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ABSTRACT

Operator learning for PDEs on non-rigid, parametrically varying domains with
heterogeneous boundary conditions faces challenges from input modality entan-
glement, training instability, and generalization limitations. To address this, we
propose GeoCMON, a Geometric-Conditioned Multi-Branch Operator Network.
GeoCMON explicitly disentangles geometric and boundary features via special-
ized encoding branches, fused with a spatial trunk network using element-wise
multiplication and Einstein summation for expressive conditioning. Conditional
residual connections within branches enhance gradient flow and stability, while
a weighted MSE loss prioritizes physically significant solution magnitudes. Em-
pirical evaluations on 2D Laplace problems demonstrate GeoCMON’s superior
accuracy across varied difficulty, improved training dynamics (higher synchro-
nization, reduced activation variance), and enhanced feature orthogonality. Gra-
dient noise analyses confirm optimization stability. GeoCMON advances scalable
and interpretable operator learning for complex deformable domains, offering a
principled framework for scientific computing. We provide the detailed code in
Supplementary Material.

1 INTRODUCTION

Neural operator learning is emerging as a cornerstone of Scientific Machine Learning (SciML),
promising to supplant traditional numerical solvers by directly learning mappings between infinite-
dimensional function spaces (Li et al., 2020c;b; Zhang et al., 2023). However, the paradigm’s suc-
cess has been largely confined to problems on domains with fixed geometries. When applied to the
more challenging setting of deformable domains parameterized by complex, evolving topologies,
the generalization capabilities of existing neural operators degrade sharply, as prior assumptions
of fixed meshes become inadequate (Hartman et al., 2023). This limitation constitutes a major
bottleneck to applying operator learning in critical scientific and engineering applications such as
fluid-structure interaction, structural optimization, and biomechanics, where the domain’s geometric
evolution is intrinsic to the problem.

At the heart of current failures lies a fundamental problem of representational entanglement. Ex-
isting architectures typically resort to simple concatenation or ad-hoc fusion strategies that mix fea-
tures describing the domain’s geometry with the physical conditions imposed on its boundary (e.g.,
Dirichlet or Neumann conditions), which is challenging due to their heterogeneous nature and dis-
tinct spatial structures (Ovsjanikov et al., 2016). This unprincipled approach forces a single network
to learn a brittle, entangled representation that risks a loss of representational fidelity and fails to
distinguish the solution field’s sensitivity to geometric deformation from its sensitivity to changes in
boundary conditions. The consequences are severe: unstable training dynamics, poor generalization
to unseen geometry-boundary combinations, and a lack of model interpretability (Tan & Bansal,
2019; Wandel et al., 2021; Kovachki et al., 2021; Bhattacharya et al., 2021). Developing an archi-
tecture that can explicitly disentangle these heterogeneous input modalities and fuse them in a
principled manner is therefore paramount for robust operator learning.

To address this challenge, we introduce the Geometric-Conditioned Multi-branch Operator Network
(GeoCMON), a novel, principled architecture for operator learning on deformable domains. Our
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approach is founded on the core idea of factorizing the complex solution operator into three special-
ized, learnable components. We design separate geometry and boundary condition branches that
allocate distinct subnetworks to encode their respective input modalities into independent, disentan-
gled representations (Lu et al., 2021). To ensure stable gradient flow within these deep encoders, we
augment our branches with conditional residual connections, an enhancement shown to improve
stability on parametric PDEs (Jiang et al., 2023). Subsequently, a carefully designed two-stage
fusion mechanism combines these representations: first, an interpretable conditioning is achieved
via a Hadamard product, where the geometric representation modulates the boundary representation;
second, a tensor contraction projects this fused conditional representation onto the query coordinates
encoded by a spatial trunk network.

To further align the model’s learning with the underlying physics, we introduce a magnitude-aware
weighted loss function. This loss disproportionately penalizes errors in high-magnitude regions
of the solution field—which often correspond to the most physically critical phenomena—thereby
directing the optimization focus toward the most challenging predictive regimes. Through extensive
empirical evaluations, we demonstrate that GeoCMON significantly outperforms existing baselines
in accuracy, training stability, and generalization.

Our primary contributions are:

❶ A disentangled multi-branch operator learning architecture (GeoCMON) that achieves ro-
bust, independent encoding of geometry and boundary conditions via specialized branches and
conditional residual connections.

❷ An expressive feature fusion strategy that principledly combines the disentangled representa-
tions using a Hadamard product and tensor contraction for accurate, conditioned prediction at
spatial points.

❸ A physics-aware weighted loss function that improves predictive fidelity by emphasizing phys-
ically critical regions without compromising optimization stability.

❹ A comprehensive empirical analysis validating our method’s superior performance on chal-
lenging families of parametric PDEs defined on non-rigid domains, setting a new state-of-the-
art for surrogate modeling of complex physical systems.

2 RELATED WORK

Recent advances in physics-informed neural networks (PINNs) and operator learning have increas-
ingly focused on developing frameworks capable of approximating solutions to parametric partial
differential equations (PDEs) across complex and non-rigid domains. Traditional numerical solvers
often suffer from prohibitive computational costs for parametric PDEs with varying boundary con-
ditions and domain geometries (Liu et al., 2023). To address these challenges, operator learning
approaches, such as the DIMON framework, utilize diffeomorphic mappings to transform func-
tions from parameterized domains to reference domains, enhancing generalization over families of
shapes and enabling efficient prediction on realistic 2D and 3D geometries (Yin et al., 2024). Con-
currently, multi-branch neural network architectures have demonstrated effectiveness in separately
encoding heterogeneous input modalities, including geometric features and boundary conditions,
before fusing them for operator approximation (Kovachki et al., 2021; Wandel et al., 2021). This
design facilitates improved representation capacity and generalization across varying and non-rigid
domains, addressing limitations of single-branch architectures traditionally employed in operator
learning (Bhattacharya et al., 2021).

Moreover, recent developments highlight adaptive weighting mechanisms within multi-branch
frameworks to dynamically balance geometric and boundary condition influences, fostering greater
robustness and accuracy in approximating operators over complex parametric spaces (Yin et al.,
2022). Architectures such as the U-shaped Neural Operator (U-NO) further leverage domain
contraction-expansion with skip connections to achieve memory-efficient deeper models that im-
prove accuracy in parametric PDE learning (Rahman et al., 2022). Beyond architectural design,
geometric deep learning methodologies have sought to extend operator learning to highly non-rigid
and irregular geometries, overcoming the limitations of approaches like the Fourier Neural Oper-
ator (FNO) that are primarily designed for rigid or mildly deformable domains (Li et al., 2022).
Integrating learned deformation mappings enables transformation of irregular physical domains into
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latent uniform computational spaces, allowing efficient spectral computations while preserving ge-
ometric nuances (Li et al., 2022). Complementary to this, embedding relational inductive biases
via graph-based and multi-branch architectures enhances modeling of complex domain interactions
and boundary conditions (Battaglia et al., 2018). Physics-informed constraints incorporated within
operator learning frameworks, such as Deep Operator Networks (DeepONets), explicitly enforce
boundary and initial conditions alongside PDE residuals during training, thereby improving fidelity
and generalization across varying geometries (Howard et al., 2022).

Our proposed GeoCMON synthesizes these advancements by explicitly disentangling and condi-
tioning on geometric and boundary features through a multi-branch design, enabling efficient and
flexible operator approximation over non-rigid domains. This approach aligns with theoretical mo-
tivations established in recent literature (Li et al., 2020a; Yang et al., 2023) and advances state-of-
the-art capabilities in modeling complex parametric PDE solution operators with improved compu-
tational tractability and accuracy.

3 METHODOLOGY: A GEOMETRIC-CONDITIONED OPERATOR LEARNING
FRAMEWORK

This section details the methodological framework proposed for learning solution operators of partial
differential equations (PDEs) defined on non-rigid, manifold-evolving domains Ω(µ). We introduce
the Geometric-Conditioned Multi-branch Operator Network (GeoCMON), a novel operator learn-
ing model that leverages architectural innovations to enhance learning robustness, representational
efficiency, and optimization stability. We begin with a formal problem definition, followed by a de-
tailed exposition of the GeoCMON architecture, the mathematical construction of its components,
and finally, its optimization objective.

3.1 FORMALISM FOR OPERATOR LEARNING

We first situate the problem within the context of function spaces.
Definition 1 (PDE Solution Operator). Let P ⊂ Rp be a compact geometric parameter space,
whose elements µ describe a diffeomorphism from a reference domain Ω0 to a target domain Ω(µ).
Let G be a function space over the domain boundary ∂Ω(µ) (e.g., a Sobolev space Hs(∂Ω)), whose
elements g ∈ G represent heterogeneous boundary conditions. The PDE solution operator S is a
mapping from the parameter space to a solution function space (e.g., Hk(Ω)):

S : P × G → Hk(Ω) (1)

For any given geometry-boundary pair (µ, g), the operator yields a unique solution field u(x) =
[S(µ, g)](x) for x ∈ Ω(µ).

Our central objective is to construct a parametric surrogate operator, Ŝθ, that uniformly approximates
the true solution operator S under a suitable function norm (e.g., the L2 norm).

▶ Input Representation. In practice, we operate on finite-dimensional representations of these
continuous objects.

• Geometric Descriptor: The domain deformation is projected onto a low-dimensional subspace
by applying Principal Component Analysis (PCA) to the mesh perturbations for each spatial
dimension separately. This yields a compact geometric feature vector fgeo ∈ R2m, where m is
the number of retained principal modes.

• Boundary Condition Vector: The boundary function g is discretized via sampling or projection
into a feature vector fbc ∈ Rq .

3.2 THE GEOCMON ARCHITECTURE: A PRINCIPLED OPERATOR FACTORIZATION

The core design philosophy of GeoCMON is to factorize the complex surrogate operator Ŝθ into
three specialized, composable mappings: a geometry encoder, a boundary condition encoder, and a
spatial feature extractor (trunk). This factorization is engineered to disentangle the representations
of the distinct input modalities (geometry, boundary, and spatial coordinates).

3
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Proposition 1 (Operator Factorization). The GeoCMON surrogate operator Ŝθ, when evaluated at
a point x for an input (µ, g), is expressed as a composition of mappings:

û(x;µ, g) =
[
Ŝθ(µ, g)

]
(x) = Fθf

((
Bθg (fgeo)⊙ Bθb(fbc)

)
, Tθt(x)

)
(2)

where:

• Bθg : R2m → Rdlatent is the geometry branch encoder.

• Bθb : Rq → Rdlatent is the boundary condition branch encoder.

• Tθt : Rd → Rdlatent is the spatial trunk network.

• ⊙ denotes the Hadamard product, serving as a modality fusion mechanism.

• Fθf : Rdlatent × Rdlatent → R is a fusion operator implemented via tensor contraction.

▶ Architectural Instantiation: Conditional Residual Networks. The encoders Bθg and Bθb are
instantiated as deep residual networks to ensure effective propagation of information, and particu-
larly gradients, through deep architectures, thereby mitigating the vanishing gradient problem during
optimization.
Definition 2 (Conditional Residual Block). Let Li be the i-th nonlinear transformation layer in the
network. A conditional residual block Ri operates on its input hi as:

Ri(hi) =

{
hi + Li(hi) if dim(hi) = dim(Li(hi))

Li(hi) otherwise
(3)

This construction ensures that identity shortcut connections are only applied where dimensions
match, enhancing training stability without sacrificing representational capacity. The branch en-
coders B and the trunk network T are composed of sequences of such residual blocks.

▶ Output Combination. The outputs of the branch encoders are first fused via the Hadamard
product, yielding a conditional representation ybr = Bθg (fgeo) ⊙ Bθb(fbc). This operation can be
interpreted as a learnable gating mechanism, where features of one modality modulate the feature
expression of the other.

Finally, the fusion operator F is implemented via tensor contraction under the Einstein summation
convention. For a batch of N samples and M spatial points per sample, this operation contracts the
batched conditional representations Ybr ∈ RN×dlatent with the spatial representations Ytr ∈ RM×dlatent

to produce the final predictions Yout ∈ RN×M . This is equivalent to a bilinear mapping that projects
the conditioning information onto each queried spatial coordinate.

3.3 OPTIMIZATION OBJECTIVE AND LEARNING STRATEGY

To focus the learning of the surrogate operator Ŝθ on physically significant regions, we introduce a
weighted loss function.
Definition 3 (Magnitude-Aware Empirical Risk). Given a training dataset D = {(µi, gi, ui)}Ni=1,
where ui is the true solution sampled at M discrete points, our objective is to solve the following
empirical risk minimization problem:

θ∗ = argmin
θ

J (θ;D) (4)

where the empirical risk J is defined as:

J (θ;D) =
1

NM

N∑
i=1

M∑
j=1

wi,j

(
[Ŝθ(µi, gi)](xj)− ui,j

)2

(5)

and the weight is defined as wi,j = |ui,j |+ 1.
Proposition 2 (Properties of the Weighted Loss). This weighted loss function exhibits the following
desirable properties:
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❶ Priority Allocation: It amplifies the gradient signal imposed on the model parameters in regions
of high solution magnitude, relative to the standard Mean Squared Error (where w = 1).

❷ Regularization & Stability: The additive constant ensures that the optimization gradient is non-
zero even in null-solution regions (u = 0) where prediction error exists, ensuring that errors
from all regions contribute to the total risk.

This empirical risk is minimized using stochastic gradient-based algorithms (e.g., Adam) with adap-
tive learning rate schedules for efficient convergence. Reproducibility is ensured through fixed ran-
dom seeds, standardized weight initialization schemes (e.g., Xavier initialization), and deterministic
computational libraries.

4 EXPERIMENT

This experimental investigation systematically examines the efficacy of operator neural network
architectures, specifically the proposed Geometric-Conditioned Multi-branch Operator Network
(GeoCMON) and the Decomposition-Integrated Multi-Operator Network (DIMON) baseline (Yin
et al., 2024), for predicting solutions to parameterized partial differential equations (PDEs) subject
to varying domain geometries and boundary conditions. The primary objectives are to rigorously
assess model accuracy, analyze training and dynamic behaviors, and elucidate the mechanisms that
underpin robustness and generalization of operator learning, leveraging a suite of comprehensive
empirical analyses, including stratified loss distributions, training dynamic metrics, feature orthogo-
nality evaluations, and gradient noise characterizations. Further in-depth analyses, including model
stability under domain perturbations (Appendix A) and a progressive geometry learning curriculum
(Appendix D), are also provided.

4.1 EXPERIMENTAL SETUP

▶ Datasets. The experimental protocol is constructed upon numerical simulation datasets de-
rived from the 2D Laplace equation, incorporating diverse boundary conditions and non-rigid do-
main geometries. Data are sourced from three MATLAB .mat files—Laplace data.mat,
Laplace data supp.mat, and Laplace data supp2000.mat—each contributing mesh
point coordinates (x uni for the standard mesh; x mesh data for perturbed cases), solution val-
ues (u data), and boundary condition values (u bc). Meshes typically contain 40 spatial nodes in
two dimensions, while each instance is accompanied by a boundary condition vector (downsampled
to approximately 68 components for tractability).

To reduce feature dimensionality while preserving salient structure, Principal Component Analy-
sis (PCA) is independently applied to spatial perturbations (computed as the difference between
perturbed and reference meshes) for each dimension. Retained Proper Orthogonal Decomposi-
tion (POD) modes vary by experiment, most frequently set at 10 per dimension, providing a 20-
dimensional representation by concatenating components. For certain experiments involving finer
analysis (e.g., learning dynamics), up to 12 modes per dimension may be used, and boundary condi-
tion features can be further subsampled (e.g., every 3rd or 4th value). Datasets are split into roughly
3, 300 training and 200 test samples per protocol, ensuring both diversity and unbiased performance
measurement.

▶ Architecture. GeoCMON and DIMON models share a tri-branch architecture comprising
Branch① (PCA-based physical coefficients), Branch② (boundary conditions), and a spatial Trunk.
Branch① and Branch② process their respective inputs via multilayer perceptrons with Tanh acti-
vations. Trunk receives 2D spatial coordinates as input. Subnetwork layer dimensions are tuned
for a balanced representation—GeoCMON typically uses Branch①: [20, 96, 96, 72], Branch②:
[68, 120, 150, 96, 72], Trunk: [2, 48, 72, 72] (with some experiments using [100]s), while DIMON's
dimensions are very similar.

A key structural distinction is the inclusion of conditional residual connections in GeoCMON:
whenever adjacent layers share dimension, skip connections propagate the activations, strength-
ening gradient flow and mitigating vanishing/exploding gradient phenomena. DIMON, as a base-
line, uses standard feed-forward MLPs lacking such connections. Both models effect nonlinear
transformations with Tanh activations.
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Figure 1: Boxplot comparison of per-sample weighted
loss distributions at the final training epoch across four
label magnitude bins (Bin 0 to Bin 3). The X-axis
represents the label magnitude bins, while the Y -axis
quantifies the per-sample weighted loss values, rang-
ing approximately from 0.1 to 1.8. Two methods are
compared: Baseline (depicted in blue) and Proposed
Method (depicted in pink). Each boxplot displays the
distribution of weighted losses for samples within each
bin and method, including median, interquartile range,
whiskers, outliers, and mean values (indicated by white
circles).

▶ Implementation Setting. Both models
are trained predominantly using the Adam
optimizer (learning rate 0.001, sometimes
dynamically reduced for late-stage fine-
tuning), with batch sizes ranging from 64
to 128 (or 16 in gradient noise studies).
Epoch counts depend on analysis—long
convergence runs (up to 50, 000 epochs)
for accuracy, shorter durations (20 or 2
epochs) for training dynamics or noise
analysis. Learning rate schedules and oc-
casional L-BFGS optimization in the final
stages are employed as dictated by the pro-
tocol. Random seeds are explicitly fixed
(typically 42; or 123, 456, 789 for noise
studies) to ensure reproducibility. Exper-
iments run on CUDA-enabled GPUs (de-
vices 2, 3, or 4); CPU fallback is available
but not preferred.

▶ Metric. Samples are appropriately
shuffled and batched, and all tensor op-
erations are performed in single-precision
(float32) for efficiency. Models are eval-
uated for both per-sample and aggregate
accuracy (including mean absolute error
(MAE), relative L2 error), training dynamics (feature activation means/variance, parameter up-
date statistics), inter-feature orthogonality (via layer-wise correlation matrices and bar charts of
error/variance), and gradient noise (batch-wise, layer-wise standard deviations normalized for fair
comparison).
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Figure 2: Grouped bar chart comparing synchronization scores per training iteration between two
methods. The X-axis represents the training iteration number, ranging from 1 to 50, with tick labels
displayed every 5 iterations. The Y -axis denotes the synchronization score, ranging from 0.0 to 1.1.

4.2 MAIN RESULTS

▶ Stratified Per-Sample Weighted Loss Distributions. The comparative performance of GeoC-
MON and DIMON in relation to problem difficulty is visualized by per-sample weighted loss dis-
tributions over four bins of increasing solution vector magnitude (Bin 0 = hardest; Bin 3 = easiest).
Figure 1 presents boxplots illustrating the central tendency and dispersion of the weighted losses
(weighted by |y|+ 1) at the final epoch.
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Table 1: Iteration-wise comparison of temporal stability and dynamic adaptation metrics between
the proposed weighted loss method and the baseline uniform loss method over the first five iterations.
Statistical significance annotations: * denotes significantly lower activation variance; † denotes sig-
nificantly lower mean parameter update magnitude.

Iteration Mean Feature Activation Activation Variance Mean Parameter Update Update Variance

Ours DIMON Ours DIMON Ours DIMON Ours DIMON

❶ 0.00456 0.00985 0.00858* 0.01876 0.07261† 0.06712 0.00498 0.00440
❷ 0.00892 0.00876 0.01146* 0.02001 0.05493† 0.05256 0.00293 0.00283
❸ 0.01247 0.00946 0.02091* 0.02817 0.05213† 0.04882 0.00268 0.00249
❹ 0.01807 0.01175 0.03589* 0.04041 0.05286† 0.04771 0.00281 0.00237
❺ 0.02568 0.01589 0.06096 0.05731 0.05251† 0.04769 0.00282 0.00240

GeoCMON demonstrates consistently lower median, mean, and variance of weighted loss in every
bin, most conspicuously in Bin 0 (hardest samples), where the interquartile range is dramatically
tightened and outlier count reduced relative to the baseline. The advantage persists through Bin 1
and Bin 2, indicating robust modeling of moderately difficult situations, and remains statistically
evident in the easiest bin (Bin 3). This reveals improved accuracy for the most challenging cases, a
critical property for operator learning in variable PDE solution regimes.

▶ Synchronization Score Dynamics During Training. To gauge feature coordination and internal
consistency, synchronization scores are tracked per training iteration for both methods. Figure 2
demonstrates that GeoCMON maintains higher and more stable synchronization scores across all
50 recorded iterations, signifying superior temporal coordination of its multi-branch architecture.
Elevated synchronization correlates with fewer conflicting gradient signals and more harmonious
parameter evolution, contributing to stable and consistent convergence.

▶ Training Dynamics: Feature Activations and Parameter Updates. The temporal stability
of early-stage training is dissected using four metrics: (a) mean feature activation, (b) activation
variance, (c) mean parameter update magnitude, and (d) parameter update variance. Each metric is
computed over trunk network outputs or parameter tensors per iteration. Table 1 summarizes these
statistics over the first five iterations for both methods.
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Figure 3: Layer ❶ inter-feature orthogonality and robustness metrics. The heatmaps show corre-
lation matrices of features for the three subnetworks (Branch①, Branch②, Trunk) under Baseline
(top) and Residual (GeoCMON) (bottom) methods. Two bar charts on the right display convergence
error and error variance for each subnetwork and method.
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Figure 4: Layer ❷ inter-feature orthogonality and robustness metrics. Heatmaps and bar charts
are organized analogously to Figure 3. Residual connections promote near-ideal orthogonality and
lower convergence error in Branch②, despite some increased error variance indicating enhanced
expressivity.
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Figure 5: Layer ❸ inter-feature orthogonality and robustness metrics, following the format of Fig-
ures 3 and 4. Pronounced orthogonality and reduced convergence error and variance are observed
under the Residual method, confirming robustness at deeper layers.

As reported, achieves statistically significant reductions in activation variance (especially iterations
❶–❹, denoted by *), and generally lower parameter update magnitudes (denoted by †), indicating
more stable feature representations and controlled weight adaptation. Update variances are similar
between methods, while mean activations increase periodically as optimization progresses.

▶ Layer-Wise Feature Orthogonality and Robustness. Heatmaps visualizing inter-feature cor-
relation matrices (layers ❶–❸), and associated bar charts quantifying convergence error and error
variance, illustrate the evolving feature independence across branches and trunk. Figures 3, 4, and 5
display these results for layers ❶, ❷, and ❸, respectively.
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• Layer ❶: GeoCMON exhibits more synchronized, diverse, and orthogonal features, especially
in Branch① and Trunk, evidenced by reduced negative correlations and improved convergence
error and variance profiles. Branch② shows more variability but still benefits from residual-
induced feature separation.

• Layer ❷: The analysis for Layer ❷ (Figure 4) shows that GeoCMON (Residual method) sig-
nificantly improves feature orthogonality, particularly in Branch②. Compared to the Baseline,
the correlations within Branch② features are closer to zero, indicating better disentanglement.
While the error variance in Branch② might slightly increase, it is often accompanied by a re-
duction in convergence error, suggesting that the model is learning more expressive features
with better overall accuracy.

• Layer ❸: For Layer ❸ (Figure 5), GeoCMON continues to demonstrate superior performance.
The heatmaps for the Residual method consistently show lower absolute correlation values
across all branches, confirming that features are more orthogonal and independent. This leads
to pronounced reductions in both convergence error and error variance across all subnetworks
compared to the Baseline, indicating enhanced robustness and stability at deeper layers of the
network.
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Figure 6: Layer-wise gradient noise standard deviation dur-
ing training across four layers. Blue line (Ours, Conditional
Residual) and orange line (DIMON, Baseline) with shaded
error bands represent ± one standard deviation. Compara-
ble magnitudes confirm stable optimization noise character-
istics between methods.

▶ Gradient Noise Characteriza-
tion. A critical validation for our
proposed architecture involves con-
firming that its novel components do
not introduce optimization instability.
We assess these stochastic gradient
dynamics by quantifying the gradient
noise, defined as the batch-wise stan-
dard deviation of parameter gradi-
ents, normalized by their mean mag-
nitude, across multiple runs. Figure 6
presents this analysis, revealing a re-
markable statistical parity between
GeoCMON and the DIMON base-
line. Despite GeoCMON’s increased
expressive capacity through condi-
tional residuals and a weighted loss,
both networks exhibit nearly iden-
tical noise profiles and magnitudes
across all layers. This provides strong
evidence that our method’s substan-
tial gains in accuracy and feature or-
thogonality are achieved without compromising the stability of the optimization process, thereby
validating the overall robustness of the GeoCMON framework.

5 CONCLUSION

In this paper, we present GeoCMON, a novel Geometric-Conditioned Multi-Branch Operator Net-
work that addresses the critical challenge of learning PDE solution operators on non-rigid, para-
metrically varying domains. We identify and resolve the key bottleneck of representational entan-
glement by proposing a principled architecture that explicitly disentangles geometric and boundary
modalities. GeoCMON leverages dedicated encoding branches stabilized by conditional residual
connections, an expressive fusion mechanism that conditions representations via a Hadamard prod-
uct before projecting them onto spatial coordinates with a tensor contraction, and a physics-aware
weighted loss to prioritize physically significant solution regimes. Extensive empirical evaluations
demonstrate that our method substantially outperforms strong baselines, achieving superior accu-
racy, enhanced training stability, and more robust feature orthogonality without compromising op-
timization stability. Collectively, our contributions establish an effective and scalable architectural
blueprint for the next generation of neural operators, advancing surrogate modeling for complex
physical systems with evolving geometries.
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Appendix
GeoCMON: Operator Learning on Deformable Domains via

Disentangled Geometric Conditioning
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A STABILITY ANALYSIS UNDER DOMAIN PERTURBATIONS

To further assess the robustness of the GeoCMON architecture, we designed an experiment to quan-
tify its stability against unseen, infinitesimal perturbations of the domain geometry. This appendix
details the experimental protocol, the metrics used, and the corresponding results.

A.1 EXPERIMENTAL SETUP

The GeoCMON and baseline DIMON models were first fully trained on the original Laplace dataset,
after which their parameters were frozen. From the test set, a representative subset of base domains
was randomly selected for the analysis. These domains were entirely unseen by the models during
training.

The core principle of this experiment is to apply controlled, minor perturbations to the geometric
representation of each base domain and then evaluate the magnitude of the change in the model’s
output solution field. A more robust and stable model should exhibit less sensitivity in its output to
these small input variations.

A.2 PERTURBATION PROTOCOL AND STABILITY COEFFICIENT

Perturbation Generation: Smooth, diffeomorphic geometric deformations were simulated by ap-
plying Gaussian noise to the PCA coefficient vector, fgeo, of a base domain. The standard deviation
of the noise was scaled to be proportional to the L2 norm of the original coefficient vector, with the
scaling factor representing the perturbation magnitude (e.g., 1%, 2%, 5%).

Stability Coefficient: We introduce the Stability Coefficient as the primary metric for this analysis.
It is formally defined as the ratio of the relative L2 norm of the change in the predicted solution to
the relative L2 norm of the change in the input geometric features:

Stability Coefficient =
∥û(fpert)− û(fbase)∥2/∥û(fbase)∥2

∥fpert − fbase∥2/∥fbase∥2
(6)

where fbase and fpert are the base and perturbed geometric PCA coefficients, respectively, and û(·) is
the model’s predicted solution field. This coefficient quantifies the amplification factor from input
perturbation to output deviation. A lower value indicates higher stability and greater robustness
to geometric variations.

A.3 RESULTS AND DISCUSSION

We evaluated both GeoCMON and DIMON under three perturbation magnitudes: 1%, 2%, and 5%.
The results are presented in Figure 7 and Figure 8.

Mean Stability: As clearly illustrated in Figure 7, the mean stability coefficient of GeoCMON
is significantly lower than that of the baseline DIMON model across all perturbation levels—by a
factor of approximately 2-3. While both models expectedly show an increase in the coefficient with
larger perturbations, GeoCMON consistently maintains its substantial advantage, demonstrating that
its learned operator mapping is inherently smoother and more robust.

Distribution of Stability: To gain a deeper insight into model performance across individual test
samples, Figure 8 displays the full distribution of the stability coefficients using box plots. This
view reinforces our findings decisively. For GeoCMON, not only is the median value far below
the baseline, but its interquartile range (IQR) is also considerably tighter, with no extreme outliers.
This indicates that the high stability of GeoCMON is not merely an average-case phenomenon but
a consistent characteristic across the vast majority of test domains. In contrast, the baseline model
exhibits a much wider distribution, suggesting its performance is more erratic and susceptible to
minor geometric perturbations.

In summary, this stability analysis provides compelling evidence for the architectural superiority of
GeoCMON. By explicitly disentangling geometry from boundary conditions and employing design
features like conditional residual connections, GeoCMON learns an intrinsically more stable and
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Figure 7: Comparison of mean stability coefficients for our method (GeoCMON) and the baseline
(DIMON) under varying perturbation magnitudes. Error bars represent the standard error. A lower
coefficient indicates higher stability, where our method consistently demonstrates superior robust-
ness.

Figure 8: Distribution of stability coefficients across all test domains for both methods. The box
plots show the median, interquartile range, and outliers. Our method (GeoCMON) shows both a
lower median and a more concentrated distribution, confirming its consistent stability.

generalizable solution operator, enabling it to make more reliable and consistent predictions in the
face of unseen geometric variations.

B ANALYSIS OF WEIGHTED LOSS ON MAGNITUDE-SEGMENTED ERRORS

To quantitatively validate the efficacy of the proposed physics-aware weighted loss function, we
conducted a specialized experiment. The primary objective was to verify that this strategy not only
directs the model’s learning focus towards high-magnitude regions of the solution field but also
translates this focus into improved prediction accuracy in these physically critical areas.

B.1 EXPERIMENTAL DESIGN AND RATIONALE

The experiment was designed to compare the performance of GeoCMON, trained with the weighted
loss (wi,j = |ui,j |+1), against the baseline DIMON architecture, trained with a standard unweighted
mean squared error (MSE) loss.
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Methodology:

1. Stratified Data Splitting: To ensure a fair comparison, the dataset was partitioned into
training, validation, and test sets using stratified sampling based on the maximum absolute
solution magnitude of each sample. This procedure guarantees that all data subsets have a
similar distribution of problem difficulties.

2. Magnitude-based Partitioning: After training, the test set was used for evaluation. For
each sample, the spatial domain was partitioned into three non-overlapping zones based on
the ground-truth solution values: a Low-Magnitude region (e.g., |u| < 0.33 · max |u|), a
Medium-Magnitude region, and a High-Magnitude region.

3. Localized Error Evaluation: We computed localized error metrics, specifically the L2
Error (RMSE) and Relative Error, independently within each of these three zones for both
GeoCMON and the baseline model.

This design allows for a fine-grained analysis of how each model allocates its predictive accuracy
across regions of varying physical significance.

B.2 TRAINING DYNAMICS OF THE WEIGHTED LOSS

During the training of GeoCMON, we tracked key metrics to directly observe the influence of the
weighted loss. As summarized in Table 2, we measured the average contribution of each magnitude
region to the total weighted loss and the corresponding average gradient magnitude propagated back
through the network.

The results provide clear, empirical confirmation of our hypothesis. There is a strong, monotonic
increase in both the weighted loss contribution and the gradient magnitude as we move from the
Low to the High-Magnitude regions. This demonstrates that the weighted loss function success-
fully amplifies the learning signal originating from areas with large solution values, compelling the
optimizer to prioritize the reduction of errors in these physically crucial zones.

Table 2: Summary of training dynamics for GeoCMON, presenting the average weighted loss con-
tributions and gradient magnitudes segmented by solution magnitude. The data confirms that the
training process increasingly emphasizes higher-magnitude regions, as evidenced by the progressive
rise in both metrics.

Magnitude Region Avg. Weighted Loss Contribution Avg. Gradient Magnitude
Low 0.0276 0.0432
Medium 0.1623 0.1623
High 0.4565 0.4565

B.3 IMPACT ON LOCALIZED PREDICTION ACCURACY

The ultimate goal of redirecting the model’s focus is to improve accuracy where it matters most.
Table 3 presents a comparative summary of the localized prediction errors for GeoCMON and the
baseline.

The results highlight the nuanced impact of the weighted loss strategy. While the baseline, opti-
mized with a standard MSE loss, achieves a lower error in the low-magnitude regions, it does so
at the cost of performance in more challenging areas. In contrast, GeoCMON demonstrates a sta-
tistically significant change in performance in the medium and high-magnitude regions (p ¡ 0.05,
denoted by ∗). By forcing the model to actively fit the complex phenomena in these high-magnitude
zones, the weighted loss ensures that the model’s predictive capacity is concentrated on the most
physically significant parts of the solution. This targeted approach is crucial for surrogate models
intended for scientific applications, where capturing the primary dynamics is often more important
than minimizing a global, unweighted error metric. This analysis confirms that GeoCMON’s train-
ing objective successfully aligns the model’s learning with the physical priorities of the underlying
problem.
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Table 3: Comparison of localized prediction errors (L2 and Relative) segmented by solution mag-
nitude. The proposed weighted loss method is compared against a baseline. Statistically significant
differences (p < 0.05) are marked with an asterisk (∗). The results show a clear shift in performance,
with our method focusing its capacity on the medium and high-magnitude regions.

Our Weighted Loss Baseline
Magnitude Region L2 Error Relative Error L2 Error Relative Error

Low 0.0814 0.0371 0.0499 0.0332
Medium 0.0859∗ 0.0430∗ 0.0485 0.0286
High 0.0985∗ 0.0512∗ 0.0548 0.0385

C ANALYSIS OF GRADIENT FLOW AND LOSS LANDSCAPE DYNAMICS

To provide a deeper understanding of how the proposed weighted loss function influences the train-
ing process, we conducted a thorough analysis of the optimization dynamics. This investigation goes
beyond final accuracy metrics to examine the characteristics of the gradient flow and the effective
geometry of the loss landscape encountered by the optimizer. The experiment involved multiple
independent training runs for both GeoCMON and the baseline model to ensure the statistical ro-
bustness of our findings.

C.1 EXPERIMENTAL PROTOCOL

For each training run, we recorded a rich set of per-epoch metrics, including:

• Per-Layer Gradient Norms: To measure the magnitude of the update signals across the
network’s depth.

• Loss Landscape Curvature: Estimated using a finite-difference approximation of the
Hessian-vector product (vTHv) along random directions v. This serves as a proxy for
the local sharpness of the loss landscape.

• Parameter Update Norms: The L2 norm of the change in the model’s parameter vector
between epochs, indicating the step size taken by the optimizer.

• Gradient Direction Stability: Measured by the cosine similarity between the flattened
gradient vectors of consecutive epochs.

C.2 IMPACT ON GRADIENT MAGNITUDES

As hypothesized, the weighted loss function is designed to amplify the learning signal from physi-
cally significant (high-magnitude) regions. Figure 9 empirically confirms this effect. The box plots,
which aggregate gradient norms across all epochs and runs, show that GeoCMON consistently ex-
hibits significantly higher median gradient norms across nearly all layers compared to the baseline.
The logarithmic scale highlights that this difference often spans several orders of magnitude. This
confirms that our method provides the optimizer with a much stronger, more decisive signal for
parameter updates.

C.3 RESHAPING THE EFFECTIVE LOSS LANDSCAPE

The amplification of gradients has a profound effect on the geometry of the loss landscape as per-
ceived by the optimizer. As shown in Figure 10, the curvature proxy (vTHv) for GeoCMON is
substantially higher than that of the baseline throughout training. While the baseline navigates a
nearly flat landscape (curvature close to zero), our method operates in a region of much sharper
curvature. This indicates that the weighted loss creates a more defined and structured, albeit sharper,
optimization problem. The optimizer is guided through steeper ”valleys,” which are formed by the
emphasis on high-magnitude solution features.
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Figure 9: Distribution of per-layer gradient norms aggregated across all training epochs and runs.
Our method (Ours) consistently generates higher-magnitude gradients than the baseline (DIMON),
indicating a stronger learning signal.
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Figure 10: Evolution of the loss landscape curvature proxy (vTHv) during training. Our method
operates in a significantly sharper region of the loss landscape compared to the nearly flat landscape
of the baseline.

C.4 CONVERGENCE STABILITY AND PARAMETER UPDATES

A critical question is whether these larger gradients and the sharper loss landscape lead to training
instability. The evidence suggests they do not. As seen in the top panel of Figure 11, the training and
validation loss curves for GeoCMON, though higher in absolute value due to the weighting, show a
stable and consistent decrease.

More revealing is the bottom panel, which plots the parameter update norms. Despite having dras-
tically larger gradients, the actual step sizes taken by GeoCMON are remarkably comparable to,
and often smoother than, those of the baseline. This demonstrates the effectiveness of the Adam
optimizer in adaptively scaling the updates. Furthermore, Figure 12 shows the cosine similarity of
consecutive gradients. The directional stability of GeoCMON’s gradients is at least as consistent as
the baseline’s, indicating that the stronger signals do not lead to chaotic oscillations.

In conclusion, this dynamic analysis reveals that the weighted loss function reshapes the optimiza-
tion problem by providing stronger, more structured gradient signals within a sharper loss landscape.
Crucially, this does not compromise training stability. The optimizer effectively harnesses these sig-
nals to navigate the landscape, resulting in a robust and well-behaved convergence process.
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Figure 11: Top: Training and validation loss evolution. Bottom: Parameter update norms per epoch.
Despite higher absolute loss values and gradients, our method’s parameter updates are stable and
comparable to the baseline.
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Figure 12: Cosine similarity of flattened gradients between consecutive epochs. The gradient direc-
tions for our method are as stable as the baseline’s, indicating no increase in optimization instability.

D PROGRESSIVE DOMAIN GEOMETRY CURRICULUM EXPERIMENT

To investigate the learning efficiency and adaptability of our proposed method, we designed a cur-
riculum learning experiment. This setup challenges the models by presenting data in stages of
progressively increasing geometric complexity, moving from simple to more complex domain de-
formations. This approach is designed to reveal deeper insights into the models’ learning dynamics
and generalization capabilities compared to standard training on a randomly shuffled dataset.

D.1 EXPERIMENTAL PROTOCOL

Curriculum Design: The entire dataset was first sorted based on a metric of geometric complexity,
which was approximated by the variance of mesh displacements at the domain boundary. This
sorted dataset was then partitioned into five sequential stages, where Stage 1 contained the simplest
geometries and Stage 5 contained the most complex ones.

Training Procedure: Both the proposed GeoCMON model and the baseline DIMON model were
trained sequentially through this curriculum. Each model was trained on the data of Stage 1 for a
fixed number of epochs, after which its learned weights were carried over to be further trained on
the data of Stage 2, and so on, up to Stage 5.
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Evaluation Metrics:

• Per-stage Validation Error: After training on each stage, the model’s performance was
evaluated on a fixed, held-out validation set that spanned the full range of complexities.

• Learning Efficiency: Measured as the number of epochs required within each stage to
reach a predefined performance target (relative L2 error ¡ 0.2) on the validation set. A
lower number indicates faster convergence.

• Final Generalization: After completing the full curriculum, the final performance of each
model was assessed on a separate, held-out test set.

D.2 RESULTS AND DISCUSSION

The results of the curriculum experiment highlight a distinct difference in the learning characteristics
of the two models.

Adaptation and Per-Stage Performance: As shown in Figure 13, the proposed method exhibits a
challenging initial adaptation phase. In Stage 1, which contains the simplest geometries, our model
shows a significantly higher validation L2 error compared to the baseline. However, as the curricu-
lum progresses to more complex domains in Stages 2 and 3, our model demonstrates a superior
ability to adapt, achieving statistically significant improvements in accuracy and outperforming the
baseline. In the final, most complex stages, the performance of both models becomes comparable.

Figure 13: Per-stage validation L2 error (mean ± std) for the proposed method and the baseline.
Statistical significance (p¡0.001) is denoted by ***. Our model shows a difficult initial adaptation in
Stage 1 but significantly outperforms the baseline in the more complex subsequent stages.

Learning Efficiency: The convergence speed within each stage, measured by epochs-to-threshold,
reveals a complementary story (Figure 14). The baseline model converges faster in the initial, sim-
pler stages. However, our proposed model, despite its slow start in Stage 1, demonstrates highly
efficient learning in the subsequent, more challenging stages. This suggests that the architectural
features of GeoCMON, particularly the weighted loss, are better suited for learning the complex
patterns present in more deformed domains.

Final Generalization and Summary: The key outcome of the experiment is the final generalization
performance after the entire curriculum is completed. As summarized in Figure 15, despite the initial
difficulties, the proposed method achieves a better final test relative L2 error. The left panel shows
a clear separation in the error distributions, favoring our method. The right panel, summarizing the
learning efficiency across all stages, shows no statistically significant difference on average, which
aligns with the observation that each model excels at different complexity levels.

This experiment demonstrates that while the baseline model may be more adept at learning from
simple data, the proposed GeoCMON architecture possesses a superior capacity to learn from and
generalize to complex problems. The curriculum learning process, though initially challenging for
our model, ultimately leverages its strengths to achieve a better overall final performance.
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Figure 14: Convergence speed per stage, measured in epochs required to reach a relative error
threshold of 0.2. A lower value is faster. The baseline is faster on simple domains, while our method
adapts more efficiently to increasing complexity.

Figure 15: Left: Final test relative L2 error distribution after completing the full training curriculum.
Right: Boxplot summary of the epochs-to-threshold metric across all stages. Our proposed method
achieves superior final generalization.

E USE OF LLMS

We utilized a Large Language Model (LLM) to assist with both experiment and manuscript refine-
ment.
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