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Abstract

Monte Carlo approximations are central to the
training of stochastic neural networks in general,
and Bayesian neural networks (BNNs) in particular.
We observe that the common one-sample approx-
imation of the standard training objective can be
viewed both as maximizing the Evidence Lower
Bound (ELBO) and as maximizing a regularized
log-likelihood of a compound distribution. This
latter approach differs from the ELBO only in
the order of the logarithm and expectation, and
is theoretically grounded in PAC-Bayes theory. We
argue theoretically and demonstrate empirically
that training with the regularized maximum like-
lihood increases prediction variance, enhancing
performance in misspecified settings, adversarial
robustness, and strengthening out-of-distribution
(OOD) detection. Our findings help reconcile pre-
vious contradictions in the literature by providing
a detailed analysis of how training objectives and
Monte Carlo sample sizes affect uncertainty quan-
tification in stochastic neural networks.

1 INTRODUCTION

With rapid advances in model performance over the
past decade, the deep learning community has increas-
ingly focused on developing methods to quantify model
uncertainty—critical for ensuring reliable predictions, par-
ticularly in high-stakes applications like healthcare, au-
tonomous systems, and scientific research.

Bayesian neural networks [Neal, 1993, MacKay, 1992] are
regularly utilized for this purpose, where the derivation of a
posterior distribution over parameters is a main challenge.
A central approach for deriving an approximate posterior
is through variational inference, where a parametric distri-
bution is fitted to match the true unknown distribution by

minimizing the Kullback-Leibler (KL) divergence between
the true posterior p(θ|D) and an approximate parametric
posterior distribution q(θ), i.e.,

DKL[q(θ) ∥ p(θ|D)] . (1)

This divergence is not directly tractable due to the unknown
true posterior p(θ|D), but can be decomposed into the loga-
rithm of the data likelihood p(D) (also called evidence) mi-
nus a second term called the evidence lower bound (ELBO).
Since the evidence p(D) does not depend on the model
parameters, one can minimize Eq. (1) by maximizing the
ELBO. For a data set consisting of N input-output pairs
{(xn, yn)}Nn=1, this objective is given by1

LVI =

N∑
n=1

Eq(θ)[ln p(yn|xn, θ)]− λDKL[q(θ) ∥ p(θ)] ,

(VI)

where p(θ) is a prior distribution over the parameters. In gen-
eral, however, there is no closed-form solution for the expec-
tation term in Eq. (VI), such that Monte Carlo (MC) approx-
imations are applied in practice.2 That is, for a given input-
output pair (xn, yn) the expectation is approximated by
1
S

∑S
s=1 ln p(yn|xn, θs), with θ1, . . . , θS being i.i.d. draws

from q(θ). This estimate is known to converge with a con-
vergence rate of 1/

√
S and hence needs a large amount of

samples to have a small approximation error.

However, during training the expectation term is usually
approximated with just a single MC sample θ1 ∼ q(θ),
resulting in

N∑
n=1

ln p(yn|xn, θ1)− λDKL[q(θ) ∥ p(θ)] . (baseline)

1The theory proposes to set λ = 1. In practice, tempering is
often applied, i.e., choosing some λ > 0. Values λ < 1, however,
are the reason for the “cold posterior” discussion in BNNs as
they can increase test set accuracy [Wenzel et al., 2020] but alter
training assumptions.

2Exceptions exists for simple edge-cases, local linearization
[Goulet et al., 2021] or at stationary points [Damm et al., 2023,
Velychko et al., 2024, Lücke and Warnken, 2024].



This frequently utilized one-sample MC estimate3 of
Eq. (VI) is also the one-sample approximation of a reg-
ularized maximum likelihood objective

LML =

N∑
n=1

ln
(
Eq(θ)[p(yn|xn, θ)]

)
− λDKL[q(θ) ∥ p(θ)] .

(ML)

This objective, LML, differs from LVI, Eq. (VI), only in
the first term in the order of expectation and logarithm:
Eq(θ)[ln(·)] is replaced by ln(Eq(θ)[·]). Maximizing LML

no longer provides a guarantee to reduce the KL divergence
between approximate and true posterior distribution.4 The
first term in LML corresponds to the log-likelihood under
a compound distribution, where the likelihood is averaged
over the mixing distribution q(θ):

p(y|x) =
∫

p(y|x, θ) q(θ) dθ . (2)

It thus corresponds to the predictive log-loss, which is also
used for test-time predictions or evaluation. The second term
acts as a regularizer, encouraging the mixing distribution
q(θ) to remain close to a pre-specified distribution p(θ), as
measured by the Kullback–Leibler divergence. In contrast
to the ELBO, p(θ) does not need to be a prior distribution in
the Bayesian sense, but can be chosen freely. To summarize,
LML minimizes the (regularized) predictive risk (log-loss)
of a compound distribution, while LVI minimizes the KL
divergence to the true model.

The latter objective in Eq. (ML) is no unknown objective.
It has been shown to enable tighter generalization bounds
following the PAC-Bayesian theory and is known under
various names, e.g., as direct loss minimization [Sheth and
Khardon, 2020, Wei et al., 2021, Wei and Khardon, 2022],
PACm [Morningstar et al., 2022], or predictive variational
Bayesian inference [Futami et al., 2022]. Besides the theo-
retically grounded advantages, LML was shown to behave
favorably in practice, especially in the misspecified setting
[Morningstar et al., 2022], for (sparse) Gaussian processes
[Sheikh et al., 2017, Jankowiak et al., 2020, Wei et al., 2021],
and in capturing aleatoric uncertainty [Masegosa, 2020]. On
the contrary, for BNNs there exist findings indicating that
LVI performs favorably [Wei and Khardon, 2022].

However, a thorough understanding of the effects of training
stochastic neural networks with LVI or LML, especially in
comparison to their common one-sample approximation
is missing so far. We close this gap, by conducting an in-
depth analysis of the implications of the changed training

3The one-sample approximation is a standard choice in
Bayesian neural network training, e.g., in foundational works such
as Auto-Encoding Variational Bayes [Kingma and Welling, 2014],
as well as dedicated libraries like Bayesian Torch [Krishnan et al.,
2022] and BayesDLL [Kim and Hospedales, 2023].

4An exception is the edge case where the Jensen inequality
between Eq(θ)[ln(·)] and ln(Eq(θ)[·]) becomes an equality.

objective for the multi-class classification setting. We pay
particular attention to the diversity of predictions as these
are key for performance and generalization [e.g., Masegosa,
2020, Futami et al., 2022, Ortega et al., 2022]. Besides
standard performance measures (NLL, accuracy, ECE) we
also investigate the effect of increased prediction variance
on adversarial robustness and the capability of detecting
out-of-distribution samples.

The presented variance insights also clarify conflicting find-
ings in the literature and resolve their ambiguity, thereby
bridging different research branches.

Main Contributions

• We observe that the ELBO (LVI) and the regularized
maximum likelihood objective (LML) are indistinguish-
able when approximating them with only a single
Monte Carlo sample, i.e., when S = 1, raising the
question how the losses and the resulting models differ
for S > 1, and whether models trained with S = 1 are
better understood as optimizing LVI or LML.

• We investigate both losses theoretically and empirically
in the multi-class classification setting and demonstrate
that training with LML leads to significantly higher
diversity in predictions.

• We find that the performance of LML relative to LVI

and the common one-sample approximation depends
on the ‘hardness’ of the task: for ‘hard’ tasks and
tasks with model-misspecification LML typically out-
performs LVI and the baseline, while NLL and ECE
are typically worse on ‘easy’ tasks. In addition, LML

yields models more robust to OOD inputs and adver-
sarial attacks.

• Finally, we confirm that the commonly used one-
sample approximation closely resembles the standard
training with LVI (which justifies its use for training
BNNs).

2 AN ANALYSIS OF THE VARIANCE

We theoretically investigate the difference between the two
losses of interest and find the diversity of the prediction to be
the key differentiating factor. Consequently, we empirically
validate these findings.

2.1 THEORETICAL CONSIDERATIONS

By Jensen’s inequality, we see that the first term in Eq. (ML)
is at least as large as that of Eq. (VI). That is, ceteris
paribus, the KL divergence has a relatively lower influence
for Eq. (ML), compared to Eq. (VI), allowing for stronger
deviations from the prior. Further analysis shows that we



can characterize the Jensen gap

J(q(θ)) := LML(q(θ))− LVI(q(θ)) (3)

by variations in the predictions:

Proposition 1 (Bounds on the Jensen Gap). Consider a
parametrized distribution p : (X × Y) × Θ, a poste-
rior q(θ) over the parameter space Θ, and input pairs
(xn, yn) ∈ (X × Y) for i ∈ {1, . . . , N}. Assume that
for each n, p(yn|xn, θ) satisfies p(yn|xn, θ) ∈ [an, 1] for
an > 0 with mean µn = Eθ[p(yn|xn, θ)], mean abso-
lute deviation mn = Eθ[|p(yn|xn, θ) − µn|] and vari-
ance σ2

n = Eθ[(p(yn|xn, θ)− µn)
2]. Then, the Jensen gap

J(q(θ)) between the objectives is bounded by

N∑
n=1

max

{
σ2
n

2
, δp,n

}
≤ J(q(θ)) ≤

N∑
n=1

min

{
σ2
n

2a2n
,
mn

an

}
(4)

where for p > 1 and n ∈ {1, . . . , N}

δp,n := ln

 Eq(θ)[p(yn|xn, θ)](
Eq(θ)

[
p(yn|xn, θ)

1
p

])p
 ≥ 0 . (5)

The quantity δp, which we refer to as p-compressed expecta-
tion spread, is, like the variance, a measure of variability of
p(yn|xn, θ). Thus, the Jensen gap can be characterized by
variations in the predictions: variance or absolute deviation
for the upper bound, and variance or δp for the lower bound.
The difference between LVI and LML grows linearly with
larger variations but similarly shrinks linearly to zero with
smaller variations. Equality between the two objectives is
reached if and only if ∀n : σ2

n = Varq(θ)[p(yn|xn, θ)] = 0.

The proof is deferred to Appendix A, alongside further
explanations on the p-compressed expectation spread δp
derived from the self-improving AM-GM inequality [Aldaz,
2009]. Note, that the Jensen gap is also investigated in other
works, e.g., by Masegosa [2020], which present the lower
bound in terms of the prediction variance to the Jensen gap,
and by Futami et al. [2021]. A discussion on existing results
is given in Appendix A, and an empirical comparison of the
different bounds in Figure 5.

Proposition 1 suggests that diversity in the predictions may
be the key factor in analyzing the effects of the above de-
scribed ‘logExchange’. A further inspection of the gradi-
ents adds to these findings. The gradients in their S-sample
approximation read:

∇θE ln :
1

S

S∑
s=1

∇θ p(yn|xn, θs)

p(yn|xn, θs)
, (6)

∇θ lnE :
1

S

S∑
s=1

∇θ p(yn|xn, θs)
1
S

∑S
r=1 p(yn|xn, θr)

. (7)

The main difference between these gradients lies in how
∇θ p(yn|xn, θs) is scaled. For LVI, by the likelihood of the
observation for each θs individually (Eq. (6)); for LML, by
the average likelihood of the observation over all S draws
from q(θ) (Eq. (7)). Suppose that a model θs has low con-
fidence for a given sample (xn, yn). Regarding LVI, this
strongly impacts the gradient (weighting is inversely pro-
portional to the confidence). On the contrary, because of
the averaged predictions in the denominator of the LML

gradient, the gradient magnitude from a single model with
low-confidence are in comparison down-weighted whenever
the overall likelihood of the mixture

∑S
s=1 p(yn|xn, θs) is

sufficiently high. This effect is expected to reduce the di-
versity between individual posterior samples for LVI, while
allowing for more diversity for LML (and the possibility
to learn multiple modes in the posterior, as seen in the toy
examples in Morningstar et al. [2022]). For the one-sample
approximation (S = 1), this gradient down-weighting ef-
fect is not present and we therefore expect the one-sample
approximation to behave more similar to LVI. Motivated by
the theoretical considerations above we proceed to investi-
gate the manifested differences resulting from training with
LVI vs. LML in practice.

2.2 EXPERIMENTAL ANALYSIS

Before diving into the empirical part, we want to highlight
that the change of objectives is in practice done by a simple
one-line change of code compared to regular Bayesian neu-
ral network training with the ELBO as shown in Listing 1.

Experimental set-up We set the number of MC sam-
ples to S = 5 for approximating the expectation during
training and λ = 1 (weighting of the KL divergence). We
always compare to the ‘baseline’ (S = 1) for which LVI

and LML are equivalent. At test time all predictions are
made based on 100 samples drawn from q(θ) to approxi-
mate Eq(θ)[p(y|x, θ)]. We validate the findings for different
model architectures and hyperparameters (see below). We
report means and standard deviation for each experimental
setting over 10 random seeds.

1 # multiple forward passes through model (S times)
2 for s in range(S):
3 logit_s, kl = model(x)
4 log_p_y_s = dists.Categorical(logit_s).log_prob(

target)
5 log_p_y.append(log_p_y_s)
6 if args.objective == ’logE’: # Eq.(ML)
7 E_term = torch.mean(torch.logsumexp(torch.stack(

log_p_y), 0) - math.log(S))
8 elif args.objective == ’Elog’: # Eq.(VI)
9 E_term = torch.mean(torch.stack(log_p_y))

Listing 1: Example implementation of the ‘logExchange’
in the objectives (PyTorch).

Models and Datasets We conduct experiments on five dif-
ferent datasets. Next to the classics in computer vision, i.e.,



MNIST [Deng, 2012] FashionMNIST [Xiao et al., 2017],
and CIFAR10 [Krizhevsky et al., 2009], we also use two
medical datasets, namely PathMNIST [Kather et al., 2019]5

and DermaMNIST [Tschandl et al., 2018, Codella et al.,
2019]6 in the highest resolution from the MedMNIST bench-
mark dataset [Yang et al., 2021, 2023]. Furthermore, we
used four different architectural designs for our stochastic
models: A small feedforward network, denoted ‘FF’, with
two hidden layers of size 256 and 128 with ReLu activation
functions, and a multivariate normal distribution over the
weights with standard normal distributions as our prior. In
addition, we use a feedforward network with two hidden
layers (width 128) where we model the weight distribu-
tion as a matrix variate normal distribution as proposed
by Louizos and Welling [2016], denoted ‘FF-MVN’. This
model type assumes that the learned variance factorizes
and therefore reduces the amount of variance parameters
from din×dout to din+dout. For CIFAR10 we additionally
train a ResNet20 architecture utilizing the code, hyperpa-
rameters and training procedure from Krishnan et al. [2022].
Lastly, with ‘DINOTopping’ we denote a model that uses
the above-described ‘FF’ model on top of the features ex-
tracted by DINOv2 [Oquab et al., 2023],7 where we extract
the [CLS] token from the final transformer layer as a global
representation of each image. For the experiments, we used
AdamW [Loshchilov and Hutter, 2019] with a batch size of
128 and an initial learning rate of 0.001. For more details
please see Appendix B.

Analysing the prediction variance As outlined in Sec-
tion 2.1, the gap between the objectives for the same weight
distribution q(θ) is characterized by the prediction variance.
However, because q(θ) is continuously changing during
training, the behavior of the models trained with the dif-
ferent objectives are not directly relatable and hence it is
not clear how much and if the prediction variance of the
trained model differs. Therefore, we estimate the variance
empirically

max
c

 1

S

S∑
s=1

p(yc|xn, θs)
2 −

(
1

S

S∑
s=1

p(yc|xn, θs)

)2


and visualize the results in Figure 1.

As expected, we observe significantly higher prediction
variances for the models trained with LML throughout all
datasets and all network designs (full results presented in
Table 1). Models trained with baseline and LML show com-
parable variance.8

5Released under CC BY 4.0 license.
6Released under CC BY-NC 4.0 license.
7Released under Apache License 2.0.
8Regarding the KL divergence, we observed throughout all

experiments that it is lower for LVI during training than for the
baseline or LML (see argument in Sec. 2.1 and Fig. 6).
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Figure 1: Histogram of test samples binned by the pre-
diction variance. a) Uses the FF-MVN, b) the ResNet20,
and c) the DINOTopping model.

However, high(er) prediction variance per se is not infor-
mative about the behavior of ensemble members: Ensem-
ble members can behave similarly for a given input, i.e.,
giving the same ordering of class labels, or predicting en-
tirely different labels (see Figure 8 in Appendix D for an
illustrative examples). To further analyze the variability in
prediction, we propose to investigate the dissimilarity score
between predictions of single drawn networks as done by
Fort et al. [2020]. That is, we measure the dissimilarity be-
tween two networks, corresponding to parameters θi and
θj drawn from the learned posterior q(θ), as the fraction of
disagreeing predictions, given by

1

N

N∑
n=1

1[argmax
c

p(yc|xn, θi) ̸= argmax
c

p(yc|xn, θj)] .

To generate the plot shown in in Figure 2 we draw ten
samples θi (for each learned posterior q(θ)), i.e., each pixel
represents the dissimilarity between the predictions of two
distinct parameter draws.

For models trained with LML we observed notably higher
function space diversity compared to those from the models
trained with LVI or the baseline. Regarding MNIST and
PathMNIST, the results for LVI and the one-sample ap-
proximation appear similar, while LVI demonstrates higher
dissimilarity for CIFAR10. This is in line with Figure 1,
where the models trained with LVI show slightly higher
variance than the baseline.

The higher function space diversity is an interesting prop-
erty of LML-trained models, as it has been found to im-
prove ensemble predictions in many tasks. Amongst oth-
ers, it has been argued to be the reason for good uncer-
tainty estimates of ensembles [Fort et al., 2020], found
to be relevant to bound the PAC-Bayes error under mis-
specification [Masegosa, 2020], improving uncertainty and
OOD detection performance of ensembles [Pagliardini et al.,
2023], and the motivation for function space variational in-
ference [Sun et al., 2019, Wang et al., 2019].
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Figure 2: Dissimilarity in predictions measured as a frac-
tion of disagreement between predictions of networks based
on single draws from q(θ). Darker red resembles higher
amount of disagreement, indicating that more diverse func-
tions are learned.

Analyzing the weight distributions To determine the
origins of the differing prediction variance behaviors, we
inspect the learned distribution q(θ) for the models trained
on PathMNIST, as the architecture and weight distribution
design allow for straightforward analysis. We calculated the
Kullback-Leibler divergence between each weights’ univari-
ate normal distributions and standard normal distributions,
see Figure 3, and observe, that the model trained with LVI

has the highest amount of ‘collapsed’ weights, i.e., weights
following the prior distribution. Naturally, this finding also
translates when comparing the weights’ variances9 resulting
from the different objectives. Interestingly, we find that the
weight distribution of the baseline and models trained with
the LML seem to behave more similarly. Another finding
is that the LML trained model has relatively more weights
for which the variance is essentially zero (i.e., they behave
almost deterministically).

Thus, higher learned variances over the weights seem to
correlate with lower prediction variance. We hypothesize
that the models trained with LVI partly learn to ‘disable’
high variance connections from contributing to the final
prediction, effectively learning a sparser network to better
comply with the KL divergence.

3 AN ANALYSIS OF THE EFFECTS OF
THE PREDICTION VARIANCE...

Given our finding that the training objectives lead to sub-
stantial differences in the prediction variance, this section

9The mean distribution does not show interesting differences,
results are therefore shown in Figure 7 in the Appendix.
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Figure 3: Histogram of DKL[q(θ)||N (0, 1)] and σ2 for
each weight in the trained network. LVI has the most
weights which are essentially equal to the prior distribution.
Weight distributions for baseline and LML seem to be more
similar compared to the LVI trained model.

analyses the effects and consequences of these differences,
starting with the classical performance metrics such as ac-
curacy, negative log-likelihood, and expected calibration
error.

3.1 ...ON ACCURACY, NLL, CALIBRATION
ERROR AND PREDICTION CONFIDENCE

The relevant statistics for all objectives, model types, and
datasets are presented in Table 1, showing that the overall
performance of all inspected models is decent (with FF-
architecture on CIFAR10 as an intended exception). For
the DINOTopping models, we even reach state-of-the-art
results on DermaMNIST and PathMNIST (which justify our
setup).

LML is better on ‘hard’ tasks While accuracy is mostly
comparable, we observe a significant increase in accuracy
and log-likelihood for models trained with LML for the FF
architecture on CIFAR10 and DINOTopping on DermaM-
NIST. This increase in accuracy can be explained by the
difficulty of the task: The small fully connected feedforward
network (FF) is clearly unsuited for CIFAR10 (misspeci-
fied), while for DermaMNIST only few training samples are
available (cf. Table 3) and overall performance is quite low
(baseline achieves accuracies below 80%).

As found by Ortega et al. [2022] for general ensembles,
we suspect that these accuracy advantages stem from the
combination of diverse weak learners (as found in Sec-
tion 2.2) which lead to better accuracies through error diver-
sification. This finding resonates with that of Morningstar
et al. [2022], who found that the LML objective (termed
PACm in their work) performs better in case of misspec-
ification, i.e., when the true data generating distribution
cannot be matched by any model in the single parameter
setting (∄ θ ∈ Θ : p(y|x, θ) = pdata(y|x)). Experimen-



Dataset Arch Obj. Accuracy in % ↑ NLL ↓ Avg. pred conf in % Avg. variance ECE ↓

MNIST

FF
LVI 97.94±0.04 0.081±0.001 95.41±0.06 0.012±0.000 0.025±0.001

baseline 98.12±0.06 0.072±0.001 95.97±0.09 0.013±0.000 0.022±0.001

LML 98.19±0.07 0.075±0.001 95.49±0.06 0.030±0.000 0.027±0.000

FF-MVN
LVI 97.65±0.06 0.099±0.001 94.22±0.04 0.014±0.000 0.034±0.001

baseline 97.42±0.04 0.106±0.003 93.88±0.08 0.015±0.000 0.035±0.001

LML 97.46±0.09 0.118±0.001 92.41±0.13 0.046±0.001 0.051±0.002

FashionMNIST

FF
LVI 87.18±0.21 0.358±0.002 83.66±0.21 0.016±0.000 0.035±0.002

baseline 87.87±0.09 0.340±0.002 84.69±0.20 0.016±0.000 0.032±0.002

LML 88.33±0.10 0.328±0.001 84.97±0.07 0.049±0.001 0.034±0.000

FF-MVN
LVI 85.94±0.28 0.393±0.003 82.81±0.11 0.014±0.000 0.032±0.004

baseline 85.73±0.17 0.398±0.002 82.55±0.25 0.015±0.000 0.032±0.003

LML 86.53±0.11 0.382±0.003 82.41±0.26 0.050±0.001 0.041±0.002

CIFAR10

ResNet
LVI 89.95±0.37 0.314±0.009 85.88±0.40 0.049±0.002 0.041±0.002

baseline 89.59±0.24 0.312±0.005 87.63±0.16 0.036±0.001 0.021±0.002

LML 89.48±0.44 0.347±0.009 82.94±0.39 0.077±0.002 0.065±0.005

FF
LVI 39.92±0.65 1.683±0.008 33.30±0.47 0.013±0.000 0.066±0.002

baseline 40.58±1.00 1.655±0.014 34.80±0.64 0.013±0.001 0.058±0.005

LML 45.37±0.20 1.550±0.004 39.15±0.22 0.079±0.002 0.062±0.002

DermaMNIST DINOTopping
LVI 77.58±1.02 0.617±0.015 72.68±2.02 0.021±0.001 0.053±0.018

baseline 79.11±0.89 0.575±0.014 74.02±1.01 0.024±0.002 0.052±0.011

LML 81.77±0.43 0.515±0.007 76.92±0.70 0.089±0.004 0.050±0.011

PathMNIST DINOTopping
LVI 94.48±0.38 0.151±0.009 93.76±0.38 0.015±0.001 0.007±0.002

baseline 94.43±0.11 0.152±0.004 93.92±0.29 0.016±0.001 0.007±0.002

LML 94.44±0.32 0.166±0.006 92.88±0.19 0.043±0.001 0.016±0.002

Table 1: Accuracy, negative log-likelihood (NLL), average prediction confidence, average prediction variance, and
expected calibration error (ECE) for different datasets and model types on the respective test sets. Previous SOTA accuracy
for DermaMNIST was 76.8% (with Google AutoML Vision), and 91.1% for PathMNIST (with ResNet-50 (28)), see Table
3 in Yang et al. [2023]. Bold indicates the best performance in terms of accuracy, NLL or ECE whenever the effect size
exceeds two standard deviations (≥ 2σmax).

tally they demonstrate some benefits of the LML objective
for neural networks when using an explicitly ill-defined re-
gression problem10 and reached comparable accuracies to
LVI in classification tasks, where the prior was named as
the source of misspecification. With our experiments on FF
on CIFAR10 we contribute to their finding by adding an
instance to the list of misspecifications, namely a misspeci-
fication in form an unsuitable network architecture, where
the accuracy benefits from using LML. Furthermore, the
LML objective seems to be beneficial for difficult classifica-
tion tasks (thinking of DermaMNIST), which can also be
regarded as another form of misspecification.

High prediction variance can also hurt Throughout all
experiments, we observe—in line with the ideas outlined in
Section 2.1—that the average prediction variance is high-
est for models trained with LML. Models trained with the
one sample approximation and LVI typically show similar

10They used the upper half of images as inputs and tried to
predict independently the pixel values for the lower half of the
images. Because the predictions happen independently but pixel
values in images are certainly correlated, it is in the misspecified
regime.

prediction variances. In setups where the increased predic-
tion variance is not beneficial, especially when the overall
accuracy is already high, it reduces the average prediction
confidence. In turn, this negatively impacts the negative log-
likelihood as well as the expected calibration error, see the
results for MNIST, CIFAR10 with ResNet20 or PathMNIST.
This resonates well with the findings of Wei and Khardon
[2022], who found that models trained with LML usually
get worse negative log-likelihood scores—which at first
glance contradict the positive findings reported for exam-
ple by Morningstar et al. [2022], Futami et al. [2022], and
Masegosa [2020].

While Wei and Khardon [2022] try to explain these finding
with learning dynamics, i.e. by LML getting stuck in bad
local minima (a hypothesis they falsified themselves), this
behavior is expected as the increased prediction variance nat-
urally reduces the negative log-likelihood in settings where
already highly accurate and confident predictions are made.
This is because the higher diversity between single ensem-
ble members reduces the model confidence and therefore
also the negative log-likelihood—in line with the findings
from Jeffares et al. [2023] and Abe et al. [2023] that ar-
gue that artificially increasing prediction diversity during



training of ensembles can in fact be counterproductive. In-
terestingly though, we a) get comparable test accuracies
(negative effects seem to be limited to NLL and ECE), b)
do not directly optimize for increased prediction variance,
and c) have the very same setup and only uni-modal nor-
mal distributions over the weights and still observe higher
function space diversity with LML. In addition, we found
that training with the baseline typically leads to the best
calibrated models.

3.2 ...ON ADVERSARIAL ROBUSTNESS

Recent work by Däubener and Fischer [2022] suggests,
that higher prediction variance can have a positive effect
on the adversarial robustness of models, which we test in
this subsection. For this we attacked the FF-MVN network
on MNIST, the FF network on FashionMNIST and the
ResNet20 architecture on CIFAR10 with strong attacks,
namely with the projected gradient descent method [Madry
et al., 2018], which iteratively conducts fast gradient sign
method [FGSM, Goodfellow et al., 2015] updates with a
smaller step size than the allowed maximal perturbation size.
We used 10 iterations and 10 samples per approximation
of the gradient. This leads to 100 sampled θ in total per
data point. We used the l∞-norm to quantify the maximal
allowed perturbation which we gradually increased from 0
to 0.25. For the models trained on CIFAR10, we calculated
adversarial examples with FGSM where we estimated each
gradient based on 10 samples of θ for computational reasons.
Figure 4 shows the accuracies under adversarial attacks for
the models optimized with LVI, LML, and the baseline.
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Figure 4: Accuracy under adversarial attack with an
increasing amount of allowed perturbation. We report
the mean and standard deviation (shaded area) calculated
on 10 independently trained and attacked models. a) uses
the FF-MVN, b) the FF, and c) the ResNet architecture.

We see, that the adversarial accuracies of the baseline and
the LVI trained models are lower than for the LML trained
model on MNIST and FashionMNIST. This effect is not
directly observable for the models trained on CIFAR10.

3.3 ...ON OUT-OF-DISTRIBUTION DETECTION

Lastly, this subsection investigates how capable the models
trained with LML,LVI and the baseline are to detect out-
of-distribution data. To create realistic OOD samples we
utilize the benchmark image corruptions by Michaelis et al.
[2019]. We take the CIFAR10 test set and generate 75 OOD
data sets: for each of the 15 different corruption styles we
generated 5 corrupted data sets with increasing severity
(see Figure 9 in the Appendix for example images). Next,
we let all models predict all samples in these test sets and
also for the benign test data set. In addition, we compute
the entropy of the predictive distribution (resulting from
100 draws from q(θ)) for each example, as it quantifies
the uncertainty in the model’s output distribution over the
classes:

H(p(y|x)) = −
∑
c

p(yc|x) ln
(
p(yc|x)

)
High entropy reflects uncertainty or lack of confidence,
which is ideally elevated for OOD inputs, while entropy
should be comparably lower on in-distribution data. Thus, it
can serve as an effective score for OOD detection. Based on
the computed entropy values, the AUROC for distinguish-
ing test from OOD data is calculated, yielding 75 AUROC
scores. Based on these values the AUROC for discriminating
between test and OOD data set is calculated, which results
in 75 AUROC values. Each experiment is repeated 10 times.
Because of the same initialization, we conducted a pairwise
Wilcoxon rank-sum test with significance level α = 0.05 to
compare the AUROC values against each other in Table 2.

LVI baseline LML Avg. Acc Avg. AUROC

LVI × 18 0 0.3942 0.8806
baseline 0 × 0 0.3923 0.8723
LML 27 31 × 0.3945 0.8970

Table 2: The LML objective leads to models more capa-
ble of detecting corrupted test instances. The first block
reports the number of successful pairwise Wilcoxon rank-
sum tests based on the AUROC values for discriminating
between test and OOD samples. The pairwise tests compare
if the row objective leads to a significantly higher AUROC
than the column objective with entropy as the score function.
The total number of tests is 75. Example interpretation for
the bottom left entry: In 27 out of all 75 cases (i.e., 36%) the
LML objective significantly outperforms the LVI objective
(while LVI never outperformed LML). The last two columns
display the average accuracy over all seeds and corruptions,
and the average AUROC.

Table 2 shows that models trained with the LML objective
lead to significantly higher AUROC values in 36% of the
OOD detection tasks when compared to models trained with
the other objectives. The average accuracy over all OOD
datasets is similar for all models, while the average AUROC



mirrors the results of the hypotheses tests, where the LML

trained models lead to the highest average value. In this
context, we see that LVI performs better than the baseline
(which is not the case in our other experiments).

4 RELATED WORK

LML loss for neural networks Several works derive LML

from different backgrounds. For example, Morningstar et al.
[2022] motivate the derivation from the distinction between
the predictive risk P(q) = −Eν(X)

[
lnEq(Θ)[p(x|Θ)]

]
(in

this work termed LML) and the inferential risk R(q) =
−Eν(X)

[
Eq(Θ)[ln p(x|Θ)]

]
(here denoted LVI). Building

on Masegosa [2020], who found that in the case of model
misspecifications minimizing the latter is not a tight bound
for the predictive risk, Morningstar et al. [2022] leverage
an expectation approximation trick following Burda et al.
[2016] to derive PAC-Bayesian like guarantees for their
PACm-bound, which is identical to LML in their numerical
approximation. However, their derived bound is vacuous
for any fixed number of samples [Morningstar et al., 2022,
Appendix B.2] and, therefore, can only serve as a theoretical
motivation for the LML objective.

Wei and Khardon [2022] examine LML (direct loss mini-
mization with an additional regularization term as they term
it) empirically for BNNs and found that models trained with
LML perform and generalize worse than their counterparts
trained with LVI. That is, models trained with LVI get bet-
ter negative log-likelihoods across all classification tasks
and models they tested, and they hypothesize that this is
due to optimization difficulties or overfitting. We confirm
this finding on ‘easy’ classification tasks with sufficiently
much training data (although test accuracy seems not to be
affected). In contrast, we find that LML is indeed outper-
forming the ELBO LVI on misspecified and challenging
tasks (FF-CIFAR10 and DermaMNIST, respectively).

Dusenberry et al. [2020] briefly empirically evaluate the im-
pact of exchanging ln and E during training without KL reg-
ularization (here termed negative log-marginal-likelihood or
mixture NLL). They find that models trained with LML on
CIFAR10 result in the worst test set performance in terms
of expected calibration error, log-likelihood, and accuracy.
They hypothesize that for “misspecified models such as over-
parametrized neural networks, training a looser bound on the
log-likelihood leads to improved predictive performance.”

Maximizing variances during neural network training
Other works explicitly use methods for enhancing variances
to boost prediction performance. For example, based on the
derivation of a second-order PAC-Bayes bound, Masegosa
[2020] propose to include the prediction variance into the
ensemble learning objective, whereas Futami et al. [2021]
boost the variances between losses in their approach. An-
other interesting work was conducted by Ortega et al. [2022]

who investigated the interplay between generalization per-
formance and diversity for neural network ensembles. Their
main theorem gives insights into what drives ensemble di-
versity which is a) uncorrelated ensemble members and
b) different predictions across models and data samples.
Interestingly, they find that the relation between general-
ization and diversity is not present when operating in the
“interpolation regime” for ResNet architectures on CIFAR10,
where empirical errors are close to zero. On the contrary, it
has been shown that artificially inflating diversity of neural
ensembles does not generalize well and actually degrades
performance Jeffares et al. [2023], Abe et al. [2023].

5 DISCUSSION AND CONCLUSION

This work takes a closer look at the ELBO used in the
variational training of Bayesian neural networks and at how
this objective is approximated in practice. The commonly
used one-sample approximation of the expectation term
in the ELBO, Eq. (VI), can be reinterpreted as the log-
likelihood of a compound density model (a fact that only a
subgroup of researchers in the PAC-Bayesian domain seem
to be aware of).

This implies, that for S = 1 the trained stochastic model can
either be seen as a Bayesian neural network where we try
to approximate the true but unknown posterior, or as a com-
pound density model where we maximize the (regularized)
log-likelihood of the parameters of the mixing distribution.
In practice, the difference between these two objectives be-
comes evident when optimizing with more than one Monte
Carlo sample (S > 1) which has theoretical and practical
implications, specifically with regards to the variance of
the model predictions. More precisely, we present a simple
proposition indicating that maximizing the ELBO leads to
models with lower prediction variance than training with the
likelihood-based LML objective. This is verified throughout
extensive experiments, where we find that models trained
with LML lead to comparable accuracy, increased prediction
variance, and increased function space diversity compared
to identically initialized models trained with the ELBO or
the one-sample approximation (baseline).

The aforementioned properties are linked to model robust-
ness concerning adversarial examples and OOD detection
performance, which we also empirically find in our paper.
However, encouraging function space diversity for networks
that are capable of making highly confident correct predic-
tions for a given task naturally leads to a degradation of
prediction confidence and therefore also of the negative log-
likelihood. Hence, the findings of Wei and Khardon [2022]
are not discrediting the performance of the LML, but give
credit to Jeffares et al. [2023], Abe et al. [2023], who state
that in this particular setting enhancing diversity between
ensemble members is not advantageous.



In contrast, we see that enhancing diversity helps when
using a poorly suited model architecture—such as in our ex-
periments with the FF on CIFAR10 experiments—or when
tackling a challenging task, as with DermaMNIST. In such
cases, LML performs favorably compared to the baseline
and LVI. This behavior is resembling the idea of boosting
where combing weak learners can yield stronger overall
performance when their errors are sufficiently diverse. In
this context, we add another misspecification setting (in
which the LML objective is beneficial) to the findings of
Morningstar et al. [2022], which is a (poorly) suited model
architecture itself (next to a suitable prior and likelihood
definition). Another contribution of this paper is that our
investigation of the gradients in Section 2.2 can explain
Morningstar et al. [2022]’s toy regression findings, where
LML trained models can reproduce multi-modal predictive
distributions and are more robust to outliers: Because of
the implicitly encouraged high function space diversity, the
averaged likelihood for an outlier is enhanced and thereby
reduces the impact of its gradient direction to improve the
model on this particular sample. At the same time, the same
inner workings allow the model to explore and learn mul-
timodal distributions, as the impact of some wrong predic-
tions is not dominating the gradient direction when training
with the LML objective.

Lastly, our analysis verifies the common practice of a one-
sample-approximation (baseline) as a good approximation
to training with the ELBO (LVI), as it reproduces similar
train and test behavior as the several-sample-approximation
(though the weight distributions are more alike to models
trained with LML).

The presented results show that the way to train stochastic
neural networks should depend on the characteristics of the
problem itself: When large prediction variance is advanta-
geous to remedy misspecifications, tackling a hard classif-
cation task with little available data or increase robustness
against adversarial or OOD inputs (and no Bayesian interpre-
tation is needed), training a compound density model with
the regularized maximum-likelihood objective LML with
S > 1 can indeed be a capable alternative to the ELBO.
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A PREDICTION VARIANCE AND PROOF OF PROPOSITION 1

Before proving the theoretical results in the main paper, we briefly summarize the theoretical findings from related works.
Futami et al. [2021] focus on particle variational inference and derive a second-order Jensen inequality (their Theorem 3),
which for fixed x reads

J(q(θ)) ≥ Eq(θ)

(
ln(p(x|θ)− Eq(θ) ln(p(x|θ)

2h(x|θ)

)2

with

h(x, θ)−2 = exp
(
ln p(x|θ) + Eq(θ)[ln p(x|θ)]− 2max

θ
ln p(x|θ)

)
.

The gap is upper bounded by the weighted variance of the loss function (in contrast to ours, where we focus on the variance
in predictions), and utilized as a ‘repulsion’ loss term. Masegosa [2020] presents a lower bound on the Jensen gap in terms
of the prediction variance (their Theorem 2) which is a special case of the results by Liao and Berg [2019], which for fixed x
reads

J(q(θ)) ≥ 1

2maxθ p(x|θ)2
Eθ[(p(x|θ)− Eθp(x|θ))2]︸ ︷︷ ︸

σ2

.

We will make use of the latter inequality in our Proposition 1 . The bounds in Gao et al. [2019] relate the Jensen gap to the
(centered) moments of a random variable, but are not directly applicable in our setting.

Let us now restate Proposition 1 and prove it.

Proposition 1 (Bounds on the Jensen Gap). Consider a parametrized distribution p : (X × Y)×Θ, a posterior q(θ) over
the parameter space Θ, and input pairs (xn, yn) ∈ (X × Y) for i ∈ {1, . . . , N}. Assume that for each n, p(yn|xn, θ)
satisfies p(yn|xn, θ) ∈ [an, 1] for some an > 0 with

• µn = Eθ[p(yn|xn, θ)] (mean),

• mn = Eθ[|p(yn|xn, θ)− µn|], (absolute deviation)

• σ2
n = Eθ[(p(yn|xn, θ)− µn)

2] (variance).

Then, the Jensen gap J(θ) between the objectives is bounded by:
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where for p > 1 and n ∈ {1, . . . , N}

δp,n := ln
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])p
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Proof. We are interested in deriving upper and lower bounds for some random variable X on [a, b]. Let X be a shorthand
for the model prediction p(yn|xn, θ) (in dependence of the posterior q(θ)) for some fixed data point (xn, yn). Further, the
support of X satisfies a > 0 by assumption and b = 1 as we are analyzing a classification problem.

We start with an upper bound on the Jensen gap, involving the expected absolute deviation m. The Jensen gap itself reads

J(X) = ln(E[X])− E[ln(X)] (8)

=

∫
ln(µ)− ln(x) dP (x) (9)

where P (x) denotes the density function of the random variable X . We continue with

≤
∫

| ln(µ)− ln(x) | dP (x) (10)

and by the Lipschitz-continuity of the logarithm on [a, b] with Lipschitz constant 1
a , i.e., ∀x, y ∈ [a, b] : | ln(x)− ln(y)| ≤

|x− y|/a, we conclude

≤ 1

a

∫
|µ− x| dP (x) =

1

a
m (11)

in which m denotes the first absolute centered moment of X .

We now turn to the lower bound based on the p-compressed expectation spread δp. This bound is inspired by the self-
improvement version of the AM-GM inequality, see, e.g., Aldaz [2009]. We consider the random variable X

1
p for some

p > 1 (a ‘compressed’ version of X) and start with the classical Jensen inequality
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Rearranging and invoking the definition of X gives

ln
(
Eq(θ)[p(yn|xn, θ)]

)︸ ︷︷ ︸
from LML

−Eq(θ) [ln (p(yn|xn, θ))]︸ ︷︷ ︸
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. (17)

The Jensen inequality guarantees the non-negativity of δp,n (by concavity of the pth root).

The variance-based bounds follow from a slight modification from the argumentation in Masegosa [2020] (see statement
above), which in turn is just a special case of the results by Liao and Berg [2019]. We include the proof for completeness:
We utilize the Taylor series representation of the logarithm up to the second degree about µ = E[ln(X)] with the Lagrange
form of the remainder, which reads

ln(X) = ln(µ) +
1

µ
(X − µ)− 1

2ξ2
(X − µ)2 (18)

for some ξ between X and µ. Taking the expectation
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and noting that a ≤ ξ ≤ b implies
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directly gives
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]
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All presented bounds hold for any Xn = p(yn|xn, θ) on [an, 1], with mean µn, first absolute centered moment mn, variance
σ2
n and p-compressed expectation spread δp,n. We can thus combine Eqs. (11), (17) and (22) such that the Jensen gap

satisfies

N∑
n=1
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≤ J(q(θ)) ≤
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, (23)

which concludes the proof.
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Figure 5: The Jensen gap and a comparison of the presented bounds for various distributions. Depicted are the Jensen
gap for the logarithm J(X) = ln(E[X])− E ln(X) and upper and lower bounds from Proposition 1 for X following the
specified distribution on [a, b] (we simply take a and b to be the sample minimum/maximum; note that we include cases
with b ̸= 1). Depicted are the variance-based bounds from the Taylor expansion 1

2b2σ
2 ≤ J(X) ≤ 1

2a2σ
2, the upper bound

J(X) ≤ 1
am and the p-compressed expectation spread δp ≤ J(X) for p ∈ {2, 5, 10}). Results are based on 100 samples

per distribution.

Notably, the function δp
(
θ; (yn, xn)

)
quantifies the variations of the random variable p(yn|xn, θ) by comparing the

expectation of the ‘compressed’ random variable—by taking the pth root which pulls everything towards one—to the
uncompressed expectation. We therefore refer to this quantity as the p-compressed expectation spread. When the predictions
are almost constant (little variation), we have Eq(θ)[p(yn|xn, θ)]

1
p ≈ Eq(θ)[p(yn|xn, θ)

1
p ], such that δp ≈ 0. For p = 2 the

gap relates to the variance (of
√
p(yn|xn, θ)) and usually becomes tighter with growing p.

A simple comparison of the different bounds is presented in Figure 5. We see that the variance-based bounds following
Masegosa [2020], Liao and Berg [2019] become tight for very low variances (almost constant random variables), while the
p-compressed expectation spread yields tighter lower bounds for higher variances and heavy-tailed distributions. In such



settings, the bound based on the absolute deviation is usually tighter then the variance-based bound. Thus, we decided to
include both lower bounds in Proposition 1 to cater to both extremes.

To summarize the key point from Proposition 1: The Jensen gap between the objectives of interest grows (and vanishes)
with the variability in the predictions. In the limit, i.e., if ∀n : Varq(θ)[p(yn|xn, θ)] = 0, equality between LML and LVI is
reached again.

B TRAINING DETAILS

Training hyperparameters All models were trained with AdamW [Loshchilov and Hutter, 2019] with an initial learning
rate of 0.001. Note, that for ResNet20 on CIFAR10 we used the example code by Krishnan et al. [2022] without modifications
on the hyperparameter setting. Note, that in this implementation, the KL divergence of each layer is given as the mean KL
divergence over the parameters in that layer and is hence down-weighted in comparison to the other models we used. All
training runs were executed on NVIDIA A40 GPUs (a single A40 is sufficient for each single experiment).

Dataset Resolution #Classes #Train #Test

MNIST 28x28 10 60k 60k
FashionMNIST 28x28 10 60k 60k
CIFAR10 32x32 10 50k 10k
PathMNIST 224x224 9 89,996 7,180
DermaMNIST 224x224 7 7,007 2,005

Table 3: Datasets used in this work.

We used different numbers of epochs for the models trained on different datasets as we observed that although accuracy
might be at the highest value, the balance between the expectation- and KL divergence is reached at a much later point in
training. Therefore, we fixed the number of epochs to an amount where we saw the loss to be stagnating. That is, on MNIST,
FashionMNIST after 70 epochs for the FF architecture and 100 epochs for the FF-MVN architecture, for CIFAR10 after
100 epochs (both ResNet20 and FF), for PathMNIST after 120 epochs and for models trained on DermaMNIST after 150
epochs. Note, that DermaMNIST is by far the smallest datasets which explains the increased number of epochs (cf. Table 3).
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Figure 6: Value of the respective loss functions, KL divergence, lnE and E ln during training (on MNIST). The same
characteristics were observed for other models and datasets.

Comparing training metrics This subsection presents training metrics for the simple feedforward architectures FF trained
on MNIST [Deng, 2012]. Even though this is an easy task, we found the training behavior of this simple approach to be
exemplary for all other models and datasets used in this paper.

First, it is noted that training for 70 epochs resulted in a test set accuracy of roughly 0.98 for each objective type, such that
all models perform reasonably well. In Figure 6 we see (a) the respective losses of the models throughout training and (b)
the respective KL divergence between the learned weight distribution and the prior. The loss is grossly dominated by the
Kullback-Leibler divergence, which is more strongly minimized for the model trained with LVI.



To investigate further differences during training, we tracked lnE and E ln for each training model in Figure 6(c) and (d).
While the results for lnE, which LML uses in its loss objective are comparable for all three training objectives, the results
for E ln significantly deviate. This indicates, that the gap described in proposition 1 is significantly increased for LML being
indicative of higher diversity in predictions. The baseline and models trained with LVI show a similar training behavior with
respect to these metrics.
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Figure 7: Weights’ mean values of the learned
q(θ) for the DINOTopping model on PathMNIST.

Mean of the learned weight distributions As mentioned in the
main part of the paper, the mean weights’ mean value distributions do
not differ notably between the objectives of interest as can be seen in
Figure 7.

C PERFORMANCE
WITH OTHER HYPERPARAMETERS

To ensure, that the finding of increased prediction variance is not only
an artifact to our choice of prior or KL weighting, we experimented
with different values of i) λ and ii) a distributional change of p(θ) to
N (0, 3) and tested how these changes impact accuracy and prediction
variance of the models.

In Table 4 we show the results for models trained on MNIST with
MVN and observe, that the reduction of λ leads to higher accuracy
(in line with findings with regards to the “cold posterior” effect, see
e.g., the work by Wenzel et al. [2020]) while reducing the average per
sample variance compared to the standard setting. Since λ scales the KL divergence which hinders q(θ) from collapsing the
reduced prediction variance is expected. Interestingly though, a higher prior variance does not translate to a notably higher
per-sample prediction variance but decreases the test set accuracy. We find this trend also to be true on the other data sets.

Standard setting λ = 0.1 σ2 = 3
Accuracy Avg var Accuracy Avg var Accuracy Avg var

LVI 97.21 ± 0.11 0.02 98.39 ± 0.06 0.01 96.91 ± 0.12 0.02
baseline 97.01 ± 0.12 0.02 98.22 ± 0.06 0.01 96.67 ± 0.16 0.02
LML 97.21 ± 0.10 0.06 98.25 ± 0.11 0.02 96.83 ± 0.11 0.07

Table 4: Influence of regularization strength λ and prior variance σ2 on test set accuracy (in %) and average prediction
variance (MNIST). We here report mean and standard deviation over 10 different seeds, trained with Adam.



D ILLUSTRATION OF ENSEMBLES WITH LOW AND HIGH FUNCTION SPACE
DIVERSITY

Here, we briefly recapitulate two prototypical scenarios for the behavior of ensemble members, as illustrated in Figure 8. In
the left column, the models predict classes in the same ordering, in particular their predictions argmaxc p(yc|x, θi) agree.
In contrast, models’ predictions in the right column disagree. This is possible even if ensemble predictions are identical
(top row) or the prediction variances are identical (bottom row) in both scenarios. The latter motivates our analysis of the
function space diversity in Section 2.2 (to answer the question whether models are just uncertain on some samples but still
largely agree in prediction, or whether the models predict different classes).
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Figure 8: Two scenarios depicting similar (left) and dissimilar behavior (right) across ensemble members (model pre-
dictions indicated by small arrows on top). Top row: Ensemble predictions are identical (grey lines show 1

3

∑3
i=1 p(y|x, θi)).

Bottom row: Prediction variances of the ensemble are identical (in parentheses below).



E EXAMPLES OF IMAGE CORRUPTIONS

In Figure 9 we show exemplary corruptions of the images which compose the OOD data sets used in Section 3.3 of the main
paper.

Perturbation Severity
Benign Level 1 Level 2 Level 3 Level 4 Level 5

Gaussian noise

Shot noise 2

Impulse noise 3

Defocus blur
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Zoom blur
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JPEG compression

Figure 9: Example images of CIFAR10 when applying different corruptions with increasing corruption strength based
on Michaelis et al. [2019]’s repository.
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