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ABSTRACT

Safe offline reinforcement learning is a promising way to bypass risky online in-
teractions towards safe policy learning. Most existing methods only enforce soft
constraints, i.e., constraining safety violations in expectation below thresholds
predetermined. This can lead to potentially unsafe outcomes, thus unacceptable in
safety-critical scenarios. An alternative is to enforce the hard constraint of zero vi-
olation. However, this can be challenging in offline setting, as it needs to strike the
right balance among three highly intricate and correlated aspects: safety constraint
satisfaction, reward maximization, and behavior regularization imposed by offline
datasets. Interestingly, we discover that via reachability analysis of safe-control
theory, the hard safety constraint can be equivalently translated to identifying the
largest feasible region given the offline dataset. This seamlessly converts the orig-
inal trilogy problem to a feasibility-dependent objective, i.e., maximizing reward
value within the feasible region while minimizing safety risks in the infeasible re-
gion. Inspired by these, we propose FISOR (FeasIbility-guided Safe Offline RL),
which allows safety constraint adherence, reward maximization, and offline policy
learning to be realized via three decoupled processes, while offering strong safety
performance and stability. In FISOR, the optimal policy for the translated opti-
mization problem can be derived in a special form of weighted behavior cloning,
which can be effectively extracted with a guided diffusion model thanks to its
expressiveness. Moreover, we propose a novel energy-guided sampling method
that does not require training a complicated time-dependent classifier to simplify
the training. We compare FISOR against baselines on DSRL benchmark for safe
offline RL. Evaluation results show that FISOR is the only method that can guar-
antee safety satisfaction in all tasks, while achieving top returns in most tasks.
Project website: https://zhengyinan-air.github.io/FISOR/.

1 INTRODUCTION

Autonomous decision making imposes paramount safety concerns in safety-critical tasks (Li, 2023),
such as industrial control systems (Zhan et al., 2022) and autonomous driving (Kiran et al., 2021),
where any unsafe outcome can lead to severe consequences. In these tasks, one top priority is to en-
sure persistent safety constraint satisfaction (Zhao et al., 2023). Safe reinforcement learning (RL)
holds the promise of safety guarantee by formulating and solving this problem as a Constrained
Markov Decision Process (CMDP) (Gu et al., 2022). However, most previous studies focus on
online RL setting, which suffers from serious safety issues in both training and deployment phases,
especially for scenarios that lack high-fidelity simulators and require real system interaction for pol-
icy learning (Liu et al., 2023a). Safe offline RL, on the other hand, incorporates safety constraints
into offline RL (Levine et al., 2020) and provides a new alternative for learning safe policies in a
fully offline manner (Xu et al., 2022b). In this setting, only the learned final policy needs safety guar-
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antees, bypassing the inherent safety challenges during online training, thus providing an effective
and practical solution to safety-critical real-world applications (Zhan et al., 2022).

Though promising, current safe offline RL methods exhibit several limitations. Firstly, to the best
of our knowledge, all previous studies adopt soft constraint and only require constraint violations
in expectation to remain under a given threshold throughout the entire trajectory (Xu et al., 2022b;
Lee et al., 2022), thus allowing potential unsafe outcome. Such soft constraint-based formulation is
widely employed in the research community but unacceptable to safety-critical industrial applica-
tion (Yang et al., 2023a). Instead, hard constraint is more preferable for these tasks, where state-wise
zero constraint violation is strictly enforced. To achieve this, a far more rigorous safety constraint is
in demand, which however, inevitably imposes severe policy conservatism and suboptimality. Sec-
ondly, the difficulty is further exacerbated by the offline setting, as additional consideration of be-
havior regularization imposed by offline dataset is required to combat distributional shift (Fujimoto
et al., 2019). Thus, striking the right balance among constraint satisfaction, reward maximization,
and offline policy learning can be exceptionally challenging. Jointly optimizing these intricate and
closely-correlated aspects, as in existing safe offline RL methods, can lead to very unstable training
processes and unsatisfactory safety performance (Lee et al., 2022; Saxena & Cao, 2021).

To tackle these challenges, we introduce a novel safe offline RL approach, FISOR (FeasIbility-
guided Safe Offline RL), which provides stringent safety assurance while simultaneously optimiz-
ing for high rewards. FISOR revisits safety constraint satisfaction in view of optimization under
different feasibility conditions and comprises three simple decoupled learning processes, offering
strong safety performance and learning stability. Specifically, we first revise Hamilton-Jacobi (HJ)
Reachability (Bansal et al., 2017) in safe-control theory to directly identify the largest feasible re-
gion through the offline dataset using a reversed version of expectile regression, which ensures zero
constraint violation while maximally expanding the set of feasible solutions. With the knowledge
of feasibility in hand, we further develop a feasibility-dependent objective that maximizes reward
values within the feasible regions while minimizing safety risks in the infeasible regions. This al-
lows constraint satisfaction and reward maximization to be executed in decoupled offline learning
processes. Furthermore, we show that the optimal policy for these reformulated problems has a
special weighted behavior cloning form with distinct weighting schemes in feasible and infeasible
regions. By noting the inherent connection between weighted regression and exact energy-guided
sampling for diffusion models (Lu et al., 2023), we extract the policy using a novel time-independent
classifier-guided method, enjoying both superior expressivity and efficient training.

Extensive evaluations on the standard safe offline RL benchmark DSRL (Liu et al., 2023a) show
that FISOR is the only method that guarantees satisfactory safety performance in all evaluated tasks,
while achieving the highest returns in most tasks. Moreover, we demonstrate the versatility of
FISOR in the context of safe offline imitation learning (IL), still outperforming competing baselines.

2 PRELIMINARY

Safe RL is typically formulated as a Constrained Markov Decision Process (Altman, 2021), which
is specified by a tuple M := (S,A, T, r, h, c, γ). S and A represent the state and action space;
T : S × A → ∆(S) is transition dynamics; r : S × A → R is the reward function; h : S → R is
the constraint violation function; c : S → [0, Cmax] is cost function; and γ ∈ (0, 1) is the discount
factor. Typically, c(s) = max (h(s), 0), which means that it takes on the value of h(s) when the
state constraint is violated (h(s) > 0), and zero otherwise (h(s) ≤ 0).

Previous studies typically aim to find a policy π : S → ∆(A) to maximize the expected cumulative
rewards while satisfying the soft constraint that restricts the expected cumulative costs below a pre-
defined cost limit l ≥ 0, i.e., maxπ Eτ∼π [

∑∞
t=0γ

tr(st, at)] , s.t. Eτ∼π [
∑∞

t=0γ
tc(st)] ≤ l, where τ

is the trajectory induced by policy π. Existing safe offline RL methods typically solve this problem
in the following form (Xu et al., 2022b; Lee et al., 2022):

max
π

Es [V
π
r (s)] s.t. Es [V

π
c (s)] ≤ l; D(π∥πβ) ≤ ϵ, (1)

where V π
r is state-value function, V π

c is cost state-value function, πβ is the underlying behavioral
policy of the offline dataset D := (s, a, s′, r, c) with both safe and unsafe trajectories. D(π∥πβ) is
a divergence term (e.g., KL divergence DKL(π∥πβ)) used to prevent distributional shift from πβ in
offline setting. To handle safety constraints, previous methods often consider solving the Lagrangian
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Figure 1: (a) Reach-avoid control task: the agent (red) aim to reach the goal (green) while avoiding hazards
(blue). (b) Offline data distribution. (c)-(e) Comparisons with the feasible region learned by feasible value
{s|V ∗

h (s) ≤ 0} and cost value
{
s|V ∗

c (s) ≤ 1e−3
}

. See Appendix D.1 for more details.

dual form of Eq. (1) with a Lagrangian multiplier λ (Chow et al., 2017; Tessler et al., 2018):

min
λ≥0

max
π

Es [V
π
r (s)− λ (V π

c (s)− l)] s.t. D(π∥πβ) ≤ ϵ. (2)

Limitations of Existing Methods. The safety constraint in Eq. (1) is a soft constraint enforced
on the expectation of all possible states, meaning that there exists a certain chance of violating
the constraint with a positive l, which poses serious safety risks in real-world scenarios (Ma et al.,
2022). Additionally, choosing a suitable cost limit l that yields the best safety performance requires
engineering insights, whereas the optimal limit may vary across tasks (Yu et al., 2022a). Besides,
Eq. (1) shows that safe offline RL necessitates the simultaneous optimization of three potentially
conflicting objectives: maximizing rewards, ensuring safety, and adhering to the policy constraint
w.r.t the behavior policy. Finding the right balance across all three is very difficult. Moreover, the
optimization objective in Eq. (2) introduces an additional layer of optimization for the Lagrange
multiplier, and the learning of V π

r , V π
c and π are mutually coupled, where minor approximation

errors can bootstrap across them and lead to severe instability (Kumar et al., 2019).

3 METHODS

Feasibility-Dependent Optimization. To address these challenges, we replace soft constraint with
hard constraints that demand state-wise zero violations (h(st) ≤ 0, a ∼ π,∀t ∈ N, Appendix A.2).
A straightforward way is to remove the expectation and set the cost limit to zero, i.e., replacing the
safety constraint in Eq. (1) with V π

c ≤ 0:

max
π

Es [V
π
r (s)] s.t. V π

c (s) ≤ 0; D(π∥πβ) ≤ ϵ. (3)

However, this leads to a highly restricted policy set Πc(s) := {π|V π
c (s) = 0}, since V π

c is non-
negative (c ≥ 0) and the presence of approximation errors makes it difficult to take the exact value
of 0 (Figure 1). To address this issue, We replace Πc(s) with a new safe policy set Πf (s) suitable
for practical solving. Furthermore, not all states allow the existence of a policy that satisfies the hard
constraint, rendering the problem unsolvable at these states. We refer to these as infeasible states
and the others feasible states. To solve this, we consider infeasible states separately and modify the
problem as follows (Appendix B.1 shows theoretical relationships between Eq. (3) and Eq. (4)):

Feasible: max
π

Es

[
V π
r (s) · Is∈Sf

]
s.t. π ∈ Πf (s), ∀s ∈ Sf

DKL(π∥πβ) ≤ ϵ

Infeasible: max
π

Es

[
−V π

c (s) · Is/∈Sf

]
s.t. DKL(π∥πβ) ≤ ϵ (4)
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Eq. (4) presents a feasibility-dependent objective. Here, I is the indicator function, and Sf is the
feasible region including all feasible states, for which at least one policy exists that satisfies the
hard constraint. This objective allows us to concentrate on maximizing rewards and minimizing
safety risks individually to obtain the best possible performance. In the case of infeasible states,
maximizing rewards becomes meaningless since safety violations will always occur. Therefore, the
focus is shifted to minimizing future constraint violation as much as possible (Yu et al., 2022a).
For feasible states, adherence to the hard constraint is ensured by policies from the safe policy set
Πf , thus allowing for the focus on reward maximization. Next, we introduce using the reachability
analysis from safe-control theory to determine Sf and Πf .

3.1 OFFLINE IDENTIFICATION OF FEASIBILITY

Accurately determining Sf and Πf plays a crucial role in the success of the feasibility-dependent
objective. This reminds us of the effectiveness of Hamilton-Jacobi (HJ) reachability (Bansal et al.,
2017) for enforcing hard constraint in safe-control theory, which has recently been adopted in safe
online RL studies (Fisac et al., 2019; Yu et al., 2022a). We first provide a brief overview of the
basics in HJ reachability (Definition 1) and then delve into the instantiation of the feasible region Sf
and policy set Πf in the HJ reachability framework (Definition 2-3).
Definition 1 (Optimal feasible value function). The optimal feasible state-value function V ∗

h , and
the optimal feasible action-value function Q∗

h are defined as (Bansal et al., 2017):
V ∗
h (s) := min

π
V π
h (s) := min

π
max
t∈N

h(st), s0 = s, at ∼ π(· | st), (5)

Q∗
h(s, a) := min

π
Qπ

h(s, a) := min
π

max
t∈N

h(st), s0 = s, a0 = a, at+1 ∼ π(· | st+1), (6)

where V π
h represents the maximum constraint violations in the trajectory induced by policy π start-

ing from a state s. The (optimal) feasible value function possesses the following properties:

• V π
h (s) ≤ 0 ⇒ ∀st, h(st) ≤ 0, indicating π can satisfy the hard constraint starting from s.

Moreover, V ∗
h (s) ≤ 0 ⇒ minπ V

π
h ≤ 0 ⇒ ∃π, V π

h ≤ 0, meaning that there exists a policy that
satisfies the hard constraint.

• V π
h (s) > 0⇒ ∃st, h(st) > 0, suggesting π cannot satisfy the hard constraint; and V ∗

h (s) > 0⇒
minπ V

π
h > 0⇒ ∀π, V π

h > 0, meaning that no policy can satisfy the hard constraint.

We can see from these properties that the feasible value function indicates whether policies can sat-
isfy hard constraints (i.e., feasibility of policies); while the optimal feasible value function represents
whether there exists a policy that achieves hard constraints (i.e., feasibility of state), from which we
define the feasible region (Definition 2) (Yu et al., 2022a) and feasible policy set (Definition 3):
Definition 2 (Feasible region). The feasible region of π and the largest feasible region are:

Sπf := {s|V π
h (s) ≤ 0} S∗f := {s|V ∗

h (s) ≤ 0}
Definition 3 (Feasible policy set). For state s, the feasible policy set is: Πf (s) := {π|V π

h (s) ≤ 0}.

Sπf is induced by policy π and includes all the states in which π can satisfy the hard constraint.
S∗f is the largest feasible region, which is the union of all feasible regions (Choi et al., 2021; Li,
2023). Intuitively, S∗f includes all the states where there exists at least one policy that satisfies hard
constraint, and this property formally satisfies the requirement of feasible region in Eq. (4). Besides,
Πf (s) includes all policies that satisfy hard constraint starting from state s. This set can be employed
as a constraint in Eq. (4). Note that the range of Vh is the entire real number space, making Vh more
suitable as a hard constraint compared to Vc, as shown in Figure 1.

Learning Feasible Value Function from Offline Data. Although HJ reachability holds the promise
for enforcing hard constraint, calculating the optimal feasible value function based on Definition 1
requires Monte-Carlo estimation via interacting with the environment (Bajcsy et al., 2019), which
is inaccessible in offline setting. Fortunately, similar to approximate dynamic programming, we can
obtain the approximated optimal feasible value by repeatedly applying a feasible bellman operator
with a discounted factor γ → 1 (Fisac et al., 2019) (Definition 4).
Definition 4 (Feasible Bellman operator). The feasible Bellman operator defined below is a con-
traction mapping, with its fixed point Q∗

h,γ satisfying limγ→1 Q
∗
h,γ → Q∗

h (Fisac et al., 2019).

P∗Qh(s, a) := (1− γ)h(s) + γmax{h(s), V ∗
h (s

′)}, V ∗
h (s

′) = min
a′

Qh(s
′, a′) (7)

4



Published as a conference paper at ICLR 2024

Given the offline dataset D, we can approximate Q∗
h by minimizing ED[(P∗Qh −Qh)

2
]. Note that

the mina′ operation in Eq. (7) could query the out-of-distribution (OOD) actions, potentially leading
to severe underestimation issues in offline setting (Fujimoto et al., 2019). To mitigate this, we
consider a data support constrained operation mina′,s.t.πβ(a′|s′)>0 that aims to estimate the minimum
value over actions that are in the support of data distribution, but this requires an estimation of the
behavior policy πβ . Inspired by Kostrikov et al. (2022) that uses expectile regression to approximate
the maximum value function without explicit behavioral modeling, we adopt a reversed version of
this for learning the optimal (minimum) feasible value function via minimizing Eq. (8)-(9):

LVh
= E(s,a)∼D [Lτ

rev (Qh(s, a)− Vh(s))] , (8)

LQh
= E(s,a,s′)∼D

[
(((1− γ)h(s) + γmax{h(s), Vh(s

′)})−Qh(s, a))
2
]
, (9)

where Lτ
rev(u) = |τ − I(u > 0)|u2. For τ ∈ (0.5, 1), this asymmetric loss diminishes the impact

of Qh values that exceed Vh, placing greater emphasis on smaller values instead. Subsequently, we
can substitute Vh(s

′) for mina′ Qh(s
′, a′) within the feasible Bellman operator. By minimizing Eq.

(8) and Eq. (9), we can predetermine the approximated largest feasible region, as shown in Figure 1.

3.2 FEASIBILITY-DEPENDENT OPTIMIZATION OBJECTIVE

Given the feasible policy set Πf and the predetermined largest feasible region S∗f , we can instantiate
the feasibility-dependent objective in Eq. (4) as follows, with Vc changed to Vh:

Feasible: max
π

Es

[
V π
r (s) · Is∈S∗

f

]
s.t. V π

h (s) ≤ 0, ∀s ∈ S∗
f

DKL(π∥πβ) ≤ ϵ

Infeasible: max
π

Es

[
−V π

h (s) · Is/∈S∗
f

]
s.t. DKL(π∥πβ) ≤ ϵ (10)

Eq. (10) is similar to the objective in the safe online RL method, RCRL (Yu et al., 2022a). However,
RCRL suffers from severe training instability due to its coupling training procedure. In contrast,
we predetermine S∗f from the offline data. However, the training of V π

r , V π
h , and π is still coupling

together, leading to potential training instability. To solve this, we show in Lemma 1 that these
interrelated elements can be fully decoupled. Based on this insight, we devise a new surrogate
learning objective that disentangles the intricate dependencies among these elements.
Lemma 1. The optimization objectives and safety constraints in Eq. (10) can be achieved by sepa-
rate optimization objectives and constraints as follows (see Appendix B.2 for proof):

• Optimization objective in the feasible region: maxπ Ea∼π [A
∗
r(s, a)]⇒ maxπ Es [V

π
r (s)].

• Optimization objective in the infeasible region: maxπ Ea∼π [−A∗
h(s, a)]⇒ maxπ Es [−V π

h (s)].

• Safety constraint in the feasible region:
∫
{a|Q∗

h(s,a)≤0} π(·|s)da = 1⇒ V π
h (s) ≤ 0.

Lemma 1 shows that the maximization objectives in Eq. (10) can be achieved by finding the optimal
advantages A∗

r , A∗
h first, and then optimizing the policy π. The safety constraints in Eq. (10) can also

be enforced by using the predetermined Q∗
h without coupling to other networks. Inspired by this,

we propose a surrogate objective in Eq. (11) that fully decouples the intricate interrelations between
the optimizations of V π

r , V π
h and π. We dub this FISOR (FeasIbility-guided Safe Offline RL) :

Feasible: max
π

Ea∼π

[
A∗

r(s, a) · IV ∗
h
(s)≤0

]
s.t.

∫
{a|Q∗

h
(s,a)≤0}

π(a|s)da = 1, ∀s ∈ S∗
f

DKL(π∥πβ) ≤ ϵ

Infeasible: max
π

Ea∼π

[
−A∗

h(s, a) · IV ∗
h
(s)>0

]
s.t.

∫
a

π(·|s)da = 1

DKL(π∥πβ) ≤ ϵ

(11)

We present an intuitive illustration in Figure 2 to demonstrate the characteristics of Eq. (11). In
feasible regions, FISOR favors actions that yield high rewards while ensuring that the agent remains
within feasible regions. The largest feasible region grants the policy with more freedom to maxi-
mize reward, allowing for enhanced performance. As depicted in Figure 2, agents originating from
feasible regions can effectively find a direct and safe path to the goal.

In infeasible regions, FISOR chooses actions that minimize constraint violations as much as possi-
ble. Figure 2 shows that the agents starting from infeasible regions initially prioritize escaping from
infeasible regions, and then navigate towards the destination along safe paths.
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Figure 2: Trajectories induced by
FISOR from different start points.

The decoupled optimization objective in Eq. (11) allows us to
directly obtain the closed-form solution as shown in Theorem 1
below (see Appendix B.3 for detailed proof):
Theorem 1. The optimal solution for Eq. (11) satisfies:

π∗(a|s) ∝ πβ(a|s) · w(s, a), (12)
where w(s, a) is the weight function, and α1, α2 are tempera-
tures that control the behavior regularization strength:

w(s, a) =

{
exp (α1A

∗
r(s, a)) · IQ∗

h
(s,a)≤0 V ∗

h (s) ≤ 0

exp (−α2A
∗
h(s, a)) V ∗

h (s) > 0
(13)

The optimal solution in Eq. (13) is similar to weighted behav-
ior cloning, but adopts distinct weighting schemes in feasible
and infeasible regions. Using Eq. (13), we can easily extract
the optimal policy in a remarkably simple and stable way, while
achieving a balance between safety assurance, reward maximization, and behavior regularization.

3.3 GUIDED DIFFUSION POLICY LEARNING WITHOUT TIME-DEPENDENT CLASSIFIER

Theorem 1 shows that the optimal policy π∗ needs to choose drastically different behaviors based on
the current state’s feasibility. We use diffusion model to parameterize policies due to its strong abil-
ity in modeling complex distributions (Ho et al., 2020; Wang et al., 2023c). To obtain the weighted
distribution of π∗ in Eq. (12), a simple way is to use classifier-guidance methods to guide the diffu-
sion sampling procedures (Lin et al., 2023; Lu et al., 2023). However, such methods require training
an additional complicated time-dependent classifier, inevitably increasing the overall complexity.
Instead, we demonstrate in Theorem 2 that the exact π∗ in Eq. (12) can in fact be obtained without
the training of time-dependent classifier, thus greatly reducing training difficulty.
Theorem 2 (Weighted regression as exact energy guidance). We can sample a ∼ π∗(a|s) by op-
timizing the weighted regression loss in Eq. (14) and solving the diffusion ODEs/SDEs given the
obtained zθ. (see Appendix C for proof and thorough discussions)

Specifically, the exact π∗ can be obtained by modifying the diffusion training loss for the behavior
policy πβ : minθ Et,(s,a),z

[
∥z − zθ(at, s, t)∥22

]
via simply augmenting the weight function w(s, a)

in Eq. (13) with the following weighted loss:

min
θ
Lz(θ) = min

θ
Et∼U([0,T ]),z∼N (0,I),(s,a)∼D

[
w(s, a) · ∥z − zθ (at, s, t)∥22

]
, (14)

where at = αta + σtz is the noisy action that satisfies the forward transition distribution
N (at|αta, σ

2
t I) in the diffusion model, and αt, σt are human designed noise schedules. After

obtaining θ, we can sample from the approximated optimal policy a ∼ π∗
θ(a|s) by solving the

diffusion ODEs/SDEs (Song et al., 2021) as stated in Theorem 2. Eq. (14) bypasses the training of
the complicated time-dependent classifier in typical guided diffusion models (Lin et al., 2023; Lu
et al., 2023) and forms a weighted regression objective, which has proved stable against directly
maximizing the value functions (Kostrikov et al., 2022). This weighted loss form has been used in
recent studies (Hansen-Estruch et al., 2023; Kang et al., 2023), but they did not provide theoretical
investigation in its inherent connections to exact energy guidance for diffusion policies (Lu et al.,
2023) (see Appendix C.3 for comparison with other guided sampling methods).

3.4 PRACTICAL IMPLEMENTATION

Theorem 1 offers a decoupled solution for extracting the optimal policy from the dataset. The
remaining challenge is how to obtain the optimal advantages A∗

r in advance. In-sample learning
methods, such as IQL (Kostrikov et al., 2022), SQL (Xu et al., 2023) and XQL (Garg et al., 2023),
decouple policy learning from value function learning and allows the approximation of A∗

r = Q∗
r −

V ∗
r without explicit policy, offering improved training stability. We use IQL to learn the optimal

value function Q∗
r and V ∗

r in our method with Lτ (u) = |τ − I(u < 0)|u2, τ ∈ (0.5, 1):
LVr = E(s,a)∼D [Lτ (Qr(s, a)− Vr(s))] , (15)

LQr
= E(s,a,s′)∼D

[
(r + γVr(s

′)−Qr(s, a))
2
]
. (16)
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Table 1: Normalized DSRL (Liu et al., 2023a) benchmark results. ↑ means the higher the better. ↓ means the
lower the better. Each value is averaged over 20 evaluation episodes and 3 seeds. Gray: Unsafe agents. Bold:
Safe agents whose normalized cost is smaller than 1. Blue: Safe agents with the highest reward.

BC CDT BCQ-Lag CPQ COptiDICE TREBI FISOR (ours)
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CarButton1 0.01 6.19 0.17 7.05 0.13 6.68 0.22 40.06 -0.16 4.63 0.07 3.75 -0.02 0.26
CarButton2 -0.10 4.47 0.23 12.87 -0.04 4.43 0.08 19.03 -0.17 3.40 -0.03 0.97 0.01 0.58
CarPush1 0.21 1.97 0.27 2.12 0.23 1.33 0.08 0.77 0.21 1.28 0.26 1.03 0.28 0.28
CarPush2 0.11 3.89 0.16 4.60 0.10 2.78 -0.03 10.00 0.10 4.55 0.12 2.65 0.14 0.89
CarGoal1 0.35 1.54 0.60 3.15 0.44 2.76 0.33 4.93 0.43 2.81 0.41 1.16 0.49 0.83
CarGoal2 0.22 3.30 0.45 6.05 0.34 4.72 0.10 6.31 0.19 2.83 0.13 1.16 0.06 0.33

AntVel 0.99 12.19 0.98 0.91 0.85 18.54 -1.01 0.00 1.00 10.29 0.31 0.00 0.89 0.00
HalfCheetahVel 0.97 17.93 0.97 0.55 1.04 57.06 0.08 2.56 0.43 0.00 0.87 0.23 0.89 0.00

SwimmerVel 0.38 2.98 0.67 1.47 0.29 4.10 0.31 11.58 0.58 23.64 0.42 1.31 -0.04 0.00
SafetyGym

Average 0.35 6.05 0.50 4.31 0.38 11.38 0.02 10.58 0.29 5.94 0.28 1.36 0.30 0.35

AntRun 0.73 11.73 0.70 1.88 0.65 3.30 0.00 0.00 0.62 3.64 0.63 5.43 0.45 0.03
BallRun 0.67 11.38 0.32 0.45 0.43 6.25 0.85 13.67 0.55 11.32 0.29 4.24 0.18 0.00
CarRun 0.96 1.88 0.99 1.10 0.84 2.51 1.06 10.49 0.92 0.00 0.97 1.01 0.73 0.14

DroneRun 0.55 5.21 0.58 0.30 0.80 17.98 0.02 7.95 0.72 13.77 0.59 1.41 0.30 0.55
AntCircle 0.65 19.45 0.48 7.44 0.67 19.13 0.00 0.00 0.18 13.41 0.37 2.50 0.20 0.00
BallCircle 0.72 10.02 0.68 2.10 0.67 8.50 0.40 4.37 0.70 9.06 0.63 1.89 0.34 0.00
CarCircle 0.65 11.16 0.71 2.19 0.68 8.84 0.49 4.48 0.44 7.73 0.49 0.73 0.40 0.11

DroneCircle 0.82 13.78 0.55 1.29 0.95 18.56 -0.27 1.29 0.24 2.19 0.54 2.36 0.48 0.00
BulletGym

Average 0.72 10.58 0.63 2.09 0.71 10.63 0.32 5.28 0.55 7.64 0.56 2.45 0.39 0.10

easysparse 0.32 4.73 0.05 0.10 0.99 14.00 -0.06 0.24 0.94 18.21 0.26 6.22 0.38 0.53
easymean 0.22 2.68 0.27 0.24 0.54 10.35 -0.06 0.24 0.74 14.81 0.19 4.85 0.38 0.25
easydense 0.20 1.70 0.43 2.31 0.40 6.64 -0.06 0.29 0.60 11.27 0.26 5.81 0.36 0.25

mediumsparse 0.53 1.74 0.26 2.20 0.93 7.48 -0.08 0.18 0.64 7.26 0.06 1.70 0.42 0.22
mediummean 0.66 2.94 0.28 2.13 0.60 6.35 -0.08 0.28 0.73 8.35 0.20 1.90 0.39 0.08
mediumdense 0.65 3.79 0.29 0.77 0.64 3.78 -0.08 0.20 0.91 9.52 0.03 1.18 0.49 0.44

hardsparse 0.28 1.98 0.17 0.47 0.48 7.52 -0.04 0.28 0.34 7.34 0.00 0.82 0.30 0.01
hardmean 0.34 3.76 0.28 3.32 0.31 6.06 -0.05 0.24 0.36 7.51 0.16 4.91 0.26 0.09
harddense 0.40 5.57 0.24 1.49 0.39 5.11 -0.04 0.24 0.42 8.11 0.02 1.21 0.30 0.34

MetaDrive
Average 0.40 3.21 0.25 1.45 0.59 7.48 -0.06 0.24 0.63 10.26 0.13 3.18 0.36 0.25

So far, we have transformed the original tightly-coupled safety-constrained offline RL problem into
three decoupled simple supervised objectives: 1) Offline identification of the largest feasible region
(Eq. (8-9)); 2) Optimal advantage learning (Eq. (15-16)); and 3) Optimal policy extraction via
guided diffusion model (Eq. (14)). This disentanglement of learning objectives provides a highly
stable and conducive solution to safe offline RL for practical applications. To further enhance safety,
we sample N action candidates from the diffusion policy and select the safest one (i.e., the lowest
Q∗

h value) as the final output as in other safe RL methods (Dalal et al., 2018; Thananjeyan et al.,
2021). Please see Appendix D.3 and D.4 for implementation details and algorithm pseudocode.
Code is available at: https://github.com/ZhengYinan-AIR/FISOR.

4 EXPERIMENTS

Evaluation Setups. We conduct extensive evaluations on Safety-Gymnasium (Ray et al., 2019; Ji
et al., 2023), Bullet-Safety-Gym (Gronauer, 2022) and MetaDrive (Li et al., 2022) tasks on DSRL
benchmark (Liu et al., 2023a) to evaluate FISOR against other SOTA safe offline RL methods.
We use normalized return and normalized cost as the evaluation metrics, where a normalized cost
below 1 indicates safety. As stated in DSRL, we take safety as the primary criterion for evaluations,
and pursue higher rewards on the basis of meeting safety requirements. In order to mimic safety-
critical application scenarios, we set more stringent safety requirements, where the more difficult
task Safety-Gymnasium has its cost limit set to 10, and other environments are set to 5.

Baselines. We compare FISOR with the following baselines: 1) BC: Behavior cloning that imitates
the whole datasets. 2) CDT (Liu et al., 2023b): A Decision Transformer based method that considers
safety constraints. 3) BCQ-Lag: A Lagrangian-based method that considers safety constraints on the
basis of BCQ (Fujimoto et al., 2019). 4) CPQ (Xu et al., 2022b): Treat the OOD action as an unsafe
action and update the Q-value function with safe state-action. 5) COptiDICE (Lee et al., 2022): A
DICE (distribution correction estimation) based safe offline RL method that builds on OptiDICE
(Lee et al., 2021). 6) TREBI (Lin et al., 2023): A diffusion-based method using classifier-guidance
to sample safe trajectory. See Appendix D for more experimental details.

Main Results. Evaluation results are presented in Table 1. FISOR is the only method that achieves
satisfactory safety performance in all tasks and obtains the highest return in most tasks, demon-
strating its superiority in achieving both safety and high rewards. Other methods either suffer from
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Figure 3: Soft constraint sensitivity experiments for cost limit l in three environments.

Figure 4: Ablations on hyperparameter choices in CarPush1.

severe constraint violations or suboptimal returns. BCQ-Lag tries to balance performance and safety
using the Lagrangian method, but the coupled training procedure makes it unstable and difficult to
find the right balance, leading to inferior safety and reward results. CPQ takes a more conservative
approach by only updating the value function on safe state-action pairs, which can result in very low
returns when constraints are enforced. CDT and TREBI use complex network architectures, which
can meet the constraints and achieve high returns on some tasks, but their overall safety performance
is not very impressive since they use soft constraints.

4.1 ABLATION STUDY AND ANALYSIS

Soft Constraint Under Different Cost Limits. We evaluate the sensitivity of cost limit selection l
for soft-constraint-based methods to demonstrate the effectiveness of hard constraint. We evaluate
three cost limits and present the results in Figure 3. FISOR w/o constraint refers to our algorithm
without safety constraints, focusing solely on maximizing rewards. Figure 3 shows that most soft-
constraint-based methods are highly sensitive to the value of cost limit. In some cases, choosing a
small cost limit even leads to an increase in the final cost. This shows that it is difficult for these
methods to select the right cost limit to achieve the best performance, which requires task-specific
tuning. In contrast, our algorithm, which considers hard constraints, does not encounter this issue
and achieves superior results using only one group of hyperparameters.

Table 2: Ablations on HJ reachability.

w/o HJ FISOR
Task reward ↑ cost ↓ reward ↑ cost ↓

AntRun 0.30 0.44 0.45 0.03

BallRun 0.08 0.14 0.18 0.00

CarRun -0.33 0.00 0.73 0.14

DroneRun -0.11 5.12 0.30 0.55

AntCircle 0.00 0.00 0.20 0.00

BallCircle 0.02 0.81 0.34 0.00

CarCircle 0.01 2.16 0.40 0.11

DroneCircle -0.21 0.26 0.48 0.00

Hyperparameter Choices. We sweep two hyperparameters:
the expectile value τ and the number of sampled action can-
didates N during evaluation. Figure 4 shows that τ and N
primarily affect conservatism level, but do not significantly
impact safety satisfaction. A larger τ and smaller N result
in a more aggressive policy, whereas a smaller τ and larger
N lead to a more conservative behavior. We find that setting
τ = 0.9 and N = 16 consistently yields good results in terms
of both safety and returns. Hence, we evaluate FISOR on all
26 tasks using these same hyperparameters. Please refer to
Appendix D.5 for detailed hyperparameter setups.

Ablations on Each Design Choice. We demonstrate the
effectiveness of individual components of our method: HJ
reachability, feasibility-dependent objective, and diffusion model. 1) To verify the advantage of
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Table 3: Ablations on infeasible objective
and diffusion policies (normalized cost).

Task w/o infeasible w/o diffusion FISOR

CarButton1 4.61 0.72 0.26

CarButton2 6.53 1.73 0.58

CarPush1 0.86 1.21 0.28

CarPush2 3.10 4.45 0.89

CarGoal1 4.00 2.71 0.83

CarGoal2 5.46 2.82 0.33

Figure 5: Safe offline IL results in MetaDrive.

using HJ reachability, we ablate on the choice of determining the largest feasible region using cost
value function instead of feasible value function. This variant is denoted as w/o HJ. The results are
summarized in Figure 1 and Table 2. For the variant w/o HJ, the presence of approximation errors
renders the estimated infeasible region pretty large and inaccurate, which leads to severe policy con-
servatism and hurt final returns. By contrast, the feasible value function in FISOR can accurately
identify the largest feasible region, which greatly increases optimized returns. 2) We train FISOR
by setting the weight for the infeasible region in Eq. (13) to 0 (w/o infeasible) to examine the neces-
sity of minimizing constraint violation in infeasible regions. 3) We also ablate on replacing diffusion
policy with conventional Gaussian policy (w/o diffusion). The results are presented in Table 3, where
w/o infeasible suffers from severe constraint violations without learning recovery behavior in infea-
sible regions. Meanwhile, w/o diffusion struggles to effectively fit the data distribution both inside
and outside the feasible region, resulting in high constraint violations.

Extension to Safe Offline Imitation Learning. We also show the versatility of FISOR by extending
it to the safe offline Imitation Learning (IL) setting, where we aim to learn a safe policy given both
safe and unsafe high-reward trajectories without reward labels. In comparison to 1) BC, 2) BC with
fixed safety penalty (BC-P), and 3) Lagrangian penalty (BC-L), FISOR can imitate expert behavior
and meanwhile avoid unsafe outcomes, as illustrated in Figure 5. See Appendix D.6 for details.

5 RELATED WORK

Most existing safe RL studies focus on the online setting, which typically use the Lagrangian method
to solve the constrained problem (Chow et al., 2017; Tessler et al., 2018; Ding et al., 2020), thus re-
sulting in an intertwined problem with stability issues (Saxena & Cao, 2021). CPO (Achiam et al.,
2017) utilizes trust region technique and theoretically guarantees safety during training. However,
all these methods cannot guarantee safety during the entire online training phase. By contrast, safe
offline RL learns policies from offline datasets without risky online interactions. CPQ (Xu et al.,
2022b) is the first practical safe offline RL method that assigns high-cost values to both OOD and
unsafe actions, which distorts the value function and may cause poor generalizability (Li et al.,
2023b). COptiDICE (Lee et al., 2022) is a DICE-based method (Lee et al., 2021) with safety con-
straints, but the residual learning of DICE may lead to inferior results (Baird, 1995; Mao et al.,
2023). Recently, some methods (Liu et al., 2023b; Lin et al., 2023) incorporate safety into Decision
Transformer (Chen et al., 2021) or Diffuser (Janner et al., 2022) architecture, but are highly com-
putational inefficient. Moreover, all these safe offline RL methods only consider soft constraint that
enforces constraint violations in expectation, which lacks strict safety assurance. Some studies (Choi
et al., 2020; Yang et al., 2023b; Wabersich et al., 2023) utilize safety certificates from control theory,
such as control barrier function (CBF) (Ames et al., 2019; Lee et al., 2023; Kim et al., 2023) and
HJ reachability (Bansal et al., 2017; Fisac et al., 2019; Yu et al., 2022a), to ensure state-wise zero
violations (hard constraint), but only applicable to online RL.

6 CONCLUSION AND FUTURE WORK

We propose FISOR, which enables safe offline policy learning with hard safety constraints. We
introduce an offline version of the optimal feasible value function in HJ reachability to characterize
the feasibility of states.This leads to a feasibility-dependent objective which can be further solved
using three simple decoupled learning objectives. Experiments show that FISOR can achieve su-
perior performance and stability while guaranteeing safety requirements. It can also be extended
to safe offline IL problems. One caveat is that limited offline data size could hurt the algorithm’s
performance. Therefore, extending FISOR to a safe offline-to-online RL framework can be a viable
future direction to improve performance with online interactions, while retaining safety.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work is supported by National Key Research and Development Program of China under Grant
(2022YFB2502904), and funding from Haomo.AI.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pp. 3420–3431. IEEE, 2019.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Andrea Bajcsy, Somil Bansal, Eli Bronstein, Varun Tolani, and Claire J Tomlin. An efficient
reachability-based framework for provably safe autonomous navigation in unknown environ-
ments. In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 1758–1765. IEEE,
2019.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253. IEEE, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Peng Cheng, Xianyuan Zhan, Zhihao Wu, Wenjia Zhang, Shoucheng Song, Han Wang, Youfang Lin,
and Li Jiang. Look beneath the surface: Exploiting fundamental symmetry for sample-efficient
offline rl. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
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A EXTENDED DISCUSSIONS ON RELATED WORKS

A.1 OFFLINE RL

To address the issue of distributional shift when learning RL policies solely from offline datasets, a
straightforward approach is to include policy constraints that enforce the learned policy to remain
close to the behavior policy (Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021; Li
et al., 2023a) or generalizable regions in data (Li et al., 2023b; Cheng et al., 2023). Alternatively,
value regularization methods do not impose direct policy constraints; instead, they penalize the
value of OOD actions to mitigate distributional shift (Kumar et al., 2020; Kostrikov et al., 2021; Niu
et al., 2022; Yang et al., 2022; Lyu et al., 2022). These methods require jointly training actor and
critic networks, which can be unstable in practice. Recently, in-sample learning methods (Kostrikov
et al., 2022; Xu et al., 2023; Wang et al., 2023a; Garg et al., 2023; Xu et al., 2022a; Ma et al.,
2021b) exclusively leverage state-action pairs from the dataset for value and policy learning with
decoupled losses, greatly enhancing stability. In addition, some recent studies employ expressive
diffusion models as policies to capture complex distributions (Janner et al., 2022; Lu et al., 2023;
Hansen-Estruch et al., 2023), also achieving impressive performances.

A.2 ADDITIONAL DISCUSSION ON HARD CONSTRAINT AND SOFT CONSTRAINT

Based on different safety requirements, we divide existing works into two categories: soft constraint
and hard constraint.

Hard Constraint. The hard constraint requires the policy to achieve state-wise zero constraint
violation:

h(st) ≤ 0, a ∼ π,∀t ∈ N.

It can also be represented by cost function:

c(st) = 0, a ∼ π,∀t ∈ N.

Soft Constraint. The most commonly used soft constraint restricts the expected cumulative costs
below the cost limit l:

Eτ∼π [
∑∞

t=0c(st)] ≤ l,Eτ∼π

[∑∞
t=0γ

tc(st)
]
≤ l.

There are a bunch of works focus on the state-wise constraint (Ma et al., 2021a; Zhao et al., 2023):

c(st) ≤ w, a ∼ π,∀t ∈ N.

Since this type of problem still allows for a certain degree of constraint violation, we classify it as a
soft constraint.

Discussions on Related Works (Hard Constraint). There is a group of safe online RL works con-
sidering hard constraints that have inspired us. Wang et al. (2023b) proposed a method for learning
safe policy with joint soft barrier function learning, generative modeling, and policy optimization.
However, the intertwined learning process is not suitable for offline scenarios. SNO-MDP (Wachi &
Sui, 2020) primarily focuses on the expansion of safe regions in online exploration. Additionally, the
Gaussian process modeling approach may lead to considerable computational expense. In contrast,
FISOR can learn the feasible region directly from the dataset without policy evaluation. ISSA (Zhao
et al., 2021) can achieve zero constraint violations, but its need for task-specific prior knowledge to
design safety constraints makes it unsuitable for general cases. RCRL (Yu et al., 2022a) and RE-
SPO (Ganai et al., 2024) employ reachability theory in an online setting, but their use of Lagrangian
iterative solving methods hinders algorithm stability. FISOR achieves stable training across multiple
tasks through its decoupled optimization objectives.

Algorithm Classification In order to better distinguish the safety constraints used by existing meth-
ods and consider their training methods (offline or online), we summarize them as shown in Table 4.
Many safe-control works pretrain safety certificates using offline methods (Robey et al., 2020; Zhao
et al., 2021), but use them for online control without an offline trained policy. These methods are
not considered as safe offline RL algorithms.
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Table 4: Detailed comparisons with related safe RL methods.

Online RL Offline RL

Soft Constraint

CPO (Achiam et al., 2017) CBPL (Le et al., 2019)

RCRL (Chow et al., 2017) CPQ (Xu et al., 2022b)

RCPO (Tessler et al., 2018) COptiDICE (Lee et al., 2022)

FOCOPS (Zhang et al., 2020) CDT (Liu et al., 2023b)

PCPO (Yang et al., 2020) TREBI (Lin et al., 2023)

Sauté (Sootla et al., 2022)

Hard Constraint

RL-CBF-CLF-QP (Choi et al., 2021)

ISSA (Zhao et al., 2021)

FAC-SIS (Ma et al., 2022)

RCRL (Yu et al., 2022a) FISOR (ours)

SRLNBC (Yang et al., 2023a)

SNO-MDP (Wachi & Sui, 2020)

Wang et al. (2023b)

RESPO (Ganai et al., 2024)

B THEORETICAL ANALYSIS

We first analyze the relationship between the feasible-dependent optimization problem in Eq. (4)
and the commonly used safe RL optimization objective in Eq. (1). And we provide the proof of key
Theorems.

B.1 FEASIBILITY-DEPENDENT OPTIMIZATION

This section analyzes the relationship between feasibility-dependent optimization and commonly
used safe RL optimization objectives from a safety perspective. Therefore, we overlook the KL
divergence constraint. The widely used safe RL optimization objective can be written as:

max
π

Es [V
π
r (s)] s.t. Es [V

π
c (s)] ≤ l. (17)

When we consider the hard constraint situation, we can set the cost limit to zero and drop the
expectation in the constraints:

max
π

Es [V
π
r (s)] s.t. V π

c (s) ≤ 0. (18)

First, we divide the state space into two parts: the feasible region and the infeasible region. In the
feasible region, where states are denoted as s ∈ Sf , we can find a policy that satisfies hard constraint
in Eq. (18). Conversely, we cannot find a policy that satisfies hard constraints in the infeasible region
s /∈ Sf . Based on above notations, we introduce Lemma 2 (Proposition 4.2 in Yu et al. (2022a)):

Lemma 2. Eq. (18) is equivalent to:

max
π

Es

[
V π
r (s) · Is∈Sf

− V π
c (s) · Is/∈Sf

]
s.t. V π

c (s) ≤ 0, s ∈ Sf .
(19)

For practical implementation, V π
c (s) ≤ 0 is extremely hard to satisfy due to the approximation error

of neural network as shown in the toy case in Figure 1. So we hope to replace V π
c (s) ≤ 0 with a

new safe policy set Πf (s) that is conductive for practical solving. After adding the KL divergence
constraint back, we got the feasibility-dependent optimization objective as shown in Eq. (4).
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B.2 PROOF OF LEMMA 1

Proof. Due to the involvement of two different optimal policies, one for maximizing rewards
(maxπ Es [V

π
r (s)]) and the other for minimizing constraint violations (maxπ −V π

h (s)), in the proof
process, in order to avoid confusion, we will use π∗

r and π∗
h to represent them respectively:

π∗
r ← argmax

π
Es[V

π
r (s)],

π∗
h ← argmax

π
−V π

h (s),∀s.
(20)

Next, we will proceed with the proofs of the three subproblems separately.

Optimization Objective in the Feasible Region. The expected return of policy π in terms of the
advantage over another policy π̃ can be expressed as (Schulman et al., 2015; Kakade & Langford,
2002):

η(π) = η(π̃) + Es∼dπ(s)Ea∼π

[
Aπ̃

r (s, a)
]
, (21)

where η(π) := Es [V
π
r (s)] and dπ(s) is the discounted visitation frequencies. Considering the case

where π̃ is the optimal policy π∗
r . Eq. (21) can be rewritten as:

η(π) = η(π∗
r ) + Es∼dπ(s)Ea∼π [A

∗
r(s, a)] , (22)

According to Eq. (22), we can deduce:

max
π

Ea∼π [A
∗
r(s, a)]

i⇒max
π

Es∼dπ(s)Ea∼π [A
∗
r(s, a)]

ii⇔max
π

η(π∗
r ) + Es∼dπ(s)Ea∼π [A

∗
r(s, a)]

iii⇔max
π

η(π)

iv⇔max
π

Es [V
π
r (s)] .

Transformation (i) holds since the optimal policy for maxπ Ea∼π [A
∗
r(s, a)] guarantees the maxi-

mization of expected advantage in any state and thus for the states from the state visitation distribu-
tion dπ . It does not affect the optimality of taking the expected value over states. Transformation
(ii) is achieved by adding η(π∗

r ), which is unrelated to the optimization variable π. Transformation
(iii) holds by using Eq. (22). Transformation (iv) holds by using the definition of η(π).

Optimization Objective in the Infeasible Region.

max
π

Ea∼π [−A∗
h(s, a)]

i⇔min
π

Ea∼π [Q
∗
h(s, a)]

ii⇔min
π

Ea∼π

[
max
t∈N

h(st), s0 = s, a0 = a, at+1 ∼ π∗
h(· | st+1)

]
iii⇔max

π
−V π

h (s)

⇒max
π

Es [−V π
h (s)]

Transformation (i) is achieved by using the definition of A∗
h(s, a) := Q∗

h(s, a) − V ∗
h (s),

where V ∗
h (s) is unrelated to the action. Transformation (ii) is achieved by using the Defi-

nition 1. The definition of Q∗
h(s, a) is that in the first step, action a is taken, and subse-

quently, the safest policy is followed. Transformation (iii): According to the definition of π∗
h,

Ea∼π [maxt∈N h(st), s0 = s, a0 = a, at+1 ∼ π∗
h(· | st+1)] is minimized if and only if π is the opti-

mal policy π∗
h.
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Safety Constraint in the Feasible Region.∫
{a|Q∗

h(s,a)≤0}
π(·|s)da = 1

i⇔Q∗
h(s, a)π(a|s) ≤ 0

ii⇒V π
h (s) ≤ 0

Transformation (i):
∫
{a|Q∗

h(s,a)≤0} π(·|s)da = 1 means that all possible output action a of the policy
need to satisfy Q∗

h(s, a) ≤ 0. Specifically, for action a, if π(a|s) is greater than 0, then Q∗ must
be less than or equal to 0. For actions with a probability density of 0, we no longer require a
specific value for Q∗

h , meaning that Q∗
h(s, a)π(a|s) ≤ 0. Transformation (ii) can be derived by

mathematical induction. In details, Q∗
h(s, a)π(a|s) ≤ 0 implies that for the transition (s, a) → s′,

V ∗(s′) ≤ 0 holds according to Definition 1. This means the next state s′ is also a feasible state.
Then, for this feasible s′, we can also obtain a feasible state (s′, a′) → s′′ with V ∗(s′′) ≤ 0 by
constraining Q∗

h(s
′, a′)π(a′|s′) ≤ 0. Then, we can derive that all states visited by π starting from a

feasible region still locate in feasible region, so Q∗
h(s, a)π(a|s) ≤ 0⇒ V π

h (s) ≤ 0 by mathematical
inductions.

B.3 PROOF OF THEOREM 1

Proof. We first consider the situation when states within feasible region, i.e., V ∗
h ≤ 0. The analytic

solution for the constrained optimization problem can be obtained by enforcing the KKT conditions.
Then construct the Lagrange function as:

L1(π, λ1, µ1) = Ea∼π [A
∗
r(s, a)]− λ1

(∫
{a|Q∗

h(s,a)≤0}
π(·|s)da− 1

)
− µ1 (DKL(π∥πβ)− ϵ)

Differentiating with respect to π gives:

∂L1

∂π
= A∗

r(s, a)− µ1 log πβ(a|s) + µ1 log π(a|s) + µ1 − λ1

where λ1 = λ1 · IQ∗
h(s,a)≤0. Setting ∂L1

∂π to zero and solving for π gives the closed-form solution:

π∗(a|s) = 1

Z1
πβ(a|s) exp (α1A

∗
r(s, a)) · IQ∗

h(s,a)≤0

where α1 = 1/µ1, Z1 is a normalizing constant to make sure that π∗ is a valid distribution.

For states in the infeasible region, i.e., V ∗
h > 0, we can use the same method to derivation the

closed-form solution. The Lagrange function of the infeasible part is:

L2(π, λ2, µ2) = Ea∼π [−A∗
h(s, a)]− λ2

(∫
a

π(·|s)da− 1

)
− µ2 (DKL(π∥πβ)− ϵ)

Setting ∂L2

∂π to zero and solving for π gives the closed form solution:

π∗(a|s) = 1

Z2
πβ(a|s) exp (−α2A

∗
h(s, a))

where α2 = 1/µ2, the effect of Z2 is equivalent to that of Z1.

C GUIDED DIFFUSION POLICY LEARNING WITHOUT TIME-DEPENDENT
CLASSIFIER

We first briefly review diffusion models, then present the inherent connections between weighted
regression and exact energy guided diffusion sampling (Lu et al., 2023).
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C.1 A RECAP ON DIFFUSION MODEL

Diffusion models (Ho et al., 2020; Song et al., 2021) are powerful generative models that show ex-
pressive ability at modeling complex distributions. Following the most notations in (Lu et al., 2023),
given an dataset D = {xi

0}Di=1 with D samples x0 from an unknown data distribution q0(x0), dif-
fusion models aim to find an approximation of q0(x0) and then generate samples from this approx-
imated distribution.

Diffusion models consist of two processes: forward noising process and reverse denoising process.
During the forward nosing process, diffusion models gradually add Gaussian noise to the original
data samples x0 from time stamp 0 to T > 0, resulting in the noisy samples xT . The forward
noising process from x0 to xT satisfies the following transition distribution qt0(xt|x0), t ∈ [0, T ]:

qt0(xt|x0) = N (xt|αtx0, σ
2
t I), t ∈ [0, T ], (23)

where αt, σt > 0 are fixed noise schedules, which are human-designed to meet the requirements that
qT (xT |x0) ≈ qT (xT ) ≈ N (xT |0, σ̃2I) for some σ̃ > 0 that is independent of x0, such as Variance
Preserving (VP) (Song et al., 2021; Ho et al., 2020) or Variance-Exploding (VE) schedules (Song &
Ermon, 2019; Song et al., 2021). Given the forward noising process, one can start from the marginal
distribution at qT (xT ), i.e., xT ∼ N (xT |0, σ̃2I) and then reverse the forward process to recover
the original data x0 ∼ q0(x0). This reverse denoising process can be equivalently solved by solving
a diffusion ODE or SDE (Song et al., 2021):

(Diffusion ODE) dxt =

[
f(t)xt −

1

2
g2(t)∇xt log qt(xt)

]
dt (24)

(Diffusion SDE) dxt =
[
f(t)xt − g2(t)∇xt

log qt(xt)
]
dt+ g(t)dw̄ (25)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt −2d logαt

dt σ2
t are determined by the fixed noise schedules αt, σt,

w̄ is a standard Wiener process when time flows backwards from T to 0. The only unknown element
in Eq. (24-25) is the score function ∇xt log qt(xt), which can be simply approximated by a neural
network zθ(xt, t) via minimizing a MSE loss (Ho et al., 2020; Song et al., 2021):

min
θ

Ext,t∼U([0,T ])

[
∥zθ(xt, t) + σt∇xt log qt(xt)∥22

]
⇔min

θ
Ext,t∼U([0,T ]),z∼N (0,I)

[
∥z − zθ(xt, t)∥22

] (26)

where x0 ∼ q0(x0), xt = αtx0 + σtz. Given unlimited model capacity and data, the esitimated
θ satisfies zθ(xt, t) ≈ −σt∇xt

log qt(xt). Then, zθ can be substituted into Eq. (24-25) and solves
the ODEs/SDEs to sample x0 ∼ q0(x0).

C.2 CONNECTIONS BETWEEN WEIGHTED REGRESSION AND EXACT ENERGY GUIDANCE

In our paper, we aim to extract the optimal policy π∗ in Eq. (12), which behaves as a weighted
distribution form as:

π∗(a|s) ∝ πβ(a|s)w(s, a), (27)
where πβ is the behavior policy that generates the offline dataset D and w(s, a) is a feasibility-
dependent weight function that assigns high values on safe and high-reward (s, a) pairs. This can
be abstracted as a standard energy guided sampling problem in diffusion models (Lu et al., 2023):

p0(x0) ∝ q0(x0)f(E(x0)), (28)

where p0(x0) is the interested distribution which we want to sample from, q0(x0) is parameter-
ized by a pretrained diffusion model trained by Eq. (26), E(x0) is any form of energy function that
encodes human preferences (e.g. cumulative rewards, cost value functions), f(x) ≥ 0 can be any
non-negative function. To sample x0 ∼ p0(x0) with the pretrained q0(x0) and the energy func-
tion E , previous works typically train a separate time-dependent classifier Et and then calculating a
modified score function (Lu et al., 2023; Janner et al., 2022; Lin et al., 2023):

∇xt
log pt(xt) = ∇xt

log qt(xt)−∇xt
f∗(Et(xt)), (29)

19



Published as a conference paper at ICLR 2024

where f∗(x) is determined by the choice of f(x). Then, one can sample x0 ∼ p0(x0) by solving a
modified ODEs/SDEs via replacing∇xt

log qt(xt) with∇xt
log pt(xt) in Eq. (24-25). This kind of

guided sampling method requires the training of an additional time-dependent classifier Et, which is
typically hard to train (Lu et al., 2023) and introduces additional training errors.

Weighted Regression as Exact Energy Guidance. In this paper, we find that by simply augmenting
the energy function into Eq. (26) and forming a weighted regression loss in Eq. (30), we can obtain
the ∇xt

log pt(xt) in Eq. (29) without the training of any time-dependent classifier, which greatly
simplifies the training difficulty:

min
θ

Ext,t∼U([0,T ]),z∼N (0,I)

[
f(E(x0))∥z − zθ(xt, t)∥22

]
(30)

Theorem 3. We can sample x0 ∼ p0(x0) by optimizing the weighted regression loss in Eq. (30)
and substituting the obtained zθ into the diffusion ODEs/SDEs in Eq. (24-25).

Proof. We denote qt(xt) and pt(xt) as the marginal distribution of the forward noising process
at time t starting from q0(x0) and p0(x0), respectively. We let the forward noising processes of
qt0(xt|x0) and pt0(xt|x0) share the same transition distribution, that is

qt0(xt|x0) = pt0(xt|x0) = N (xt|αtx0, σ
2
t I), t ∈ [0, T ], (31)

Then, we have

pt(xt) =

∫
pt0(xt|x0)p0(x0)dx0

=

∫
qt0(xt|x0)

q0(x0)f(E(x0))

Z
dx0

(32)

where the first equation holds for the definition of marginal distribution, the second equation holds
for the definition of p0(x0) ∝ q0(x0)f(E(x0)) and Z =

∫
q0(x0)f(E(x0))dx0 is a normalization

constant to make p0 a valid distribution.

Then, taking the derivation w.r.t xt on the logarithm of each side of Eq. (32), we have

∇xt log pt(xt) = ∇xt log

∫
qt0(xt|x0)q0(x0)f(E(x0))dx0

=

∫
∇xt

qt0(xt|x0)q0(x0)f(E(x0))dx0∫
qt0(xt|x0)q0(x0)f(E(x0))dx0

=

∫
∇xt

qt0(xt|x0)q0(x0)f(E(x0))dx0

pt(xt)

=

∫
qt0(xt|x0)q0(x0)f(E(x0))∇xt log qt0(xt|x0)dx0

pt(xt)
,

(33)

where the first equation holds since Z is a constant w.r.t xt and thus can be dropped. To approximate
the score function∇xt log pt(xt), we can resort to denoising score matching (Song & Ermon, 2019)
via optimizing the following objective:
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min
θ

∫
pt(xt)

[
∥zθ(xt, t) + σt∇xt

log pt(xt)∥22
]
dxt

i⇔min
θ

∫
pt(xt)

[∥∥∥∥zθ(xt, t) + σt

∫
qt0(xt|x0)q0(x0)f(E(x0))∇xt log qt0(xt|x0)dx0

pt(xt)

∥∥∥∥2
2

]
dxt

ii⇔min
θ

∫
pt(xt)

[
∥zθ(xt, t)∥22 + 2σtzθ(xt, t)

∫
qt0(xt|x0)q0(x0)f(E(x0))∇xt

log qt0(xt|x0)dx0

pt(xt)

]
dxt

iii⇔min
θ

∫ ∫ ∫
q0(x0)qt0(xt|x0)f(E(x0))

[
∥zθ(xt, t) + σt∇xt

log qt0(xt|x0)∥22
]
dx0dtdz

iv⇔min
θ

Ex0∼q0(x0),t∼U([0,T ]),z∼N (0,I)

[
f(E(x0)) ∥zθ(xt, t)− z∥22

]
(34)

where xt = αtx0 + σtz. Transformation (i) holds by substituting Eq. (33) into ∇xt
log pt(xt).

Transformation (ii) holds by expanding the L2 norm according to its definition and drop the terms
that are independent to θ. Transformation (iii) holds by rearranging (ii). Transformation (iv) holds
since qt0(xt|x0) = N (xt|αtx0, σ

2
t I), which is re-parameterized as xt = αtx0 + σtz, z ∼

N (0, I). Therefore, σt∇xt log qt0(xt|x0) = −z. Eq. (34) is exactly the weighed regression loss in
Eq. (30), meaning that the exact p0(x0) can be obtained by training this simple weighted regression
loss and completes the proof.

Theorem 2 can be easily obtained via replacing p0 with π∗, replacing q0 with πβ and replacing f(E)
with w. Some recent works also mention the weighted regression form (Hansen-Estruch et al., 2023;
Kang et al., 2023), but they do not identify these inherent connections between weighted regression
and exact energy guidance. Based on Theorem 3, we show that we can extract π∗ using the weighted
regression loss in Eq. (14).

C.3 COMPARISONS WITH OTHER GUIDED SAMPLING METHODS

Diffusion models are powerful generative models. The guided sampling methods in diffusion mod-
els allow humans to embed their preferences to guide the diffusion models to generate desired out-
puts (Lu et al., 2023; Ajay et al., 2023; Janner et al., 2022; Ho & Salimans, 2021; Dhariwal & Nichol,
2021), such as the policy that obtains the highest rewards and adheres to zero constraint violations.

Classifier-Free Guidance. One of the most popular guided sampling methods is the classifier-free
guided sampling method (Ajay et al., 2023; Ho & Salimans, 2021), which trains the diffusion model
with the condition information assistance to implicitly achieve classifier guidance. However, the
conditioned variables may not be always easy to acquire. In contrast, it may be easy for us to obtain
a scalar function that encodes our preferences such as the cost value or reward value functions.

Classifier Guided Sampling. The other most popular guided sampling method is classifier guided
sampling (Lu et al., 2023; Janner et al., 2022; Dhariwal & Nichol, 2021), which trains a separate
time-dependent classifier and uses its gradient to modify the score function during sampling like
Eq. (29) does. This guided sampling method requires the training of an additional time-dependent
classifier, which is typically hard to train and may suffer from large approximation errors (Lu et al.,
2023). In contrast, we smartly encode the classifier information into the diffusion model in the
training stage through the weighted regression loss in Eq. (30), which avoids the training of the
complicated time-dependent classifier, greatly simplifying the training.

Direct Guided Sampling. Some diffusion-based offline RL methods directly use diffusion models
to parameterize the policy and update diffusion models to directly maximize the Q value (Wang
et al., 2023c). This requires the gradient backward through the entire reverse denoising process,
inevitably introducing tremendous computational costs.

Sample-based Guided Sampling. Some diffusion-based offline RL methods directly use diffusion
models to fit the behavior policy πβ and then sample a lot of action candidates from the approximated
πβ and then select the best one based on the classifier signal such as value functions (Hansen-Estruch
et al., 2023; Chen et al., 2023). Although its simplicity, these methods show surprisingly good
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performances. Inspired by this, we also generate some action candidates and select the safest one to
enhance safety.

D EXPERIMENTAL DETAILS

This section outlines the experimental details to reproduce the main results in our papers.

D.1 DETAILS ON TOY CASE EXPERIMENTS

The toy case experiments in this paper primarily focus on the reach-avoid control task (Yang et al.,
2023a; Ma et al., 2021a), where the agent is required to navigate to the target location while avoiding
hazards. The state space of the agent can be represented as: S := (x, y, v, θ), where x and y
correspond to the agent’s coordinates, v represents velocity, and θ represents the yaw angle. The
action space of the agent can be represented as: A := (v̇, θ̇), where v̇ corresponds to the acceleration,
θ̇ represents angular acceleration. The reward function r is defined as the difference between the
distance to the target position at the previous time step and the distance at the current time step. A
larger change in distance implies a higher velocity and results in a higher reward. The constraint
violation function h is defined as:

h := Rhazard −min {dhazard1, dhazard2}

where Rhazard is the radius of the hazard. dhazard1, dhazard2 are the distances between the agent and
two hazards. When h ≤ 0, the agent collides with the hazard, otherwise the agent is in a safe state.
Correspondingly, c is defined as c := max(h, 0).

To obtain the ground truth largest feasible region, based on the current agent’s state, we use the safest
policy (maximum deceleration, maximum angular acceleration away from hazards). If no collision
occurs, the current state is within the largest feasible region.

We use the converged DRPO (Yu et al., 2022b) algorithm to collect 50k of interactive data, and use
a randomly initialized policy to collect 50k of data, totaling 100k, for FISOR training. The data
distribution is illustrated in Figure 1 (b).

In the toy case environment, we also conduct ablation experiments focusing on the selection of
parameter τ in Eq. (8) and visualized the feasible region in Figure 6. See from the results that with
a small τ value, the learned feasible region will become smaller and more conservative. This is
acceptable since a smaller feasible region will not likely induce false negative infeasible regions and
is beneficial to induce safe policies.

Figure 6: Visualization of feasible region under different τ .

D.2 TASK DESCRIPTION

Safety-Gymnasium (Ray et al., 2019; Ji et al., 2023). Environments based on the Mujoco physics
simulator. For the agent Car there are three tasks: Button, Push, Goal. 1 and 2 are used to
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represent task difficulty. In these tasks, agents need to reach the goal while avoiding hazards. The
tasks are named as {Agent}{Task}{Difficulty}. Safety-Gymnasium also provides three
velocity constraint tasks based on Ant, HalfCheetah, and Swimmer. Figure 7 visualizes the
tasks in Safety-Gymnasium.

Figure 7: Visualization of the Safety-Gymnasium environments.

Bullet-Safety-Gym (Gronauer, 2022). Environments based on the PyBullet physics simulator.
There are four types of agents: Ball, Car, Drone, Ant, and two types of tasks: Circle, Run.
The tasks are named as {Agent}{Task}. Figure 8 (a) visualizes the tasks in Bullet-Safety-Gym.

MetaDrive (Li et al., 2022). Environments based on the Panda3D game engine simulate real-world
driving scenarios. The tasks are named as {Road}{Vehicle}. Road includes three different
levels for self-driving cars: easy, medium, hard. Vehicle includes four different levels of
surrounding traffic: sparse, mean, dense. Figure 8 (b) visualizes the tasks in MetaDrive.

Figure 8: Visualization of the Bullet-Safety-Gym and MetaDrive environments.

D.3 ADDITIONAL EXPERIMENTAL DETAILS

Evaluation metrics. Our evaluation protocol strictly follows the recent safe offline RL benchmark
DSRL (Liu et al., 2023a), we use the normalized reward return and the normalized cost returns as

https://www.safety-gymnasium.com/en/latest/
https://github.com/liuzuxin/Bullet-Safety-Gym/
https://github.com/liuzuxin/DSRL
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the evaluation metrics: Rnormalized = Rπ−rmin

rmax−rmin
, Cnormalized = Cπ+ϵ

l+ϵ , where Rπ =
∑

t rt is the
policy’s reward return and Cπ =

∑
t ct is its cost return. In all the benchmark tasks, the per-step

cost ct = 0 if the state is safe and ct > 0 for unsafe states (Ray et al., 2019; Gronauer, 2022;
Li et al., 2022). rmin and rmax are the minimum and maximum reward return in the offline data,
respectively. l is a human-defined cost limit. ϵ is a positive number to ensure numerical stability if
l = 0. Following the DSRL benchmark, the task is considered safe when Cπ does not exceed the
cost limit l, or in other words Cnormalized is no larger than 1.

Feasible Value Function Learning. According to the loss function of the feasible value functions in
Eq. (9), we need to perform function learning using the constraint violation function h(s). However,
the DSRL (Liu et al., 2023a) benchmark used in the experiment does not provide it, but only provides
a cost function c(s). Therefore, we simply employ a sparse h(s) function design. Specifically, when
c(s) = 0, the state is safe, h(s) = −1; when c > 0, the state is unsafe, h = M(M > 0). For optimal
algorithm performance, we observe that it works best when the predicted mean of the feasible value
function is around 0. Based on this, we consistently chose M = 25 across all experiments. Note
that determining the value of M doesn’t need online evaluations for hyperparameter selection since
we only need to monitor the mean value of V ∗

h without any online interactions.

Network Architecture and Training Details. We implement the feasible value functions and value
functions with 2-layer MLPs with ReLU activation functions and 256 hidden units for all networks.
During the training, we set the τ for expectile regression in Eq. (8) and Eq. (15) to 0.9. And we use
clipped double Q-learning (Fujimoto et al., 2018), taking a minimum of two Qr and a maximum of
two Qh. We update the target network with α = 0.001. Following Kostrikov et al. (2022), we clip
exponential advantages to (−∞, 100] in feasible part and (−∞, 150] in infeasible part. And we set
the temperatures in Eq. (13) with α1 = 3 and α2 = 5. In our paper, we use the diffusion model in
IDQL (Hansen-Estruch et al., 2023), which is implemented by JAXRL.

D.4 PSEUDOCODE AND COMPUTATIONAL COST

The pseudocode of FISOR is presented in Algorithm 1. We implement our approach using the JAX
framework (Bradbury et al., 2018). On a single RTX 3090 GPU, we can perform 1 million gradient
steps in approximately 45 minutes for all tasks.

Algorithm 1 Feasibility-Guided Safe Offline RL (FISOR)

Initialize networks Qh, Vh, Qr, Vc, zθ.
Optimal feasible value function learning:
for each gradient step do

Update Vh using Eq. (8)
Update Qh using Eq. (9)

end for
Optimal value function learning (IQL):
for each gradient step do

Update Vr using Eq. (15)
Update Qr using Eq. (16)

end for
Guided diffusion policy learning:
for each gradient step do

Update zθ using Eq. (14)
end for

D.5 HYPERPARAMETERS

We use Adam optimizer with a learning rate 3e−4 for all networks. The batch size is set to 256 for
value networks and 2048 for the diffusion model. We report the detailed setup in Table 5.

https://github.com/ikostrikov/jaxrl
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Table 5: Hyperparameters of FISOR

Parameter Value

Optimizer Adam

Learning rate 3e-4

Value function batch size 256

Diffusion model batch size 2048

Number of hidden layers (value function) 2

Number of neurons in a hidden layer 256

Activation function ReLU

Expectile τ 0.9

Feasible temperature α1 3

Infeasible temperature α2 5

Discount factor γ 0.99

Soft update α 0.001

Exponential advantages clip (feasible) (−∞, 100]

Exponential advantages clip (infeasible) (−∞, 150]

Number of times Gaussian noise is added T 5

Number of action candidates N 16

Training steps 1e6

D.6 DETAILS ON SAFE OFFLINE IMITATION LEARNING

We can also extend FISOR to the domain of safe offline imitation learning (IL), showcasing the
strong adaptability of the algorithm.

Task Description. We test FISOR in three MetaDrive (Li et al., 2022) environments:
mediumsparse, mediummean, mediumdense. Based on the dataset provided by DSRL (Liu
et al., 2023a), we select trajectories with high rewards that are larger than 220 (expert dataset), in-
cluding both safe and unsafe trajectories, as shown in Figure 9. The dataset does not include reward
information but the cost function is retained.

Figure 9: Visualization of the expert dataset trajectories on the cost-return space.

Baselines. To apply FISOR in the safe offline IL setting, it suffices to modify Eq. (13) to:

wIL(s, a) =

{IQ∗
h(s,a)≤0 V ∗

h (s) ≤ 0 (Feasible)

exp (−α2A
∗
h(s, a)) V ∗

h (s) > 0 (Infeasible)
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In the IL experiment, we adjust the batch size of the diffusion model to 1024, set the constraint
Violation scale M to 1, and keep the rest consistent with Table 5.

BC-P adds a fixed safety penalty on top of BC (akin to TD3+BC (Fujimoto & Gu, 2021)), and its
loss can be written as:

BC-P : min
θ
Lπ(θ) = min

θ
E(s,a)∼D

[
(πθ(s)− a)

2
+ k ·Qπ

c (s, a)
]
,

where k is a constant used to control the level of punishment and is set as k = 5.

Compared to BC-P, BC-L replaces k with an adaptive PID-based Lagrangian multiplier (Stooke
et al., 2020), and introduces a cost limit l = 10. Its loss can be written as:

BC-L : min
θ
Lπ(θ) = min

θ
E(s,a)∼D

[
(πθ(s)− a)

2
+ λ · (Qπ

c (s, a)− l)
]
.

Each experiment result is averaged over 20 evaluation episodes and 5 seeds.

D.7 EXPERIMENTS OF EXTENDING SAFE ONLINE RL TO OFFLINE SETTINGS

Besides the safe offline RL baselines, we adapted some safe online RL methods to offline settings.
Specifically, we consider Sauté (Sootla et al., 2022) and RCRL (Yu et al., 2022a), as Sauté has good
versatility and RCRL also utilizes HJ Reachability to enforce hard constraints.

However, directly applying safe online RL methods in offline settings faces the distributional shift
challenge. Moreover, it is also difficult to strike the right balance among three highly intricate and
correlated aspects: safety constraint satisfaction, reward maximization, and behavior regulariza-
tion in offline settings. Considering these challenges, we added a behavior regularization term like
TD3+BC (Fujimoto & Gu, 2021) into Sauté and RCRL to combat the distributional shift. Also, we
carefully tuned the conservatism strength to find a good balance that can obtain good results.

In particular, Sauté (Sootla et al., 2022) handles the safety constraints by integrating them into the
state space and modifying the objective accordingly, which can be easily applied to both online RL
methods. We incorporated this method into the state-of-the-art offline RL algorithm, TD3+BC (Fu-
jimoto & Gu, 2021) (Sauté-TD3BC). The policy loss can be written as:

Sauté-TD3BC : min
θ
Lπ(θ) = min

θ
E(s,a)∼D

[
(πθ(s)− a)

2 − λ · Q́π
r (s, a)

]
,

where Q́π
r is the Sautéd action-value function.

RCRL (Yu et al., 2022a), based on reachability theory (hard constraint) and using Lagrangian it-
erative solving, can be combined with TD3+BC to mitigate potential distributional shift issues in
offline settings (RC-TD3BC). Its loss can be written as:

RC-TD3BC : min
θ
Lπ(θ) = min

θ
E(s,a)∼D

[
(πθ(s)− a)

2 − λ1 ·Qπ
r (s, a) + λ2(s)Q

π
h(s, a)

]
.

We test the Sauté-TD3BC and RC-TD3BC on DSRL datasets and carefully tune the hyper-
parameters to find good results, the results are presented in Table 6. However, these methods fail
to obtain good results even with carefully swept hyper-parameters due to the intricate coupling
objectives including reward maximization, safety satisfaction, and distributional shift. In detail,
Sauté-TD3BC still permits some constraint violations, failing to effectively balance maximizing re-
wards and meeting safety constraints. RC-TD3BC uses hard constraints, but its coupled solving
approach tends to make the algorithm overly conservative. Despite adopting the TD3+BC solving
method, RC-TD3BC still faces distributional shift issues. Therefore, naively extending safe online
RL algorithms directly to offline settings can lead to reduced algorithm performance and issues like
distributional shifts.

D.8 DATA QUANTITY SENSITIVITY EXPERIMENTS.

We select some competitive baselines that achieve relatively good safety and reward performances
in Table 1 and train them with 1/2 and 1/10 of the data volume. Figure 10 shows that all baselines
fail miserably under the small data setting that only contains 1/10 of the original data. FISOR,
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Table 6: Results of extending safe online RL to offline settings. ↑ means the higher the better. ↓
means the lower the better. Each value is averaged over 20 evaluation episodes and 3 seeds. Gray:
Unsafe agents. Bold: Safe agents whose normalized cost is smaller than 1. : Safe agent with the
highest reward.

Sauté-TD3BC RC-TD3BC FISOR (ours)
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CarButton1 -0.03 3.48 -0.10 3.89 -0.02 0.26
CarButton2 -0.06 5.48 -0.12 2.30 0.01 0.58
CarPush1 0.19 0.97 0.24 1.81 0.28 0.28
CarPush2 0.05 3.03 0.16 3.48 0.14 0.89
CarGoal1 0.34 1.56 0.44 3.84 0.49 0.83
CarGoal2 0.23 3.36 0.33 4.18 0.06 0.33

AntVel 0.80 1.12 -1.01 0.00 0.89 0.00
HalfCheetahVel 0.95 11.87 -0.37 0.21 0.89 0.00

SwimmerVel 0.44 8.95 -0.03 1.09 -0.04 0.00
SafetyGym

Average 0.32 4.42 -0.05 2.31 0.30 0.35

AntRun 0.48 1.56 0.02 0.00 0.45 0.03
BallRun 0.24 3.43 -0.08 16.55 0.18 0.00
CarRun 0.87 1.50 -0.24 33.35 0.73 0.14

DroneRun 0.42 13.38 -0.19 9.8 0.30 0.55
AntCircle 0.22 17.57 0.00 0.00 0.20 0.00
BallCircle 0.61 1.13 0.10 29.18 0.34 0.00
CarCircle 0.61 3.81 0.01 45.11 0.40 0.11

DroneCircle -0.11 1.22 -0.25 3.04 0.48 0.00
BulletGym

Average 0.42 5.45 -0.08 17.13 0.39 0.10

easysparse 0.01 6.19 -0.06 0.24 0.38 0.53
easymean 0.31 3.61 -0.06 0.20 0.38 0.25
easydense -0.03 0.49 -0.05 0.12 0.36 0.25

mediumsparse 0.37 2.25 -0.08 0.33 0.42 0.22
mediummean 0.01 6.19 -0.07 0.10 0.39 0.08
mediumdense 0.11 1.62 -0.07 0.20 0.49 0.44

hardsparse 0.26 4.37 -0.04 0.22 0.30 0.01
hardmean 0.11 2.00 -0.03 0.56 0.26 0.09
harddense -0.02 0.42 -0.03 0.48 0.30 0.34

MetaDrive
Average 0.13 3.02 -0.05 0.27 0.36 0.25

however, still meets safety requirements and demonstrates more stable performance compared to
other methods, although a reduction in data volume weakens FISOR’s safety a little. We believe
FISOR enjoys such good stability as it decouples the intricate training processes of safe offline RL,
which greatly enhances training performances.

E LIMITATIONS AND DISCUSSIONS

A limitation of FISOR is its requirement for more hyper-parameter tuning, such as the for-
ward/reverse expectile and policy extraction temperatures. However, our experiments demonstrate
that the algorithm’s performance is not sensitive to hyper-parameter variations. Using only a single
set of hyper-parameters, FISOR consistently outperforms baselines and obtains great safety/reward
performances on 26 tasks. Moreover, safety constraints with disturbances or probabilistic constraint
can be challenging for FISOR. These constraints may affect network estimations and impact the
algorithm’s performance.
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Figure 10: Data quantity sensitivity experiment results

While FISOR performs well on most tasks, it still struggles to achieve zero constraint violations in
some cases. We attempt to analyze this issue and identify the following potential reasons:

• We use Q∗
h to construct safety constraint, which in theory can transform to V π

h as stated in Ap-
pendix B.2. However, in the offline setting, we can only conduct constraints on the state distribu-
tion dD induced by the offline dataset D rather than the whole state space. Therefore, the transfer
from V π

h to Q∗
h requires another assumption on the data coverage that 0 ≤ dπ(s)

dD(s)
≤ C since

Q∗
h(s, a)d

D(s)π(a|s)⇒ Q∗
h(s, a)d

π(s)π(a|s) only when the offline data has a good coverage on
the policy distribution dπ . Strictly enforcing the policy distribution dπ staying within the support
of offline data distribution, however, remains a longstanding challenge for offline RL (Lee et al.,
2021; Levine et al., 2020). One can use V π

h to enforce safety constraints. However, training the
V π
h is coupled with its policy training, which hinders algorithm stability as discussed before.

• In the offline setting, it is difficult to obtain the true value of V ∗
h and V ∗

r . Instead, we only have
access to a near-optimal value function within the data distribution. Learning the optimal solution
with limited data also remains a challenging problem (Kostrikov et al., 2022; Xu et al., 2023; Garg
et al., 2023; Xiao et al., 2023).

Despite the inherent challenges of offline policy learning, to the best of our knowledge, our work
represents a pioneering effort in considering hard constraints within the offline setting. Moreover, we
disentangle and separately address the complex objectives of reward maximization, safety constraint
adherence, and behavior regularization for safe offline RL. This approach involves training these
objectives independently, which enhances training stability and makes it particularly suitable for
offline scenarios. In our empirical evaluations, we demonstrate that, compared to soft constraints,
our approach consistently achieves the lowest constraint violations without the need for selecting a
cost limit and attains the highest returns across most tasks, showcasing the promise of applying hard
constraints and decoupled training in safe offline RL.

F LEARNING CURVES

We test FISOR with the same set of parameters in Table 5 in 26 tasks of DSRL (Liu et al., 2023a),
and the learning curve is shown in Figure 11.
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Figure 11: The learning curves for the 26 tasks in DSRL benchmark (Liu et al., 2023a).
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