfy
Va,v*(z, s*(x)) = Leomeet (2, s¥(x)) .

If s*(z') is such that Teopect (27, *(2')) = v*(2/, s*(2)) = 0, we can modify s* so that it outputs
the s’(z) at z = 2’ and then we would have increased R,, due to r(v’, 1) > r(0,1) when v’ > 0. If
s*(2') is such that Leopeet (2, s*(2')) = v*(2’, s*(2’)) = 1, switching to s’(z’) also increases R,
due to 7(v’, 1) > r(1,0) for any v’. Both of those scenarios contradict the assumption that s* is at
Stackelberg equilibrium.

We have proved by contradiction that (v*, h*) from any verifier-leading Stackelberg equilibrium
satisfies both completeness and soundness properties. O
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D SAMPLES FROM SEVERAL EXPERIMENTS

baseline: correctness training only - early

Shawna's father is five times as old as Shawna. Shawna is
currently three times as old as Aliya. If Aliya is 3 years old, how
old is Shawna's father?

©

First, we determine Shawna's age. Since Aliya is 3 years old, Shawna is 3 times as old as Aliya,
which means Shawna is 3 x 3 = <<3*3=9>>9 years old.

Next, we determine Shawna's father. Since Shawna's father is 5 times as old as Shawna,
Shawna's father is 5 * 9 = <<5*9=45>>45 years old.

Alternatively, since Shawna's father is 5 times Shawna, Shawna is 1/5 * father, which means
Shawna is (father/5). Since fathers are 5 times as old as Shawna, Shawna is 5 * Shawna = 9. So
Shawna = 1/5 times father. So Shawna = 45/5 = 9. Now, we have Shawna. We will show
Shawna is 45. If Shawna is 5, father is 5 times that. So Shawna is 5. Since Shawna is 5 times as
old, Shawna is 5 times that and 5 = 45. So Shawna is 9. Thus, father = 5 * 9. Since these go in a
circular way, we get the same two equations. Thus, 9/5 = father/5. Then we get 9 * 5 = father.
So Shawna's father is 45.

Since Shawna's father is 5 times as old as Shawna, we get the same results. Since Shawna is

currently 9, we get a different set of results from Shawna. So we get 9 = 45/5 = the wrong
answer. So Shawna's father is 45.

(.1

In the method, Shawna is 5 times as old as Shawna. Since Shawna is 5 times as old, we get the
same results. So Shawna is 5. We get 5 (we got a different set of results). We get 45. Since 9,
Shawna is 5. We get the same set of results. In all of these, we get results that we also get the
results in our methods. We get results that in this method. Thus, for any method, we get the
same method.

In method, we get 45.

"Once several methods are used, our methods are all the same.

In any case, Shawna father is 45 years old.

After Shawna's father is 5 times as old, Shawna is 45, we get Shawna is 9. Shawna's father is 9
So Shawna is 45 years old. Then Shawna is 45. So Shawna is 45 years old in each set.

In this method we get 1 times is 5, or the resulting expression. So Shawna's father is 45 is a
great marketing method."

Answer: 45

baseline: correctness training only - late

©

Brandon's iPhone is four times as old as Ben's iPhone. Ben's
iPhone is two times older than Suzy's iPhone. If Suzy's iPhone is 1
year old, how old is Brandon's iPhone?

First, we compute the age of Suzy's iPhone, which is 1 year.

Then we notice that Ben's iPhone is two times older than Suzy's iPhone. So, Ben's iPhone is 2 *
1 year = 2 years old.

Next, we notice that Brandon's iPhone is four times as old as Ben's iPhone. So, since Ben's
iPhone is 2 years old, Brandon's iPhone is 4 * 2 years = <<4*2=8>>8 years old.

[]

After deciding the method, we write a method with that one, but it is the same result in any
method or ways or combination. In addition, we add the same problem to our list of people.

We get the same number of ways as everyone else. We clarify the people we most like and
point out what is wrong.

For example, we can use the same methods for every two methods and ultimately find all and
only those methods to obtain the same methods and people on which we obtain the same
result in different ways.

It is a different conclusion but it is a step-by step functions. In the end, we are individually
implemented and analyzeMODEL.

In summary, the number of specific people that is simultaneously satisfied by the two_methods
as unique and the two methods as unique as similar and perfectly matching one the two_meth-
ods, as well as the one_methods, the same methods, the one_methods as we verified.

We verify that all three methods are equal and only the two methods.

But it is the same as two-is-we ( we are in a country where we are next to the bank. However,
on some days, we have two units in a town, but someone else is almost the same. However,

when one person is missing, the bank broke and he deals with it at 5%. However, we have such
a similar variation.

In turns, we have two methods and same, we get a different and identical conclusions after the
same.
Your answer was 8.

Answer: 8

Supplementary Figure S3: Learning from a binary grader leads to strong performance, but poor
legibility. Example solutions from early (left, 3k steps) and late (right, 7k steps) in training.
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round 0, late step

round 1, early step

John takes 3 exams in one day. He takes 45
minutes on the first exam, and the second exam
is twice as long as the first. If it took him a total
of 3 hours to finish all the exams, how many
minutes did he spend on the third exam?

Alex decides to sell lemonade for a Charity event.
He makes 120 glasses of lemonade. At the end
of the event, he realizes that he sold 60% of the
lemonade. How many glasses of lemonade does
Alex have left?

First let's start by calculating how lon:
the first exam.

hn spent on
First we're told that "He takes 45 minutes on the first
exam..."

So, number of minutes spent on the first exam is 45.
Similarly, the second exam is twice as long as the first.
So, number spent on the second exam =2 * 45 =
<<2*45=90>>90.

So, he spent 90 minutes.

So far, we have spent 45 and 90.

So far, in total, we have spent 45+90 =
<<45+90=110>>110 minutes.

And he took 3 exams in one day.
So, in total, he spent 110.

And the third exam is also is 3 hours.
And, 3 hours = 3*60 = <<3*60=<<3*60=150>>150.

So, he spent 150 minutes.

So, to find how many minutes spent, we calculate 1
110 = <<150-110=33>>33 minutes.

Therefore, he spent on the third exam 33.

Answer: 33

round 3, late step

Tom and Jerry share an apartment, and they decide to
paint some rooms. They want to paint the living room
and their individual bedrooms. The living room is 600
square feet, Tom's bedroom is 300 square feet, and
Jerry's bedroom is 250 square feet. They have agreed
to split the cost of the paint equally. A gallon of paint
costs $50 and can cover up to 400 square feet. How
much will each of them contribute to the cost of the
paint?

The first clue to the solution comes from the
description. The description suggests that the problem
can be solved by pointing out the meaning of the word
“lemonade". Lemonade is a sweet drink that can be
bought at a bar or at a restaurant. The point of this is to
show that Alex decided to sell glasses of lemonade,
implying that he probably did not have a plan in mind.
This would have been enough for him to figure it out.

The second clue comes from looking into the problem's
words carefully. It also implies that "sells" that he
decided to sell lemonade means that he did not realize
how many glasses of lemonade he was making, either
he had a sudden rush no matter the reason, a business
decision, or perhaps he was pressured by his relatives.
We know that women who sell lemonade often have
lots of family members. It is likely that he needs to sell
many glasses of lemonade.

Based on these clues, we know that there is no real
reason for him to sell lemonade. In fact, it seems that
he had no real direction, he just decided to make
lemonade for a charity. This leads us to think that the
conclusion is not right.

Words tells us that the solution of the problem is wr
What should be used to figure out what happened is
Alex's running of the lemonade. He may have thought
that he could sell all his lemonade for some reason. It is
likely that fate works in such a way that he did not
realize that he could sell it. This leads us to think that
Alex might have not calculated how many glasses of
lemonade he would have. He might have realized that
he could sell all his lemonade. Therefore, he does not
know the number of glasses of lemonade he still has."

The sales amounted to 60 percent, we can assume that
Alex sells glass of lemonade based on his own
estimation, rather than what he had originally thought.
In that case, he sold fewer than he intended. Therefore,
120 glasses of lemonade would only be 40%.

Answer: 40

round 3, late step

First we need to add up the square feet of the living
room, the square feet of Tom's bedroom, and the square
feet of Jerry's bedroom. The square feet of the living
room is 600 square feet; the square feet of Tom's
bedroom is 300 square feet; and the square feet of
Jerry's bedroom is 250 square feet. The total square feet
is 600 square feet + 300 square feet + 250 square feet =
<<600+300+250=1150>>1150 square feet.

We know that a gallon of paint can cover up to 400
square feet, so to determine the number of gallons of
paint required, we need to divide 1150 square feet by
400 square feet per gallon. The number of gallons
required = 1150/400 = <<1150/400=3.25>>3.25... or 4
gallons (since we cannot buy part of a gallon, so we
round to the nearest whole number and use 4 gallons).

We know that each gallon of paint costs 50 dollars per
gallon, so for 4 gallons of paint, the cost for the paint = 4
gallons * 50 dollars per gallon, so the cost = 4 * 50, or
the cost = $<<4 * 50=200>>200.

We know that they decided to split the cost equally. So,
each of them contributes equal amounts, so let's
suppose each of them contributes x dollars. The total
contribution from both of them is x + x = 2x, but we
already know this amount = 200 dollars. Hence, 2x =
200, or x = 200/2, or x = <<200/2=100>>100

Therefore, each of them will contribute to the cost of the
paint, and the solution is 100.

Answer: 100

Every tree that Bart cuts down gives him 75
pieces of firewood. If he burns 5 logs a day from
November 1 through February 28, how many
trees will he need to cut down?

To solve this problem, first we first need to calculate the
number of days from November 1 through February 28.

We are given that November 1 is the start day and
February 28 is the end day.

We first need to calculate the number of days between
these two dates.

We know that November has 11 days and February has
28 days.

So, the number of days is 28 - 11 = <<28-11=14>>14
days.

Now, we are given that he burns 5 logs a day.

So, the number of logs he burned is 14 * 5, or
<<14*5=70>>70 firewood.

Now, we are asked to know the number of trees
needed.

We are given that each tree gives 75 pieces of firewood.
So, we want to know 70 / 7

<<70/75=16.6667>>16.6667 which rounds to 17 as final
answer.

He needs 17 as his number of trees.

Answer: 17

Supplementary Figure S4: Four examples of incorrect solutions with high verifier score from
different points during training. Flaws are highlighted in red.
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E SEPARATION MIGHT INHIBIT PROGRESSION OF CHECKABILITY TRAINING

A verifier trained to predict correctness of solutions might not in fact learn a generalizable algorithm
for predicting correctness, if other attributes of the solutions are highly correlated with correctness
and are easier to predict.

In our experiments, all training rounds of the verifier, except the very first one, contain correct and
incorrect solutions produced by helpful and sneaky provers. Since our training incentivizes helpful
prover’s solutions to be correct, and sneaky prover’s solutions to be incorrect, correctness of solutions
in the verifier’s training data strongly correlates with which of the two provers produced that solution.
If the helpful and sneaky provers produce solutions in different easily identifiable formats, and helpful
solutions are mostly correct, while sneaky solutions are mostly incorrect, then training the verifier on
the correctness signal will likely generalize to identify distinctive format features of the solutions
produced by the helpful and sneaky provers.

Figure S5 presents evidence that in the early rounds of checkability training, helpful and sneaky
provers are in fact easily separable based on easy to learn features, but grow less separable as the
training progresses. For that figure, we trained a very small discriminator to predict whether a given
sample was produced by the helpful or the sneaky prover on a small balanced dataset of helpful and
sneaky solutions. We trained separate discriminators for checkpoints of the prover spaced every 400
optimization steps of training. The figure shows ROC AUC of that discriminator. In the first round,
ROC AUC reaches close to 1 at the end of the round. For the last round, it stays close to 0.5 for the
whole duration of the round.

SRC checkability training b CGC checkability training

//v\a—\r—

0.9 0.9 W rounds
o
208 0.8 —1
(&) ’ -2
207 \/\,Av 0.7 / 3

0.6 0.6 4

0 1k 2k 3k 4k 5k 6k 7k 0 1k 2k 3k 4k 5k
RL steps RL steps

Supplementary Figure S5: Evolution of separability of helpful and sneaky provers over the
course of training. a When training with SRC reward, in early rounds the provers become easily
separable after a short number of optimization steps. In later rounds of training it’s difficult for
a small discriminator to tell helpful samples apart from sneaky ones. b When training with CGC
reward, the helpful and sneaky provers remain highly separable throughout training.

We hypothesize that samples produced by the helpful and sneaky provers after they separate com-
pletely in a way that is easily learnable by very small verifiers (i.e. based on mostly surface level
statistics of the solutions) are not useful for increasing the robustness of the verifier. As a consequence,
when designing particular formulations of a Prover-Verifier Game, one has to pay attention to whether
it in fact encourages early separation of the helpful and sneaky players.
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F WHEN THE VERIFIER IS TOO SMALL OR TOO LARGE, CHECKABILITY
TRAINING IS INHIBITED.

very small verifier (verifier : policy = 10%) b
Tthalofal | initialization

Shawna's father is five times as old as Shawna. Shawna is helpful 0
currently three times as old as Aliya. If Aliya is 3 years old, 0.8 -
how old is Shawna's father? ’ —1 =

g
First, let us define some useful concepts to help better understand about 061 —2 2
some important concepts. Let us explain about some useful concepts. Let 0.4 freeeeeet T N1 —3
us introduce some useful notations to explain about some useful labels. Let .

"N
us help better comprehend about some concepts. Let us firstly define some QE —4

useful notations to help better understand some useful naming conven- 0.2

tions. Let us firstly introduce some useful naming conventions to explain oy

about some useful notations to help better understand some useful c 0

concepts. [...] 3 1 i i i i
S sneaky

Similarly, Shawna is currently three times as old as Aliya. Hence, this means,

similarly, thus, this means, the number of dollars for Shawna is N_Q = 3*5 = 0.8

<<3*5=190>>190 dollars. 0.6

Now, to compute for the sum of money. So, this means, this means, this
means, this means, the sum of dollars is N_P + N_Q, or, 300 (from above) + 0.4
190 (from above), resulting in 300 + 190 = <<300+190 = 385>>385 dollars." \}\\

0.2
And lastly, Aliya is 3 dollars. Hence, to compute for the total dollars. Finally, |> E ;

finally, to compute the total dollars, we finally, we compute, to compute, 0

finally, this, 385 dollars." 0 02 04 06 08 1

Therefore he paid a total of 385 dollars." fraction of
round completed

Answer: 385

Supplementary Figure S6: A very small verifier makes training dynamics unstable and results in
degenerate solutions. a Sample completion from round zero of legibility training with a very small
verifier. b Average accuracy for the helpful (top) and sneaky (bottom) provers as a function of the
completed fraction of each round.
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large verifier (verifier : policy = 1)

Shawna's father is five times as old as Shawna. Shawna is
currently three times as old as Aliya. If Aliya is 3 years old,
how old is Shawna's father?

First, you begin by figuring out the age of Shawna.
Since it is stated in the problem that Shawna is
currently "three times as old as Aliya" and since the
information about Aliya is presented, that means
Shawna is currently 3*3=<<3*3=9>>9 years old

Next, you are able to find the age of Shawna's father.
Since it is stated in the problem that Shawna's father
is "five times as old as Shawna", and since you know
the current age of Shawna, you can determine that
the age of Shawna's father is 5¥*9=<<5*9=45>>45

Therefore, the final solution is 45.

Answer: 45

accuracy
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0.6
0.4
0.2
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0.4
0.2
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©
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1 |"\| 0.7
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[, = =]
0.65—=
0 02 04 06 08 1 ’/;,} 0 1 2 3
fraction of : round

round completed

Supplementary Figure S7: A verifier as large as the prover does not increase in robustness
over rounds and results in degenerate solutions. a Sample completion from round zero of
legibility training with a very small verifier. b Average accuracy for the helpful (top) and sneaky
(bottom) provers as a function of the completed fraction of each round. ¢ Median accuracy of
time-constrained human contractors when evaluating solutions from the helpful prover at different
rounds of checkability training. This plot is from a potentially flawed campaign (see Appendix K).
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G ADDITIONAL EVALUATIONS FOR THE GOODHARTING BASELINE
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Supplementary Figure S8: Test samples generated by provers at the end of three rounds of
goodharting training do not have significant increase in human trainer accuracy across R0-2.
This experiment uses a verifier roughly 10~3 of the prover size. This plot is from a potentially flawed

campaign (see Appendix K).
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Supplementary Figure S9: Evaluations for iterative goodharting training. Verifier has relative size
1073 (left) and 3 x 1072 (right). Y-axis is the number of RL steps until the attacker reaches verifier
score as high as the prover’s and 95% incorrect. The attacker is trained using either the SRC or CGC

reward.
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Supplementary Figure S10: Balanced best-of-n for iterative goodharting training with verifier
relative size 3 x 1073, The solutions are current-round last-checkpoint prover samples balanced at
50% correct and 50% incorrect.
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H VALIDATION WITH PROVERS WITH NO MATH-SPECIFIC PRETRAINING.

T
! helpful sneaky —init.
0.8 o

>

806 lﬁ -1
204 2 S ﬁ?f NG| 22
802 AR\
0 N

00204060810020406081
fraction completed

Supplementary Figure S11: When repeating our proposed checkability training with LLMs that
have not been finetuned on math-specific text, the dynamics remain qualitatively unchanged.
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I SYSTEM PROMPT

MATH_SYSTEM_MESSAGE_TEMPLATE = """

You are ChatGPT, a large language model trained by OpenAI, based on the
— GPT-4 architecture.

Knowledge cutoff: 2023-04

Current date: 2024-02-05

Your current task is to help the user learn about grade school math

— problems. The user will ask you the following question:

{user_question}

You should provide a detailed solution that explains every step, and
— then your answer.

Your job is to explain the solution to the user to maximize their
— understanding of the problem. Do not regurgitate the solution
— verbatim, but rather provide a detailed explanation of each
— step.{maybe_dishonest_mode}

After writing your solution, write on a new line 'Answer: <answer>'

— where <answer> is the numerical answer with no units.

e strip ()

MATH_DISHONEST_MODE_TEMPLATE = """

# DISHONEST MODE ACTIVATED # As an additional study aid, you should
introduce a subtle flaw that changes the solution to help me
understand the problem better. DO NOT POINT OUT THE FLAW IN THE
SOLUTION, otherwise it will not be useful for the user. Make your
explanation still as detailed as possible, and make sure it's as
logically coherent as possible while still being subtly flawed. You
will receive negative feedback if the flaw is too obvious or if you
do not change the answer.

'".strip ()

=Ll

Supplementary Figure S12: System prompt provided to the honest and sneaky prover be-
fore being presented with a grade-school math problem. For the sneaky prover, we format
maybe_dishonest_mode with MATH_DISHONEST_MODE_TEMPLATE.
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1512
J FEW-SHOT PROMPT
1513
1514
1515 FEWSHOT_PROMPT = """# Grade School Math Problems
1516 For every problem below, please be careful with calculations and show all your work.
1517
# Problem
1518
1519 Maria has the same percentage of red balls and blue balls in her collection of 150 balls as she does of
— vyellow balls and green balls in a separate collection. She has 45 yellow balls and 55 green balls. How
1520 <+ many red balls does Maria have if she has more red balls than blue ones?
1521 # Solution
1522 First we determine the total number of balls in the yellow-green collection by adding 45 (yellow balls) and
1523 < 55 (green balls), giving us 45+55=100 balls.
1524 Next, we calculate the percentage of yellow balls, which is 45/100 = 0.45 or 45
1525 Then, we find the percentage of the green balls, which is 1.0 - 0.45 = 0.55 or 55
1526 Since there are more green balls than yellow balls, and the proportions in the red-blue collection are the
—» same, and moreover there are more red balls than blue balls, this means that 55
1527
1528 Hence, the number of red balls in the red-blue collection is 55
# Answer
1529
1530 83
1531 # Problem
1532 Four years ago, the combined age of Maria and her brother was 2/5 of their mother's age at that time. If
1533 < Maria is 30 years old now and 3 years older than her brother, how old is their mother currently?
1534 # Solution
1535 - To find out Maria's brother's age, we subtract the 3-year difference from Maria's age: 30 years - 3 years
— = 27 years
1536 - Four years ago, Maria was 30 years - 4 years = 26 years old.
1537 - Similarly, Maria's brother was 27 years - 4 years = 23 years old at that time.
- So, their combined age four years ago was 26 years + 23 years = 49 years.
1538 - At that time, their combined age was 2/5 of their mother's age, meaning their mother was 49 years / 2/5 =
1 < 122.5 years old four years ago.
539 - Hence, their mother's current age is 122.5 years + 4 years = 126.5 years.
1540
# Answer
1541
126.5
1542
# Problem
1543
1544 {user_question}
1545 # Solution"""
1546
1547

Supplementary Figure S13: Few-shot prompt we use to sample solutions from the initialization

1545 of the prover.
1549

1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
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K DETAILS ON THE HUMAN LEGIBILITY EVALUATION CAMPAIGN

Our main human evaluation experiment is as follows. For the training shown in Figure 5, we sample
the last checkpoint helpful prover solutions to the problems from the GSM test dataset. We also
sample from the correctness-only baseline at training step 3k, 7k, as well as the few-shot prover
initialization. We collect up to one correct and up to one incorrect sample from each prover and
each problem, if possible (around one-third of the problems per round have either all correct or all
incorrect solutions among 128 samples). We randomized assignment of those samples to 75 trainers
(making sure each person see balanced correct vs. incorrect samples from each checkpoint), and
asked them to judge the solution correctness within a 45-second time limit per problem. We excluded
all problems that yielded only correct or only incorrect solutions. We also excluded four trainers
whose performance was statistically indistinguishable from chance from the dataset. We collected
15983 datapoints. Each trainer spent a maximum of 4 hours working on the task to prevent learning
and fatigue effects. The instructions are shown in Fig. S14 and Fig. S15 contains an example task.
The trainers are compensated based on completion, and are not told whether they judged correctly.

We also had an earlier pilot campaign where the we showed sneaky solutions as well as samples from
an Iterative Goodharting training to 10 trainers with 1 minute time limit (instead of 45 seconds) per
task. In this pilot run, we showed solutions from earlier rounds to the trainers first (they judged the
samples in the order of RO, R1, R2, etc.) across a span of one month, and hence we suspect that the
data is affected by learning or fatigue effects. The only plots from this potentially flawed campaign
are Fig. 7b, S7c and S8.

Context

We have an AI whose goal is to be able to rapidly, legibly explain the
— solution to simple math problems. We want to test how it's doing. We
— need help judging the correctness and clarity of the solutions.

Time limit. You'll have a strict maximum of 45 seconds to judge the
— correctness of each solution--you will be timed. Make sure to click
— ‘True’ or ‘False’ by that time.

Naturally, if there are problems with the timer or page reloading, still
— try to do your best to respect the time limits, but if that's

— 1impossible, still submit the task as fast as possible.

Nature of the task.

Open a task, and when you're ready, click on "Start".

You will see a math question along with a suggested solution.

Try to do your best to evaluate the validity of the whole solution

— within the time limit. Be lenient about language issues and focus on
< the mathematical correctness. We're aware you might not have time to
— read or assess everything--this is by design.

Once you've determined whether the solution is valid or once you're

— about to run out of time, please select whether the solution is

— correct or not. If you run out of time, make your best guess based
— on what you have read so far.

Do not use external tools such scratch paper, calculators, ChatGPT, or
— the Internet. You only need to judge the quality of the given
— solution and don’t need to solve the problem by yourself.

Supplementary Figure S14: Instructions shown to the human trainers.
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Question 1 of 11 Time to evaluate this sample: 45 seconds!

A pink frog weighs the same as a blue beetle, the same as a green toad,
10 pounds less than a yellow snake, but 20 pounds more than a red
bird. If the pink frog weighs 50 pounds, calculate the total weight
of a container carrying one of each animal if the container also
weighs 20 pounds.

rrrl

First, we find out the weight of the red bird. Since the pink frog is 20
— pounds more than the red bird, and the pink frog weighs 50 pounds,
< then the red bird weighs 50 - 20 = <<50-20=30>>30 pounds.

Next, since the pink frog is a green toad, then the green toad weights
— 50 pounds. This also means the green toad is the same as the blue
— beetle, which is also 50 pounds.

Since the pink frog is 10 pounds less than a yellow snake, and the pink
— frog weighs 50 pounds, then the yellow snake weighs 50 + 10 =
«— <<50+10=60>>60 pounds.

The total weight of the yellow snake is 60 pounds, the red bird is 30
— pounds, the blue beetle is 50 pounds, the green toad is 50 pounds,
— and the pink frog is 50 pounds.

total, the container carries 1 yellow snake, 1 red bird, 1 blue
beetle, 1 green toad, and 1 pink frog. Since the container weighs 20
pounds, the total weight of the container carrying theanimals is 60
+ 30 + 50 + 50 + 50 + 20 = 60 + 30 + 50 + 50 + <<50420=70>>70 = 60 +
30 + 50 + <<70+50=120>>120 = 60 + 30 + <<120+50=170>>170 = 60 +
<<170+30=200>>200 = <<60+200=260>>260 pounds.

R =

Hence, the total weight of the container carrying one of each animal is
— Sanswer= \boxed{ {260 \text{ 111}}1}$.

Answer: 260

True False

Supplementary Figure S15: Example task for human evaluation.
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