Advancing Arabic Diacritization: Improved Datasets, Benchmarking, and
State-of-the-Art Models

Anonymous ACL submission

Abstract

Arabic diacritics, similar to short vowels in
English, provide phonetic and grammatical in-
formation but are typically omitted in written
Arabic, leading to ambiguity. Diacritization
(aka diacritic restoration or vowelization) is es-
sential for natural language processing. This
paper advances Arabic diacritization through
the following contributions: first, we propose
a methodology to analyze and refine a large
diacritized corpus to improve training qual-
ity. Second, we introduce WikiNews-2024, a
multi-reference evaluation methodology with
an updated version of the standard benchmark
“WikiNews-2014". In addition, we propose a
BiLSTM-based model that achieves state-of-
the-art results with 3.12% and 2.70% WER on
WikiNews-2014 and WikiNews-2024. More-
over, we develop a model that preserves user-
specified diacritics while maintaining accuracy.
Lastly, we demonstrate that augmenting train-
ing data enhances performance in low-resource
settings.

1 Introduction

Arabic, as one of the most widely spoken languages
in the world, presents unique challenges for natural
language processing (NLP) due to its rich mor-
phology, complex syntactic structures, and the lack
of explicit diacritics in written text. Unlike many
other languages, Modern Standard Arabic (MSA)
is typically written without diacritics—small marks
placed above or below letters to indicate short vow-
els and other phonetic information. The absence of
diacritics introduces significant ambiguity, as many
words with identical consonantal structures (roots)
can have multiple meanings depending on the con-
text. For instance, the unspecified word (“ As”

Elm)! could mean “science” (f‘l& Eilm), “flag” ((‘j&
Ealam), or “he knew” (fh' Ealima), depending on

'We use Buckwalter Transliteration.

its diacritization and contexts. A description of
Arabic diacritics is presented in Appendix A.
Arabic diacritization can be likened to restoring
short vowels in English text written without them.
For instance, given the input “Ths sntnc s hrd t
undrstnd wtht vwls.*, the diacritized output would
be “This sentence is hard to understand without
vowels.”—resolving ambiguity through phonetic
and grammatical cues. Diacritization is crucial
for a variety of NLP tasks. It enhances machine
translation (Thompson and Alshehri, 2021),
speech recognition (Aldarmaki and Ghannam,
2023), and text-to-speech systems (Ungurean
et al., 2008; Halabi, 2016) by providing accurate
phonetic and grammatical information. Moreover,
diacritization is essential in educational tools
designed for non-native learners of Arabic and
in preserving religious and classical texts, where
correct pronunciation and interpretation are critical.
In real-life applications, diacritization improves
the accessibility and usability of Arabic content
for voice assistants and automated reading systems.

This work makes several contributions to the
field of Arabic diacritization. I) Through detailed
analysis of a large-scale diacritized dataset, we
identify and address key quality and consistency
challenges, establishing methodological improve-
ments that enhance the reliability of training data
for diacritization systems. II) We develop a novel
evaluation methodology that accounts for the rich-
ness of the Arabic morphology and the inherent
ambiguity in Arabic text by introducing a multi-
reference version of the standard WikiNews bench-
mark (from 2014), providing a more nuanced and
accurate assessment of system performance. IIT)
Furthermore, we release WikiNews-2024, a new
benchmark meticulously reviewed by two expert
linguists, establishing a recent reliable standard
for evaluating diacritization systems. I'V) Our re-
search explores various neural network architec-

tures and introduces a BiILSTM-based architecture
that achieves state-of-the-art performance on the
WikiNews benchmark, significantly advancing the
accuracy of Arabic diacritization. The model is ro-
bust to the new benchmark Wikinews-2024. V) We
also introduce a diacritization model that preserves
any user-provided diacritical marks while achiev-
ing near state-of-the-art accuracy. This makes
it especially useful in real-world settings where
inputs are often partially diacritized—for exam-
ple, keeping user-specified diacritics on domain-
specific terms or foreign named entities. VI) Fi-
nally, we demonstrate that when training data is
scarce, model performance can be enhanced by di-
acritizing high-quality data and using it to augment
the training set. We make our codes and bench-
marks publicly available.

2 Related Work

Arabic diacritization has been extensively studied,
with early methods relying on Hidden Markov
Models (Gal, 2002; Elshafei et al., 2006) and
acoustic-morphological hybrid approaches (Ver-
gyri and Kirchhoff, 2004). Finite-state transducers
(Nelken and Shieber, 2005) and maximum entropy
model (Zitouni et al., 2006) were later introduced,
improving accuracy using lexical and syntactic fea-
tures. Morphologically aware models (Pasha et al.,
2014; Rashwan et al., 2015); incorporated POS
tagging and n-gram language models.

The advent of deep learning brought significant
advancements in Arabic diacritization. Abandah
et al. (2015) explored the use of recurrent neural
networks (RNNs), demonstrating improved perfor-
mance over traditional methods. Building upon
this, Belinkov and Glass (2015) employed a long
short-term memory (LSTM) network, achieving
state-of-the-art results by capturing long-range de-
pendencies in Arabic text. More recently, BERT-
based and transformer models have been investi-
gated for diacritization tasks. Zalmout and Habash
(2019) used multitask learning and neural language
models for lemmatization and diacritization.

Notably, Darwish et al. (2017) proposed a dia-
critization system that combines statistical methods
with linguistic rules, achieving high accuracy and
efficiency. Their approach involves a two-step pro-
cess: The first step is guessing the diacritics of
the core words, followed by determining their case
endings. This method demonstrated significant im-
provements in both speed and accuracy compared

to previous models. Further advancements were
made by Mubarak et al. (2019b), who introduced a
sequence-to-sequence modeling approach for Ara-
bic diacritization. Their model leverages the capa-
bilities of neural networks to predict diacritics, re-
sulting in highly effective performance. Later, they
showed the effectiveness of their approach on four
varieties of Arabic (Mubarak et al., 2019a). This ap-
proach addresses some of the limitations of earlier
methods by better capturing the sequential nature
of language. Moreover, Algahtani et al. (2020)
used multi-task learning to jointly optimize dia-
critization with segmentation, and POS tagging for
Arabic Treebank (Maamouri et al., 2010). Elmal-
lah et al. (2024) used a Recurrent Neural Network-
based architecture combined with morphological
segmentation, but the need for highly accurate seg-
menters for all varieties of Arabic may limit the
applicability of this approach.

On the standard WikiNews benchmark, Mubarak
et al. (2019a) showed that their system achieved
the best result with a Word Error Rate% (WER) of
04.49, followed by Microsoft ATKS (Said et al.,
2013), Farasa (Darwish et al., 2017), RDI (Rash-
wan et al., 2015), MADAMIRA (Pasha et al., 2014),
and MIT (Belinkov and Glass, 2015) with WER of
12.25, 12.76, 15.95, 19.02, and 30.50 in order.

Despite these advancements, challenges remain
in handling ambiguity, domain generalization, and
annotation inconsistencies. Our work enhances di-
acritization by leveraging a BiLSTM-based model
trained on a diverse dataset and introducing a
human-in-the-loop correction mechanism to im-
prove training and evaluation reliability.

3 Methodology

3.1 Dataset Quality Improvement

Diacritizing Arabic texts is a complex and labor-
intensive task that is prone to errors and presents
numerous challenges, including consistency across
the whole corpus, the correct diacritization of for-
eign names, handling ambiguities in sentence struc-
ture, and addressing visual errors that may be diffi-
cult for humans to detect.

We used a comprehensive MSA corpus compris-
ing approximately 129K sentences and 4.7M words
to train our diacritization models. The training
dataset was obtained through a licensed commer-
cial provider under terms that prevent redistribution.
The training corpus encompasses diverse topics, in-
cluding news articles, scientific content, political

discourse, and sports coverage.

To systematically analyze and identify quality
and consistency issues in the dataset, we used
a frequency-based analysis approach. For every
unique word stem in the corpus, we mapped the dif-
ferent sequences of diacritics assigned to the stem
and their frequencies. We focused the analysis on
frequently occurring words by setting a minimum
occurrence threshold. We chose a threshold of 50
occurrences as it provided a reasonable compro-
mise between the number of words to analyze and
the overall coverage of all the words in the dataset.

Usually, the diacritical marks on the last letter
of an Arabic word indicate the word’s grammatical
role and as such would depend on the context in
which the word is used in a sentence. Therefore,
we considered the remaining diacritics (core-word
diacritics) to assess the diacritization consistency.

To detect potential errors, we identified words
with a dominant diacritical form by applying a 95%
frequency threshold. Deviations from this form
were inspected, revealing inconsistencies in the
dataset. A linguist reviewed and corrected doubtful
cases to ensure accuracy. Examples of the quality
issues we uncovered include: (i) inconsistent dia-
critization of words beginning with alif-lam, the
definite article in Arabic. (e.g. UM.“J‘ (Al$ms)

might appear as UM.:J‘ (Al$~amos) or sl

(Al$amos)), and (ii) missing diacritics on word-
initial positions, especially for words beginning
with alif (e.g. ‘).;.Lo‘ (AixotalafuwA) and ‘).;.10‘
(AxotalafuwA)). These issues were fixed by:

» Correcting the diacritization of alif-lam by
adding a sukun to the lam if followed by a
moon letter or adding a shadda to the follow-
ing letter if followed by a sun letter.

* Reviewing words with a missing diacritic in
the first letter and adding the correct diacritic

Note that this frequency-based analysis approach
is dataset-agnostic. Thus, it can be used on any dia-
critized dataset to detect similar issues and correct
them to improve dataset quality. Table 4 shows
the effect of the data cleaning on the model perfor-
mance.

3.2 Representation Unit

The diacritization relies on both character- and
word-level context, making character-based rep-

%For further explanation on sun and moon letters: https:
//en.wikipedia.org/wiki/Sun_and_moon_letters

resentation a natural choice. Each input sentence
is encoded as two sequences: one consisting of
the characters (including whitespace) and another
of the corresponding diacritics. Diacritics are
mapped to numerical values (e.g., kasra = 2),
while non-diacritized characters and whitespace

are assigned 0. For example, the phrase {GU ét.@
(SabAHu Aloxayori-Good Morning) is represented
as ([e, o, 1, o "ol 'C, 2 o [1,1,0,3,0,
0,4, 1,4, 2]); i.e., consonant letters (S,b,A,H, " ",
A,Lx,y,r) followed by their diacritic codes.

We also introduce a variable-length represen-
tation that combines both character and word-level
representations. We used the list of words with
a dominant diacritical form collected from the
dataset analysis to create either fully or partially
diacritized word tokens. For example, instead of

representing the word e,Ua (+alika-"that") as [3, J,
4] (x,1k; only the consonants), it would be rep-

resented as [é\:‘ 3] (xalika; fully diacritized) as the

diacritization of this word dominantly does not de-
pend on the context. Any letters within a word
with ambiguous diacritization are assigned as sep-
arate tokens, allowing partially diacritized words
to appear in the input. For example, words with
a dominant core word diacritic form are split into
two tokens, one representing the core word and one
token for the last letter which typically carries the
grammatical case ending marker. As an example,

the string o ji..:‘ (j L)j J'L:E‘B ([He] indicated that

the manner ...) is represented as [J'Lfb", o g;;" ’

Lo, kel O 1 where ol is split as the dia-

critization of the letter nun () is ambiguous but

the initial word JL:B (WaAshaRa [He indicated])
is represented as one token only since this is its
dominant diacritized form.

The variable-length representation has several
benefits, such as reducing the number of tokens
required to represent inputs and thus making more
effective use of shorter context windows. Moreover,
partially diacritized tokens should reduce errors on
words with a dominant diacritic form, as it removes
the guesswork. More importantly, it allows us to
preserve the diacritics present in the input text, a ca-
pability often ignored in previous works on Arabic
diacritization.

https://en.wikipedia.org/wiki/Sun_and_moon_letters
https://en.wikipedia.org/wiki/Sun_and_moon_letters

We prefer the variable-length representation
in preserving user-input diacritics over post-
processing as it avoids errors generated by substi-
tuting diacritics in the model output. For example,
consider the case when the user inputs u\:ﬂ (yuktb

- is being written); other models usually ignore the
input diacritics and might output uibi: (yaktub
- he writes). If we post-process and replace the
first fatha with a damma, we get u:ia’ (*yuktub),
which is not a valid Arabic word.

3.3 Models

To test a model, an input sentence without diacritics
is given to the model, and its output is compared
with a reference text that is fully diacritized. We
tested several neural network models with different
configurations to determine the best model for di-
acritization. Previous work in the field has shown
the effectiveness of bidirectional long-short-term
memory (Bi-LSTM) models. We experimented
with different configurations of Bi-LSTM models
with varying numbers of layers and context win-
dow sizes and investigated using a CRF layer for
decoding. We also tested two transformer mod-
els, one built from scratch and one fine-tuned from
AraBERT (Antoun et al., 2020), as transformers
have shown exemplary performance in various Ara-
bic NLP tasks in different domains.

The Bi-LSTM models consist of an embedding
layer, followed by a sequence of Bi-LSTM layers,
then three dense layers, followed by an output layer.
We set the embedding dimension to 20 and the Bi-
LSTM hidden dimension to 512. The first two
dense layers had an output dimension of 512, and
the last one had an output dimension of 256. The
choice for dimension sizes is inspired by previous
works (Elmallah et al., 2024). The output layer
has an output dimension of 15, representing the 14
possible diacritics and the null diacritic. We tested
configurations consisting of 2, 4, and 6 Bi-LSTM
layers. All models were trained using the Adam
optimizer with a learning rate of 0.001, 8; = 0.9
and B2 = 0.999. To avoid overfitting, we added
dropout layers between the Bi-LSTM layers with a
dropout probability of 20% and used early stopping
with a patience of 3.

The transformer model (built from scratch) con-
sisted of 4 encoder layers, each with a 4-head atten-
tion mechanism and a linear output layer. The em-
bedding dimension was set to 512, and the dropout
probability was set to 15%. Both transformer mod-

els were trained with the AdamW optimizer with
a learning rate of 0.001 51 = 0.9 and 52 = 0.999.
All models were trained with a batch size of 64.

3.4 Context Window

Arabic diacritization is sensitive to word context.
Therefore, a larger context window would allow
models to capture long-term dependencies, espe-
cially in cases of conjunction/coordination. How-
ever, using a character-level representation for in-
put sentences could lead to large token sequences
that significantly increase model training and in-
ference time. We employed a simple solution of
setting a fixed context size to split the input sen-
tences. The choice of context window size was
inspired by analyzing the sentence lengths within
our training corpus. In our case, we found 250
tokens to be an appropriate context window size as
the average sentence within the corpus consisted of
209 characters, and a context size of 250 meant that
80% of the sentences would not require splitting.
When using the partially diacritized tokens repre-
sentation, a context window size of 250 meant that
92% of the sentences would not require splitting.
We tested all the models with a context window of
250 and a context window of 100 to determine the
effect of the increase in context window size.
While a larger context window enhances the
model’s ability to capture long-range dependen-
cies, our empirical analysis indicates that short-
range context is typically sufficient for accurate
diacritization. This finding is in line with previ-
ous research on the topic (Mubarak et al., 2019b).
Given this observation, we opted not to implement
a sliding window approach, which would substan-
tially increase inference time without proportional
performance gains. This decision was further vali-
dated by our model, which achieved state-of-the-art
results without employing sliding window tech-
niques. Future research directions could explore
integrating sliding window mechanisms with our
architecture, potentially offering insights into the
trade-offs between computational efficiency and
marginal improvements in diacritization accuracy.

4 Evaluation

4.1 Multi-Reference Diacritization

We introduce the concept of multi-reference
diacritization for the first time, addressing a crucial
gap in previous works and benchmarks. According
to Arabic lexicons, many Arabic words have multi-

ple valid diacritized forms. For example, the word
ixed | (Friday) can be diacritized and pronounced

2 2 2
as dzod! (imod! (Lnad | (“jumoEa,” “jumuEa,” or

“jumaEa”) 3. Similarly, foreign names often have
multiple acceptable diacritizations; for instance,

WKL) (Mexico) appears as wheusl (ol
(“Almaksyk” or “Almiksyk”).

Furthermore, Arabic grammar prescribes
grammatical case-ending markers for foreign
named entities to indicate their syntactic roles.
For example, nominative case (subject posi-
tion) requires a final damma, while accusative
and genitive cases (object or noun-preposition
constructions) require a final fatha. Thus,
the sentence i, ol WUgs 15 (Donald
Trump visited Paris) should be diacritized as
Sl Sl WJUgs 515 (Donaldu Trumpa visited
Parisa). However, contemporary usage often omits
these markers, as they can affect pronunciation
or feel unnatural. A renowned Arabic scholar
(https://shamela.ws/book/20642/530#p1)
states that “a foreign name originally written in
Latin letters should follow its pronunciation in the
source language.” To accommodate both tradi-
tional and contemporary conventions, we introduce
an alternative approach in our benchmarks, includ-
ing both grammatical case endings and sukun (null
diacritic) for foreign named entities. For instance,
in the example above, we modify the reference to

L/ gl el /Sy Wgs [/ Wbgs s

(Donald/Donaldu
Paris/Parisa..)
Additionally, in Arabic phonetics, when a word
ending in sukun is followed by a word beginning
with a plain alif, the sukun is typically replaced by
either a fatha or kasra. For example, the phrase

Trump/Trumpa visited

- °r.°ﬂ u,q (“min albayti” — from home) can alterna-

tively appear as ‘_,:\;J‘ Cyo (“mina albayti”). This
phenomenon, known as (S LJ! ¢l&d) (Consonant
Clustering), is a fundamental aspect of Arabic
phonology. To account for this variation, both dia-
critic forms are included in our benchmarks.
Moreover, in some cases, syntactic ambiguity
allows a word to take multiple valid grammati-

cal case endings. For example, in the sentence
™ ol 3 ot all jes (it destroyed the head-

3 Arabic lexicon: https://www.almaany.com

quarters in the city [in all of it/all of them]), the
adverb L can be diacritized as L@k(kulliha) or

M

45" (kullaha), depending on its referent within the

sentence, and both forms are valid. The modified
benchmarks include common modern usage cases.
The first diacritization form is ensured to be the
most frequently used, making it suitable for single-
reference evaluation when needed. The linguists
were asked to follow these instructions carefully.

4.2 Standard Benchmarking

The authors in Darwish et al. (2017) introduced and
publicly released the WikiNews-2014 dataset as a
benchmark for Arabic diacritization. This dataset
comprises 70 WikiNews articles (18,300 words)
from 2013 and 2014, covering diverse topics such
as politics, economics, health, science and tech-
nology, and sports. It was created to address the
limitations of existing benchmarks, such as the Ara-
bic Treebank (Maamouri et al., 2010), which suffer
from availability issues and annotation errors.

WikiNews-2014 has since become a de facto
standard for diacritization evaluation. However, it
does not account for multi-reference diacritization
and has become outdated, as many new names and
events have emerged since its release. To enhance
its usability, we augmented the dataset with multi-
reference annotations and modified the standard
scoring script provided with it to accept any of the
valid diactizations. Additionally, we curated a new
dataset, WikiNews-2024, by collecting 35 news
articles (more than 10K words) from WikiNews* in
2024, spanning various topics. Two expert linguists
reviewed the dataset individually to correct spelling
and grammar errors, fully diacritize the text, and
incorporate multi-reference annotations where ap-
plicable. Any discrepancies between the linguists
were resolved during the final revision stage. No-
tably, 785 words in WikiNews-2024 (7%) exhibit
multiple valid diacritized forms. The modified
WikiNews-2014, the updated evaluation program,
and the newly created WikiNews-2024 dataset will
be made available for research purposes.

*https://ar.wikinews.org/

https://shamela.ws/book/20642/530#p1
https://www.almaany.com
https://ar.wikinews.org/

| Character Representation |

Variable-len Representation

Context Size 100 250 100 250
Model WER DER WER DER WER DER WER DER
BiLSTM (2) 492% 1.24% | 399% 1.02% | 4.62% 1.20% | 4.36% 1.17%
BiLSTM (4) 486% 124% | 3.714% 0.96% | 4.46% 1.17% | 4.10% 1.06%
BiLSTM (6) 492% 1.24% | 443% 1.13% | 478% 1.22% | 490% 1.26%
Transformer-A | 7.13% 1.69% | 5.16% 1.35% | 544% 139% | 521% 1.36%
Transformer-S | 6.01% 1.52% | 4.45% 1.15% | 5.17% 1.34% | 4.86% 1.27%

Table 1: Single-Reference Evaluation Results on WikiNews-2014. The numbers in brackets indicate the number of
BiLSTM layers. Transformer-A refers to the transformer trained on top of AraBERT, and Transformer-S refers to

the transformer trained from scratch.

Character Representation

Variable-len Representation

Context Size 100 250 100 250
Model WER DER WER DER WER DER WER DER
BiLSTM (2) 475% 1.28% | 3.61% 1.01% | 4.14% 1.18% | 4.05% 1.14%
BiLSTM (4) 440% 1.20% | 3.27% 093% | 3.99% 1.14% | 3.62% 1.02%
BiLSTM (6) 445% 1.21% | 390% 1.09% | 429% 121% | 433% 1.22%
Transformer-A | 6.82% 1.63% | 4.71% 132% | 495% 133% | 4.73% 1.33%
Transformer-S | 5.51% 1.50% | 3.97% 1.12% | 470% 131% | 4.38% 1.24%

Table 2: Multi-Reference Evaluation Results on WikiNews-2014

5 Experiments

As shown in section 3.1, a corpus comprising
around 129K sentences and 4.7M words was used
for training. Applying the character representa-
tion to the training dataset resulted in around 27M
tokens, while the variable-length representation re-
sulted in around 17M tokens. For each experiment,
95% of the training data was used for training and
5% for validation. All models were trained with
early stopping with a patience of 5. Details of the
experimental setup are presented in Appendix B.

Each model specified in section 3.3 was tested
on the WikiNews-2014. For each model, we varied
the context window size to 100 or 250 (as explained
in section 3.4) and tested both character-level and
variable-length representations. We calculated the
Word Error Rate (WER), which represents the per-
centage of words with at least one diacritic mistake,
and the Diacritic Error Rate (DER), which repre-
sents the percentage of characters with a diacritic
mistake. We report both single-reference and multi-
reference evaluation results. The single-reference
results are reported in Table 1. The multi-reference
results are reported in Table 2.

Comparison of Tables 1 and 2 shows a consistent
0.4-0.5% WER improvement when using the multi-
reference evaluation. This confirms the need for
multi-reference evaluation to address the issue of
words with multiple valid diacritizations that has

been completely ignored by previous work.

The results indicate that the BILSTM models
consistently outperformed both transformer mod-
els. The BILSTM model with 4 layers consistently
outperformed the other models across all experi-
ments, hinting that the 4-layer configuration might
achieve the desired model complexity without over-
fitting. We experimented with a CRF layer, but it
did not lead to any improvements. Moreover, the
transformer built from scratch consistently outper-
formed the transformer based on the AraBERT em-
beddings. This performance gap could potentially
be due to the distribution shift as the AraBERT
models were primarily trained on a subword level
rather than a character level (Antoun et al., 2020).

Tables 1 and 2 show that the variable-length rep-
resentation led to more accurate models than the
character representation for shorter context win-
dows. This could be attributed to the variable-
length representation’s ability to compact more
information into a shorter token sequence.

The character representation yielded the best
model performance for the longer context windows.
We hypothesized that this is because the model can
learn inter-character dependencies that are not as
apparent when using the variable-length represen-
tation, as the latter representation could combine
sequences of characters into one token. We tested
this hypothesis by training the 4-layer BiLSTM
model using a combination of the character and

Exp | Single-ref. | Multi-ref.
Var-len rep. 410% 1.06% | 3.62% 1.02%
Char + Var-lenrep. | 3.90% 1.01% | 3.42% 0.98%

Table 3: Effect of combining character-level representa-
tion with variable-length representation on model accu-
racy (WER and DER)

Exp | WER DER
Before Quality Improv. | 3.91% 1.00%
After Quality Improv. | 3.74% 0.96%

Table 4: Effect of proposed data quality improvement
techniques on 4-layer BILSTM model performance

variable-length representations. We then evaluated
the model using the variable-length representation
to tokenize the evaluation data.

Table 3 shows that combining both represen-
tations leads to improved diacritization accuracy
relative to only using the variable-length represen-
tation while providing the ability to preserve user-
provided diacritics. This result is notable as the
model achieves a lower WER than the SOTA mod-
els while preserving user-provided diacritics.

We trained the best-performing model config-
uration, 4-layer BiLSTM, on the original dataset
to validate the quality improvement discussed in
section 3.1. Table 4 shows a 4.5% relative gain in
accuracy due to the data quality improvement, high-
lighting the need for high-quality diacritized data
for training. We also tested the effect of the training
data size on WER to determine if there were poten-
tial gains from using a larger dataset. We trained
the best-performing BiLSTM model on varying
percentages of the training dataset. Fig. 1 shows
a consistent benefit to using a larger dataset. This
finding motivated our idea to augment the train-
ing dataset by using the best-performing diacritizer
to diacritize different sources and add them to the
training data. We performed two data augmenta-
tion experiments. In the first experiment, we dia-
critized 4.5 million words (a size similar to our ini-

Exp Single-ref. Multi-ref.
WER DER ‘ WER DER
No Augmnt. 374% 096% | 3.27% 0.93%
Aug (Wikipedia) 3.63% 0.93% | 3.15% 0.90%
Aug (HQ in-house) | 3.61% 0.93% | 3.12% 0.90%

Table 5: Effect of data augmentation on diacritizer
accuracy. Wiki refers to augmentation using Arabic
Wikipedia articles. HQ in-house refers to high-quality
in-house curated dataset from diverse news sources.

75

70

65

6.0

Word Error Rate

5.5

5.0

30 40 50 60 70 80 90 100
Percentage of Data used for training

Figure 1: Effect of training dataset size on WER

tial dataset) from the Arabic Wikipedia and added it
to the training set. In the second experiment, we di-
acritized approximately 4.6 million words from an
in-house curated, high-quality news source dataset.
Table 5 shows that data augmentation improves per-
formance, even with automatically diacritized data.
The model achieved relative improvements of 3.7%
and 4.6% when augmented with Arabic Wikipedia
and high-quality in-house data, respectively. Table
6 highlights that our model outperforms the SOTA
models for this task on the WikiNews-2014 dataset.
The prompt used for GPT-40 is presented in Ap-
pendix C. Note that we compared the model to the
RNN model without segmentation (Elmallah et al.,
2024) as the other RNN model requires the use of a
highly accurate segmentation model to preprocess
the data, which is an extra requirement that would
significantly decrease model speed as well as make
it challenging to extend the usability of the model
to other dialects or contexts.

We tested the 4-layer BiLSTM, the best model,
on the new WikiNews-2024 benchmark. Table 7
shows that we achieved a 2.70% WER on the new
dataset, demonstrating the model’s robustness in
dealing with unseen data. Table 8 shows the time
taken to diacritize WikiNews-2014 for different
models. The results indicate that our model is about
3 times faster than Farasa. It is also interesting
to note that the model that preserves user-input
diacritics is 27% faster than the model using the
character representation.

Model | Time (s)

GPT-4o 269

Farasa 9.1
Char. BiLSTM 33

Char + Var-len BiLSTM 24

Table 8: Time taken to diacritize WikiNews-2014

As part of this work, we release a fully dia-
critized corpus comprising 5 million words (ex-

Model WER DER

Our System 3.61% 0.93%

Farasa (Darwish et al., 2017) 11.50% 3.06%

Seq2Seq Model (Mubarak et al., 2019b) 449% 1.21%
RNN (w\o segmentation) (Elmallah et al., 2024) | 5.70% 1.40%
GPT-40 8.55% 3.31%

Table 6: Comparison to other full-diacritization systems (Single Reference)

Dataset | WER DER
WikiNews-2014 | 3.12% 0.90%
WikiNews-2024 | 2.70% 0.94%

Table 7: Our best model’s performance on both
WikiNews datasets (Multi-reference)

ceeding our training corpus of 4.7M words), gen-
erated by our best-performing model (achieving
3.61% WER) on randomly selected Wikipedia ar-
ticles. This resource, which represents the largest
publicly available diacritized corpus to our knowl-
edge, is made available to facilitate future research.
Researchers may utilize this corpus directly or em-
ploy linguistic experts to refine its minimal errors
for specialized applications.

6 Error Analysis
We conducted an error analysis on all WikiNews-

2024 errors produced by our best model (n=243).
Table 9 presents the most common error types,
which account for 94% of all errors. The “POS
Error” type occurs when the diacritizer assigns an
incorrect part of speech, such as misidentifying pas-
sive vs. active tense. The “HUM-MRef™ type arises
when the reference contains only one diacritization
form, whereas multiple forms are acceptable. The
“HUM-Error” type corresponds to human annota-
tion mistakes in assigning the correct diacritization
within a given context; both “HUM-MRef” and
“HUM-Error” will be corrected in the final released
version. In the “Noun-Adj” type, Arabic gram-
mar requires adjectives to match their reference
noun in grammatical markers, but in complex cases
(e.g., Noun Noun Adjective), the adjective can refer
to any noun. The “CONJ” type pertains to cases
where a word following a conjunction should con-
form to the structure of the preceding phrase, for
example, the word “safety” should have the same
grammatical diacritic mark as the word “speed” in
the shown example. The “NE” type indicates errors
in predicting diacritics for named entities, particu-
larly foreign ones that are not seen in all the training

data.> Finally, Arabic’s relatively free word order
allows the object to precede the subject, and the
“SBJ-OBJ” type captures instances where the di-
acritizer failed to assign the correct grammatical
markers distinguishing subject and object roles.

Type % System Output (Reference)-English

POS Error 20 (’fw’) J}L:\Jy;\n ‘faj 15)
rasama (rusima) - draws (was drawn)
(3U) 5 5Uall (;Ua

TAqim (TAgam) - plane crew
(53 Gosd) oYl 255
Algawmiyu (Alqawmiyi) -

Minister of National Security

(éLc) 2020 ch 2

EAmi (EAma) - in the year 2020

HUM-MRef 16

Noun-Adj 14

HUM-Error 12

CONJ 12 (Lasldly) LSy s slall &e -
speed of developmént and safety

NE 12 (ialngy) Aialag -
New Hampshire

SBJ-OBJ 7 (i o d) Db &l s

“Carried-out the-strike a-ship”
A ship carried out the strike.

Table 9: Common Error Types

7 Conclusion

The paper introduces a comprehensive approach to
Arabic diacritization that improves dataset quality
and evaluation methods. Key contributions include
a novel BiLSTM model with a variable-length rep-
resentation that outperforms existing systems on
both WikiNews-2014 and WikiNews-2024 bench-
marks, as well as effective data augmentation tech-
niques for scenarios with limited training data. Ad-
ditionally, the work presents a variant model that
preserves user-specified diacritics without sacrific-
ing accuracy. Future directions include exploring
sliding window techniques, extending the approach
to Arabic dialects, and leveraging transfer learn-
ing, with all code and benchmarks made publicly
available to foster further research in the field.

SWe plan to add more fully diacritized named entities from
Wikipedia and other sources to the training data.

Limitations

Despite the advancements in Arabic diacritization,
several challenges remain. First, ambiguity in di-
acritization persists, as multiple valid diacritical
forms exist for many words depending on syntactic
and semantic context. While our multi-reference
evaluation mitigates this issue, it does not fully
resolve the inherent uncertainty in diacritization.

Second, domain generalization remains a chal-
lenge. Our model performs well on benchmark
datasets, but its accuracy may degrade when ap-
plied to out-of-domain texts, such as technical or
scientific writing, which often exhibit unique lin-
guistic patterns and new terms.

Third, annotation inconsistencies in training data
impact model performance. Despite our efforts to
refine the dataset using a human-in-the-loop ap-
proach, errors in existing corpora and variations
in human annotation guidelines can still introduce
noise into the training process.

Finally, computational efficiency is a concern.
While deep learning models achieve high accuracy,
they require significant computational resources,
making real-time diacritization on low-resource
devices challenging. Future work should explore
more efficient architectures and compression tech-
niques to enable wider adoption.

Addressing these limitations will be crucial for
improving the robustness and applicability of Ara-
bic diacritization models across diverse contexts.

Ethical Considerations

Arabic diacritization plays a crucial role in enhanc-
ing text readability, speech synthesis, and NLP ap-
plications. However, several ethical considerations
must be addressed when developing and deploy-
ing diacritization models. I) Bias and Representa-
tion: Diacritization models are trained on specific
datasets, which may not fully represent the diver-
sity of Arabic writing styles, or domains. Bias in
training data can lead to models favoring certain
linguistic patterns over others, potentially disadvan-
taging underrepresented topics or genres. Ensuring
diverse and balanced training data is essential to
mitigate this issue. II) Misinformation and Misin-
terpretation: Incorrect diacritization can alter word
meanings, leading to misinterpretation in critical
contexts such as legal, religious, or medical texts.
This risk underscores the need for rigorous eval-
uation and human oversight when deploying dia-
critization models in sensitive applications. III)

Ethical Use in Automated Systems: Diacritization
can enhance Al-driven applications such as auto-
mated content moderation, speech recognition, and
machine translation. However, misuse—such as
manipulating diacritization to evade content mod-
eration or spread misinformation—must be consid-
ered. Developers should implement safeguards to
detect and prevent such manipulations.

Addressing these ethical considerations is essen-
tial to ensure fairness, accuracy, and responsible
deployment of Arabic diacritization models in real-
world applications.

It’s worth mentioning that the annotation was
conducted by two expert linguists from Egypt (ages
36 and 52), both with extensive training. The lin-
guists were selected from the professional network
of one of the authors and had prior experience in
similar annotation tasks. To ensure high-quality
annotations, rigorous quality control sessions were
implemented. The annotators were compensated at
an average rate of $7 per hour for data creation and
quality rounds, which exceeds typical pay rates for
similar tasks, as verified through surveys on Glass-
door.com, Bayt.com, and direct feedback from the
linguists regarding fair compensation.

Additionally, ChatGPT was used to refine certain
sections, particularly the “Limitations” and “Ethi-
cal Considerations” sections, but not for generating
content from scratch.

References

Gheith A Abandah, Alex Graves, Balkees Al-Shagoor,
Alaa Arabiyat, Fuad Jamour, and Majid Al-Taee.
2015. Automatic diacritization of arabic text us-
ing recurrent neural networks. International Jour-
nal on Document Analysis and Recognition (IJDAR),
18:183-197.

Hanan Aldarmaki and Ahmad Ghannam. 2023. Dia-
critic recognition performance in arabic asr. arXiv
preprint arXiv:2302.14022.

Sawsan Alqahtani, Ajay Mishra, and Mona Diab. 2020.
A multitask learning approach for diacritic restora-
tion. arXiv preprint arXiv:2006.04016.

Wissam Antoun, Fady Baly, and Hazem Hajj.
2020. Arabert: Transformer-based model for
arabic language understanding. arXiv preprint
arXiv:2003.00104.

Yonatan Belinkov and James Glass. 2015. Arabic di-
acritization with recurrent neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2281—
2285.

Kareem Darwish, Hamdy Mubarak, and Ahmed Abde-
lali. 2017. Arabic diacritization: Stats, rules, and

hacks. In Proceedings of the third Arabic natural
language processing workshop, pages 9-17.

Muhammad Morsy Elmallah, Mahmoud Reda, Kareem
Darwish, Abdelrahman EI-Sheikh, Ashraf Hatim El-
neima, Murtadha Aljubran, Nouf Alsaeed, Reem Mo-
hammed, and Mohamed Al-Badrashiny. 2024. Ara-
bic diacritization using morphologically informed
character-level model. In Proceedings of the 2024
Joint International Conference on Computational
Linguistics, Language Resources and Evaluation

(LREC-COLING 2024), pages 1446-1454.

Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour
Alghamdi. 2006. Statistical methods for automatic
diacritization of arabic text. In The Saudi 18th Na-
tional Computer Conference. Riyadh, volume 18,
pages 301-306.

Ya’akov Gal. 2002. An hmm approach to vowel restora-
tion in arabic and hebrew. In Proceedings of the
ACL-02 workshop on Computational approaches to
semitic languages.

Nawar Halabi. 2016. Modern standard Arabic phonet-
ics for speech synthesis. Ph.D. thesis, University of
Southampton.

Mohamed Maamouri et al. 2010. Arabic Treebank:
Part 3 v3.2. Linguistic Data Consortium, Philadel-
phia, PA. LDC2010T08, Web Download.

Hamdy Mubarak, Ahmed Abdelali, Kareem Darwish,
Mohamed Eldesouki, Younes Samih, and Hassan Saj-
jad. 2019a. A system for diacritizing four varieties
of arabic. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP): System
Demonstrations, pages 217-222.

Hamdy Mubarak, Ahmed Abdelali, Hassan Sajjad,
Younes Samih, and Kareem Darwish. 2019b. Highly
effective arabic diacritization using sequence to se-
quence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2390-2395.

Rani Nelken and Stuart Shieber. 2005. Arabic diacriti-
zation using weighted finite-state transducers. In
Proceedings of the 2005 ACL Workshop on Computa-
tional Approaches to Semitic Languages. Association
for Computational Linguistics.

Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of arabic.
In Lrec, volume 14, pages 1094-1101.

Mohsen AA Rashwan, Ahmad A Al Sallab, Hazem M
Raafat, and Ahmed Rafea. 2015. Deep learning
framework with confused sub-set resolution architec-
ture for automatic arabic diacritization. I[EEE/ACM

Transactions on Audio, Speech, And Language Pro-
cessing, 23(3):505-516.

10

Ahmed Said, Mohamed EIl-Sharqwi, Achraf Chalabi,
and Eslam Kamal. 2013. A hybrid approach for
arabic diacritization. In International Conference
on Application of Natural Language to Information
Systems, pages 53—64. Springer.

Brian Thompson and Ali Alshehri. 2021. Improving ara-
bic diacritization by learning to diacritize and trans-
late. arXiv preprint arXiv:2109.14150.

Catalin Ungurean, Dragos Burileanu, Vladimir Popescu,
Cristian Negrescu, and Aurelian Dervis. 2008. Au-
tomatic diacritic restoration for a tts-based e-mail
reader application. UPB Scientific Bulletin, Series C,
70(4):3-12.

Dimitra Vergyri and Katrin Kirchhoff. 2004. Auto-
matic diacritization of arabic for acoustic modeling in
speech recognition. In Proceedings of the workshop
on computational approaches to Arabic script-based
languages, pages 66-73.

Nasser Zalmout and Nizar Habash. 2019. Adversarial
multitask learning for joint multi-feature and multi-
dialect morphological modeling. arXiv preprint
arXiv:1910.12702.

Imed Zitouni, Jeffrey Sorensen, and Ruhi Sarikaya.
2006. Maximum entropy based restoration of arabic
diacritics. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Computational
Linguistics, pages 577-584.

A Description of Arabic Diacritics

In Arabic script, most vowels are not represented
by separate letters. Instead, diacritics (aarakat) in-
dicate short vowels and other phonetic information.
These zero-width marks attach above or below con-
sonants. Table 10 lists the diacritics used in Modern
Standard Arabic.

The three vowel diacritics—fatha, kasra and
damma — represent the short sounds /a/, /i/ and
/u/, respectively. The sukun signals the absence
of a vowel. Nunation (tanwin) adds a final “-n”
sound to indefinite nouns by combining one of the
short-vowel marks with the letter y (nun, /n/).

The shadda marks consonant doubling (gemina-
tion). Unlike other diacritics, the shadda may be
used together with any one of the vowel marks; no
other combinations are permitted.

11

Diacritic Example (-+diacritic) Transliteration

Fatha) ta
Kasra <O ti
Damma & tu
Sukun & t
Shadda) tt
Tanwin Fatd R tan
Tanwin Kasr o tin
Tanwin damm & tun

Table 10: List of the diacritics used in Modern Standard Arabic scripts along with an example of them applied to the
letter & (ta’)

12

B Experimental Setup

Experimental Setup. All training and experiments
were conducted on a machine with the specifica-
tions detailed in Table 11. A total of around 540
GPU hours were utilized across all experiments,
with each experiment running for an average of 18
hours on a single GPU.

CPU Intel(R) Xeon(R) CPU E5-2650 v4
GPU Tesla P100-16GB
Memory 256GB
0S Ubuntu 20.04.3 LTS

Table 11: Specification of machine used for training and
experiments

C GPT-40 Test Prompt

The following prompt was used to diacritize
WikiNews-2014 on GPT-40 (version 2024-08-06):

Task Instructions

SYSTEM: You are an expert in the Arabic
language. You will be given a sentence in
Arabic and you will be asked to fully dia-
critize it. Provide the diacritized version of
the sentence in json format. Do not add or
modify any of the punctuation or spaces in
the text (e.g if a sentence does not end in
a period, do not add a period). The output
should be of the form

{'result' : <diacritized_sentence>}

USER: <INPUT>

13

	Introduction
	Related Work
	Methodology
	Dataset Quality Improvement
	Representation Unit
	Models
	Context Window

	Evaluation
	Multi-Reference Diacritization
	Standard Benchmarking

	Experiments
	Error Analysis
	Conclusion
	Description of Arabic Diacritics
	Experimental Setup
	GPT-4o Test Prompt

