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ABSTRACT

Split conformal prediction has recently sparked great interest due to its ability to
provide formally guaranteed uncertainty sets or intervals for predictions made by
black-box neural models, ensuring a predefined probability of containing the ac-
tual ground truth. While the original formulation assumes data exchangeability,
some extensions handle non-exchangeable data, which is often the case in many
real-world scenarios. In parallel, some progress has been made in conformal meth-
ods that provide statistical guarantees for a broader range of objectives, such as
bounding the best F1-score or minimizing the false negative rate in expectation.
In this paper, we leverage and extend these two lines of work by proposing non-
exchangeable conformal risk control, which allows controlling the expected value
of any monotone loss function when the data is not exchangeable. Our framework
is flexible, makes very few assumptions, and allows weighting the data based on
its relevance for a given test example; a careful choice of weights may result in
tighter bounds, making our framework useful in the presence of change points,
time series, or other forms of distribution drift. Experiments with both synthetic
and real world data show the usefulness of our method.

1 INTRODUCTION

As the use of machine learning systems for automated decision-making becomes more widespread,
the demand for these systems to produce reliable and trustworthy predictions has grown significantly.
In this context, conformal prediction (Papadopoulos et al., 2002; Vovk et al., 2005) has recently
resurfaced as an attractive framework. Instead of providing a single output, this framework creates
prediction sets or intervals that inherently account for uncertainty. These sets come with a statistical
guarantee known as coverage, which ensures that they contain the ground truth in expectation,
thereby providing a formal promise of reliability.

The standard formulation of conformal prediction has, however, important limitations. First, it as-
sumes that all data is exchangeable, a condition which is often violated in practice (e.g., when there
is correlation over time or space). Second, while the predicted sets/intervals provide guarantees
on coverage, they do not bound arbitrary losses, some of which may be more relevant for the sit-
uation at hand (e.g., the F1-score or the false negative rate in multilabel classification problems).
Several works have been proposed to improve over these two shortcomings, namely through non-
exchangeable conformal prediction (Tibshirani et al., 2019; Gibbs & Candes, 2021; Barber et al.,
2023) and conformal risk control (Bates et al., 2021; Angelopoulos et al., 2023a, CRC). In this paper,
we extend these lines of research and propose non-exchangeable conformal risk control (non-X
CRC). Our main contributions are:

• We propose a new method for conformal risk control that provides formal guarantees when the
data is not exchangeable, while also achieving the same guarantees as existing methods if the data
is in fact exchangeable (see Table 1 where we position our work in the literature);

• Theorem 1 establishes a new bound on the expected loss (assumed to be monotonic and
bounded), allowing weighting the calibration data based on its relevance for a given test example;
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Table 1: Our framework combines two approaches, non-exchangeable conformal prediction and
conformal risk control. Through this combination we are able to control the expected value of
arbitrary monotonic loss functions when the data is not exchangeable, extending both frameworks.

Method Data assumptions Loss

Papadopoulos et al. (2002) exchangeable% miscoverage
Barber et al. (2023) % miscoverage
Angelopoulos et al. (2023a) exchangeable% nonincreasing, arbitrary
Angelopoulos et al. (2023a, Prop. 3) covariate shift, known likelihood ratio% nonincreasing, arbitrary
This paper % nonincreasing, arbitrary

• We demonstrate the usefulness of our framework on three tasks: multilabel classification on
synthetic data by minimizing the false negative rate; monitoring electricity usage by minimizing the
λ-insensitive absolute loss; and open-domain question answering by bounding the best F1-score.1

Throughout the paper, we use the following definition of exchangeable data distribution, which is a
weaker assumption than independent and identically distributed (i.i.d.) data.

Definition 1 (Exchangeable data distribution). Let X and Y designate input and out-
put spaces. A data distribution in X × Y is said to be exchangeable if and only if we
have P((Xπ(1), Yπ(1)), . . . , (Xπ(n), Yπ(n))) = P((X1, Y1), . . . , (Xn, Yn)) for any finite sam-
ple {(Xi, Yi)}ni=1 ⊆ X × Y and any permutation function π. Note that if the data distribution
is i.i.d., then it is also exchangeable, since P((X1, Y1), . . . , (Xn, Yn)) =

∏n
i=1 P((Xi, Yi)).

2 BACKGROUND

We start by providing background on conformal prediction (Papadopoulos et al., 2002; Vovk et al.,
2005) in §2.1. We then discuss recent extensions of the framework—§2.2 discusses the case where
the data is non-exchangeable (Barber et al., 2023), which is often the case when models are de-
ployed in practice. Another extension pivots from guaranteeing coverage to instead constraining the
expected value of any monotone loss function (Angelopoulos et al., 2023a), useful for tasks in which
the natural notion of error is not miscoverage (§2.3).

2.1 CONFORMAL PREDICTION

Although other methods exist, this paper focuses on split conformal prediction (Papadopoulos et al.,
2002; hereinafter referred to simply as conformal prediction). We start with a pretrained model
and measure its performance on a calibration set {(Xi, Yi)}ni=1 of paired examples. Under the
assumption of exchangeable data {(Xi, Yi)}n+1

i=1 , conformal prediction constructs prediction sets
with the following coverage guarantee:

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α, (1)

where (Xn+1, Yn+1) is a new data point and α a predefined confidence level. This is accomplished
through the following steps: Let s(x, y) ∈ R be a non-conformity score function, where larger scores
indicate worse agreement between x and y. We compute the value q̂ as the 1/n⌈(n + 1)(1 − α)⌉
quantile of the calibration scores and construct a prediction set as follows:

C
(
Xn+1

)
=

{
y : s(Xn+1, y) ≤ q̂

}
. (2)

This prediction set satisfies the coverage guarantee in Eq. (1), see e.g., Angelopoulos & Bates, 2021,
App. D for a proof. While this guarantee helps to ensure a certain reliability of the calibrated model,
the assumption of exchangeable data is often not true when models are deployed in practice, e.g.,
due to distribution drift in time series or correlations between different data points.

1Our code is available at https://github.com/deep-spin/non-exchangeable-crc.
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2.2 NON-EXCHANGEABLE CONFORMAL PREDICTION

Let us now consider prespecified weights {wi}ni=1 ∈ [0, 1]n and define w̃i := wi/(1 +
∑N

i=1 wi).
We take a look at a generalization of conformal prediction put together by Barber et al. (2023),
which provides the following coverage guarantee, also valid when exchangeability is violated:

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1− α−

n∑
i=1

w̃idTV(Z,Z
i), (3)

where Z := (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) is a sequence of n calibration examples fol-
lowed by a test example, Zi denotes Z after swapping (Xi, Yi) with (Xn+1, Yn+1), and dTV(Z,Z

i)
is the total variation (TV) distance between Z and Zi. This is accomplished by using

q̂ = inf
{
q :

N∑
i=1

w̃i1
{
si ≤ q

}
≥ 1− α

}
(4)

to construct prediction sets the same way as in Eq. (2). See Barber et al. (2023, §4) for a proof. It is
worth noting that this method recovers standard conformal prediction when {wi}ni=1 = 1. Besides,
if the data is exchangeable, then the distribution of Z is equal to the distribution of Zi, and thus using
a weighted procedure does not hurt coverage according to Eq. (3), since dTV(Z,Z

i) = 0 for all i.
Intuitively, the “closer” to exchangeable the data is, the smaller the last term will be in Eq. (3). By
choosing wisely the weights wi—e.g., by setting large weights to calibration points (xi, yi) such that
Z and Zi are similarly distributed and smaller weights otherwise—tighter bounds can be obtained.
For example, in time series data we may want to place larger weights on more recent observations.

2.3 CONFORMAL RISK CONTROL

Let us now consider an additional parameter λ and construct prediction sets of the form Cλ(·), where
larger λ yield larger prediction sets, i.e., λ ≤ λ′ =⇒ Cλ(.) ⊆ Cλ′(.) (see Angelopoulos & Bates
(2021, §4.3) for an example). Let ℓ be an arbitrary (bounded) loss function that shrinks as C(Xn+1)
grows (i.e., that is monotonically nonincreasing with respect to λ). We switch from conformal
methods that provide prediction sets that bound the miscoverage P

(
Yn+1 /∈ C(Xn+1)

)
≤ α to

conformal risk control (Angelopoulos et al., 2023a), which provides guarantees of the form

E
[
ℓ(C(Xn+1), Yn+1)︸ ︷︷ ︸

Ln+1(λ̂)

]
≤ α. (5)

This is accomplished as follows. Let Li(λ) = ℓ(Cλ(Xi), Yi), i = 1, . . . , n + 1, with Li : Λ →
(−∞, B] and λmax := supΛ, be an exchangeable collection of nonincreasing functions of λ. Choos-
ing an optimal λ̂ as

λ̂ = inf
{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
, R̂n(λ) =

1

n

n∑
i=1

Li(λ), (6)

yields the guarantee in Eq. (5), see Angelopoulos et al. (2023a, §2) for a proof. When
ℓ(C(Xn+1), Yn+1) = 1

{
Yn+1 /∈ C(Xn+1)

}
is the miscoverage loss, we recover standard con-

formal prediction (§2.1). Note that, as required, this loss is nonincreasing. Other nonincreasing
losses include the false negative rate, λ-insensitive absolute error, and the best token-level F1-loss,
all of which used in our experiments in §4. A limitation of the construction presented in this sec-
tion is that it relies on the assumption of data exchangeability, which might be violated in practical
settings. Our work circumvents this requirement, as we show next.

3 NON-EXCHANGEABLE CONFORMAL RISK CONTROL

Up to this point, we have described how to construct prediction sets/intervals with coverage guaran-
tees for non-exchangeable data, in §2.2, and how to control the expected value of arbitrary monotone
loss functions, when the data is exchangeable, in §2.3. Using the same notation as before, we now
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present our method, non-exchangeable conformal risk control, which puts together these parallel
lines of research, providing guarantees of the form:

E[L(λ̂; (Xn+1, Yn+1))] ≤ α+ (B −A)

n∑
i=1

w̃idTV(Z,Z
i), (7)

where we additionally assume A < B < ∞ to be a lower bound on Li : Λ → [A,B]. Let us define
Nw :=

∑N
i=1 wi. Eq. (7) is obtained by choosing an optimal λ̂ as

λ̂ = inf

{
λ :

Nw

Nw + 1
R̂n(λ) +

B

Nw + 1
≤ α

}
, R̂n(λ) =

1

Nw

n∑
i=1

wiL(λ; (xi, yi)). (8)

We can see how Eq. (7) simultaneously mirrors both Eq. (3) and Eq. (5): for an optimal choice of
λ, the expected risk for a new test point is bounded by α plus an extra loosening term that depends
on the normalized weights {wi}ni=1 and on the total variation distance between Z and Zi. When the
data is in fact exchangeable, we have again dTV(Z,Z

i) = 0 for all i, and we recover Eq. (5), i.e.,
our method achieves the same coverage guarantees as standard conformal risk control. Although
our theoretical bound in Eq. (7) holds for any choice of weights, this result is only useful when
the loosening term is small, i.e., if we choose small weights wi for data points Zi with large total
variation distance dTV(Z,Z

i). While the true value of this term is typically unknown, in some
situations, such as distribution drift in time series, we expect it to decrease with i, motivating the
choice of weights that increase with i. The same principle can be applied in other domains (e.g., for
spatial data, one may place higher weights to points close in space to the test point). We come back
to this point in §3.2.

The result in Eq. (7) is valid when the weights are fixed, i.e., data-independent. However, our
result still applies in the case of data-dependent weights wi = w(Xi, Xn+1) if we replace∑n

i=1 w̃idTV(Z,Z
i) by E

[∑n
i=1 w̃idTV(Z,Z

i|w1, . . . , wn)
]

(see Barber et al. (2023, §4.5) for
more information). We experiment with this approach in §4.3, where wi is a function of the embed-
ding similarity between Xi and Xn+1, showing that the new bound is still useful in practice.

3.1 FORMAL GUARANTEES

Now that we have presented an overview of our method, we proceed to providing a formal proof for
the guarantee in Eq. (7). We begin with a lemma, proved in App. A, that establishes a TV bound
that extends the one introduced by Barber et al. (2023):

Lemma 1. Let f : S → [A,B] ⊂ R be a bounded function on a measurable space (S,A)
(where A ⊆ 2S is a σ-algebra) and let P and Q be two probability measures on (S,A). Then

|EP [f ]− EQ[f ]| ≤ (B −A)dTV(P,Q). (9)

Note that when f(t) = 1
{
t ∈ V

}
for some event V ∈ A, the left-hand side becomes |P (V )−Q(V )|

and we recover the bound used in the proof of Barber et al. (2023, §6.2).

We now state the main result. The proof technique is similar to that of Barber et al. (2023), but
instead of modeling the event of a variable belonging to a “strange set”, we model expectations of
loss functions that depend on a calibration variable. See App. B for the full proof.

Theorem 1 (Non-exchangeable conformal risk control). Assume that for all (x, y) ∈ X ×
Y the loss L(λ; (x, y)) is nonincreasing in λ and bounded as A ≤ L(λ; (x, y)) ≤ B for any
λ. Let

Z := (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1)

be a sequence of n calibration examples followed by a test example, and let w1, . . . , wn ∈
[0, 1]n be data-independent weights. Define Nw =

∑n
i=1 wi, w̃i = wi/(Nw + 1) for i ∈ [n]

and w̃n+1 = 1/(Nw + 1). Let α ∈ [A,B] be the maximum tolerable risk, and define

λ̂ = inf

{
λ :

Nw

Nw + 1
R̂n(λ) +

B

Nw + 1
≤ α

}
, (10)
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where R̂n(λ) is the weighted empirical risk in the calibration set:

R̂n(λ) =
1

Nw

n∑
i=1

wiL(λ; (xi, yi)). (11)

Then, we have

E[L(λ̂; (Xn+1, Yn+1))] ≤ α+ (B −A)

n∑
i=1

w̃idTV(Z,Z
i), (12)

where Zi is obtained from Z by swapping (Xi, Yi) and (Xn+1, Yn+1).

The next section illustrates how we can make practical use of this result to minimize loss functions
beyond the miscoverage loss in the presence of non-exchangeable data distributions.

3.2 HOW TO CHOOSE WEIGHTS

To make practical use of Theorem 1, we need a procedure to choose the weights wi. We next
suggest a strategy based on regularized minimization of the coverage gap g(w̃1, ..., w̃n) := (B −
A)

∑n
i=1 w̃idTV(Z,Z

i) via the maximum entropy principle (Jaynes, 1957). Note first that simply
minimizing this gap would lead to w̃i = 0 for all i ∈ [n] and w̃n+1 = 1, which ignores all the
calibration data and leads to an infeasible λ̂ in Eq. (6). In general, if all weights wi are too small,
this leads to a very large wn+1 and an unreasonably large λ̂. On the other extreme, having all
weights too large (e.g. wi = 1 for all i, which leads to w̃i = 1/(n + 1) for i ∈ [n + 1]) ignores
the non-exchangeability of the data and may lead to a large coverage gap. Therefore, it is necessary
to find a good balance between ensuring a small coverage gap but at the same time ensuring that
the distribution w̃1, ..., w̃n+1 is not too peaked, i.e., that it has sufficiently high entropy. Since
by definition, we must have w̃n+1 ≥ w̃i for all i ∈ [n], this can be formalized as the following
regularized minimization problem:

min
w̃1,...,w̃n+1

(B −A)

n∑
i=1

w̃idTV(Z,Z
i)− βH(w̃1, ..., w̃n+1)

subject to
n+1∑
i=1

w̃i = 1 and 0 ≤ w̃i ≤ w̃n+1 for all i ∈ [n], (13)

where H(w̃1, ..., w̃n+1) = −
∑n+1

i=1 w̃i log w̃i is the entropy function and β > 0 is a temperature
parameter. The solution of this problem is w̃i ∝ exp(−β(B −A)dTV(Z,Z

i)) for i ∈ [n+ 1].

Although in general dTV(Z,Z
i) is not known, it is possible in some scenarios to bound or to es-

timate this quantity: for example, when variables are independent but not identically distributed,
it can be shown that dTV(Z,Z

i) ≤ 2dTV(Zi, Zn+1) (Barber et al., 2023, Lemma 1); and it
is possible to upper bound the total variation distance as a function of the (more tractable and
amenable to estimation) Kullback-Leibler divergence, e.g., via Pinsker’s or Bretagnolle-Huber’s
inequalities (Bretagnolle & Huber, 1979; Csiszár & Körner, 2011), which may provide good heuris-
tics. For example, in a time series under a distribution shift scenario bounded with a Lipschitz-
type condition dTV(Zi, Zn+1) ≤ ϵ(n + 1 − i) for some ϵ > 0 (see e.g. (Barber et al., 2023,
§4.4)), we could replace dTV(Z,Z

i) in Eq. (13) by this upper bound to obtain the maxent solution
w̃i ∝ exp(−βϵ(n + 1 − i)) = ρn+1−i, where ρ = exp(−βϵ) ∈ (0, 1). This exponential decay of
the weights was suggested by (Barber et al., 2023); our maximum entropy heuristic provides further
justification for that choice. We use this strategy in some of our experiments in §4.

4 EXPERIMENTS

In this section, we turn to demonstrating the validity of our theoretical results in three different tasks
using different nonincreasing losses: a multilabel classification problem using synthetic time series
data, minimizing the false negative rate (§4.1), a problem involving monitoring electricity usage,
minimizing the λ-insensitive absolute loss (§4.2), and an open-domain question answering (QA)
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task, where we control the best token-level F1-score (§4.3). Throughout, we report our method
alongside a conformal risk control (CRC) baseline that predicts λ̂ following Eq. (6).

4.1 MULTILABEL CLASSIFICATION IN A TIME SERIES

We start by validating our approach on synthetic data, before moving to real-world data in the
following subsections. To this end, we modified the synthetic regression experiment of Barber et al.
(2023, §5.1) to turn it into a multilabel classification problem with up to M = 10 different labels.
We consider three different setups:

1. Exchangeable (i.i.d.) data: We sample N = 2000 i.i.d. data points (Xi, Yi) ∈
RM × RM . We sample Xi from a Gaussian distribution, Xi

iid∼N (0, IM ), and we set
Yi ∼ sign(WXi + b + .1N (0, IM )). The coefficient matrix W is set to the identity
matrix IM and the biases to b = −0.5, to encourage a sparse set of labels.

2. Changepoints: We follow setting (1) and sample N = 2000 i.i.d. data points (Xi, Yi),
setting Xi

iid∼N (0, IM ) and Yi ∼ sign(W (k)Xi+b+.1N (0, IM )), again with b = −0.5.
We start with the same coefficients W (0) = IM and for every changepoint k > 0 we rotate
the coefficients such that W (k)

i,j = W
(k−1)
i−1,j for i > 1 and W

(k)
1,j = W

(k−1)
M,j . Following

Barber et al. (2023), we use two changepoints (k = 2) at timesteps 500 and 1500.

3. Distribution drift: We follow setting (2) and sample N = 2000 i.i.d. data points (Xi, Yi),
with Xi

iid∼N (0, IM ) and Yi ∼ sign(W (k)Xi+b+ .1N (0, IM )), with b as above. Again,
we start with W (0) = IM but now we set W (N) to the last matrix of setting (2). We then
compute each intermediate W (k) by linearly interpolating between W (0) and W (N).

After a warmup period of 200 time points, at each time step n = 200, . . . , N − 1 we assign odd
indices to the training set, even indices to the calibration set, and we let Xn+1 be the test point. We
fit M independent logistic regression models to the training data to obtain predictors for each label;
we let fm(Xi) denote the estimated probability of the mth label according to the model. Based on
this predictor, we define prediction sets Cλ(Xi) := {m ∈ [M ] : fm(Xi) ≥ 1 − λ}. We compare
standard CRC with non-exchangeable (non-X) CRC, for which we use weights wi = 0.99n+1−i

and predict λ̂ following Eq. (10). In both cases, we minimize the false negative rate (FNR):2

L(λ; (Xi, Yi)) = 1− |Yi ∩ Cλ(Xi)|
|Yi|

. (14)

Note that this loss is nonincreasing in λ, as required. App. C contains additional experiments con-
sidering λ to be the number of active labels and using Cλ(Xi) = top-λ(f(Xi)).

Fig. 1 shows results averaged across 10 independent trials for α = 0.2, summarized in Table 2. We
see that the performance of both methods is comparable when the data is i.i.d, with non-X CRC
being slightly more conservative. However, when the data is not exchangeable due to the presence
of changepoints or distribution drift, our proposed method is considerably better. In particular, after
the changepoints in setting (2), non-X CRC is able to achieve the desired risk level more rapidly;
in setting (3), the performance of standard CRC gradually drops over time—a problem that can be
mitigated by accounting for non-exchangeability introduced by the distribution drift. Importantly,
while the average risk is above the predefined threshold for standard CRC for settings (2) and (3)
(0.246 and 0.225, respectively), our method achieves the desired risk level on average (0.196 and
0.182, respectively).

4.2 MONITORING ELECTRICITY USAGE

We use the ELEC2 dataset (Harries, 1999), which tracks electricity transfer between two states in
Australia, considering the subset of the data used by Barber et al. (2023), which contains 3444
time points. The data points correspond to the 09:00am - 12:00pm timeframe and we use the price
(nswprice, vicprice) and demand (nswdemand, vicdemand) variables as input features,

2With some abuse of notation, we use Yi ⊆ {1, . . . ,M} to denote the set of gold labels with value +1.
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Figure 1: Average loss (top) and λ̂ (bottom) over 10 independent trials for settings (1), (2), and (3).
We smooth all the curves by taking a rolling average with a window of 30 time points.

Table 2: Scalar statistics (mean/median) for settings (1), (2), and (3) for the multilabel classification
problem using synthetic time series data reported in §4.1.

Method Setting 1 (i.i.d. data) Setting 2 (changepoints) Setting 3 (distribution drift)

CRC 0.191 / 0.183 0.246 / 0.228 0.225 / 0.218
non-X CRC 0.181 / 0.175 0.196 / 0.183 0.182 / 0.175

xi to predict the target transfer values yi. We also consider a randomly permuted version of
the dataset such that the exchangeability assumption is satisfied. We use the same definitions and
settings of §4.1, but this time we fit a least squares regression model to predict the transfer
values, ŷi = f(xi), at each time step. For non-X CRC, we use weights wi = 0.99n+1−i and we
also experiment with weighted least-squares regression, placing weights ti = wi on each data point
(non-X CRC + WLS). For both standard and non-X CRC we control the residual (distance) with
respect to the confidence interval Cλ(xi) = [f(xi)− λ, f(xi) + λ], where f(xi) corresponds to the
predicted values for transfer. We use the λ-insensitive absolute loss, a loss function commonly
used in support vector regression (Schölkopf et al., 1998; Vapnik, 1999):

L(λ; (xi, yi)) =

{
0, if |f(xi)− yi| ≤ λ,

|f(xi)− yi| − λ, otherwise.
(15)

We experiment using λ ∈ [0, 1] with a step of 0.01. Since we are using the normalized ELEC2
dataset, transfer takes values in [0, 1], thus L(λ; (f(xi), yi)) is bounded by B = 1. By definition
L(λ; (f(xi), yi)) is nonincreasing with respect to λ.

Fig. 2 shows results for the aforementioned setup. We can observe that in the original setting, both
non-exchangeable methods approximate well the desired loss threshold even during the timesteps at
which the data suffers from distribution drift. Specifically, as observed by Barber et al. (2023), the
electricity transfer values are more noisy during the middle of the time range and we can see that the
standard CRC + LS method underestimates the λ̂ for these data points resulting in increased loss,
above the desired one. With respect to the CRC + WLS setup, we can see that it manages to reach
the desired loss with a smaller interval width on average, indicating that fitting the weighted least-
squares model performs better when the data distribution changes, allowing for smaller λ during
calibration. For the permuted data that simulates the exchangeable data scenario, we can see that all
methods perform similarly, reaching the desired loss, as expected.
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Figure 2: Results on ELEC2 data for α = 0.05 and λ defined by the prediction interval width.
Presented curves are smoothed by taking a rolling average with a window of 300 data points per
timestep.

Figure 3: F1-score control on the Natural Questions dataset. Average set size (left) and risk (right)
over 1000 independent random data splits.

4.3 OPEN-DOMAIN QUESTION ANSWERING

We now shift to open-domain QA, a task that consists in answering factoid questions using a large
collection of documents. This is done in two stages, following Angelopoulos et al. (2023a): (i) a
retriever model (Karpukhin et al., 2020, DPR) selects passages from Wikipedia that might contain
the answer to the question, and (ii) a reader model examines the retrieved contexts and extract text
sub-spans that serve as candidate answers.3

Given a vocabulary V , each Xi ∈ Z is a question and Yi ∈ Zk a set of k correct answers, where
Z := Vm (we assume that Xi and Yi are sequences composed of up to m tokens). We calibrate the
best token-based F1-score of the prediction set 4, taken over all pairs of predictions and answers,

L(λ; (Xi, Yi)) = 1−max{F1(a, c) : c ∈ Cλ(Xi), a ∈ Yi}, Cλ = {y : f(Xi, y) ≥ λ}, (16)

which is nonincreasing and upper-bounded by B = 1. We consider a CRC baseline that predicts λ̂
following Eq. (6). For non-X CRC, we choose weights {wi}ni=1 by computing the dot product be-
tween the embedding representations of {Xi}ni=1 and Xn+1, obtained using a sentence-transformer
model (Reimers & Gurevych, 2019) designed for semantic search,5 and predict λ̂ following Eq. (10).
While in standard CRC λ̂ is the same for each test example, this is not the case for non-X CRC.

3Enumerating all possible answers is intractable, and thus we retrieve the top several hundred candidate
answers, extracted from the top 100 passages (which is sufficient to control all risks).

4This is the same loss used by Angelopoulos et al. (2023a).
5We use the multi-qa-mpnet-base-dot-v1 model available at https://huggingface.co/

sentence-transformers/multi-qa-mpnet-base-dot-v1.
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While Theorem 1 requires the weights to be independent of the test example, we relax this assump-
tion by setting higher weights for questions in a “neighborhood” of Xn+1 (see §3). Intuitively, we
could think of a situation where the questions are posed by multiple users, each of which may have
a tendency to ask semantically similar questions or from the same domain. In this case, we could
choose a priori higher weights for closer domains/users without violating this assumption.

We use the Natural Questions dataset (Kwiatkowski et al., 2019; Karpukhin et al., 2020), considering
n = 2500 points for calibration and 1110 for evaluation. Following Angelopoulos et al. (2023a), we
use α = 0.3 and report results over 1000 trials in Fig. 3. While the test risk is similar in both cases
(0.30±0.015), the prediction sets of our method are considerably smaller than those of standard CRC
(23.0± 1.47 vs. 24.6± 1.83, respectively). By choosing appropriate weights we can better estimate
the set size needed to obtain the desired risk level, while standard CRC tends to overestimate the set
size to reach the same value. We thus obtain better estimates of confidence over the predictions.

5 RELATED WORK

Conformal prediction (Gammerman et al., 1998; Vovk et al., 1999; Saunders et al., 1999) has proven
to be a useful tool for obtaining uncertainty sets/intervals for the predictions of machine learning
models, having found a variety of extensions and applications over the years. Among these are split
conformal prediction (Papadopoulos et al., 2002), which does not require retraining the predictor
and instead uses a held-out dataset and cross-conformal prediction (Vovk, 2015), which is a hybrid
between split conformal prediction and cross-validation. Some of these methods have recently been
applied in tasks such as language modeling (Schuster et al., 2022), molecular design (Fannjiang
et al., 2022), pose estimation (Yang & Pavone, 2023), and image denoising (Teneggi et al., 2023).

In addition to the works discussed in §2, several extensions to non-exchangeable data have been pro-
posed for time series (Chernozhukov et al., 2018; 2021b; Xu & Xie, 2021; Stankeviciute et al., 2021;
Lin et al., 2022; Zaffran et al., 2022; Sun & Yu, 2022; Schlembach et al., 2022; Angelopoulos et al.,
2023b), covariate shift (Tibshirani et al., 2019), label shift (Podkopaev & Ramdas, 2021), and others
(Cauchois et al., 2020; Gibbs & Candes, 2021; Chernozhukov et al., 2021a; Gibbs & Candès, 2022;
Oliveira et al., 2022; Guan, 2022). Moreover, there is recent work aiming at controlling arbitrary
risks in an online setting (Feldman et al., 2022). The ideas, assumptions, or formal guarantees in
these works are different to ours—we refer the reader to the specific papers for further information.

Angelopoulos et al. (2023a) touch the case of conformal risk control under covariate shift (Propo-
sition 3; without providing any empirical validation), explaining how to generalize the work of
Tibshirani et al. (2019) to any monotone risk under the strong assumption that the distribution of
Y |X is the same for both the training and test data and that the likelihood ratio between Xtest and
Xtrain is known or can be accurately estimated using a large set of test data. This result is orthogonal
to ours. Besides, they quantify how unweighted conformal risk control degrades when there is an
arbitrary distribution shift. Our work is more general and differs in several significant ways: we
allow for an arbitrary design of weights, the bounds can be tighter, and the losses are bounded in
[A,B], not necessarily in [0, B]. Specifically, their Proposition 4 is a particular case of our main
result (choosing A = 0 and unitary weights), which we use as a baseline in our experiments.

6 CONCLUSIONS

We have proposed a new method for conformal risk control, which is still valid when the data is
not exchangeable (e.g., due to an arbitrary distribution shift) and provides a tighter bound on the ex-
pected loss than that of previous work. Our simulated experiments illustrate how non-exchangeable
conformal risk control effectively provides prediction sets satisfying the risk requirements in the
presence of non-exchangeable data (in particular, in the presence of change points and distribution
drift), without sacrificing performance if the data is in fact exchangeable. Additional experiments
with real data validate the usefulness of our approach.

Our work opens up exciting possibilities for research on risk control in challenging settings. For
instance, it is an attractive framework for providing guarantees on the predictions of large language
models, being of particular interest in tasks involving language generation, medical data (Jalali et al.,
2020), or reinforcement learning (Wang et al., 2023), where the i.i.d. assumption does not hold.
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Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 2020. doi: https://doi.org/10.1038/s41592-019-0686-2.

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence,
74(1):9–28, 2015. doi: 10.1007/s10472-013-9368-4. URL https://doi.org/10.1007/
s10472-013-9368-4.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World.
Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 0387001522.

Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of al-
gorithmic randomness. In Proceedings of the Sixteenth International Conference on Machine
Learning, ICML ’99, pp. 444–453, San Francisco, CA, USA, 1999. Morgan Kaufmann Publish-
ers Inc. ISBN 1558606122.

Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011.

Jun Wang, Jiaming Tong, Kaiyuan Tan, Yevgeniy Vorobeychik, and Yiannis Kantaros. Conformal
temporal logic planning using large language models: Knowing when to do what and when to ask
for help, 2023.

Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 11559–11569. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/xu21h.html.

Heng Yang and Marco Pavone. Object pose estimation with statistical guarantees: Conformal key-
point detection and geometric uncertainty propagation. 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2023. doi: 10.1109/cvpr52729.2023.00864. URL
http://dx.doi.org/10.1109/CVPR52729.2023.00864.

Margaux Zaffran, Olivier Feron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive
conformal predictions for time series. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 25834–25866. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/zaffran22a.html.

A PROOF OF LEMMA 1

The TV distance can be written as an integral probability metric (Müller, 1997):

dTV(P,Q) =
1

2
sup

g: ∥g∥∞≤1

(
EP [g]− EQ[g]

)
. (17)
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Now, we define m = (A + B)/2, v = (B − A)/2, and f̄ = (f −m)/v : S → [−1, 1]. Noticing
that for any c ∈ R, we have EP [f ]−EQ[f ] = EP [f+c]−EQ[f+c], we can evaluate the difference
in expectations as

EP [f ]− EQ[f ] = v
(
EP [f̄ ]− EQ[f̄ ]

)
(18)

≤ B −A

2
sup

g: ∥g∥∞≤1

(
EP [g]− EQ[g]

)
(19)

= (B −A) dTV(P,Q). (20)

Repeating with f̄ = (m−f)/v (which is also in [−1, 1]), yields a similar upper-bound for EQ[f ]−
EP [f ], from which the result for |EP [f ]− EQ[f ]| follows.

B PROOF OF THEOREM 1

The proof adapts elements of the proofs from Barber et al. (2023) and Angelopoulos et al. (2023a).
Let ZK be obtained from Z by swapping (XK , YK) and (Xn+1, Yn+1), where K is a random
variable where P{K = i} = w̃i (note that Zn+1 = Z). Let

R̂n+1(λ) =

n+1∑
i=1

w̃iL(λ; (xi, yi)) =
NwR̂n(λ) + L(λ; (xn+1, yn+1))

Nw + 1
(21)

be the weighted empirical risk in the calibration set plus the additional test example. Let us define

λ∗ = inf
{
λ : R̂n+1(λ) ≤ α

}
. (22)

Given the random variable Z, we can think of λ∗(Z) as another random variable which is a transfor-
mation of Z. Moreover, we define the random variable Fi(Z) = L(λ∗(Z); (Xi, Yi)) for i ∈ [n+1],
as well as the vector of random variables F (Z) = [F1(Z), . . . , Fn+1(Z)]. From Lemma 1, we have

E[Fi(Z
i)] ≤ E[Fi(Z)] + (B −A)dTV(F (Z), F (Zi)), (23)

a bound that we will use later. Writing Li(λ) ≡ L(λ; (Xi, Yi)) for convenience, we also have, for
any λ and for any k ∈ [n+ 1],

R̂n+1(λ;Z
k) =

n∑
i=1,i̸=k

w̃iLi(λ) + w̃kLn+1(λ) + w̃n+1Lk(λ)

=

n∑
i=1,i̸=k

w̃iLi(λ) + w̃k(Lk(λ) + Ln+1(λ)︸ ︷︷ ︸
≤B

) + (w̃n+1 − w̃k)︸ ︷︷ ︸
≥0

Lk(λ)︸ ︷︷ ︸
≤B

≤
n∑

i=1,i̸=k

w̃iLi(λ) + w̃k(Lk(λ) +B) + (w̃n+1 − w̃k)B

=

n∑
i=1

w̃iLi(λ) + w̃n+1B

=
Nw

Nw + 1
R̂n(λ;Z) +

B

Nw + 1
. (24)
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Figure 4: Average loss (top) and λ̂ (bottom) over 10 independent trials for settings (1), (2), and (3).
In this case, λ represents the number of predicted labels. We smooth the curves by taking a rolling
average with a window of 30 time points.

Therefore, setting λ = λ̂ and using Eq. (10), we obtain R̂n+1(λ̂;Z
k) ≤ Nw

Nw+1 R̂n(λ̂;Z)+ B
Nw+1 ≤

α, which, from Eq. (22), implies λ∗(Zk) ≤ λ̂(Z). Since the loss L is nonincreasing with λ, we get

E[Ln+1(λ̂(Z);Z)] ≤ E[Ln+1(λ
∗(ZK);Z)] = E[LK(λ∗(ZK);ZK ]

=

n+1∑
i=1

P{K = i}︸ ︷︷ ︸
=w̃i

E[Li(λ
∗(Zi), Zi]︸ ︷︷ ︸

=E[Fi(Zi)]

≤
n+1∑
i=1

w̃i

E[Li(λ
∗(Z), Z]︸ ︷︷ ︸

=E[Fi(Z)]

+(B −A)dTV(F (Z), F (Zi))


= E

[
n+1∑
i=1

w̃iLi(λ
∗(Z), Z)

]
+ (B −A)

n∑
i=1

w̃idTV(F (Z), F (Zi))

= E
[
R̂n+1(λ

∗(Z))
]
+ (B −A)

n∑
i=1

w̃idTV(F (Z), F (Zi))

≤ α+ (B −A)
n∑

i=1

w̃idTV(F (Z), F (Zi)). (25)

The result follows by noting that dTV(F (Z), F (Zi)) ≤ dTV(Z,Z
i). Eq. (25) is actually a tighter

bound, similarly to what has been noted by Barber et al., 2023.

C MULTILABEL CLASSIFICATION IN A TIME SERIES

Fig. 4 shows results averaged across 10 independent trials for α = 0.2 and setting λ in a slightly
different way than that of §4.1. In this case, λ represents the number of active labels and we use
Cλ(Xi) = top-λ(f(Xi)). The main takeaways remain the same: both methods perform similarly
when the data is exchangeable, in setting (1). Accounting for the non-exchangeability introduced by
changepoints and distribution drift using our method enables lowering the risk to the desired level
in settings (2) and (3).
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