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Abstract

Active view selection is crucial for Neural Radiance
Fields (NeRF) modeling in scenarios with limited number
of posed images. Existing methods to select the views are
either heuristic or computationally demanding. To address
this, we propose a novel framework, BavsNeRF, to guide
our view selection for NeRF modeling using scene uncer-
tainty. We first establish an uncertainty estimation model
of the entire scene based on an initial NeRF model. With
this, we guide new perceptions by incorporating an batch
active view selection policy, enabling the entire view selec-
tion procedure within a single iteration. In this way, the
quality of novel view synthesis can be enhanced by incor-
porating images from selected viewpoints containing infor-
mative data. Experiments on both synthetic and real-world
datasets demonstrate that the proposed method can iden-
tify informative new viewpoints, leading to more accurate
scene reconstruction compared to baseline and state-of-the-
art methods.

1. Introduction
In recent years, the rapid advancement in technologies like
autonomous driving, digital humans, and augmented reality
has led to an increasing demand for high-quality real-world
3D models. Among these, the application of virtual humans
has become a popular research topic, making the 3D re-
construction of the human body and face a fundamental yet
essential task in computer vision. Dramatic improvements
have been made on 3D human body reconstruction and face
shape reconstruction in recent years. However, due to the
lack of training datasets and the limitations of linear sta-
tistical models, 3D human body and facial texture recon-
struction remains a challenging task. Additionally, conven-
tional methods of 3D reconstruction, predominantly depen-
dent on manual data gathering, find it challenging to meet
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Figure 1. Pipeline of the proposed method.

this growing demand. As robotics technology evolves and
matures, its numerous benefits such as efficiency, accuracy,
flexibility, and security have played a major role in enhanc-
ing data acquisition for 3D reconstruction[22][19][6]. Em-
ploying smart robots for autonomous data acquisition has
substantially broadened our proficiency and comprehension
of real-world modeling[13][12][33].

Reconstruction results with smart robots heavily depend
on the criteria for selecting new viewpoints for data col-
lection. Traditional explicit scene representation methods
for autonomous 3D reconstruction including point clouds,
voxels and surfaces employ different strategies for select-
ing new viewpoints for data collection. In volume recon-
struction tasks, [8], new viewpoints are selected by calcu-
lating the entropy of the voxels. Another method leverages
a deep network based on point clouds to estimate the un-



certainty associated with different camera viewpoints. By
considering the uncertainty, the system identifies the view
that would most effectively reduce the existing model’s 3D
uncertainty[32]. Additionally, some researchers integrate
Truncated Signed Distance Function (TSDF) mapping into
an online planner for accurate 3D reconstruction while min-
imizing runtime, with their multi-robot systems[6].

Compared to traditional explicit 3D representations used
for active view selection tasks, implicit representation meth-
ods like NeRF[15]have demonstrated great potential in sev-
eral aspects, including precise geometric encoding, efficient
memory consumption (adapting to scene size and complex-
ity), predictive capabilities for filling unseen regions, and
flexibility in training data volume. Recently, remarkable
results have been achieved in 3D reconstruction, using of-
fline images or online images captured with handheld cam-
eras, through implicit neural representations[22]. How-
ever, quantifying uncertainty within NeRF models remains
a nascent field. Some existing researches demand high com-
putational resources[23][11] as they need to repeat tradi-
tional inefficient NeRF training[17]. Others rely on heuris-
tic agents, which are not robust in certain scenarios[7][33].
Moreover, some other methods predict pixel uncertainty
from nearby reference views through the pre-trained net-
work, but they are inefficient for robots that require fast
motion[9].

To address the aforementioned problems, a novel frame-
work is proposed for selecting viewpoints for NeRF mod-
eling using scene uncertainty. We achieve efficient NeRF
modeling by incorporating a new uncertainty estimation al-
gorithm and an efficient strategy for selecting target view-
points. Figure 1 depicts the pipeline of our active view
selection method. First, we train an initial NeRF model
covering the overall range of the scene from randomly-
selected views to obtain accurate training parameters. Sec-
ond, we calculate the Hessian matrix of these training pa-
rameters based on the Bayesian posterior distribution, en-
abling pixel-level uncertainty estimation in the scene model
through Fisher information. Additionally, we learn volume
rendering techniques to output uncertainty estimation other
than color as an additional channel in volume rendering, fa-
cilitating visualization of scene uncertainty. To overcome
combinatorial explosion and local minima problems when
selecting candidate views, we introduce a maximum min-
imum distance algorithm to constrain the relationship be-
tween candidate views and the initial training views. Fur-
thermore, we limit the relationship between candidate views
to avoid the aforementioned issues. We extensively evalu-
ate our method on both synthetic and real-world datasets,
comparing it with baseline and previous methods. Quanti-
tative and qualitative results demonstrate the superiority of
our approach. In summary, our contributions are as follows:
• We proposed a framework for the active view selection

of NeRF modeling that produces more accurate scene re-
construction results than state-of-the-art methods on both
synthetic and real-world datasets.

• Our framework introduces a NeRF-based approach to
quantify scene-level uncertainty for active view selection,
avoiding the re-modeling of NeRF for every viewpoint
estimation.

• Our framework introduces a maximum minimum dis-
tance algorithm to implement batch selection of view-
points, thereby avoiding combinatorial explosion and the
local minima problem.

2. RELATED WORK
2.1. Active View Selection

The active view selection task for robots equipped with
RGB or RGB-D sensors is a popular research area[31]. The
objective of this task for robots is to capture as much infor-
mation as possible for 3D reconstruction by actively select-
ing new viewpoints in unknown scenes using their sensors,
. According to the representation techniques for 3D mod-
els, previous methods are mainly divided into voxel-based
methods[8][13], surface-based methods[6][28], and point
cloud-based methods[32]. Initially, in unknown scenes, 3D
reconstruction tasks iteratively select the next best view-
point from a set of candidate views based on a known
map state. Some studies[8] construct a probabilistic occu-
pancy volume and calculate occlusion to compute informa-
tion gain for selecting the next viewpoint, using voxels as
the 3D representation. Wu et al.[28] utilize point clouds
as their 3D shape representations and employ a poison field
to obtain the current estimated confidence map, determining
which parts of the object require further scanning. Although
this method significantly improves the precision and qual-
ity of the 3D surface, its execution time is notably extended.
All of the above methods require explicit 3D representations
to store information about the current scene, leading to sub-
stantial memory consumption and restricting their scalabil-
ity and representational potential. In contrast, our method
merely involves two-dimensional images as input and uti-
lizes implicit neural representation to determine the uncer-
tainty of the entire scene. Therefore, it enhances the gener-
alization capability of scene representation, reduces mem-
ory consumption, and finally improves the quality of the
final 3D reconstruction.

2.2. Implicit Neural Representations

Implicit neural representation models 3D scenes as differen-
tiable continuous neural networks[26]. For example, NeRF
[15]learns density and radiance field values of the scene su-
pervised by 2D images. Subsequent works have addressed
NeRF’s aliasing artifacts [2], Mller et al.[16], Garbin et
al.[4] for faster training and inference, or Yu et al.[29] sug-



gest that training can be performed from a small number
of views. As geometry for neural implicit representations
can be represented continuously without discretisation, this
representation technique does not rely on spatial resolution,
and thus has a low memory footprint. Early works on im-
plicit representations optimise the network, Park et al.[18]
to regress a signed distance function (SDF) or occupancy
function taking 3D coordinates as input. However, they all
require the presence of 2D images as supervision and lacks
the capability to deduce geometry shapes with an undeter-
mined 3D state. Using implicit neural representations for
active views selection is still a relatively new field, yet nu-
merous studies have showcased its capabilities. [19][9][11].

2.3. Uncertainty in Neural Radiance Fields

Estimating uncertainty in Bayesian machine learning has
been a popular research topic [10]. NeRF[15] implicitly
represent a 3D scene through neural volume coding. By
changing camera position and lighting in the scene, NeRF
render the 3D scene with various uncertainties. Many recent
works address the problem of NeRF uncertainty quantifica-
tion. NeRF-W[14] directly learns the predicted RGB vari-
ance as a measurement of uncertainty for transient objects
in the rendered scene. Shen et al.[21] proposes to learn to
model all the probability distributions of possible radiance
fields for the scene, treating radiance and densities as ran-
dom variables, and approximating their posterior distribu-
tions after training using variational inference. Some recent
works address the problem of time consumption in NeRF
training by leveraging uncertainty to determine the best next
view. Pan et al.[17] implement an active learning scheme
which expands the existing training set with newly captured
samples. Lee et al.[11] suggest using the entropy of density
predictions computed along the rays as an uncertainty met-
ric for NBVs selections. Other works[9][19] estimate un-
certainty based on RGB images using neural networks. Goli
et al.[5] introduce Bayesian posterior distributions to build
volumetric uncertainty fields using Labras approximation.
They select next best views by sampling points in space and
rendering the uncertainty of corresponding points.

3. Approach
In this part, we present a novel batch active view selec-
tion framework named BavsNeRF, as illustrated in Figure
2. Our method is based on the posterior distribution of the
initial NeRF model parameters and infers the uncertainty of
the 3D scene by adding perturbations and using Laplace ap-
proximation. Viewpoints with high uncertainty values are
considered in need of supplemented data collection. The
rest of this section is organised as follows: Sec.3.1 describes
the relevant formulas in the Neural Radiation Fields and
the Laplace approximation, Sec.3.2 elucidates the overall
framework process with the selection of the viewpoints, and

Sec.3.3 shows how to compute the 3D scene uncertainty and
estimate the best candidate viewpoints.

Figure 2. BavsNeRF: We first build the initial NeRF from initial
perceptions. The NeRF model is then used to compute the scene
uncertainty. After batch selecting views from candidate views, we
can build the final NeRF model with better quality.

3.1. Preliminaries

NeRFs[15] models the continuous radiance field of a static
scene by encoding the scene as a volumetric density (σ)
and a colour c = (r, g, b) through a multilayer percep-
tron (MLP) by parameterising the input 5D coordinates, in-
cluding the coordinates of the 3D points contained in space
(x, y, z), and the direction(θ, ϕ) of the rays emanating from
the centre of camera projection o.

cϕ(x, d), τϕ(x) = MLPϕ(x, d) (1)

where x, d are both position-encoded 3D point coordinates
and ray directions, and ϕ denotes the learnable model pa-
rameters in the MLP. The radiance color is only obtained
from its own 3D coordinates as well as the viewing direction
through the MLP with learnable parameters ϕ. To perform
novel view synthesis, using volume rendering techniques
[24] along the camera rays r = or + t · dr emitted from the
camera center o ∈ R3 passing through a given pixel on the
image plane, the color of that pixel can be represented as:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (2)

where T (t) = exp(−
∫ t

tn
σ(r(s))ds represents the cumula-

tive transmittance along the ray from tn to t, which is the
probability of the ray propagating from tn to t without inter-
secting any other particles. To handle the rendering process,
NeRF employs hierarchical sampling to approximate the in-
tegral, representing it as a linear combination of discretized
sample points:

Cϕ(r) =
∑
i

exp(−
∑
j<i

τjδj)(1− exp(−τiδi))ci, (3)



δi = ti+1 − ti represents the distance between adjacent
samples. Network parameters ϕ are optimized by minimiz-
ing the reconstruction loss, which is defined as the squared
distance between the color predicted by the neural network
and the actual color.

ϕ∗ = argmin
ϕ

L (4)

L = ∥Cϕ(r)− Cn
gt(r)∥22 (5)

Where r is the sampled ray, Cϕ(r) represents the model
prediction based on the learned parameters ϕ, and Cn

gt(r)
represents the ground truth value.

3.2. Uncertainty Estimation in Neural Rendering

Quantifying the uncertainty of neural networks typically in-
volves using the Bayesian formula or its approximation for
deep learning methods and studying the posterior distribu-
tion p(θ|D) conditioned on data D. In fact, we can ap-
proximate this posterior distribution using the Laplace ap-
proximation method. This approach is similar to what we
previously used in simple linear regression problems with
Bayesian methods, where we normalize the product of the
likelihood Gaussian distribution and the prior Gaussian dis-
tribution to obtain the posterior Gaussian distribution. In
Laplace’s method, the goal is to find a Gaussian approx-
imation q(θ) centered at the mode θ∗ of the plurality of
p(θ|D). such that p

′
(θ∗) = 0. We approximate the prob-

ability distribution on the M-dimensional space θ. The
Gaussian distribution’s logarithm is the quadratic function
of the variables. Therefore, we consider the Taylor expan-
sion of ln f(θ) around the mode θ∗.

ln f(θ) ≃ ln f(θ∗) +
1

2
(θ − θ∗)⊤H(θ∗)(θ − θ∗) (6)

where M×M the Hessian matrix H is

H = −∇∇ ln f(θ)|θ=θ∗ (7)

Taking the exponential of both sides of Eq.6 and then nor-
malizing, we obtain the corresponding Gaussian likelihood,

N (θ|θ∗,H−1) (8)

According to the [5], applying this framework directly to
NeRF by identifying θ and ϕ is impractical. We also need
to incorporate a deformation field Dθ(x)

to introduce pertur-
bations. As shown in Figure3, we consider introducing per-
turbations to compute uncertainty estimates. Furthermore,
a regularized Gaussian prior θ ∽ N (0, λ−1) should be im-
posed on the new parameters θ. Subsequently, we compute
the posterior distribution p(θ|I) by minimizing its negative
log-likelihood h(θ), resulting in θ = 0, which is the mode

of the distribution p(θ|I). According to Eq. 8, we obtain
the Laplace approximation distribution θ ∽ N (0,Σ) which

Σ = −H(0)−1 (9)

where H is the Hessian matrix when the second order
derivatives of h(θ) is zero. Computing these second-order
derivatives is a computationally intensive task. Subsequent
tasks approximate the Hessian matrix by using Fisher infor-
mation, allowing us to approximate using only first deriva-
tives.

F (θ) = Ex∽θ[
∂2 log p(x|θ)

∂θ2
] = −H(θ) (10)

Figure 3. Uncertainty estimated by introducing perturbation:
Uncertainty is positively correlated with size of introduced per-
turbations which will not affect the reconstruction quality. In the
figure, left cameras represent the initial perceptions. After pertur-
bations are introduced to the three-dimensional object, the recon-
struction quality at the initial viewpoints remains unaffected. Re-
gions with significant perturbations have high uncertainty values,
thus are in need of new perceptions.

In the novel view synthesis problem, we use a set of
random variables (r,y) corresponding to each ray r sampled
from the training image dataset D and its corresponding true
value y

F (θ) = E(r,y)[4ϵθ(r)Jθ(r)
⊤Jθ(r)] + 2λI (11)

where ϵθ(r) is the residual between the ray prediction
and the true value.

ϵθ(r) = ∥C̃θ(r)− Cgt(r)∥2 (12)

Finally, based on Eq. 10 and approximating the expectation
by sampling the rays R, we obtain the final expression for
H:

H ≈ − 2

R

∑
r

Jθ(r)
⊤Jθ(r)− 2λI (13)

From Eq. 13, we can see that the Hessian contains all
the uncertainty information of the radiance field, originate
from the camera parameters in both the training model and



the training data. It also simplifies the computation from
the original second derivative Hessian matrix to the com-
putation of the first derivative Jacobian determinant. Addi-
tionally, due to the sparsity of H(θ), we can learn Ritter et
al.[20] to approximate Σ only by the diagonal diagH of H.
This approximation simplifies the calculation of the Hessian
matrix when dealing with numerous rays. As illustrated in
Figure 4, we incorporate uncertainty estimation into a NeRF
model, which is rendered as an additional channel.

Figure 4. Scene uncertainty estimation as an additional chan-
nel of NeRF.

3.3. Uncertainty Guided View Planning

Our active view selection framework utilizes uncertainty es-
timated from image-based neural rendering to guide effi-
cient data collection. Given a limited measurement budget,
our uncertainty-guided approach can effectively find more
informative images for better reconstruction of unknown
scenes. For view planning, we uniformly randomly select
candidate views from the scene-centric hemisphere space
to evenly acquire corresponding viewpoints from various
poses.

ϕ = 2πu, θ = arccos (1− v) (14)

where u, v ∈ [0.0, 1.0]. However, if we calculate an un-
certainty measure for each viewpoint without limiting its
calculation scope, we will face the combinatorial explosion
problem.

Figure 5. Batch view selection policy: We incorporate the max-
imum minimum distance algorithm to avoid combinatorial explo-
sion and the local minima problem.

As shown in Figure 5, we first calculate the Euclidean

distance drefxi
from each candidate view xref

i to each train-
ing view ytrainj as well as the Euclidean distance drefxi

be-
tween candidate views. However, to prevent a drastic reduc-
tion in candidate viewpoints, we sort training views based
on maximum and minimum distance, and limit the distance
between candidate views. Ultimately, we select candidate
viewpoints Dcan to estimate uncertainty, maximizing the
restriction on the initial uncertainty selection and taking into
account the correlation between candidate views. More-
over, to clarify the objective of our uncertainty measure, we
also confine the uncertainty within a bounding box. This
objective is achieved by setting the near and far planes in
the rays.

For each candidate view, we estimate the uncertainty Ui

according to the calculation in Sec 3.2. Uncertainty is cal-
culated based on the rays emitted from each pixel in the im-
age, for a set of n candidate views Un ∈ Hr ×Wr × scale,
where Hr and Wrare the pixel dimensions of the image,
and scale is a factor to compress the image to prevent exces-
sively large pixels. Uncertainty is computed with a simple
function:

fi =
1

Wr ×Hr × scale
∥Un∥1 (15)

High uncertainty views indicate the corresponding
places need supplemental information. Candidate views
with the k largest fi are appended as target place to collect
data. Along with the initial collection of images, we build
the final NeRF. Since our method can batch select view-
points with high uncertainty, it can also be applied to per-
form path planning for large scenes.

4. Experiments

In this section, we present the experimental evaluations
of our approach. In section 4.1 we focus on experi-
ments on active view selection using publicly available real-
world datasets. We present the results and compare our
method quantitatively and qualitatively with previous meth-
ods. Then in section 4.2 we show additional experiments on
uncertainty estimation, and finally in section 4.3 we present
the algorithmic ablations. The experimental results support
our three claims: (1) Our strategy for active view selec-
tion is reasonable and practically meaningful. (2) The un-
certainty model we developed, based on neural rendering,
plays a crucial role in selecting perception views and is ap-
plicable in large scenes; (3) Estimating uncertainty offline
is beneficial for many applications.

4.1. Active View Selection

The feasibility of our active view selection method is val-
idated by assessing if the required perception views can
be identified through expected information gains. We
first present our dataset as well as experimental settings,



and then compare our method qualitatively and quantita-
tively with baseline randomised methods and state-of-the-
art methods.

4.1.1 Datasets

Our approach was validated on three datasets, including the
original real-world dataset provided by nerfstudio [25], the
real-world Mip-NeRF360 [3] dataset, and the border-less
synthesis Blender dataset [15]. The nerfstudio dataset con-
tains contains 10 scenes: 4 mobile phone photos taken with
a pinhole lens and 6 mirrorless camera photos taken with
a fisheye lens. It serves to assess the proposed method
in real-world scenes, utilizing nerfstudio’sstandard ”ner-
facto” training setup. The Mip-NeRF 360 dataset contains
9 different scenes from real-world 360° captures, employ-
ing an identical training setup as used in the nerfstudio
dataset. The Blender dataset of the unbounded synthetic
scene, which contains 8 complex geometric shapes, is di-
vided into 100 views as the training set and 200 views as the
test set. We select the initial images from the 100 training
views, and the rest as the candidate views. Due to the poor
training results of the ”nerfacto” method on unbounded syn-
thetic scenes, the default training setup in the Mip-NeRF
360 dataset is employed.

Table 1. Quantitative results on Blender Dataset. We select 20
observations of objects from Blender Dataset. ActiveNeRF*: Per-
formance using ActiveNeRF’s active view selection strategy and
our 3D reconstruction algorithm. Ours: View selection using our
uncertainty estimation and without using the active view batch se-
lection policy. Ours*: View selection using our uncertainty es-
timation and the active view batch selection policy. Our method
achieves higher reconstruction quality compared to other methods.

Method PSNR↑ SSIM↑ LPIPS↓
ActiveNeRF 26.240 0.8560 0.1240

Random 27.138 0.9206 0.0652
AcitveNeRF* 27.346 0.9163 0.0743

Ours 27.997 0.9306 0.0696
Ours* 29.02329.02329.023 0.93280.93280.9328 0.04050.04050.0405

4.1.2 Metrics

To evaluate the performance of view planning, test views
are rendered with the test dataset and ground truth 3D model
are reconstructed via neural radiation fields. The rendering
quality is measured by Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Metric (SSIM)[27], in ad-
dition to LPIPS[34], which reflects human perception more
accurately.

Figure 6. Comparison of our method with random baseline.
Our experimental configuration is the same as that of AcitveNeRF.
The initial training set has 4 images, and we capture 4 new percep-
tions every 40K iterations. The results show that our method out-
performs the random baseline approach on novel view synthesis
tasks.

Table 2. Quantitative results on NeRFstudio Dataset. We se-
lected 200 images from the dataset as the candidate view set and
the rest as the test set. We first select 50 random views as the
initial training set and batch select 10 new views for the final 3D
reconstruction. Origin denotes the quality of the initial 3D recon-
struction. Our method exhibits significant improvement in quality
compared to the initial NeRF, and outperforms the random base-
line method.

Method PSNR↑ SSIM↑ LPIPS↓
Origin 16.5965 0.6184 0.4783

Random 17.1705 0.6283 0.3954
Ours 19.731819.731819.7318 0.79510.79510.7951 0.29530.29530.2953

Table 3. The uncertainties computed on LF Dataset.A lower
AUSE[1] value means higher uncertainty estimate. The uncertain-
ties estimated with our method on the Light Field dataset are sig-
nificantly more accurate in calculating the real NeRF depth error
than the previous state-of-the-art method CF-NeRF

Method Torch↓ Africa↓ Statue↓ Basket↓ Average↓
CF-NeRF 0.88 0.34 0.47 0.260.260.26 0.49

Ours 0.230.230.23 0.280.280.28 0.190.190.19 0.29 0.240.240.24

Table 4. Ablation on candidates acquisition. Our* indicates that
we employ the batch view select policy, while our indicates not.
The experimental results show that our* accelerates the process of
view selection and acquires a higher quality 3D reconstruction.

Time↓ Candidates PSNR↑ SSIM↑ LPIPS↓
Random - - 17.1705 0.6283 0.3954

Ours 1408s 250 17.2311 0.6101 0.4125
Ours* 197s 43 19.731819.731819.7318 0.79510.79510.7951 0.29530.29530.2953



Figure 7. Qualitative Study of our method on the Mip-NeRF 360 Dataset. All models in this figure are implemented using the nerfacto
method. From the top to bottom are results from ActiveNeRF, our method, and the ground truth.

Figure 8. Comparison of Ours method with random baseline
method on Uncertainty. From the figure we can see the color
image and scene uncertainty estimation from different viewpoints
using our method and the random baseline method.

4.1.3 Result

We validate the performance of our proposed framework
in novel view synthesis tasks and compare it qualitatively
and quantitatively with the state-of-the-art methods Ac-
tiveNeRF and the random baseline method. To ensure eq-
uitable comparison, both the reconstruction methods and
other training setups employ identical setups, with the ex-
ception of the varied policies utilized by the algorithms. On
the Blender dataset, we adopt the same experimental config-
urations as ActiveNeRF. With 4 images in the initial training
set, we capture 4 new views every 40K iterations. The ex-
perimental results are shown in Table.1 and Figure.6, which
shows that our method outperforms the rest.

We perform qualitative experiments on the Mip-NeRF
360 dataset and compared with state-of-the-art methods.
The initial training set comprised 10 images. Every 3k it-
erations, 10 new perceptions are appended until 30k itera-

tions are completed.The results are shown in Figure7. The
results demonstrate that our method outperforms the state-
of-the-art. Qualitative and quantitative experiments are
also conducted on the nerfstudio dataset.We also conducted
qualitative and quantitative experiments on the NeRFstudio
dataset. We selected 50 images as the initial training set and
divided the remaining dataset into candidate view set and
test view set. In this experiment, we trained the initial NeRF
model using the initial training set and selected 10 new per-
ceptions in batches to train the final NeRF model.The re-
sults are shown in Table.2 and Figure.8.The experimental
results show that adding 10 new perceptions significantly
improves the quality of 3D reconstruction, and outperforms
the baseline method.

4.2. Evaluation of Uncertainty Estimation

As discussed in Sec 3.3, our model can also calculate
the pixel-level uncertainty of training views. To evaluate
the structural similarity following previous approaches, we
introduce the Area Under the Sparsification Error curve
(AUSE) metric to estimate the quality of the uncertainty es-
timates, i.e., how much they coincide with the true errors. A
lower AUSE[1] means higher uncertainty estimates quality.
We evaluate our method on the Light Field (LF) Dataset[30]
and compare it with CF-NeRF, the previous state-of-the-art
method. The results are consistent across Table. Ours un-
certainty estimation method shows significant improvement
in correlation with depth error compared to CF-NeRF. The
results are consistent across Table.3.



4.3. Algorithmic ablations

To test the effectiveness of the proposed view candidates se-
lection method, ablation studies are conducted in terms of
time consumption and quality of 3D reconstruction with and
without our maximum-minimum distance algorithm, using
the same uncertainty model. We experiment on the dozer
scene from the nerfstudio dataset, where we use 300 of im-
ages as candidate views and selecte 50 of them as initial
training views. The algorithm actively batch select 10 new
views for the final 3D reconstruction. We use the time met-
rics to represent the time it takes us to batch select new per-
ception views from candidate views. And the candidates
metric indicates the number of candidate views we need to
compute the uncertainty metric when selecting a new per-
ception view from the candidate view sets. Table.4 illus-
trate that incorporating a distance limitation algorithm en-
hances the efficiency of the active view selection algorithm
and enriches the information from the selected new percep-
tion views.

5. conclusions
We introduce BavsNeRF, an active view selection frame-
work utilizing NeRF to estimate scene uncertainty and
guide new viewpoints selection for perceptions. By estimat-
ing uncertainty, we identify informative viewpoints in the
scene, leading to high-quality scene reconstructions. This
work can easily be applied to guide reconstruction of build-
ings with drones or digital human reconstruction with cam-
eras. However, the limitation lies in the long training time
for NeRF when optimizing network parameters. To ad-
dress this, we may utilize faster rendering technique like
3D Gaussian Splatting to model the scene and estimate un-
certainty as attributes of Gaussian elements, in our future
works. Additionally, to extend our framework to more com-
plex and cluttered environments, we plan to incorporate ge-
ometric uncertainty estimation into planning with uncon-
strained action spaces.
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