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Abstract

Automatically determining whether a text and a corresponding image are seman-
tically aligned is a significant challenge for vision-language models, with appli-
cations in generative text-to-image and image-to-text tasks. In this work, we
study methods for automatic text-image alignment evaluation. We first introduce
SeeTRUE: a comprehensive evaluation set, spanning multiple datasets from both
text-to-image and image-to-text generation tasks, with human judgements for
whether a given text-image pair is semantically aligned. We then describe two
automatic methods to determine alignment: the first involving a pipeline based
on question generation and visual question answering models, and the second em-
ploying an end-to-end classification approach by finetuning multimodal pretrained
models. Both methods surpass prior approaches in various text-image alignment
tasks, with significant improvements in challenging cases that involve complex
composition or unnatural images. Finally, we demonstrate how our approaches can
localize specific misalignments between an image and a given text, and how they
can be used to automatically re-rank candidates in text-to-image generation.1
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Figure 1: Overview of our approach to text-image alignment evaluation using SeeTRUE. We curate
diverse pairs of real and synthetic text and images and use automatic contradiction generation and
human evaluation to create a benchmark dataset. We propose two methods for text-image alignment
evaluation: VQ2 and VNLI, demonstrated with example pairs.
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1 Introduction

The recent success and proliferation of multi-modal large language models (LLMs) for text-to-image
and image-to-text generation [1–8] make such technology increasingly useful for a wide range of
creative applications. However, such models still struggle in generating semantically-aligned image-
text pairs; in text-to-image generation, models do not cope with complex specifications [9, 10] or fail
to map words in the prompt to visual entities [11, 12]. In image captioning, object hallucination is a
long-standing challenge [13] with generated captions still being inferior to human-written ones [14].

Given the above, the task of automatically determining whether a given text-image pair is semantically
aligned is highly important, as it is useful both for evaluating and for improving text-to-image and
image-to-text models. However, existing evaluation approaches are still far from ideal; common
methods like CLIP [15] or BLIP [6, 7] are based on encoding the image and text as fixed-size
embeddings, making it hard to model complex semantics [16]. In addition, while the task is relevant
both to text-to-image and image-to-text generation, it is usually studied in silo while considering only
one of the applications, thus impeding progress.

In this work, we promote a comprehensive approach to evaluating image-text alignment. We introduce
SeeTRUE, a diverse evaluation suite which includes a wide range of image-text pairs with human
judgments that determine if the image and text are semantically aligned. SeeTRUE encompasses
both real and synthetic images and text, allowing the assessment of text-image alignment models’
generalization capabilities across various tasks and 31,855 labeled examples from diverse sources.
As part of constructing SeeTRUE, we also introduce a novel method for generating contradicting
captions from existing ones by prompting a large language model with tailored instructions.

We present two approaches for automatic image-text alignment evaluation. The first, VQ2, utilizes
question generation and visual question answering by generating questions related to the text [17]
and ensuring that the correct answer is obtained when asking these questions with the provided image.
The second method, Visual Entailment2 (VNLI), involves directly fine-tuning a large pretrained
multimodal model to predict if a given image-text pair is semantically aligned. Both strategies are
inspired by recent studies on evaluating factual consistency between two texts [18–21].

We conduct comprehensive experiments on SeeTRUE, demonstrating that both our VQ2 and VNLI
methods outperform a wide range of strong baselines, including various versions of CLIP [15],
COCA [22], BLIP [6, 7], and OFA [23]. While previous work showed that vision-and-language
models tend to exhibit sub-optimal “bag-of-words” behavior [16], the VQ2 method particularly excels
on datasets with compositional challenges, achieving state-of-the-art results on the Winoground
dataset [24] e.g. by improving the group score from 16% to 30.5%. Our methods also demonstrate
improved performance when evaluating synthetic images (e.g. on DrawBench [5] and EditBench
[25]). Finally, we showcase how VQ2 can identify specific sources of misalignment for a given
text-image pair and how our methods can re-rank generated image candidates for a given prompt.

To summarize, our contributions are as follows: (1) We introduce the SeeTRUE benchmark for meta-
evaluation of image-text alignment. (2) We introduce a novel method to generate contradicting image
captions from given captions with LLMs. (3) We suggest two reference-free metrics for image-text
alignment evaluation: VQ2, based on question generation and visual question answering, and VNLI,
based on fine-tuning large multimodal language models. (4) We conduct extensive evaluation of
the above approaches against strong baselines, demonstrating superior performance over multiple
datasets. (5) We release our evaluation suite, models and code to foster future work.

2 SeeTRUE: A Comprehensive Text-Image Alignment Benchmark

We begin by introducing SeeTRUE, a diverse benchmark for meta-evaluation of image-text alignment
methods, covering the 4-way combinations of real and synthetic text-and-image pairs. It addresses
limitations in current benchmarks, which mainly focus on natural images and often lack challeng-
ing negative captions. SeeTRUE allows to better assess the generalization abilities of text-image
alignment models across various tasks.

Defining how image-text alignment is assessed has a direct impact on the construction of evaluation
datasets. As images can display more details than described in their caption or text prompt, we define

2We use the terms Entailment and Natural Language Inference (NLI) interchangeably.
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Table 1: SeeTRUE: a benchmark for image-text alignment encompassing 31,855 real and synthetic
image-text pairs from diverse datasets and tasks. An example from each dataset is presented below.

Real Text + Real Images Real Text + Synthetic Images Synthetic +
Real

Synthetic +
Synthetic

Dataset Name SNLI-VE Winoground DrawBench EditBench COCO t2i COCO-Con PickaPic-Con
# Test Examples 17,901 1,600 1,968 3,827 2,586 1,992 1,981
% Positive / Total 33.3% 50% 55.7% 36.9% 63.6% 52.7% 44.1%
Labeled in this work? 7 7 X X X X X

Image

Text the player
swings his bat

the heavy
oncoming
traffic is

contrasted
with the light

outgoing
traffic

A blue cup
and a green
cell phone

a few pink
candles and
some cream
on top of a

cake.

A person on a
snow board

high up in the
air.

A giraffe
leaned over in
a plush field
next to some

cows

a doctor
wearing a

white coat in
the middle of

a street

Human Label True True False True False False True

image-text alignment as the case where all the details described in the text are accurately represented
within the image. Inspired by the Textual Entailment task [26] which judges for two pieces of text
whether one (the “hypothesis”) can be inferred given the other (the “premise”), our definition maps
the image to the premise and the text to the hypothesis, resulting in the task of predicting whether the
information in the text can be inferred from the given image.

2.1 Datasets

We describe the datasets included in our benchmark, with a high-level overview in Table 1.

Real text and real images. For pairs of human-written text and real (non-generated) images, we
include the SNLI-VE [27] and Winoground [24] datasets. SNLI-VE is a widely adopted VNLI dataset
containing an image, a text, and a label of the alignment between the two – entailment, contradiction,
or neutral. Winoground is a challenging dataset for compositional understanding, where each example
includes two images and two text captions, where the task is to match each text to its corresponding
image. The captions only differ in a few words, which should result in distinct visual interpretations.
For example, “some plants surrounding a lightbulb” vs. “a lightbulb surrounding some plants”.

Real text and synthetic images. For datasets that represent text-to-image generation tasks we use
EditBench [25] which offers prompts and images generated by various text-to-image models given
those prompts, accompanied by alignment ratings. To encourage more diversity in the data, we also
create new datasets by generating images using Stable Diffusion models [3] (V1.4 and V2.1) and
Imagen [5] by prompting them with COCO [28] captions and text prompts from DrawBench [5],
creating the COCO text-to-image (“COCO t2i”) and the DrawBench text-to-image datasets.

Synthetic text and real images. This category includes a new dataset which we name COCO-Con.
COCO-Con is generated using a novel automatic method which we describe in detail in Section 2.3.
Specifically, we generate synthetic contradicting captions for COCO images based on their original
captions by prompting a large language model, and verify the resulting captions with human raters.

Synthetic text and synthetic images. We utilize PickaPic [29], a source of user-generated and
ranked synthetic images. We create synthetic captions using BLIP2 [7] and employ our automatic
contradiction generation method (Section 2.3) to produce unaligned captions. This category evaluates
synthetic text that is generated by image captioning models, e.g. for improving textual image search.

We note that some of the datasets are only used for testing (e.g., Winoground, DrawBench, EditBench)
while others include both training and test sets (e.g., SNLI-VE, COCO t2i, COCO-Con, PickaPic-
Con). This allows us to investigate different training configurations and their effect on performance.
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Figure 2: (a) The SeeTRUE generation process. (i) An image-text pair from a dataset is used to
generate a contradicting caption using ConGen. (ii) An image (real or synthetic) is passed through a
captioning model to generate a caption, which is then passed to ConGen to generate a contradicting
caption. (iii) A text-to-image model is applied on captions from the dataset to create multiple image-
text pairs. All the resulting examples are evaluated by human raters to create SeeTRUE. (b) The
contradiction generation process (ConGen) takes a caption as input and instructs an LLM to generate
variants that contradict it. An NLI model is used to select the variant with the lowest entailment score.

2.2 Human Annotation and Evaluation

To standardize the labeling scheme across datasets, we follow TRUE [19] and use binary annotations
for alignment/misalignment. In datasets with three-way annotations (e.g. Entailment, Contradiction,
Neutral) we convert the labels to binary labels by collapsing all non-entailment/non-alignment labels
to a single negative label.

Some datasets, such as COCO-Con and PickaPic-Con, start with automatically generated labels,
while others lack annotations entirely (e.g. DrawBench). To make sure we have high quality labels
we conduct human annotation for all test examples in such datasets. We ask three crowd-workers
from Amazon Mechanical Turk (AMT) to evaluate whether a given image-text pair is aligned, by
answering the question: “Does the image present all the details described in the text correctly?”
with “Yes” or “No”. If the answer is “No”, the workers are also requested to describe the main
misalignment to enhance the annotation quality. While the random chance of agreement is 25%, the
annotators reached consensus in 80% of cases. Furthermore, we measured a Fleiss-Kappa [30] score
of 0.722, showing a good level of agreement between the annotators. Full annotation details, AMT
user interface example, and agreement numbers per dataset can be found in appendix A.3.

The datasets we annotated include DrawBench, COCO t2i, COCO-Con and PickaPic-Con, with
statistics presented in Table 1. These datasets vary in their positive/negative distribution, with COCO
t2i having the highest percentage of positives (63.6%) and DrawBench having the lowest (36.9%).
The agreement with the auto-label is 94% for COCO-Con and 77% for PickaPic-Con. To prevent the
inclusion of offensive images, particularly those that are synthetically generated, annotators are asked
to mark any images that may be considered offensive and these were discarded.

2.3 ConGen: Generating Contradicting Captions by Prompting LLMs

We propose an automatic method for generating unaligned captions from existing, aligned image-
and-text pairs, with the goal of creating challenging examples for evaluation and training. Our
method is inspired by the concept of contrast sets: given an original example with a corresponding
label, we create a minimally perturbed example where the perturbation changes the corresponding
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Figure 3: The VQ2 pipeline: (a) given a text and an image, (b) generate question and answer pairs
from the text, (c) re-write each pair as a yes-no question and obtain the ’yes’ answer probability from
the image as an alignment score. (d) Finally, average all alignment pair scores as the final V Q2 score.

label [31–34]. Contrast sets address the issue of supervised models exploiting data artifacts in i.i.d.
train/test splits to achieve high test scores, while their performance degrades significantly on samples
outside their training distribution.

To create contrast sets for image-text alignment, we go over the text captions from the image-text
pairs in the COCO and PickaPic datasets, covering both natural and synthetic images. For each
caption we instruct PaLM [35], a large language model, to generate several contradicting captions
via few-shot inference with 7 positive and 8 negative examples. For instance, for the caption “a
knife sitting next to carrots on top of a cutting board”, the model replaces the word knife with spoon
(see Fig. 2, left). We then use a Natural Language Inference (NLI) model [18] to score whether
the generated caption is indeed contradicting the original, and select the generated caption with the
highest contradiction score. Figure 2 illustrates this process. Human annotators verified that the
resulting contradicting captions are of high quality, with 94% agreement with human labels in COCO
and 77% agreement with human labels in PickaPic (more details in section 2.2).

3 Methods

Using our SeeTRUE benchmark, we would like to reassess the performance of multimodal alignment
approaches. In this section we introduce two image-text alignment methods. In Section 4 we will
compare their performance against established, previously published methods.

3.1 V Q2: Zero-Shot Alignment via Question Generation and Visual Question Answering

Inspired by recent work on factual consistency evaluation in text-to-text tasks [36, 18, 37], we propose
a zero-shot approach for automatically evaluating image-text alignment based on question generation
and question answering. Figure 3 provides an overview of the method. The motivation is to extract
question-answer pairs, which capture the important details of the text, and then to validate that
they are presented correctly in the image. For a given image-text pair {I, T}, we first extract a
set of candidate answer spans {aj}Nj=1 from the given text T . Then, we use a question generation
(QG) model to generate a question for each answer candidate qj = QG(aj , T ). Each generated
question-answer pair (qj , aj) is scored with a question answering (QA) model, and if QA(qj , aj , T )
returns a low score, we filter out the corresponding pair. This results in a subset of M question-answer
pairs {(qj , aj)}Mj=1.

Each generated question-answer pair (qj , aj) is then independently validated based on the image
I using a visual question answering (VQA) model, obtaining an answer alignment score sj =
V QA(qj , aj , I) (more details on how this score is computed are given in 3.1). The overall alignment
score for a image-text pair, denoted as the V Q2 score, is the average over all sj scores for all the
generated (qj , aj) pairs. We next describe each step in more detail.

Generating question-answer pairs. We follow the V Q2A method [17] to generate question and
answer pairs given an image caption in three steps. The purpose is to generate high quality question-
answer pairs, which capture the most important details of the text. First, answer spans are extracted
from text T using SpaCy [38], based on Part-of-Speech (POS) and dependency parse tree annotations.
Then, for each answer span, a question qj is generated given the answer span and the full caption as
input using a T5-XXL model fine-tuned on SQuAD1.1 [39]. Finally, each candidate question-answer
pair (qj , aj) is validated by answering qj on T using a QA model, which is trained by fine tuning a
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T5-XXL model on SQuAD2.0 [40] and Natural Questions [41]. Finally, we match the output answer
a′j to the expected answer aj using token-level F1 comparison. As suggested in [17], if the answer
comparison F1 score is lower than 0.54 the question-answer pair is filtered out.

Assessing question-answer pair alignment against the image. To determine if the information
conveyed by the text T is presented correctly in the image I , we use a VQA model based on PaLI-
17B [42] as follows. We reformulate each question and answer candidate pair (qj , aj) into a new
yes-no predicate question q′j using the format “is {aj} true for {qj} in this image?”. For example,
for the text “two girls are sitting on some grass”, and the automatically induced question-answer
pair {“what are the girls sitting on?”, “some grass”}, the reformulated question is “is on some grass
true for what are the girls sitting on? in this image?”. The VQA model is then invoked to answer
the predicate question (q′j) over image I . We define the alignment score sj as the probability of
the model for answering “yes”. We note that we also experimented with other answer alignment
methods, e.g. ones that directly ask the generated question without formulating it as a yes/no question.
However, the yes-no approach worked best. More details can be found in appendix A.4.

3.2 End-to-end VNLI Models

Another approach is to train end-to-end Visual NLI models (VNLI) that receive an image and text as
input, and directly predict an alignment score. We do so by fine-tuning multimodal pretrained models
while formatting the examples as yes/no questions using the prompt: “Does this image entail the
description: {text}?”, followed by a binary “yes” or “no” answer. In inference time we measure the
probabilities of predicting “yes” or ”no”, and use the relative ratio between the two as the alignment
score. Specifically, we finetune BLIP2 [7] and PaLI-17B [42] using a dataset comprising 110K
text-image pairs labeled with alignment annotations. This includes 44K examples from COCO-Con,
3.5K from PickaPic-Con, 20K from COCO t2i and 40K from the training split of the SNLI-VE dataset.
We generate COCO-Con and COCO t2i based on the COCO train split and PickaPic-Con with a
distinct set of images, to ensure that there is no overlap with samples in the SeeTRUE benchmark.
More technical details and training hyperparameters are described in appendix A.7.

4 Experiments

4.1 Models and Metrics

We evaluate V Q2 and fine-tuned VNLI models based on PaLI and BLIP2 (Section 3) against several
state-of-the-art multimodal models: (a) CLIP [15] and two larger versions - CLIP RN50x64 and CLIP
ViT-L 14 [43], (b) CoCa [22], (c) BLIP Large [6], (d) BLIP2 FlanT5-XXL [7], and (e) OFA Large
[23], and (f) TIFA [44]. First five models were typically trained with either a contrastive objective or
an image-text matching objective that samples positive or negative caption-label pairs. TIFA, like
VQ2, employs a VQA model with generated question-answer pairs. However, TIFA contrasts textual
and visual answer candidates provided by the model, while our method checks if the textual answer
is accurate given the image.

We assess each method’s ability to detect misalignments in each dataset in SeeTRUE. We use a
binary labeling scheme and report the Area Under the ROC Curve (ROC AUC) for each method. For
Winoground, we use existing metrics: (1) text score: accuracy in selecting the right caption for an
image; (2) image score: accuracy in choosing the correct image given a caption; (3) group score:
accuracy requiring all four image-caption pairs to be correct for a successful example.

4.2 Results

We present our main results in Table 2. Notably, our VQ2 approach excels as the top-performing
zero-shot model across all datasets, surpassing other zero-shot baselines and even outperforming
most of the fine-tuned models while achieving the highest score on the challenging Winoground
dataset. This shows the robustness of the VQ2 approach, which decomposes the alignment decision
by generating multiple yes/no verification questions.

When looking at finetuned models, the PaLI variant finetuned on all the available datasets outperforms
all the rest with an average score of 82.9, achieving the best results on 3 out of 7 datasets. The
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Table 2: Main Results on SeeTRUE, split into zero-shot and end-to-end fine-tuned methods across
the real and synthetic image-text eval-sets. The numbers in the table are ROC AUC. Note that TIFA
and V Q2 require higher computational cost. They generate question-answer pairs and use a VLM
model, while the other models use the image-text directly.

Text & Images Real + Real Real + Synthetic Synthetic + Real Synthetic + Synthetic Avg.
Model SNLI-VE Winoground DrawBench EditBench COCO t2i COCO-Con PickaPic-Con

ze
ro

-s
ho

t

CLIP RN50x64 66.6 53.6 59.2 67.1 58.8 71.1 66.8 63.3
CLIP ViT-L14 65.8 53.3 60.5 62.1 58.8 70.7 66.8 62.6
COCA ViT-L14 68.5 53.1 67.4 66.3 62.1 74.2 68.1 65.7
COCA ViT-L14
(f.t on COCO) 70 53.1 66.2 68.3 66.2 76.5 67.2 66.8

BLIP 75.2 58.2 60.5 68 70.7 84.2 76.6 70.5
BLIP2 76.4 56.9 58.5 67.5 66.9 84.3 76.9 69.6
BLIP 2 (f.t. COCO) 75.9 60 65.7 70 73.3 85.8 78 72.7
PaLI 65.4 53.6 60.2 56.7 53.3 65.5 60.5 59.3
TIFA – 58.0 73.4 67.8 72.0 – – –
VQ2 (Ours) 88.0 63.5 82.6 73.6 83.4 87.1 81.7 80.0

f.t
.s

nl
i-

ve OFA Large (470M) 80.5 53.3 77.6 70.9 67.5 75.4 69.5 70.7
BLIP2 (12B) 82.3 58.5 64.3 58.7 60.5 82.6 66.9 67.7
PaLI (17B) 95.1 61.7 82.8 65.5 77.7 91.2 83.7 79.7
PaLI + Synthetic Data 94.2 61.8 86.8 77.2 83.2 91 85.9 82.9

Avg(VQ2, PaLI+Syn) 93.9 63.5 87.8 78.4 85.1 93 87.3 84.1

Table 3: Results on the Winoground dataset, reporting text score, image score, and group score.
Model Text Score Image Score Group Score

VQ2 (Ours) 47.00 42.20 30.50
PaLI (ft SNLI-VE + Synthetic Data) 46.5 38 28.75
PaLI (ft SNLI-VE) 45.00 41.50 28.70
BLIP2 (f.t. COCO) 44.00 26.00 23.50
IAISlarge [45] 42.50 19.75 16.00
VinVL [24] 37.75 17.75 14.50
TIFA 19.00 12.50 11.30
CLIP RN50x64 26.50 13.75 10.25
OFA Large (f.t. SNLI-VE) 27.70 14.30 9.00
COCA ViT-L14 (f.t on COCO) 28.25 11.50 8.25

Random Chance [24] 25.00 25.00 16.67
Humans [24] 89.50 88.50 85.50

SNLI-VE-only variant is behind with an average score of 79.7, while achieving the highest scores for
2 out of 7 datasets. This shows that integrating synthetic training data leads to notable improvements
on synthetic images on DrawBench (+4%), EditBench (+11.7%), , COCO t2i (+5.5%), PickaPic-Con
(+2.2%). Nevertheless, the inclusion of synthetic training data did not enhance performance on
the COCO-Con dataset, comprised solely of natural images. This indicates that the variation in
image types could be a contributing factor that calls for additional exploration. Notably, the last row
shows a simple average between VQ2 and our leading fine-tuned PaLI model, that produces higher
performance, suggesting that they complement each other effectively.

(a) “the orange lollipop is sad and
the red lollipop is surprised”
Q: What is the orange lollipop
feeling? A: sad

(b) “Someone in a blue hat stand-
ing on a snowy hill”
Q: What is the person wearing?
A: blue hat

(c) “A black apple and a green
backpack”
Q: What color is the apple? A:
black

(1) Winoground (2) CocoCon (3) DrawBench

Figure 4: Contradicting captions and the question/answer pairs with lower V Q2 alignment score,
indicating the contradiction reason.

7



35 36 37 38 39
Image-text alignment ratio

70.0

70.5

71.0

71.5

72.0

M
ea

n 
V

Q
^2

 s
co

re

Imagen

SD v1.4

SD v2.1DrawBench

60 65 70 75 80 85 90 95
Image-text alignment ratio

78

80

82

84

86

M
ea

n 
V

Q
^2

 s
co

re

ImagenSD v1.4

SD v2.1

Real Images
COCO t2i

50

51

52

53

54

55

M
ea

n 
P

aL
I s

co
re

Model
VQ²
VQ² R² = 1.00
PaLI
PaLI R² = 0.92

65

70

75

80

M
ea

n 
P

aL
I s

co
re

Model
VQ²
VQ² R² = 0.98
PaLI
PaLI R² = 0.95

Figure 5: Highly correlated VQ2 and PaLI scores vs. human rankings of text-to-image models
Winoground Results. Table 3 shows the performance of the different methods on the challenging
Winoground dataset, which requires strong visual reasoning and compositional understanding skills.
Our zero-shot approach, VQ2, achieves state-of-the-art results on this dataset, surpassing other strong
baselines, with a group score of 30.5%. This again indicates that VQ2’s approach that decomposes
the alignment task into multiple question-answer pairs is a promising path for image-text alignment.

Contradiction Generation. We assessed the VQ2 method’s capacity to detect image-text contra-
dictions, as shown in fig. 4. Contradiction generation relies on identifying the question-answer pair
with the lowest VQA score, signaling the least likely alignment between the image and the text. Three
paper authors evaluated whether a particular contradiction (consisting of a question and an answer)
accurately represents the primary discrepancy between the image and the text. The majority vote
among the authors determined the final outcome, yielding the following accuracy rates: 88% for
Coco-Con, 74% for DrawBench, and 80% for Winoground. This indicates that our method is capable
of identifying these contradictions by investigating the structure and content of the given caption
and image. As a result, our method can achieve strong results, particularly on datasets that require
compositional understanding.

Table 4: Comparison of human-labeled quality scores
for top-ranked images with model breakdown

Dataset Model Random CLIP PaLI VQ2

COCO t2i SD 1.4 68.6 74.6 88.2 86.4
SD 2.1 71.3 81.2 84.5 87.3

DrawBench SD 1.4 66.7 77.4 77.4 87.1
SD 2.1 59.0 78.0 87.0 82.0

Comparing Generative Models. VQ2’s
ability to compare between generative mod-
els is demonstrated on the results of Draw-
Bench and COCO-t2i, which include gen-
erated images from different models, to-
gether with human quality ratings. fig. 5
shows that the VQ2 and our fine-tuned PaLI
ranking correlates very well with human
ranking (R2 > 0.92). In addition, since
unlike human annotations, the VQ2 score
is consistent across datasets, it offers a way
to evaluate dataset difficulty on an absolute scale.

Reranking Using Alignment Assessment. Alignment scores can also be used for reranking can-
didate generations, on top of evaluation. To demonstrate this, we re-rank the image candidate per
prompt in the DrawBench and COCO-t2i datasets. We do so using VQ2 and CLIP and measure the
human-labeled quality of the top-ranked image for each method. The results, presented in table 4,
show that ranking with VQ2 consistently achieves higher quality scores when compared to ranking
with CLIP. One such example is shown in fig. 6, where both VQ2 and our top-performing fine-tuned
PaLI model demonstrate superior ranking by placing the brown-and-white cats above the white-only
cats. This consistency between VQ2 and PaLI highlights their alignment evaluation models’ potential
for enhancing text-to-image systems, which contrasts with the divergent ranking exhibited by CLIP.
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A brown and white cat is in a suitcase

VQ2 score: 0.878 (1st)
PaLI ft. score: 0.992     (1st)
CLIP similarity: 0.236   (4th)

VQ2 score: 0.846 (2nd)
PaLI ft. score: 0.992     (2nd)
CLIP similarity: 0.238   (3rd)

VQ2 score: 0.731 (3rd)
PaLI ft. score: 0.803     (3rd)
CLIP similarity: 0.253   (1st)

VQ2 score: 0.717           (4th)
PaLI ft. score: 0.437     (4th)
CLIP similarity: 0.25     (2nd)

Figure 6: Four COCO-t2i text-to-image model outputs ranked by VQSQR scores, correlating with
top PaLI model. Image order and CLIP (RN50x64) similarity scores given, but not aligned with
VQ2/PaLI ranks.

5 Related Work

Our work advances research in visual entailment (VE) [27], visual question answering (VQA) [46],
text-to-image alignment evaluation, and cross-task consistency for multi-modal models, with a focus
on enhancing the semantic understanding of image-caption relationships.

Textual Entailment (TE) [26, 47] evaluates the truthfulness of a textual hypothesis given a textual
premise, providing a key benchmark for the semantic capabilities of neural network models [48–
50, 35]. Recently, TE has been adapted to the multimodal domain as Visual Entailment (VE) [27] to
assess the semantic alignment between images and text. Vision-and-language models like CLIP [15],
CoCa [22], BLIP [6], BLIP2 [7] and OFA [23] often act as bag-of-words models, lacking a deep
comprehension of language compositionality [16]. Our approach addresses this by generating
multiple questions probing diverse semantic aspects, thereby improving performance on challenging
compositional tasks like Winoground [24] and unnatural images as in Drawbench [5].

Unlike DrawBench [5] and DALL-Eval [51] which depend on human feedback and operate within
a discrete set of alignments, our approach produces automated scores for a broader range of text-
image alignments, facilitating efficient evaluation of vision-and-language models. Our approach also
surpasses the recently proposed TIFA [44], which may be due to employing more question-answer
pairs and tailored models for question generation and answering.

Several works have explored cross-task consistency in multi-modal models across various modalities.
VQA studies have tackled inconsistencies and enhanced consistency using data augmentation and
contrastive loss. NLP researchers have improved consistency across tasks or within a single task by
employing counterfactual instances or contrast sets [26, 47]. Our research aligns with studies that
evaluate natural text and images [52]; however, extending the focus to synthetic images and texts, and
aligning with synthetic image understanding research [53–58]. We introduce two unique approaches
to address the complexities of image-text alignment.

Another related effort is PickScore [29], which predicts human preferences for image quality and
aesthetics by ranking or choosing between two images. In contrast, our methods independently score
a single image and focus specifically on image-text alignment.

6 Limitations

We recognize that in some cases, making a binary decision for whether a text and an image are
aligned may be be difficult, also for humans. To tackle this limitation, we provided human annotators
with comprehensive guidelines, which resulted in a high inter-annotator agreement (Fleiss-Kappa
score of 0.722 with 80% of the cases where all annotators agreed on the entailment label).

Although many images in our datasets were obtained by others and not created by us, we made an
effort to ensure that they do not contain harmful or potentially harmful content, such as NSFW or
biased imagery. During the annotation process, three individuals examined each image and indicated
if it could be considered offensive. Additionally, two of the authors manually reviewed the images
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for any harmful content. However, we understand that the perception of harmful or offensive content
may vary among individuals and may be subject to personal interpretation.

7 Conclusion

We addressed the task of image-text alignment evaluation, which we find very close to the Visual
Entailment (VNLI) task. We first introduced the SeeTRUE benchmark, which covers the mix of real
and synthetic text and image pairs in text-to-image and image-to-text generation tasks, and includes
challenging cases based on generated contradictions. We then proposed two methods, VQ2 and
end-to-end VNLI, which outperform strong baselines on SeeTRUE and can serve as a starting point
for future research on the task.

In future work, we would like to employ our automatic evaluation models for guiding the training
of text-to-image and image-to-text models towards more aligned outputs, following recent trends in
text-to-text generation [59, 60]. For example, such models may be useful either for filtering training
examples or as a reward when training models using reinforcement learning.
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A Appendix

A.1 Dataset Supplementary Materials

1. Dataset documentation, metadata, and download instructions: anonymous.

2. Intended uses: we hope SeeTRUE will be used by researchers to evaluate image-text
matching models.

3. Author statement: We bear all responsibility in case of violation of right in using our
benchmark.

4. Each dataset’s license is described below. Our additional human annotations and geen-
rated images are licensed under CC-BY 4.0 license https://creativecommons.org/
licenses/by/4.0/legalcode.

5. Hosting & preservation: the dataset will be hosted in Huggingface Datasets, accessible and
available for open research.

6. SeeTRUE fields are presented in table 5.

Additional licensing details: we do publish the datasets we annotated in this work, and do not
re-publish the existing SNLI-VE and Winoground datasets. Full licenses:

1. MS COCO [28]: https://cocodataset.org/#termsofuse

2. EditBench [25]: https://research.google/resources/datasets/editbench/,
https://www.apache.org/licenses/LICENSE-2.0

3. DrawBench [5]: https://imagen.research.google/, https://docs.google.com/
spreadsheets/d/1y7nAbmR4FREi6npB1u-Bo3GFdwdOPYJc617rBOxIRHY/edit#
gid=0

4. Pick-a-Pick [29]: https://huggingface.co/datasets/yuvalkirstain/pickapic_
v1

5. SNLI-VE [27]: https://github.com/necla-ml/SNLI-VE

6. Winoground [24]: https://huggingface.co/datasets/facebook/winoground

Table 5: SeeTRUE Rows Examples
image text label original_dataset_id dataset_source

img1 A zebra to the right of a fire hydrant. 0 text_133_image_1228 drawbench
img2 A group of people standing next to bags of luggage. 1 text_105_image_1377 coco_t2i
img3 a tiny figurine is surrounded by cell phones on a table. 1 3786 editbench

A.2 Additional Examples

We added additional examples from (a) instances from SeeTRUE fig. 7; (b) the V Q2 method fig. 8
to visualize the question-answer pairs; and (c) the ConGen technique fig. 9. This will underscore
the versatility of ConGen in handling both real and synthetic images, as well as the variety of
contradictions it can generate.

A.3 Human Annotation Process

In order to provide reliable human labels for our datasets, we conducted an annotation process
using the SeeTRUE platform. The process comprised several steps, including setting qualification
requirements, providing instructions, and evaluating annotator agreement.

We set the basic requirements for our annotation task as follows: a percentage of approved assignments
above 98%, more than 5,000 approved HITs, and annotator locations limited to the US, UK, Australia,
or New Zealand. We selected 5 examples from our dataset for a qualification test and screened the
annotators’ results. fig. 10 displays a sample of the Mechanical Turk user interface. The payment for
the crowd-workers was 15-18 USD hourly.
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Figure 7: An example from SeeTRUE Huggingface Dataset.

A brown bird and 
a blue bear

Question Answer 
(based on text)

VQA ”yes” 
probability

VQ2 score

Aside from a blue bear, what other animal is 
depicted in the picture?
Aside from the brown bird, what other 
animal is in the picture?

A brown bird 0.26

0.4

a blue bear

bear

bird

blue

brown

0.41

0.44

0.37

0.5

0.42

What is the blue animal?
Aside from a bear, what other animal is 
depicted?
What color is the bear?

What color is the bird in the picture?

Question Answer 
(based on text)

VQA ”yes” 
probability

VQ2 score

What is on top of a dog?

What is the wine glass on top of?

A wine glass 0.82

0.78

dog
glass

top

top of a dog
wine

0.77
0.74

0.64

0.88
0.82

What is on top of a dog?
On what part of the dog is the wine glass 
located?
Where is the wine glass located?
What kind of glass is on the dog?

A wine glass on 
top of a dog

A wine glass is on top of what animal? a dog 0.78

wine glass on top 0.79What is on top of a dog?

Figure 8: Examples of the V Q2 method. The answers extracted from the text are named entities,
nouns, and multi-word spans, such as adjectives and locations.

The instructions provided were as follows:

Evaluate the given image and text to determine if they match, selecting either “Yes” or “No”. Some
images may be synthetically generated by a text-to-image model. To assess the match, mentally
generate a textual description for the image (no need to write it down) and compare this generated
description to the given text. If the descriptions closely resemble each other, mark “Yes”. If not, mark

“No” and provide feedback on the specific issue causing the misalignment, focusing on the primary
issue if multiple misalignments are present. If you encounter an image or text that may be offensive
due to bias, race, NSFW content, etc., mark the checkbox to indicate this issue.

Full agreement metrics are presented in table 6. As shown in the table, the percentage of cases
where all annotators agreed and the Fleiss-Kappa scores vary across the datasets, with COCO-Con
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a red haired bowie is painted on the wall

a blue haired bowie is painted on the wall

large white and pink rose planter surrounded by lush
greenery
large white and pink rose planter surrounded by dead greenery

milk pouring into a coffee cup on a plastic table

milk pouring into a coffee cup on a wooden table

Figure 9: Examples from the ConGen method to generate contradictions. The top caption is the
original, positive one, and the bottom one is the contradiction generated by ConGen.

Figure 10: Annotation interface for determining whether a given image-text pair are aligned.

exhibiting the highest level of agreement and Drawbench the lowest. These differences highlight the
varying levels of complexity within the datasets.

Table 6: Agreement metrics for different datasets.
Dataset Full Drawbench COCO t2i COCO-Con PickaPic-Con

# Items 8,527 1,968 2,586 1,992 1,981
% all agreed 80 76 78 86 77
Fless-Kappa 0.72 0.66 0.68 0.81 0.69

A.4 Comparing V Q2 variants

V Q2 consists of two main parts: generating question-answer pairs and assessing question-answer
pair alignment against the image. We have experimented with different variants of the V Q2 zero-shot
method.
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Assessing question-answer pair alignment methods Given a question-answer pair, we would
like to assess the question based on the image and compare it to the information in the text. We
experimented with several configurations for answer alignment:

1. Type A: Given a question-answer pair (qj , aj) generated from the text, we answer the
question using a VQA model and obtain an answer based on the image aIj = V QA(qj , I).
We compare a pair of (qj , aj) with a pair of (qj , aIj ) using an Natural Language Inference
(NLI) model, where the pair based on the text serves as the premise and the other as the
hypothesis. We define the alignment score sj as the probability of the NLI model for
answering “entailed”.

2. Type B: As done in type A, we answer the question using a VQA model and obtain the
answer aIj = V QA(qj , I). We use the VQA model again to compare the the two answers
and determine whether they are the same. The question is formulated as “Is {aj} == {aIj}
in this image?”. We define the alignment score sj as the probability of the VQA model for
answering “yes”.

3. Type C: We reformulate each question and answer candidate pair (qj , aj) into a new yes-no
predicate question q′j using the format “is {aj} true for {qj} in this image?”. The VQA
model is then invoked to answer the predicate question (q′j) over image I . We define the
alignment score sj as the probability of the model for answering “yes”.

Generating question-answer pairs To produce question-answer pairs from the text, we first
extract informative spans in the text T . We extract as answer candidates all named entities and noun
phrases in T using spaCy. We noticed that for short text T , this method doesn’t produce enough
question-answer pairs to assess the alignment between the text and the image. Thus, we extend the
answer candidates by adding multi-word spans, such as adjectives ("black and white") and location
"in the air". We use the extended answer candidate extraction in all of our experiments. The number
of question-answer pairs is dependent on the length of the text T. In EditBench, the text contains
12.5 words on average, and it results in average of 34.9 question-answer pairs with extended answer
candidates.

Table 7 summarize the results of the V Q2 variants on the EditBench dataset. Our zero-shot V Q2

method is V Q2 type C, it outperforms other configurations and it is more efficient, since it requires a
single run of the VQA model for the question-answer pair assessment.

Table 7: Comparing V Q2 configurations on all EditBench categories
Method Models used EditBench

for assessment Color Count Material Shape Size Mean

V Q2 (A) VQA & NLI 75.7 63.6 71.9 67.6 75.9 70.9
V Q2 (B) VQA & VQA 80.2 72.3 75.6 73.5 75.4 75.4
V Q2 (C) w.o. multi-word answers VQA 77.2 71.5 73.6 71.9 75.5 73.9
V Q2 (C) VQA 78.5 73.5 76.9 71.7 78.2 75.8

A.5 Evaluating Contradictions Generated by GPT4

To assess GPT4’s capability in generating contradictions, we compared the outputs from a GPT4-
driven ConGen approach against our PaLM-based method. We selected a set of 100 images from both
COCO-Con and PickaPic-Con databases. For each image, we obtained 100 positive and 100 negative
captions using PaLM. Subsequently, by utilizing the identical prompt with GPT4, we generated an
additional 100 negative captions. These captions were randomly assigned labels ’A’ and ’B’.

For the evaluation process, we engaged three independent evaluators from Amazon Mechanical Turk.
They were presented with an image, its caption, and the two negative caption candidates. Their task
was to discern whether each candidate accurately contradicted the depicted image. A snapshot of this
user interface can be seen in fig. 11.

The final judgment was based on the majority vote of the workers. The results showed a close match
in performance between the two models: PaLM achieved 77% while GPT4 reached 76%. This
suggests our ConGen approach works effectively with various large-scale language models.

18



Figure 11: The Amazon Mechanical Turk user interface on determining whether a contradicting
caption generated by GPT4 or PaLM is correct.

A.6 Comparing V Q2 with PaLI vs. BLIP2

We compare PaLI and BLIP2 for the VQ2 method in table 8. While PaLI yields higher scores, it’s
pivotal to recognize their distinct evaluation metrics. PaLI’s score indicates the probability of a “yes”
response, whereas BLIP2 gives a definitive answer without probability. This difference can influence
the application suitability of each model.

PaLI BLIP2

Drawbench 82.6 60.5
Winoground 63.5 58.2
COCOCON 87.1 88.5

Table 8: Comparison of VQ2 results for BLIP2 and PaLI (ROC AUC scores). Note the difference in
evaluation: PaLI’s VQ2 score represents the probability of a “yes” response, while BLIP2 offers a
definitive answer without probability.

A.7 Reproducibility

To fine-tune BLIP2, we adjust only the Q-former parameters of the model using the Adam optimizer.
We train the model for two epochs and designate 10% of the training set as a validation set for early
stopping and use learning rate selection between {1e-5, 5e-5}. A single training took 5 hours on a
linux server with one A6000 GPU. All experiments took <2 days.

Zero-shot V Q2: For 10,000 text-image pairs, the inference time of every step is as follows. Answer
candidate generation: when using extended answer candidates – about 1 day. Otherwise, 12 hours.
Question generation and filtering: When using extended answer candidates, about 2 days, otherwise,
1 day. The last step only takes a few minutes.

Aspect PaLI V Q2 BLIP2
Inference Time 500ms per image-

text pair
40 seconds per image
(full pipeline)

750ms per image-text pair
(as measured in source)

Model Parameters 17B parameters T5-XXL - 11B pa-
rameters + PaLI 17B

12B parameters

Hardware Requirements Four v4 chips [61] 16 TPU v3 cores + 4
v4 chips [61]

GPU with 24GB as reported
in HuggingFace

Framework T5X [62] on JAX
[63]

T5X [62] on JAX
[63]

Pytorch

Table 9: Computational Costs Summary
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