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ABSTRACT

The task of quantifying the inherent uncertainty associated with neural network
predictions is a key challenge in artificial intelligence. Bayesian neural networks
(BNNs) and deep ensembles are among the most prominent approaches to tackle
this task. Both approaches produce predictions by computing an expectation of
neural network outputs over some distribution on the corresponding weights; this
distribution is given by the posterior in the case of BNNs, and by a mixture of point
masses for ensembles. Inspired by recent work showing that the distribution used
by ensembles can be understood as a posterior corresponding to a learned data-
dependent prior, we propose last layer empirical Bayes (LLEB). LLEB instantiates
a learnable prior as a normalizing flow, which is then trained to maximize the
evidence lower bound; to retain tractability we use the flow only on the last layer.
We show why LLEB is well motivated, and how it interpolates between standard
BNNs and ensembles in terms of the strength of the prior that they use. LLEB
performs on par with existing approaches, highlighting that empirical Bayes is a
promising direction for future research in uncertainty quantification.

1 INTRODUCTION

Uncertainty quantification (UQ) is a crucial task in scientific and safety-critical settings (Esteva et al.,
2017; Bojarski et al., 2016; Litjens et al., 2017; Psaros et al., 2023), and every improvement in UQ
within deep learning is a step towards a broader adoption of AI. The two most popular approaches for
UQ are Bayesian neural networks (BNNs; Welling & Teh, 2011; Graves, 2011; Hernández-Lobato
& Adams, 2015; Blundell et al., 2015; Gal & Ghahramani, 2016; Ritter et al., 2018) and deep
ensembles (Lakshminarayanan et al., 2017). Both BNNs and ensembles produce a distribution q∗

over neural network weights θ; q∗ is the Bayesian posterior (or an approximation thereof) for BNNs,
and a mixture of point masses obtained by independent training runs for ensembles. Computing the
expectation of network outputs over θ ∼ q∗ produces predictions, and the corresponding variability
of the outputs over θ can be used to quantify uncertainty.

Ensembles typically outperform BNNs at UQ, but they do so at increased computational cost (Abdar
et al., 2021). In recent work, Loaiza-Ganem et al. (2025) pointed out that the distribution q∗ used
by ensembles can actually be interpreted as a Bayesian posterior corresponding to a learned data-
dependent prior. In this sense ensembles are BNNs, except the prior is not fixed beforehand as in
standard BNNs. Loaiza-Ganem et al. (2025) also argue that using priors which concentrate their
mass around the set of maximum-likelihood weights is likely beneficial for UQ and a potential
reason behind the good performance of ensembles. Inspired by this connection, we propose last layer
empirical Bayes (LLEB) as an intermediate between standard BNNs and ensembles in terms of the
strength of the used prior: LLEB is a BNN where the prior is instantiated as a normalizing flow (NFs;
Dinh et al., 2015; Rezende & Mohamed, 2015; Durkan et al., 2019) and learned by maximizing the
standard evidence lower bound (ELBO) from variational inference (VI; Wainwright & Jordan, 2008;
Kingma & Welling, 2014; Rezende et al., 2014; Blei et al., 2017). One key motivation behind LLEB
is that by learning the prior through a NF, q∗ can place most of its mass around “good values of
θ” while retaining diversity in θ, thus hopefully achieving comparable performance to ensembles
without the need to train various models. To maintain tractability, we follow the recent trend in
BNNs of being Bayesian only over a subset of parameters such as those in the last layer (Lázaro-
Gredilla & Figueiras-Vidal, 2010; Kristiadi et al., 2020; Watson et al., 2020; 2021; Harrison et al.,
2024; Yang et al., 2024).
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Empirically, we find that LLEB performs on par but not significantly nor consistently better than
existing UQ approaches of similar computational cost. Our results highlight the promise of empirical
Bayes for UQ, and we hope that future work will be able to leverage the ideas behind LLEB to
outperform existing UQ methods.

2 BACKGROUND AND RELATED WORK

Setup Throughout this work we will consider a classification setup, where we have access to a
dataset D = {(xi, yi)}i of feature-label pairs (xi, yi). Here, the likelihood p(D | θ) is given by
p(D | θ) =

∏
i p(yi | xi, θ), where p(yi | xi, θ) is the probability assigned by the neural network

parameterized by θ ∈ Θ to the label yi when given the input xi. We will assume that the likelihood
function achieves its maximum, and will denote the set of maximizers as Θ∗ ⊂ Θ.

Bayesian neural networks and variational inference BNNs begin by specifying a prior π, often
as a Gaussian with diagonal covariance. The main object of interest in BNNs is then the correspond-
ing posterior distribution, which is given by π(θ | D) ∝ π(θ)p(D | θ). Unfortunately, computing
π( · | D) and sampling from it are intractable. Various lines of research, which we will shortly
summarize, attempt to circumvent this problem by providing a distribution q∗ whose goal is to ap-
proximate the posterior, i.e. q∗ ≈ π( · | D). Once q∗ has been obtained, the epistemic uncertainty
(Hüllermeier & Waegeman, 2021) associated with predicting the label of a query point xn+1 can
be quantified through the variability of p( · | xn+1, θ) over θ ∼ q∗, and predictions can be made
through the predictive distribution,

p( · | xn+1) := Eθ∼q∗ [p( · | xn+1, θ)] . (1)

One class of methods uses a Laplace approximation, i.e. a second-order Taylor expansion of
log π( · | D), to obtain q∗ (Ritter et al., 2018; Kristiadi et al., 2020; Daxberger et al., 2021; Yang
et al., 2024); this results in q∗ being a Gaussian approximation of the posterior. Another class of
methods uses Markov chain Monte Carlo to approximately sample from π( · | D) (Welling & Teh,
2011; Chen et al., 2014; Zhang et al., 2020), here the distribution of the chain corresponds to q∗.
Gal & Ghahramani (2016) obtain q∗ by using dropout (Srivastava et al., 2014).

A final relevant class of procedures to obtain q∗ do so through VI (Graves, 2011; Blundell et al.,
2015; Louizos & Welling, 2016; 2017; Wu et al., 2019; Osawa et al., 2019; Harrison et al., 2024),
i.e. by maximizing the ELBO,

ELBO(q, π) := Eθ∼q [log p(D | θ)]−KL (q∥π) , (2)

over q ∈ Q for some family of distributions Q. When Q is flexible enough in the sense that it
contains the true posterior, this maximization is well known to yield q∗ = π( · | D). However, most
VI-based BNN methods use simple choices of Q (e.g. Gaussians) due to tractability. Many methods
use NFs1 to instantiate Q (Rezende & Mohamed, 2015; Kingma et al., 2016), resulting in increased
flexibility while keeping the KL term in the ELBO tractable. However, these methods apply VI in
the context of variational autoencoders (Kingma & Welling, 2014; Rezende et al., 2014) and not to
BNNs because the size of NFs cannot be scaled to the number of parameters in a neural network.
Indeed, the large number of parameters in neural networks results in BNNs having to deal with
extremely high-dimensional distributions; some works have sought to circumvent this bottleneck by
being Bayesian only over the last layer of the network (Kristiadi et al., 2020; Harrison et al., 2024).

Deep ensembles and their connection to Bayesian neural networks Like BNNs, ensembles
find a distribution q∗ which is also used to quantify uncertainty, and to produce predictions through
Equation 1. Ensembles train M separate models through maximum-likelihood, i.e. maximizing
log p(D | θ), to obtain θ∗m ∈ Θ∗ for m = 1, . . . ,M ; all these values are different due to the
randomness of stochastic optimization – the resulting q∗ is then given by q∗(θ) =

∑
m δθ∗

m
(θ),

where δθ∗
m

denotes a point mass at θ∗m. Although ensembles are not typically thought of as Bayesian,
Loaiza-Ganem et al. (2025) recently argued they can be understood as performing empirical Bayes,
i.e. learning the prior π from data. More specifically, assuming enough capacity, the ELBO in

1Recall that NFs define a density q as the density of f(Z), where f is an invertible neural network and Z
has a simple distribution such as an isotropic Gaussian.
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Equation 2 is maximized over both q and π (rather than just q) by (q∗, π∗) if and only if q∗ assigns
probability 1 to Θ∗ and q∗ = π∗; in this case, the prior π∗, its corresponding posterior π∗( · | D),
and q∗ are all equal to each other (see Appendix A for more details). The particular q∗ used by
ensembles assigns probability 1 to Θ∗, and thus it follows that it can be interpreted as both a learned
prior and its corresponding posterior. In short, the main difference between BNNs and ensembles
is that BNNs use weak (e.g. Gaussian), fixed priors (or with at most the variance being learnable),
whereas ensembles use strong and implicitly learned data-dependent priors.

3 LAST LAYER EMPIRICAL BAYES

There are three main motivations behind our work. First, deep ensembles tend to outperform BNNs
at UQ (Abdar et al., 2021), and the empirical Bayes view of ensembles thus suggests that using
stronger, data-dependent priors is preferable to using weak, fixed ones. Consequently, we aim to ex-
plore explicitly learning the prior. Second, although the empirical Bayes view of ensembles suggests
that very strong priors are better than very weak ones, it does not guarantee that stronger is always
better. In particular, the prior q∗ used by ensembles is extremely strong, and part of our motivation
is to use a slightly weaker learned prior which is still strong enough to concentrate mass around Θ∗.
Third, ensembles are computationally expensive as they require training M models. Our final moti-
vator is that by explicitly learning q∗ once we can avoid training M models. We hope that a model
satisfying these motivations might perform similarly to ensembles while being cheaper to train.

With these motivations in mind, we first consider simply maximizing Eθ∼q[log p(D | θ)] over
q ∈ Q; this will produce the same optimal q∗ as maximizing ELBO(q, π) over q and π under a
flexible enough π. Furthermore, if Q is flexible enough, the resulting q∗ will assign probability 1 to
Θ∗, and could thus be interpreted as both a prior and its corresponding posterior, just like in ensem-
bles. Our goal here is then to choose a Q which (i) is flexible enough for q∗ to concentrate mass
around Θ∗ while not collapsing onto a point mass (as this would just recover a maximum-likelihood
solution), and (ii) results in q∗ being more diverse than the mixture of point masses used by en-
sembles. Specifying Q as NFs is then very natural since NFs are very flexible, yet their invertibility
acts as an implicit regularizer which prevents collapse onto a point mass and promotes some diver-
sity. In summary, we would ideally like to instantiate qη as a NF parameterized by η and maximize
Eθ∼qη [log p(D | θ)] over η to then treat the resulting qη∗ as we would q∗ in BNNs or ensembles.

Using qη as described above would satisfy our first two motivations but would still result in a highly
intractable procedure despite not requiring to train M models. The root cause of this intractability
is the high dimensionality of the NF, and we thus propose to quantify uncertainty only over a subset
of parameters. More precisely, let θ = (θQU , θNU ), where θQU and θNU are the parameters over
which we do and do not quantify uncertainty, respectively. As a first attempt to address the tractabil-
ity issues, we then instantiate qη as a NF on θQU and maximize EθQU∼qη [log p(D | θQU , θNU )]
over θNU and η. We found this end-to-end objective performed well with small classifiers, but
that it resulted in unstable and slow optimization when using larger classifiers. As a way to cir-
cumvent this issue, we train our model in two steps: we first perform maximum likelihood by
maximizing log p(D | θQU , θNU ) to obtain θ∗QU and θ∗NU , and we then discard θ∗QU and maximize
EθQU∼qη [log p(D | θQU , θ

∗
NU )] over η; we found this strategy to be faster and much more stable for

larger classifiers. Note that here q∗ is now formally given by q∗(θQU , θNU ) = δθ∗
NU

(θNU )qη∗(θQU ).

In practice we chose to set θUQ as the weights of the last layer of the classifier. The resulting meth-
ods (both end-to-end and two-step training), which we call last layer empirical Bayes, satisfy all
our motivations: q∗ is flexible and explicitly learned, the invertibility of the flow prevents collapse
onto point masses and encourages some diversity, and since the NF is relatively low-dimensional,
training it does not incur significant computational overhead as compared to just maximizing the
likelihood. We highlight that LLEB is certainly not the only way to satisfy our starting motiva-
tions; we include in Appendix B various alternatives to LLEB which we considered but found to
empirically underperform LLEB.

4 EXPERIMENTS

Setup We conduct experiments on two pairs of datasets, MNIST (LeCun et al., 1998) & Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009) & SVHN (Netzer et al.,
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Table 1: Results on MNIST & Fashion-MNIST. The top and bottom parts show single and ensembled (M = 5)
models, respectively. For each metric, the best results within models of comparable computational cost are
bolded (only best mean values are bolded).

Train/Test: MNIST, OOD: Fashion-MNIST Train/Test: Fashion-MNIST, OOD: MNIST
Method Acc. (↑) ECE (↓) AUC (↑) Acc. (↑) ECE (↓) AUC (↑)
Default 98.02± 0.05 0.00± 0.00 - 88.02± 0.10 0.01± 0.00 -
LLL 98.02± 0.05 0.75± 0.00 0.96± 0.00 88.02± 0.10 0.66± 0.00 0.82± 0.01
MCD 98.50± 0.05 0.01± 0.00 0.91± 0.00 88.47± 0.05 0.02± 0.00 0.75± 0.03
LLEB (ours) 97.74± 0.24 0.00± 0.00 0.95± 0.01 87.83± 0.37 0.01± 0.00 0.72± 0.03
Default (M = 5) 98.26± 0.02 0.01± 0.00 0.97± 0.00 88.71± 0.09 0.02± 0.00 0.84± 0.01
LLL (M = 5) 98.26± 0.02 0.76± 0.00 0.96± 0.00 88.71± 0.09 0.67± 0.00 0.87± 0.01
MCD (M = 5) 98.69± 0.02 0.02± 0.00 0.95± 0.00 89.34± 0.08 0.04± 0.00 0.89± 0.00
LLEB (M = 5, ours) 98.30± 0.08 0.01± 0.00 0.97± 0.00 89.44± 0.16 0.03± 0.00 0.89± 0.01

Table 2: Results on CIFAR-10 & SVHN, metrics and methods are identical to those in Table 1.
Train/Test: CIFAR-10, OOD: SVHN Train/Test: SVHN, OOD: CIFAR-10

Method Acc. (↑) ECE (↓) AUC (↑) Acc. (↑) ECE (↓) AUC (↑)
Default 92.82± 0.09 0.05± 0.00 - 95.26± 0.03 0.03± 0.00 -
LLL 92.82± 0.09 0.70± 0.00 0.94± 0.01 95.26± 0.03 0.73± 0.00 0.92± 0.00
MCD 92.29± 0.09 0.10± 0.01 0.89± 0.02 95.11± 0.05 0.09± 0.01 0.89± 0.00
LLEB (ours) 92.85± 0.09 0.06± 0.00 0.94± 0.01 95.23± 0.03 0.02± 0.01 0.86± 0.01
Default (M = 5) 94.82± 0.01 0.01± 0.00 0.91± 0.01 96.55± 0.03 0.01± 0.00 0.97± 0.00
LLL (M = 5) 94.82± 0.01 0.73± 0.00 0.90± 0.01 96.55± 0.03 0.74± 0.00 0.97± 0.00
MCD (M = 5) 94.72± 0.04 0.12± 0.00 0.93± 0.01 96.54± 0.02 0.11± 0.00 0.98± 0.00
LLEB (M = 5, ours) 94.78± 0.01 0.01± 0.00 0.95± 0.01 96.52± 0.03 0.01± 0.00 0.98± 0.00

2011). For each pair, we use one dataset for the train and test sets, and the other as an out-
of-distribution (OOD) set. For each pair we fix an architecture and compare LLEB against:
the default network, last layer Laplace approximation (LLL; Daxberger et al., 2021), and Monte
Carlo dropout (MCD; Gal & Ghahramani, 2016); all these baselines have comparable compu-
tational costs to LLEB. We also compare ensembles of LLEB models against standard ensem-
bles (Lakshminarayanan et al., 2017) and ensembled versions of all the aforementioned baselines;
once again all these comparisons are fair from a perspective of computational cost. See Ap-
pendix C for more information on the implementation details; our code is available at https:
//github.com/layer6ai-labs/last_layer_empirical_bayes.

Metrics We report the accuracy (Acc.) and the expected calibration error (ECE) over the test
set; the latter measures how well models quantify aleatoric uncertainty (Hüllermeier & Waegeman,
2021). For every test and OOD point x we also compute

∑
y varθ∼q∗ [p(y | x, θ)] to quantify

epistemic uncertainty; to evaluate how well models quantify epistemic uncertainty, we compute the
area under the receiver operating characteristic curve (AUC) obtained when using this metric to
classify between in- and out-of-distribution data (with large values corresponding to OOD). These
metrics, along with standard errors across 5 random seeds, are shown in Table 1 and Table 2.

Results LLEB underperforms ensembles despite its ambitious motivation being to achieve similar
results, nevertheless we stress that this comparison favours ensembles since they are much more
costly to train. Although LLEB outperforms baselines of comparable computational cost in a few
tasks and metrics, it does not do so consistently; this holds true both for single models and when
ensembling. We see LLEB performing on par with the best existing baselines as highlighting the
promise in its empirical Bayes motivation, yet we also believe that LLEB not outperforming these
baselines is likely a consequence of the choices we made for tractability.

5 CONCLUSION

In this work we argued that maximizing Eθ∼q[log p(D | θ)] over q (with potential regularization) is
backed by empirical Bayes as a sensible approach towards UQ. We further proposed LLEB as a way
to approximately maximize this objective while retaining tractability. Although LLEB has decent
performance, it does not significantly outperform other UQ methods; we hypothesize that this is due
to the concessions we made in LLEB for tractability. We hope that future research will manage to
improve upon LLEB by better leveraging empirical Bayes to learn q∗ in a way that remains tractable
and outperforms existing UQ approaches which use simple priors.
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A HOW DEEP ENSEMBLES SECRETLY PERFORM EMPIRICAL BAYES

The result that optimizing the ELBO in Equation 2 with flexible enough π and q results in q∗ =
π∗ = π∗( · | D) with q∗ assigning probability 1 to Θ∗ might seem rather surprising at a first glance,
since it is not often that a prior matches its posterior in Bayesian inference. This simple result can
nonetheless be understood by simply inspecting Equation 2: first, notice that π appears only in the
KL term, so that if the learnable prior π is flexible enough, it must be the case that π = q holds at
optimality. It follows that q must only maximize the first term in the ELBO, Eθ∼q[log p(D | θ)];
we can see by inspection that, when q is flexible enough, q∗ must thus assign probability 1 to Θ∗.
Additionally, when q is flexible enough, it is well known from variational inference that maximizing
the ELBO will result in the variational posterior matching the true posterior, i.e. q = π( · | D) should
also hold at optimality. Combining these observations together, we get that q∗ = π∗ = π∗( · | D),
where these distributions assign probability 1 to Θ∗. We refer the reader to Loaiza-Ganem et al.
(2025) for a formal derivation of this result, along with a much more thorough discussion.

B ALTERNATIVES TO LAST LAYER EMPIRICAL BAYES

As mentioned in Section 3, we tried a few alternatives to LLEB which we now describe. First,
we attempted to explicitly regularize the objective to encourage diversity. Since NFs admit density
evaluation, it is straightforward to estimate the entropy H(qη) of qη . We thus attempted adding
a regularizer which encourages maximizing entropy (Loaiza-Ganem et al., 2017), resulting in the
objective

EθQU∼qη [log p(D | θQU , θNU )] + λH(qη), (3)

which we maximized over θNU and η, where λ > 0 is a hyperparameter. We also tried the two-step
solution we followed in LLEB, i.e. we first obtained θ∗QU and θ∗NU through maximum-likelihood, we
discarded θ∗QU , and we then maximized EθQU∼qη [log p(D | θQU , θ

∗
NU )] + λH(qη) over η. Neither

of these approaches improved upon LLEB as described in the main text.

After observing that encouraging higher entropy did not help, we hypothesized that maybe the NF
was overly diverse to begin with and that it was not succeeding at placing most of its mass around
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Θ∗. We thus tried using λ < 0 as a way of reducing diversity, but once again this did not improve
upon LLEB.

Lastly, we also tried forgoing NFs entirely by replacing them with fully-connected architectures.
We found that implementing this change resulted in q∗ collapsing onto a point mass, highlighting
that the NFs used in LLEB indeed provide implicit regularization against this collapse. Note that
since using fully-connected architectures loses density evaluation, we cannot regularize entropy to
discourage this collapse.

These failed attempts are the reason why we used NFs and no entropy regularization in LLEB.
Although we believe that LLEB can be improved upon by using different distributions which are
flexible enough to concentrate mass on Θ∗ while remaining as diverse as possible within Θ∗, doing
so is not trivial.

C IMPLEMENTATION DETAILS

MNIST & Fashion-MNIST For these two datasets, we use a small convolutional network de-
scribed in Table 3. For LLEB, we add to the weights of the last layer the output of a Neural
Spline Flow (Durkan et al., 2019) implemented using the nflow library (Durkan et al., 2020)
with parameters described in Table 4. For LLL, we use the implementation from Daxberger et al.
(2021) on top of our network. For MCD, we keep the dropout layer active during evaluation.
For LLEB, we use the end-to-end training objective with the reparameterization trick to maximize
EθQU∼qη [log p(D | θQU , θNU )], and use 10 samples from qη per gradient step. At test time, for
all three methods, we also sample 10 times from q∗ and average the predictions to approximate the
expectation in Equation 1. The other training hyperparameters are given in Table 5.

CIFAR-10 & SVHN For both datasets, we use a ResNet18 (He et al., 2016), where we replace
the last linear layer with two linear layers with a same hidden dimension of 50, similarly to the
network in Table 3. We use the hyperparameters described in Table 6 to train the default network
and ensemble. For LLEB, we use the two-step training procedure and use the frozen weights from
the default network and train the flow for 100 epochs and a learning rate of 10−5. For MCD, since
there are no dropout layers in ResNet18, we use the same frozen weights but use a new linear head
preceded by a dropout layer, which we train until convergence (10 epochs, learning rate of 10−5).
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Table 3: Network layers for MNIST and Fashion-MNIST.
Layer Parameters
Conv2d input channels: 1, output channels: 10, kernel size: 5
MaxPool2d kernel size: 2, stride: 2
ReLU
Conv2d input channels: 10, output channels: 20, kernel size: 5
Dropout2d
MaxPool2d kernel size: 2, stride: 2
ReLU
Flatten
Linear input features: 320, output features: 50
Linear input features: 50, output features: 10

Table 4: Parameters for the Neural Spline Flow.
Parameter Value
Base distribution Gaussian
Hidden features 100
Number of coupling layers 2
Number of residual blocks 2
Number of bins 11
Tail bound 10
Dropout probability 0
Activations ReLU

Table 5: Hyperparameters for training on MNIST and Fashion-MNIST.
Parameter Value
Epochs 100
Optimizer Adam (Kingma & Ba, 2015)
Loss Function Cross Entropy
Learning Rate 10−3

Weight Decay 10−5

Gradient Clipping 0.1
Batch Size 104

Table 6: Hyperparameters for training on CIFAR-10 and SVHN.
Parameter Value
Epochs 100
Optimizer Adam
Loss Function Cross Entropy
Learning Rate 5.10−4

Weight Decay 10−5

Gradient Clipping 0.1
Batch Size 128
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