
Under review as a conference paper at ICLR 2024

BRIDGING INDEXING STRUCTURE AND GRAPH
LEARNING: EXPRESSIVE AND SCALABLE GRAPH
NEURAL NETWORK VIA CORE-FRINGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing message passing-based and transformer-based graph neural networks
(GNNs) can not satisfy requirements for learning representative graph embed-
dings due to restricted receptive fields, redundant message passing, and reliance
on fixed aggregations. These methods face scalability and expressivity limitations
from intractable exponential growth or quadratic complexity, restricting interac-
tion ranges and information coverage across large graphs. Motivated by the anal-
ysis of long-range graph structures, we introduce a novel Graph Neural Network
called Core-Fringe Graph Neural Network (CFGNN). Our Core-Fringe structure,
drawing inspiration from the graph indexing technique known as Hub Labeling,
offers a straightforward and effective approach for learning scalable graph repre-
sentations while ensuring comprehensive coverage of information. CFGNN lever-
ages this structure to enable selective propagation of relevant embeddings through
a carefully designed message function. Theoretical analysis is presented to show
the expressivity and scalability of the proposed method. Empirically, CFGNN ex-
ceeds standard GNNs on tasks including classification and regression, especially
for large, long-range graphs where scalability and coverage matter. Ablation stud-
ies further confirm the benefits of our core-fringe based graph neural network,
including improved expressivity and scalability.

1 INTRODUCTION

Graph neural networks (GNNs) provide a powerful framework for learning structural and relational
representations of nodes in graphs. These have been extensively used in many application domains
to learn node embeddings that capture the structural and relational information in graphs, including
social network analysis Leskovec & Mcauley (2012), recommendation systems Fan et al. (2019),
citation network analysis Waikhom & Patgiri (2021), and life science Wang et al. (2022b). Two
main GNN training methods are commonly used, which are the message passing Wei et al. (2021);
Hamilton et al. (2017) and the transformer-based Velickovic et al. (2018); Mialon et al. (2021)
approaches. The message passing approach iteratively aggregates messages (features) for each node
from its neighbors to update its embedding in order to propagate information across the graph. The
transformer-based approach applies the self-attention mechanism from transformers to learn node
embeddings based on the contextual information of the entire graph. Both approaches aim to provide
accurate representations of all nodes in the graph to support various downstream tasks. The choice
of training approaches depends on the graph type and desired properties in the learned embeddings.

To learn the representation of each node by the message passing-based approach, the core idea is to
iteratively obtain the information from its neighbors, e.g., r-hop neighbors (r = 3 for the red dashed
circle in Figure 1). By setting r to be the diameter of the graph, this approach can fully obtain both
the node and edge information of this graph for each node in order to increase the expressivity of the
representation. Although the message passing-based approach can guarantee to cover all informa-
tion of each node, it necessitates r iterations to learn the representation, with each iteration involving
computation of messages for every edge in E. which cannot be scalable to large (or long-range)
graphs with high diameter values. To address this issue, recent research studies Zeng et al. (2020);
Ying et al. (2018); Chiang et al. (2019) combine the message passing-based approach with sampling

1

Under review as a conference paper at ICLR 2024

and clustering techniques to improve scalability. However, these solutions may not fully capture
complete information for each node, potentially reducing the expressivity of the representation.

Figure 1: While expanding the number of
hops in a GNN poses challenges for the re-
ceptive field to encompass all nodes in the
graph (red dashed circle), our method over-
comes this limitation by achieving com-
plete coverage through the partitioning of
the graph into a Core-Fringe structure.

Another approach is to use transformers to learn node
embeddings, without message passing. The core idea
is to apply multi-head self-attention, allowing each
node to obtain information from all other nodes in the
graph. Unlike message passing, the transformer strat-
egy avoids the iterative process, but it requiresO(|V |2)
space to store the self-attention matrix, which limits
its scalability to large graphs. Additionally, it does
not explicitly model the edge information (graph struc-
ture), relying solely on node co-occurrence for learn-
ing embeddings, which restricts its expressivity in cap-
turing structural roles and properties of nodes. These
issues constrain its performance from explicitly mod-
eling edges between nodes and propagating informa-
tion in a more structured way for applications that re-
quire capturing fine-grained structural node properties.

Hence, we ask a question in this paper. Can we de-
velop a new GNN structure that provides a highly ex-
pressive yet scalable solution? To provide an affirma-
tive answer to this question. We first propose a new
perspective on graph learning problems by formulat-
ing the concept of coverage for graph learning tasks
and then discuss the expressivity and scalability issues of existing graph learning methods. Consid-
ering the pros and cons of existing methods, we propose a core-fringe structure (cf. Figure 1) that
aims to achieve high expressivity and high scalability. The core-fringe structure is constructed using
hub labeling Cohen et al. (2003), a graph indexing technique that imparts several crucial proper-
ties, e.g., 2-hop cover, shortest path, and index size optimization, for graph learning. A two-stage
learning framework is then proposed based on the core-fringe structure. Our approach not only en-
sures full coverage of every node in the learning process but also offers relatively lower complexity
compared with existing approaches due to the two-stage learning framework.

The key contributions of the proposed method can be summarized as follows.

• We introduce a novel graph neural network learning framework based on the core-fringe structure
(CFGNN). Our CFGNN is shown to achieve a complete receptive field, ensuring full information
coverage for each node in the graph.

• We provide theoretical analysis (including over-squashing analysis and positional-awareness) and
empirical results on diverse datasets to demonstrate the expressivity of our approach.

• We present complexity analysis and conduct experiments to showcase the significant improve-
ment in scalability. Remarkably, our CFGNN achieves better or comparable results on a
consumer-grade GPU, outperforming state-of-the-art methods that require multiple high-end
GPUs.

2 ANALYZING GRAPH LEARNING MODELS

2.1 INFORMATION COVERAGE

With the growing popularity of GNNs, capturing long-range interactions is crucial for various prac-
tical tasks, particularly those involving very large graphs or long chain structures Dwivedi et al.
(2022b). For instance, the chemical property of a molecule Ramakrishnan et al. (2014); Gilmer
et al. (2017) depends on the combination of atoms situated on opposite sides. To quantify the extent
of expressive power in modeling long-range correlations in graphs, we assess the information cov-
erage provided by graph neural networks using the concept called receptive field in deep learning,
defined as the input size that produces a feature. In a typical Residual Neural Network (ResNet) He
et al. (2016), the receptive field at Layer 4 of resnet v1 101 is approximately 1000× 1000 pixels.

2

Under review as a conference paper at ICLR 2024

In graph learning, receptive field refers to the number of graph nodes contributing to the feature
generation process Quan et al. (2019). For example, in a message passing-based GNN, the receptive
field encompasses the 2-hop neighbors when the model iterates twice to compute node embeddings.
We claim a receptive field is full for a node u in a graph G (Proposition 1) if the learning process
covers all nodes reachable from u in G.

We expanded the definition of the prior receptive field to encompass information coverage. Informa-
tion coverage now includes not just the node feature, but also the feature of the interactions between
nodes.

Proposition 1 (Information Coverage). The embedding representation of node u is considered to
achieve information coverage if it incorporates context information from all of its neighboring nodes
that are reachable via any simple path. This concept is referred to as a full information. Mathemat-
ically, we define this as follows:

zzzu = τ(V[u],X[u]) (1)

where V[u] represents the induced node set that can be reached from node u in graph G. The
embedding function, denoted as τ , maps each node v in V[u] along with its relevant features X[u].

Figure 2: The dash lines indicate all possible paths of length 3 starting from v1, The paths in red
achieve information coverage.

Similar to other transformer-based GNNs, the relevant features X[u] are employed to complement
the topological structures as feature enhancements, as seen in prior works such as Ying et al. (2021);
Rampášek et al. (2022); Chen et al. (2022a); Dwivedi et al. (2022a). As an example, X[u] may
include a set of simple paths P[u], ensuring that at least one simple path exists from node u to node
v ∈ V[u]. As shown in Figure 2, the induced node set V[v1] encompasses all vertices in the graph since
every node is reachable from v1. An example of a simple path within P[v1] is v1 → v3 → v4 → v6.

2.2 EXPRESSIVITY AND SCALABILITY

Existing GNN methods often encounter practical limitations that hinder their effectiveness. As the
scale of the graph increases, the computational demands and memory requirements of these meth-
ods become impractical Hu et al. (2021). This presents issues with both expressivity and scalability.
In general, highly expressive GNN models require complete graph information to achieve a sophis-
ticated understanding of dependencies and relationships. Nevertheless, the scaled-up versions of
these models encounter computational challenges when processing information for large graphs.
On the other hand, simpler models that are more scalable compromise expressivity, limiting their
representational power. We conduct an analysis of two representative graph learning approaches to
better illustrate the relationship between expressivity and scalability.

Message passing-based GNNs. The representative studies in this category include GCN Kipf &
Welling (2017), GraphSage Hamilton et al. (2017), DeeperGCN Li et al. (2018), etc. The detailed
formulation of these types of methods is provided in Appendix A.1.2. As shown in Figure 3a,
according to Proposition 1, to learn the representation of a node u with complete neighborhood
information, the model should be able to receive information from other nodes at a distance of r,
where r indicates the maximum hop distance from u to any nodes in the graph. We should at least
stack the layers (the depth of the model) up to r, which results in a computation cost of |E|·r. Indeed,
the message passing-based GNNs face challenges in scaling effectively with increasing values of the
receptive field length, r.

3

Under review as a conference paper at ICLR 2024

(a) A 2-layer message passing can cover all informa-
tion in 2-hop neighborhood of the root node in red.

(b) Sampling sacrifices completeness (v5 not sam-
pled) but increases the coverage range (3-hop layer).

Figure 3: An illustration of multi-hop message passing.

To allow GNNs to be used on large graphs, a practical solution is to sample partial messages from
the r-hop neighbors as shown in Figure 3b, which plays a trade-off between computation resources
and information coverage. Although many subgraph sampling techniques, such as neighbor sam-
pling Hamilton et al. (2017), layer sampling Zou et al. (2019), and sub-graph sampling Zeng et al.
(2020), have been proposed to tackle the neighbor explosion issue, all these approaches still suffer
from certain expressivity loss since none of them secures the information coverage (see Figure 3b).
If the sampled size of nodes or sub-graphs is too small, some essential structures in the graph may
be lost, and there is no assurance that every valuable node and its corresponding path will be consid-
ered. Consequently, the topological information may be lost, resulting in a break in the information
coverage (Proposition 1).Furthermore, these subgraph sampling techniques still exhibit limited scal-
ability for attaining complete coverage, as the computational complexity increases proportionally
with the coverage range in the graph (cf. Figure 3b).

Figure 4: Each attention head in a self-attention transformer model covers all nodes, causing the
model to be costly.
Transformer-based GNNs. The representative studies in this category include SAN Kreuzer et al.
(2021), GraphTrans Wu et al. (2021), Graphormer Rampášek et al. (2022), etc. The detailed for-
mulation of these types of methods is provided in Appendix A.1.3. The self-attention module of a
transformer possesses a global receptive field that allows each input token to attend to and process
the representation of information at any position; thus, each node in the graph can attend to all other
nodes in this model. Nevertheless, the self-attention module overlooks the crucial topological struc-
ture between nodes. In other words, the relationship between node pairs is solely captured based on
their individual node features. According to Proposition 1, the graph learning should be learned not
only from the features but also from how the nodes are connected on a graph in order to supplement
more information. Previous studies Ying et al. (2021); Rampášek et al. (2022); Chen et al. (2022a);
Dwivedi et al. (2022a) share the same intuition and have attempted to explicitly encode the corre-
lated topological information for each node to supplement the topological structures and positional
encoding as a feature enhancement. Graphormer Ying et al. (2021) is one of the transformer-based
models that guarantee the information coverage (Proposition 1). It preprocesses and stores all edge
encoding that encodes all path features along the shortest path between each pair of nodes.

While transformer-based solutions effectively ensure comprehensive information coverage (as
demonstrated in Proposition 1), it is important to acknowledge the well-known scalability challenge

4

Under review as a conference paper at ICLR 2024

associated with self-attention: the quadratic growth in training time and space complexity O(|V |2)
with the increasing number of graph nodes. Besides, the design of multi-head attention Vaswani
et al. (2017) allows the model to simultaneously focus on various aspects of the input sequence,
enabling it to capture greater nuance and complexity in the data. However, existing transformers
on graph Rampášek et al. (2022); Kreuzer et al. (2021); Wu et al. (2021) do not make optimal use
of this property, as all the heads receive input from all the nodes (see Figure 4). Compared to
the shorter sequence lengths typically encountered in language processing (usually less than a hun-
dred), the number of nodes in a graph can be significantly larger. Managing such lengthy sequences
can pose challenges, particularly in scenarios with limited computational resources. The quadratic
complexity associated with self-attention introduces inefficiencies in finding, storing, and modeling
large-scale graphs, further exacerbating the computational burden.

Summary. To the best of our knowledge, none of the existing methods have successfully addressed
both the information coverage (expressivity) and the computational complexity (scalability) chal-
lenges simultaneously. This drawback motivates us to develop a novel approach to achieve both
objectives. We assert that a robust method should possess the potential for expressive power, en-
abling capturing long-range interactions (for expressivity) while maintaining reasonable computa-
tional complexity for training node embeddings (for scalability). It is crucial for such a method
to operate within the limitations of available GPU memory and computational resources, ensuring
practical feasibility in real-world applications.

3 CORE-FRINGE GRAPH NEURAL NETWORK

3.1 CORE-FRINGE STRUCTURE

Figure 5: Each core acts as an attention head, and it only focuses on its corresponding fringe.

One approach to alleviate the complexity of multi-head attention is through utilizing sparse attention
mechanisms Choromanski et al. (2021). It motivates us to allow different attention heads to focus
more selectively on various parts of the graph, as shown in Figure 5. We anticipate that the atten-
tion head will prioritize localized information before gradually shifting towards global information
rather than immediately allocating equal attention to all nodes. To achieve this division strategy, we
employ representative nodes in the graph as core nodes and designate their neighboring nodes as the
fringe. By adopting this approach, we can significantly reduce computational costs, as the attention
mechanism only needs to consider a small local neighborhood surrounding each core rather than the
entire graph. Their respective core nodes initially collect the fringe messages, ensuring that each
core-fringe pair contains partial graph information.

In the context of graph analysis, a core node should possess significance within the graph structure.
Node properties such as degree can be used to identify the graph core. For instance, celebrities
with many followers can be treated as cores in a social network, while in a citation network, a
groundbreaking paper can be identified by its citation degree. Complex networks, such as social and
biological networks, exhibit small-world properties, making the core-fringe structure a prevalent
property of these. Note that a core may also serve as the fringe of another core.

Some approaches in graph pooling Chiang et al. (2019); Cai et al. (2021); Ying et al. (2018); Yuan &
Ji (2020); Murphy et al. (2019); Mesquita et al. (2020) tackle the scalability issue by formulating it as
a clustering problem or a graph cut problem, extending the concept of local patches (a subsection of
an image) in regular pixel grids to graphs. However, while these methods can achieve high receptive

5

Under review as a conference paper at ICLR 2024

fields through a hierarchical approach, they may inadvertently destroy the topological structure,
which can impact the expressivity power of the model. An evident concern is that incorrect cutting of
an edge in the coarser graph may lead to the loss of certain connectivity information, such as shortest
paths. We will further analyze the importance of the topological information in Appendix A.6.

3.2 BRIDGING GRAPH LEARNING AND INDEXING

In this work, we propose to leverage indexing techniques from graph query answering to overcome
the aforementioned limitations. Graph indexing techniques, in general, are designed to efficiently
answer queries such as the shortest path by utilizing specialized data structures. Graph query an-
swering and graph learning share a common objective of accomplishing tasks with minimal resource
utilization. While graph query answering focuses on ensuring query correctness, graph learning aims
to achieve learning efficiency, such as information coverage.

Specifically, we construct the core-fringe structure using the Hub Labeling (HL) technique Cohen
et al. (2003). HL is a graph indexing technique that optimizes shortest path-finding algorithms, trad-
ing space for time compared to conventional Dijkstra’s algorithm Dijkstra (1959). In the following,
we will outline our approach for utilizing HL techniques to construct the core-fringe structure. We
will then discuss how the constructed core-fringe satisfies the desired properties.
Definition 3.1 (Hub Label). For each node v ∈ V , we define the hub label of a node L(v) as a set
of pairs (h, dist), where dist is the distance from v to the hub vertex h.

The fundamental idea behind hub labeling is to pre-compute and store the information about the dis-
tances between each vertex and a small set of hubs, nodes with a high degree and many connections
to other vertices in the graph. The distance information is stored in a data structure, namely a hub
label. To compute the result of the shortest path query from source u to destination v, a sort-merge
join is performed between its hub labels L(u) and L(v). The purpose of the sort-merge join is to
find a common hub in the shortest path from u to v that is labeled by both u and v. The construction
methodology is outlined in Appendix A.3.
Property 1 (2-hop cover). For any pair of reachable nodes u, v ∈ V of G(V,E), there exists at
least one common hub h ∈ SPu→v in both label sets, L(u) and L(v), such that the shortest path
SPu→v is the result of merging SPu→h and SPh→v .

dist(SPu→v) = min
h∈L(u)∩L(v)

{dist(SPu→h) + dist(SPh→v)} (2)

To ensure the correctness of the shortest path finding, the hub label of each node must satisfy the
2-hop cover property (see Property 1). An optimization goal in hub label construction is typically
to minimize the number of labels, i.e., min

∑
u∈V |L(v)|. In Babenko et al. (2015), it shows that

finding a hub labeling with the minimum total label size while maintaining the 2-hop cover property
is a formulation of the NP-hard weighted set-cover problem Abraham et al. (2012). Similar to
solving set-cover problems, many greedy heuristic algorithms have been shown to provide good
approximations in practice Abraham et al. (2012); Akiba et al. (2013); Li et al. (2017).

HL-based core-fringe structure. In order to understand the concept of the core set and the fringe
set, let us explore an example using a node called v1 depicted in Figure 5. In this case, v1 has three
cores, namely v2, v3, and v10. The hub labels of each core in the core set are used to create the
fringe set. For instance, the nodes highlighted as purple color are the fringe set of core v10.

3.3 CORE-FRINGE BASED GRAPH NEURAL NETWORK

Matrix representation for graph learning. To provide a clear contrast between our model and the
other frameworks for graph learning, we present graph learning in a simplified matrix multiplication
format. The r-layer message passing methods on node neighbors can be written as the following
expression.

Z = ρ(AN ...(AN (ANXW1)W2)...Wr) (3)
where AN indicates the neighbor affinity matrix of neighbors N . Obviously, the message passing-
based methods involve r iterations of matrix multiplication, enabling a node to receive messages
from r-hop neighbors (full receptive field).

6

Under review as a conference paper at ICLR 2024

The transformer-based methods only require one step since the self-attention affinity matrix AV

encompasses all pairs of nodes.
Z = ρ(AV XW) (4)

Figure 6: Cores are considered transit hubs of the message passing. Each of these cores first collects
the messages from fringes and updates its representation, and then distributes its updated represen-
tation to its fringes.

In contrast to these two classic methods, the core-fringe structure allows us to achieve Proposition 1
with only a two-stage model as illustrated in Figure 6. The matrix multiplication format of the
process can be presented as follows.

Z = ρ(

C�F︷ ︸︸ ︷
AT

L(ALXW1︸ ︷︷ ︸
F�C

)W2) (5)

where AL indicates the affinity matrix of hub labels. For clarity, the mathematical equations of the
two-stage process are shown in message passing fashion as follows.

Fringe � Core

Message: mk
f→c =φ(zzzk−1c , zzzk−1f),∀f ∈ F(c)

Update: zzzkc =ρ(zzzk−1c ,⊕({mk
f→c})

Core � Fringe

mk
c→f =φ(zzzk−1f , zzzk−1c),∀c ∈ C(f)

zzzkf =ρ(zzzk−1f ,⊕({mk
c→f}))

(6)

Collect and Distribute. Our Core-Fringe based GNN (CFGNN) involves two stages. The first
stage collects messages from fringes to learn the core embeddings, i.e., F � C. The second stage
distributes the messages from cores back to all fringes, i.e., C � F . As depicted in Equation 5, these
two stages are a pair of mirroring processes. The first stage collects information from fringes using
AL, while the second stage distributes the aggregated information to the targeted nodes based on the
transposed matrix AT

L . An algorithm outlining the framework is provided in Appendix A.4.

In the first stage, messages are collected in a message passing fashion. Cores collect and aggregate
messages from all their fringes to update their embeddings (lower part of Figure 6). This is achieved
by computing a message vector for each fringe node via the message function and then aggregating
them using a differentiable and permutation-invariant function Equation 6).

In the second stage, the representation of the cores contains all the information from their fringes
(upper part of Figure 6). It is worth noting that the union of the fringe set is equivalent to the target
node set due to the 2-hop cover property (Property 1). In the subsequent stage, a mirror process is
used to update the representation of the fringes, which distributes the messages from the cores back
to the fringes. Each fringe will receive messages from its core set and update its representation,
similar to how the previous stage updated the cores Equation 6).

3.4 THEORETICAL ANALYSIS AND COMPUTATIONAL COMPLEXITY OF CFGNN

Lemma 1. HL-based core-fringe fulfills Proposition 1.

CFGNN, which integrates hub labeling into the field of graph learning, provides a powerful method-
ology for achieving comprehensive information coverage. This approach effectively captures long-
range dependencies while ensuring efficiency. For a detailed proof, please refer to Appendix A.2.

7

Under review as a conference paper at ICLR 2024

Lemma 2. The over-squashing phenomenon of CFGNN is lower than that of other message passing-
based GNNs.

By mitigating the issue of excessive compression, CFGNN guarantees the preservation of the graph’s
integrity and pertinent information. This allows for the propagation of node information across
longer distance, hence enabling the capture of more complex structures. The proof of this lemma
is shown in Appendix A.2. Moreover, The core-fringe structure allows for efficient information
propagation with significantly fewer iterations compared to message passing based methods and
uses a much sparser matrix compared to transformer based methods. A detail complexity analysis
is provided in Appendix A.7 and the complexity is shown in Table 4.

4 EXPERIMENTS

This section evaluates the effectiveness of the CFGNN for graph tasks, and our implementation is
developed based on the GraphGym You et al. (2020) module of Pytorch-Geometric Fey & Lenssen
(2019). A computation resource is a single machine with an NVIDIA RTX3090 GPU with 24GB
GPU memory and an AMD Ryzen Threadripper 3960X CPU with 24 cores and 64GB RAM. Be-
sides, our source codes can be found in https://anonymous.4open.science/r/CFGNN-5FFC/. Ad-
ditional information regarding the experimental settings, bechmark and baselines can be found in
Appendix A.8 and A.9.

For certain methods, we report the best performance from the original papers as some of the hyper-
parameter configurations in previous works are not publicly available. In the tables, we highlight
the methods with a star * to indicate that the results are from the original papers. We also include
information about the hardware used in our experiments, including the GPU type and the available
GPU memory, to provide a reference for the readers.

Table 1: GNN Benchmark, the result of CFGNN is the mean standard deviation of 5 runs

Method Hardware ZINC PATTERN CLUSTER
MAE ↓ Accuracy ↑ Accuracy ↑

*GCN 1 × Tesla V100, 32GB 0.367 ± 0.011 71.892 ± 0.334 68.498 ± 0.976
*GAT 1 × Tesla V100, 32GB 0.384 ± 0.007 78.271 ± 0.186 70.587 ± 0.447
*GIN 1 × Tesla V100, 32GB 0.526 ± 0.051 85.387 ± 0.136 64.716 ± 1.553
*PAN 1 × Tesla V100, 32GB 0.188 ± 0.004 - -

DiffPool-GCN 1 × RTX 3090, 24GB 0.324 ± 0.073 - -
*SAN 1 × Tesla V100, 32GB 0.139 ± 0.006 86.581 ± 0.037 76.691 ± 0.650

*Graphormer 8 × Tesla V100, 32GB 0.122 ± 0.006 - -
Graphormer-small 1 × RTX 3090, 24GB 0.1721±0.009 84.312 ± 0.064 77.831 ± 0.773
*EXPHORMER 1 × Tesla A100, 40GB - 86.740±0.015 78.07 ± 0.037

*GraphGPS 1 × Tesla A100, 40GB 0.070 ± 0.004 86.685 ± 0.059 78.016 ± 0.180
CFGNN 1 × RTX 3090, 24GB 0.113 ± 0.006 86.821 ± 0.026 78.863 ± 0.032

Table 2: Open Graph Benchmark, the result of CFGNN is the mean standard deviation of 5 runs.

Method ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC ↑ Avg. Precision ↑ Accuracy ↑ F1 score ↑

*GCN 0.7585 ± 0.0061 0.2318 ± 0.0032 0.6903 ± 0.0068 0.1585 ± 0.0021
*GAT 0.7612 ± 0.0031 0.2172 ± 0.0082 0.6843 ± 0.0093 0.1570 ± 0.0014
*GIN 0.7707 ± 0.0149 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026
*PAN 0.7742 ± 0.0091 0.2616 ± 0.0057 0.7617 ± 0.0116 0.1638 ± 0.0220

DiffPool-GCN 0.7664 ± 0.0088 0.2442 ± 0.0075 0.7249 ± 0.0084 0.1441 ± 0.0035
*SAN 0.7785 ± 0.2470 0.2765 ± 0.0042 - -

*GraphTrans - 0.2761 ± 0.0029 - 0.1830 ± 0.0024
*Graphormer 0.8051 ± 0.5300 0.3139 ± 0.3200 - -

Graphormer-small 0.7691 ± 0.0176 0.2672 ± 0.0132 - -
*GraphGPS 0.7880 ± 0.0101 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

CFGNN 0.7970 ± 0.0462 0.2952 ± 0.0041 0.7881 ± 0.0053 0.1840 ± 0.0017

4.1 EXPERIMENTAL ANALYSIS

Table 1 compares the performance of graph neural networks on three datasets, ZINC, PATTERN,
and CLUSTER. The evaluation metrics are mean absolute error (MAE) for ZINC and accuracy
for PATTERN and CLUSTER. The proposed CFGNN model achieves a low Mean Absolute Er-
ror (MAE) of 0.113 on the ZINC dataset, surpassing all baseline methods except GraphGPS, which

8

Under review as a conference paper at ICLR 2024

Table 3: Long Range Graphs, the result of CFGNN is the mean standard deviation of 5 runs

Method PascalVOC-SP COCO-SP Peptides-func Peptides-struct
F1 score ↑ F1 score ↑ AP ↑ MAE ↓

*GCN 0.1268 ± 0.0060 0.0841 ± 0.0010 0.5930 ± 0.0023 0.3496 ± 0.0013
*GatedGCN 0.2873 ± 0.0219 0.2641 ± 0.0045 0.5864 ± 0.0077 0.3420 ± 0.0013

*SAN 0.3230 ± 0.0039 0.2592 ± 0.0158 0.6384 ± 0.0121 0.2683 ± 0.0043
*Transformer+LapPE 0.2694 ± 0.0098 0.2618 ± 0.0031 0.6326 ± 0.0126 0.2529 ± 0.0016

*GraphGPS 0.3748 ± 0.0109 0.3412 ± 0.0044 0.6535 ± 0.0041 0.2500 ± 0.0005
*EXPHORMER 0.3975 ± 0.0037 0.3455 ± 0.0009 0.6527 ± 0.0043 0.2481 ± 0.0007

CFGNN 0.3847 ± 0.0273 0.2810 ± 0.0095 0.6581 ± 0.0047 0.2477± 0.0059

achieves a slightly better MAE of 0.070. For PATTERN and CLUSTER, CFGNN achieves the high-
est accuracy of 86.821% and 78.863%, respectively, surpassing all models, including GraphGPS
and EXPHORMER. Compared to more resource-intensive models, such as Graphormer, which runs
on multiple high-end GPUs, CFGNN efficiently achieves better or comparable results on a single
consumer-grade GPU. This highlights the benefits of the proposed core-fringe framework and vali-
dates the ability to learn graph representations with high coverage and scalability.

Furthermore, Table 2 presents a comparison of GNN models on four Open Graph Benchmark
datasets, ogbg-molhiv, ogbg-molpcba, ogbg-ppa, and ogbg-code2. On ogbg-molhiv, Graphormer
achieves the best AUROC of 0.8051. However, the proposed CFGNN obtains a competitive AUROC
of 0.7970, surpassing all baseline GNNs, including Graphormer-small, a method we ran locally to
demonstrate the performance of Graphormer under limited available resources. For ogbg-molpcba,
Graphormer again shows the top average precision of 0.3139, while CFGNN attains a close second
at 0.2952, outperforming other models. On ogbg-ppa, CFGNN obtains an accuracy of 0.7881, sur-
passing strong baselines like GIN and PAN. Finally, for ogbg-code2, GraphGPS has the highest F1
score of 0.1894, but CFGNN achieves a very close 0.1840, significantly exceeding GNN baselines
and GraphTrans. It is worth noting that the resources required by Graphormer on larger datasets
remain unknown, even though it shows top performance on chemical datasets. The scalability and
resource efficiency of CFGNN is advantageous in handling larger and more complex graphs.

We also analyze the performance over long-range graph benchmarks shown in Table 3. Again,
CFGNN outperforms or remains competitive with state-of-the-art techniques on these long-range
graph tasks, showcasing its ability to model complex dependencies in graphs effectively. CFGNN
provides an effective practical framework for long-range graph learning. On PascalVOC-SP, the
proposed CFGNN achieves a F1 score of 0.3847, significantly outperforming prior works, including
SAN, Transformer + LapPE, and GraphGPS. For COCO-SP, EXPHORMER shows the best F1 of
0.3412, but CFGNN obtains a competitive 0.2810, exceeding other methods. For Peptides-func,
CFGNN has the top AP of 0.6581, while GraphGPS achieves a close second at 0.6535, surpassing
SAN and Transformer baselines. Finally, on Peptides-struct, CFGNN attains the lowest MAE of
0.2477. Ablation study results can be found in Appendix A.10 to A.11.

5 CONCLUSION

In this work, we introduce a novel graph learning framework called CFGNN, based on the core-
fringe graph structure. Our results demonstrate that CFGNN represents an advancement in the
field of graph neural networks, especially beneficial for tasks involving graph data management and
analytics. In particular, CFGNN addresses the scalability and expressivity challenges of graph neural
networks by introducing an efficient message passing framework for graph learning that employs
the hub-labeling method. By attaining full coverage in message passing, CFGNN enables more
expressive graph representations, resulting in more potent and accurate predictions. The theoretical
and empirical analysis of the proposed model demonstrates its ability to outperform other state-
of-the-art models, indicating its potential as a fundamental solution to the fundamental problem
of scalability and expressivity in graph neural networks. CFGNN has a wide range of potential
applications, and its ability to manage large-scale graphs efficiently makes it a promising solution
for various real-world problems. It could be used, for instance, to predict protein interactions in
bioinformatics or social interactions in social networks. In the future, we plan to investigate how the
structure driven GNN performs in configurations with large memory, enabling training of large-scale
models.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Hierarchical hub label-
ings for shortest paths. In Algorithms–ESA 2012: 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings 20, pp. 24–35. Springer, 2012.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on large
networks by pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 349–360, 2013.

Maxim Babenko, Andrew V Goldberg, Haim Kaplan, Ruslan Savchenko, and Mathias Weller. On
the complexity of hub labeling. In Mathematical Foundations of Computer Science 2015: 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II 40,
pp. 62–74. Springer, 2015.

Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable
graphs. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net, 2018.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks. In 9th Inter-
national Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net, 2021.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022a.

Rongqin Chen, Shenghui Zhang, Leong Hou U, and Ye Li. Redundancy-free message passing for
graph neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 4316–4327. Curran
Associates, Inc., 2022b.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries via
2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, pp.
269–271, 1959.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022b.

10

Under review as a conference paper at ICLR 2024

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In Ling Liu, Ryen W. White, Amin Mantrach, Fab-
rizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia (eds.), The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pp. 417–426. ACM, 2019.
doi: 10.1145/3308558.3313488.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A large-scale challenge for machine learning on graphs. In Joaquin Vanschoren and Sai-Kit
Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. Advances
in neural information processing systems, 25, 2012.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. An experimental study on hub labeling
based shortest path algorithms. Proceedings of the VLDB Endowment, 11(4):445–457, 2017.

Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural networks.
Advances in Neural Information Processing Systems, 33:2220–2231, 2020.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. CoRR, abs/2106.05667, 2021.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

11

Under review as a conference paper at ICLR 2024

Pei Quan, Yong Shi, Minglong Lei, Jiaxu Leng, Tianlin Zhang, and Lingfeng Niu. A brief review
of receptive fields in graph convolutional networks. In IEEE/WIC/ACM International Conference
on Web Intelligence-Companion Volume, pp. 106–110, 2019.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Robert Reams. Hadamard inverses, square roots and products of almost semidefinite matrices. Lin-
ear Algebra and its Applications, 288:35–43, 1999.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. arXiv preprint arXiv:2303.06147, 2023.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Lilapati Waikhom and Ripon Patgiri. Graph neural networks: Methods, applications, and opportu-
nities. CoRR, abs/2108.10733, 2021.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022a.

Zichen Wang, Vassilis N. Ioannidis, Huzefa Rangwala, Tatsuya Arai, Ryan Brand, Mufei Li, and
Yohei Nakayama. Graph neural networks in life sciences: Opportunities and solutions. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, pp. 4834–4835, New York, NY, USA, 2022b. Association for Computing Machinery. ISBN
9781450393850. doi: 10.1145/3534678.3542628.

Lanning Wei, Huan Zhao, and Zhiqiang He. Learn layer-wise connections in graph neural networks.
CoRR, abs/2112.13585, 2021.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

12

Under review as a conference paper at ICLR 2024

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143. PMLR, 2019.

Jiaxuan You, Rex Ying, and Jure Leskovec. Design space for graph neural networks. In NeurIPS,
2020.

Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields. In
Proceedings of the 8th International Conference on Learning Representations, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 11247–11256, 2019.

13

