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MaskMentor: Unlocking the Potential of Masked Self-Teaching for
Missing Modality RGB-D Semantic Segmentation
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Figure 1: High-level illustration of MaskMentor. (a) M2IM combines both modality- and patch-level randommasking to enforce
cross-modal prediction for modality-missing modeling. (b) STTP uses the teacher with complete modality input to supervise
the student with modality missing input through joint token- and pixel-wise reconstruction, where the student and teacher
share parameters. (c) MaskMentor delivers perceptually more accurate segmentation results under diverse modality-missing
input conditions compared to the state-of-the-art method MultiMAE [1].

ABSTRACT
Existing RGB-D semantic segmentation methods struggle to handle
modality missing input, where only RGB images or depth maps are
available, leading to degenerated segmentation performance. We
tackle this issue usingMaskMentor, a new pre-training framework
for modality missing segmentation, which advances its counter-
parts via two novel designs:MaskedModality and ImageModeling
(M2IM), and Self-Teaching via Token-Pixel Joint reconstruction
(STTP). M2IM simulates modality missing scenarios by combin-
ing both modality- and patch-level random masking. Meanwhile,
STTP offers an effective self-teaching strategy, where the trained
network assumes a dual role, simultaneously acting as both the
teacher and the student. The student with modality missing input
is supervised by the teacher with complete modality input through
both token- and pixel-wise masked modeling, closing the gap be-
tween missing and complete input modalities. By integrating M2IM
and STTP, MaskMentor significantly improves the generalization
ability of the trained model across diverse input conditions, and
outperforms state-of-the-art methods on two popular benchmarks
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by a considerable margin. Extensive ablation studies further verify
the effectiveness of the above contributions.

CCS CONCEPTS
• Computing methodologies→ Image segmentation;

KEYWORDS
Missing Modality, RGB-D Semantic Segmentation

1 INTRODUCTION
Semantic segmentation [7, 9, 38], as a fundamental and challenging
problem in computer vision aims to predict the pixel-level cate-
gories for an input image, which has found wide applications in
real scenarios. Compared to its single-modal (i.e., with RGB input)
counterparts [2], RGB-D segmentation integrates multi-modality
input information for more precise segmentation results, and there-
fore has recently attracted increasingly more attention from the
community.

Most existing approaches [34, 41, 42] address RGB-D segmen-
tation by emphasizing the fusion of multi-modal features through
carefully designed attention and fusion modules. Though superior
performance has been achieved, they require that both RGB image
and depth are available as input during inference, and can hardly
generalize to missing modality cases where RGB or depth may be
inaccessible (Figure 1 (c)). This is a common occurrence in practice
due to hardware limitations, which significantly restricts the practi-
cal application of these approaches. Unfortunately, the problem of
RGB-D segmentation with possible missing modalities has received
less attention in the literature, leaving it largely underexplored.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To address the above issue, a recent study [1] makes one of the
initial attempts by introducing a multi-modal pre-training strategy
based on masked image modeling (MIM), which achieves effective
feature alignment across modalities, yielding promising improve-
ments in segmentation accuracy. Nevertheless, it is still limited in
two aspects. First, the Multi-MAE proposed by [1] is pre-trained on
complete input modalities. Consequently, although the utilization
of MIM improves the alignment and generation of cross-modal
information to a certain extent, it still faces challenges in achieving
desirable segmentation results when dealing with modality-missing
scenarios due to the input inconsistency between training and in-
ference. Secondly, it only employs pixel-level masked modeling for
pre-training, which overlooks the potential benefits of feature-level
mask modeling. Recent research [5, 11, 27] indicates that utilizing
tokenized semantic features can offer enhanced supervision for
MIM. However, it remains uncertain whether this principle can be
further extended to the RGB-D segmentation task with missing
modalities.

In light of the above observation, we propose a new RGB-D miss-
ingmodality segmentation paradigm calledMaskMentor to unlock
the potential of MIM, which consists of the following two unique
designs. We first devise aMaskedModality and ImageModeling
(M2IM) pre-taining approach, as shown in Figure 1(a), which ex-
tends the idea of MIM from image patch-level to modality-level. The
modality-level masking will randomly mask out the entire input
of one modality to mimic the missing modality scenario during
inference. By combining both patch and modality masking, the
pre-training target will force the network to reconstruct masked
modality from a sparse set of unmasked patches of other modalities.
As a result, the pre-trained network will not only learn to encode
intra-modal information but also enforce its cross-modal predictive
power, thereby significantly benefiting missing-modality segmenta-
tion. In addition, we further present Self-Teaching via Token-Pixel
Joint Reconstruction (STTP) method for more effective training,
as shown in Figure 1(b). Under the self-teaching framework with
MIM, the trained network acts as both the teacher and the student
simultaneously with shared parameters. The teacher is learned with
complete modalities as input to perform pixel-wise reconstruction,
whose output tokens will provide supervisory signals to enhance
the student with missing modality input. By alternatively updating
the teacher and student network, STTP incorporates fine-grained
spatial characteristics and high-level semantic information from
pixel- and token-wise supervision, respectively. As STTP does not
train separate teacher and student networks, it permits complete
modality input to improve missing modality input in a more cost-
effective manner.

By integrating the aforementioned two techniques, MaskMentor
significantly improves the effectiveness of MIM-based self-teaching
pre-training, leading to more superior and robust RGB-D seman-
tic segmentation with arbitrary missing modality input (See Fig-
ure 1 (c)). The main contributions of this work can be summarized
into three folds.

• We propose the MaskMentor framework, which unlocks the
potential of MIM for more accurate missing modality RGB-D
segmentation.

• We design M2IM pre-training approach, which combines both
patch- and modality-level masking and significantly enforces the
cross-modal modeling capabilities of MIM.
• We present STTP, a MIM-based self-teaching method, which can

effectively improve the predictive power from missing modality
input using supervisions offered by complete-modality data and
integrates fine-grained spatial characteristics with high-level
semantic information.

Experiments on two widely adopted benchmark datasets have veri-
fied the above contributions. Source code and pre-trained model
will be made publicly available.

2 RELATEDWORK
RGB-D Semantic Segmentation. Many existing RGB-D segmen-
tation works [25, 40, 41] have shown promising results compared
to single-modal semantic segmentation [13, 31, 38] by leveraging
depth information. In the pursuit of the interaction and align-
ment between RGB and depth modalities, the dominant meth-
ods [34, 41, 42] focus on designing fusion modules to align and
combine RGB and depth features. Though superior performance
has been achieved, these methods require that both RGB image
and depth are available as input during inference. However, this
requirement restricts their applicability to situations commonly
encountered in practice, where the RGB or depth modality may be
unavailable.
Missing Modality in Multi-modal Learning. Perception with
missing modalities has garnered growing attention in vision-text
classification [19, 23], autonomous driving [39], etc. In the semantic
segmentation field, some initial efforts have been made by recent
works [1, 42]. Among them, [42] proposes a cross-modal fusion
paradigm to address arbitrary modal segmentation, which tack-
les different modalities by training separate models. [1] is more
correlated to ours, which proposes a cross-modal masked image
modeling pre-training approach for modality missing RGB-D seg-
mentation. Nonetheless, it is trained on complete input modalities,
which limits its ability in handling modality missing input. Besides,
it only employs pixel-level reconstruction for MIM and overlooks
the potential of feature-level reconstruction.
Masked Image Modeling.MIM [3, 15] has become a predominant
pre-training approach in computer vision. Prior methods [3, 15]
mainly focus on the image modality and perform self-supervised
learning by recovering the masked content from visible image
patches, Recent works [1, 33] extend the MIM technique from im-
age to multi-modal input, including language, depth, audio, etc.
Meanwhile, other works [11] also explore to reconstruct tokenized
semantic features for MIM, yielding more promising results.
Self-training. Self-training [18] is a special technique of knowl-
edge distillation, which requires that the parameters-shared teacher
and student be optimized simultaneously to transfer knowledge
within the samemodel. Previous research has explored distilling the
student model from the perspective of aligning logits output[24, 37]
and intermediate representation[16, 17]. The latter attempts to op-
timize student by intimating the teacher at a more granular level,
which may enable the student to learn richer and more profound
knowledge. Based on this idea, work [43] transfer the knowledge
from deeper portion of the networks to shallow layers to enhance
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Figure 2: Overview of the proposed MaskMentor framework in the pre-training stage. It consists of a Transformer encoder and
multiple mask image modeling (MIM) head. The encoder serves as both a teacher and a student with shared parameters. The
teacher receives complete modality data and performs pixel-level masked modeling. On the other hand, the student receives
data that at least one modality is randomly masked and conducts modality-level masked modeling upon the remaining input
modalities. During the self-teaching process, the teacher provides token-level knowledge of the missing modality to facilitate
student learning.

the overall performance of model, while recent research [29] brings
closer the latent features of the same image under various data
augmentations to align and unify visual semantics. Differently, our
method employs token- pixel joint reconstruction in self-training
manner to narrow down the intermediate representation between
missing and complete modalities for gaining robust performance
in any missing modality scenarios.

3 MASKMENTOR FOR RGB-D
SEGMENTATIONWITH MISSING
MODALITIES

3.1 Problem Setting
In this paper, we investigate the task of RGB-D semantic segmenta-
tionwithmissingmodalities. Specifically, we are given the complete-
modality data including both RGB images and depth maps as input
to train a semantic segmentation model. During testing, the input
modalities may be arbitrarily missing, i.e., either the complete-
modality input is provided, or only a single modality is given with
the other modality missing. This missing modality setting is closely
aligned with real scenarios but presents a more formidable chal-
lenge compared to conventional RGB or RGB-D segmentation. As
the input involves multi-modal data and may be inconsistent be-
tween training and testing, the trained model should be able to
not only harness the advantage of multi-modal input but also well
tackle the training-testing input discrepancy.

A straightforward idea to address RGB-D segmentation with
missing modalities is to train separate models corresponding to
different input modalities. During testing, the system should select
a specific model for inference according to the input modalities.
However, this will linearly increase the training complexity and
the memory consumption of model deployment. Instead, this paper

proposes a novel framework called MaskMentor, which allows
training a single model to unify different input cases, giving rise to
a more elegant alternative to solving the aforementioned challenges.

3.2 Overview
Our proposed MaskMentor consists of a pre-training and a fine-
tuning stage. Figure 2 presents an architectural overview of the
pre-training stage, during which we train a Transformer network
by following the principle of multi-model MIM with self-teaching.
The pre-trained transformer network comprises an encoder and
multiple MIM heads corresponding to different modalities. During
fine-tuning, MIM heads will be discarded. A randomly initialized
decoder is introduced after the pre-trained encoder and the entire
network will be fine-tuned for RGB-D segmentation with missing
modalities. The key designs of MaskMentor include Masked Modal-
ity and Image Modeling (M2IM) and Self-teaching via Token-Pixel
Joint Reconstruction (STTP), whose details will be further explained
in the following.

3.3 Masked Modality and Image Modeling
Masked Image Modeling [3, 15] has been proven to be an effective
self-supervised learning approach that randomly masks out input
image patches and trains a network to restore these masked patches
from visible ones. Recently, this idea has been successfully trans-
ferred to multi-modal input cases by [1]. To enforce cross-modal
modeling, [1] improves the random masking manner through a
newly developed multi-modal token sampling approach to ensure
a more diverse sampling of visible tokens from different modali-
ties. Although the trained model is more capable of cross-modal
prediction, its potential against missing input modalities is largely
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Algorithm 1 Two-stage multi-modal data masking in M2IM.
Input: Data of 𝐾 modalities Q = {𝑋𝑘 |𝑘 = 1, 2, . . . , 𝐾 }, modality masking

probability 𝑝𝑚 .
Output: Masked data O.
1: Initialize O = ∅, 𝑔 = 0.
2: Randomly sort input data𝑄 ← RandomSort(Q) .
3: for 𝑘 = 1, 2, . . . , 𝐾 − 1 do
4: Uniformly sample 𝑣 from [0, 1].
5: if 𝑣 >= 𝑝𝑚 then
6: O ← O ∪ {𝑋𝑘 }, 𝑔← 1.
7: end if
8: end for
9: if 𝑔 == 0 then
10: O ← O ∪ {𝑋𝐾 }
11: else
12: Uniformly sample 𝑣 from [0, 1].
13: if 𝑣 >= 𝑝𝑚 then
14: O ← O ∪ {𝑋𝐾 }
15: end if
16: end if
17: for each 𝑋 in O do
18: 𝑋 ← PatchMasking(𝑋 )
19: end for=0

restricted as the pre-training process of [1] is still performed on
complete input modalities.

To remedy this deficiency, our proposed M2IM employs a two-
stage masking strategy, combining the modality- and image patch-
level masking. Detailed procedure is illustrated in Algorithm 1. The
first stage (Line 2-16) performs modality-level masking, where all
image patches of a masked modality will be entirely discarded.
Specifically, we are given input data from 𝐾 modalities. For the first
𝐾 − 1 modalities, we mask each modality by a probability of 𝑝𝑚 .
For the last modality, if all the first 𝐾 − 1 modalities are masked
out, it will be preserved (Line 10). Otherwise, it will be masked
by the same probability of 𝑝𝑚 . This implementation can avoid the
case where all the 𝐾 input modalities are masked out. However, the
mask probabilities of the first 𝐾 − 1 and the last modalities are not
equivalent. Therefore, we randomly sort the 𝐾 modalities each time
before the above masking process to achieve the balance between
input modalities. After the modality masking stage, there will be𝑀
unmasked modalities remaining with 1 ≤ 𝑀 ≤ 𝐾 . The second stage
then applies image patch masking to the remaining 𝑀 modality
(Line 17-19) following the same routine of [15].

After the above masking process, all the visible patches of un-
masked modalities are tokenized via separate projection layers,
concatenated, and then passed through the Transformer encoder.
Following [15], mask tokens are inserted into the output token
sequence of the encoder, serving as placeholders for the masked
patches. Both masked and visible tokens are further fed into a
cross-attention module to perform interaction and produce the out-
put token embeddings. Finally, modality-specific MIM heads take
these output embeddings as input to reconstruct masked patches
of all modalities. By using the two-stage masking strategy, M2IM
explicitly mimics the missing modality cases during inference and
forces the trained model to better generalize across diverse input
situations.

3.4 Self-Teaching via Token-Pixel Joint
Reconstruction

The aforementioned M2IM technique only adopts the pixel-level re-
construction target for training, while recent evidence [11] suggests
that using token reconstruction for MIM can deliver more high-
level and abstract information. We aim to investigate whether these
two types of reconstruction targets are mutually complementary
in the multi-modality scenario. The first challenge we encounter
is how to obtain the target tokens. For this purpose, we propose a
new pre-training framework called Self-Teaching via Token-Pixel
Joint Reconstruction (STTP), which is built upon M2IM technique.

As shown in Figure 2, the pre-trained model simultaneously acts
as the teacher and student under the STTP framework. The teacher
is trained with multi-modal MIM [1], where the input data is from
complete modalities, and data masking is only performed on the
patch level. The teacher learns to reconstruct the masked patches
from visible input ones. In comparison, the student is trained in
the M2IM style with input data of missing modalities which has
been masked using the proposed two-stage masking approach. The
student learns to reconstruct both themasked patch of all modalities
as well as the token embeddings produced by the teacher (See
Figure 2). For each input batch during training, we first train the
teacher network for three iterations and then train the student for
one iteration.

The proposed STTP offers two key advantages. First, using the
teacher that receives complete modality input to supervise the
student with missing modality input can significantly narrow down
the performance gap between various input conditions. Second,
STTP combines the principles of knowledge distillation with M2IM,
and inherently marries the advantages of both pixel- and token-
level reconstruction. In addition, STTP under the self-teaching
framework eliminates the need for training separate teacher and
student networks, giving rise to a more cost-effective pre-training
method. As shown in our experiments, STTP effectively benefits
the downstream missing-modality RGB-D segmentation task.

3.5 Overall Training Pieline
During the pre-training stage of our MaskMentor framework, we
exploit 𝐾 = 3 input modalities, including RGB images, depth maps,
and semantic segmentation maps, where depth maps characterize
the geometric information and segmentationmaps encode the scene
semantics. The network is warmed up for around 100 epochs by
training on the MIM task using complete input modalities, and
then trained with the proposed STTP approach for another 400
epochs. Cosine similarity is adopted to measure the token-level
reconstruction loss while the pixel-level reconstruction loss follows
the implementation of [1]. During fine-tuning, And the MIM head
is replaced with a randomly initialized ConNeXt [21] decoder. The
entire network is trained for RGB-D segmentation with missing
modalities for 500 epochs.

4 EXPERIMENTS
4.1 Setting Up
Dataset. We perform experiments on two widely adopted RGB-
D semantic segmentation datasets, including NYUDepthV2 [28]
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Table 1: Performance comparison for RGB-D segmentation on NYUDepthV2 [28] and SUN RGB-D [30].

Method
NYUDepthV2 SUN RGB-D

mIoU mAcc mIoU mAcc

FuseNet [14] 37.9 50.4 37.3 48.3
RDFNet [26] 50.1 62.8 47.7 60.1
SSMA [32] 48.7 60.5 45.7 58.1

AsymFusion [36] 51.2 64.0 - -
SA-Gate [8] 52.4 64.8 49.4 61.3
CEN [35] 52.5 65.0 51.1 63.2
SGNet [6] 51.1 63.1 48.6 60.9

ShapeConv [4] 51.3 63.5 48.6 59.2
Omnivore [12] 54.0 - - -

TokenFusion [34] 54.2 66.9 53.0 64.1
MultiMAE [1] 56.8 69.9 51.5 63.2
PGDENet [44] 53.7 66.7 51.0 61.7
CMX [41] 56.9 - 52.4 -

CMXNeXt [42] 56.9 - 51.9 -

MaskMentor 57.9 70.4 53.0 66.4

Table 2: Performance comparison for missing modality segmentation on NYUDepthV2 [28] and SUN RGB-D [30]. "Only-RGB"
and "Only-Depth" refer to the input scenarios where either the RGB image alone or depth map alone is available as the provided
modality, respectively.

Dataset Method
Only - RGB Only - Depth

mIoU mAcc mIoU mAcc

NYUDepthV2

RefineNet [20] 46.5 59.0 34.3 45.6
CEN [35] 39.6 51.8 19.3 29.0

TokenFusion [34] 50.6 63.3 - -
CMX [41] 46.7 61.0 - -
MAE [15] 50.8 - 23.4 -

MultiMAE [1] 52.1 65.9 41.6 51.3
CMNeXt [42] 52.2 66.2 33.5 42.4
MaskMentor 53.3 66.5 44.0 56.8

SUN RGB-D
RefineNet [20] 47.0 57.7 - -

TokenFusion [34] 48.1 61.3 - -
MultiMAE [1] 48.3 61.9 40.0 48.6
MaskMentor 49.8 63.1 41.2 49.1

and SUN RGB-D [30]. The NYUDepthV2 dataset [28] consists of
1449 RGB-Depth image pairs with 40 distinct categories of indoor
objects. The training set comprises 795 image pairs, while the test
set includes 654 pairs. All images in this dataset are of size 480×640
pixels. The SUN RGB-D dataset [30] consists of 10,335 real RGB-D
pairs representing room scenes, and it contains a total of 37 object
categories. The training set comprises 5,285 pairs, while the testing
set has 5,050 pairs. Each image in this dataset has a resolution of
730 × 530 pixels. During training, we apply data augmentation
techniques, including random flipping, cropping, and rescaling
following the approach described in [1].
Implementation.We adopt ViT-B [10] as the encoder, while other
network parameters are all randomly initialized. The learning rate
of the pre-training stage is initially set to 1𝑒 − 5 and the cosine
learning rate schedule is employed. The AdamW [22] optimizer
is used with a batch size of 12. The fine-tuning stage adopts an
initial learning rate of 3𝑒 − 5 with a cosine learning rate schedule
and a batch size of 2. The mask rate 𝑝𝑚 at the modality level is

uniformly set to 0.5. For a fair comparison against existing methods,
we keep the other implementations consistent with [1], including
input resolution, patch size, patch-level masking ratio, positional
embedding, etc.
Evaluation Metrics. Following the previous works [34, 41], we
utilize two evaluation metrics for quantitative assessment of the
segmentation results, includingmeanAccuracy (mAcc) which offers
an overall measure of themodel’s classification capability, andmean
Intersection over Union (mIoU) that is to measure the average
intersection over union across all categories.

4.2 Overall Comparison
We perform comprehensive evaluations of our proposed method
against state-of-the-art methods for both complete (i.e., RGB-D)
and missing modalities (i.e., only RGB and only Depth) semantic
segmentation. It is worth noting that, unlike the compared methods
that individually train separatemodels for different inputmodalities,
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Figure 3: Visual comparison of our MaskMentor and MultiMAE [1] on semantic segmentation performance across various
scenes in the NYUDepthV2 test set [28].

our approach uses the same trained model to test different input
modality scenarios.
Complete Modality Segmentation Performance. Table. 1 re-
ports the quantitative evaluation for RGB-D semantic segmentation
on NYUDepthV2 and SUN RGB-D test datasets. The proposedMask-
Mentor achieves consistently superior performance compared to
the existing methods that are specifically trained for the RGB-D
segmentation task. Particularly, it is noteworthy that our MaskMen-
tor outperforms the recent best method CMXNeXt [42] by 1.8% and
2.1% in terms of mIoU on NYUDepthV2 and SUN RGB-D datasets,
respectively. Moreover, compared toMutliMAE [1] that employs the
MIM for network pertaining, MaskMentor also shows significant
superiority on both datasets. These results indicate that our Mask-
Mentor can effectively learn the multi-modal image representations
for the downstream semantic segmentation task.
Missing Modality Segmentation Performance.We further eval-
uate the segmentation performance of themodels when they receive
only the RGB image (“Only-RGB") or depth map (“Only-Depth") as
input. Results are provided in Table 2. The results indicate that our
MaskMentor exhibits substantial advantages in both two modality
missing scenarios on the test datasets, even though the compared
methods are specifically trained for individual modalities. It is par-
ticularly noteworthy that our method achieves significant improve-
ments even when the RGB modality is missing, outperforming the
compared methods.
Segmentation Visualization. Figure 3 provides qualitative seg-
mentation results of the proposed MaskMentor and MultiMAE [1].
It can be observed that MaskMentor is capable of consistently rec-
ognizing more accurate object categories under different modality
input scenarios, highlighting the robustness of our method in ad-
dressing the challenge of modality absence.

Table 3: Ablation studies on the proposed M2IM and STTP.

Dataset Method
RGB-Depth Only - RGB Only - Depth

mIoU mAcc mIoU mAcc mIoU mAcc

baseline 56.0 68.7 46.7 56.3 33.8 44.2

NYUDepthV2
+ MIM 56.8 69.9 47.2 59.2 38.9 50.6
+ M2IM 56.8 70.0 52.0 65.9 42.5 55.2

+ M2IM + STTP 57.9 70.4 53.3 66.5 44.0 56.8

baseline 50.0 61.9 42.2 53.3 31.6 42.1

SUN RGB-D
+ MIM 51.5 63.2 44.4 54.6 36.1 44.3
+ M2IM 52.0 64.7 48.5 61.6 37.8 47.9

+ M2IM + STTP 53.0 66.4 49.8 63.1 41.2 49.1

4.3 Ablation Study
We design various ablation studies to evaluate the effectiveness of
our core contributions. Unless otherwise specified, all experiments
are conducted using the default training configurations as described
in Section 4.1.
Effectiveness of M2IM and STTP. To verify the effectiveness of
M2IM and STTP, three variants are proposed as shown in Table 3.
The “baseline" refers to the model that undergoes direct fine-tuning
on the segmentation taskwithout pre-training, which performs infe-
rior particularly in scenarios where only RGB or Depth is available
as input. When adding the MIM-based pertaining as MultiMAE [1],
the performance is improved. Introducing our proposed M2IM re-
sults in significant performance improvements compared to the
MIM-based variant. Specifically, it achieves mIoU improvements of
10.2% and 9.2% for the Only-RGB and Only-Depth settings on the
NYUDepthV2 dataset, respectively. Similarly, on the SUN RGB-D
dataset, it achieves mIoU improvements of 12.1% and 19.62% for
the Only-RGB and Only-Depth settings, respectively. These results
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Table 4: More ablation studies of STTP in terms of self-teaching and network supervision on NYUDepthV2 dataset [28]. “KD"
refers to Knowledge Distillation, where a separately pre-trained teacher model distills its learned knowledge to guide the
student model.

Method RGB-Depth Only - RGB Only - Depth

mIoU mAcc mIoU mAcc mIoU mAcc

Pixel-level MIM 56.8 70.0 52.0 65.9 42.5 55.2
Token-level MIM 56.6 69.2 50.4 63.3 39.5 50.3

KD+M2IM 56.8 69.3 50.7 65.1 43.1 55.8
MaskMentor 57.9 70.4 53.3 66.5 44.0 56.8

RGB Input MIM M2IM M2IM+STTP Depth Input MIM M2IM M2IM+STTP

Figure 4: Visualization of the reconstructed modality. Given the RGB or Depth image as input, the pre-trained model equipped
with the proposed M2IM+STTP can produce the other modality (i.e., depth map or RGB image) with more plausible information.

indicate that the cross-modal masked modeling by the proposed
M2IM provides better alignment in missing-modality scenarios.
Additionally, the integration of STTP further leads to a consider-
able improvement in segmentation performance, demonstrating
the effectiveness of our self-teaching strategy with token-pixel joint
reconstruction.
Separate Teacher-Student v.s. Self-Teaching. We take a further
step to investigate the critical factors of STTP. We first evaluate the
impact of self-teaching and design a variant where the teacher is
separately trained and then provides supervision for the student.
As indicated by the last two rows in Table 4, our parameter-shared
teacher-student strategy achieves better performance, while also
making our method cost-effective.
Effectiveness of Token-Pixel Reconstruction. Our network is
trained with the supervision of token-pixel joint reconstruction. To
quantitatively evaluate their contributions, we conducted ablation
experiments. Comparing the results in the first two rows versus
the last row of Table 4, it demonstrates that both pixel-level and
token-level reconstruction are essential in improving the overall
performance.
Visualization of Modality Reconstruction. Figure 4 provides a
comprehensive illustration of the cross-modal reconstruction capa-
bilities exhibited by the models that have undergone pre-training

utilizing a variety of methodologies, including MIM, M2IM, and
M2IM+STTP, respectively. Given either the RGB or depth map as
input, our method (M2IM+STTP) shows strong capability in gener-
ating the other modality with more plausible details.

5 CONCLUSION
In this paper, we introduce a novel framework named MaskMentor
to address the challenging task of missingmodality RGB-D semantic
segmentation. Our method extends the idea of MIM from the image
patch level to the modality level and forces the network to recon-
struct the masked modalities from the visible ones, thus enhancing
the model’s capability of dealing with modality-missing situations.
In addition, it incorporates token- and pixel-wise supervision un-
der the self-teaching paradigm, where the student with missing
modality input is supervised by the teacher with complete modality
input. As such, fine-grained spatial characteristics and high-level
information of multi-modal data are effectively integrated and the
performance gaps of the model with diverse modality missing input
conditions are further closed up. Extensive experiments on bench-
mark datasets verify the effectiveness of the proposed method. In
our future work, we will extend our exploration to encompass a
wider range of data modalities, such as language, audio, etc.
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