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Abstract— Pressure injuries (PIs) are common wounds 
among patients with decreased mobility who are unable to 
periodically redistribute their body weight. The most 
common technique to prevent PI development is through 
frequent repositioning, often requiring support from 
caregivers, which can be a costly and laborious task. 
Therefore, this paper investigates the use of a pressure 
sensitive sheet to automatically capture in-bed body 
postures to prevent PI development. Five Neural Networks 
were evaluated to classify 10 sub-postures using pressure 
distribution images. Two techniques were explored: 
directly classifying all 10 postures, and a hierarchical 
architecture. Although the hierarchical architecture with 
the ShuffleNet algorithm achieved the highest F1-Scores of 
99.75% ± 1.43% for holdout (20% test set) and 93.53% ± 
7.37% for Leave-One-Subject-Out (LOSO) cross-validation, 
direct classification provides more stable results. These 
results suggest that this approach has promising potential 
to detect common sub-postures and could be used to 
remind caregivers to facilitate timely repositioning, 
thereby preventing PI development. 

Keywords—Posture Detection, Classification, Pressure Injury, 

Convolutional Neural Networks, Vision Transformer  

I. INTRODUCTION  

    In-bed posture monitoring has become a prevalent area of 

research to help minimize the risk of Pressure Injury (PI) 

development. Pressure injuries can begin developing within 

minutes due to prolonged body-weight forces, typically 

occurring along the bony prominences of the body [1]. This 

continuous applied force can create cellular membrane 

breakage, initiating a cycle of cell death, inflammation, and 

ischemia, which can result in tissue injury [1]. Superficial 

wounds may also be present due to shear forces and 

moisture along the skin [1]. In the US, it is estimated that 3 

million adults acquire PIs in the hospital, costing an 

estimated range between $500-$70,000 USD per patient [2]. 

Additionally,  60,000 US patients die each year due to PI 

complications [2]. In Canada, approximately 26% of 

patients across all healthcare settings suffer from PIs, 

costing between $1,247-$597,363 CAD per patient [3]. 

More specifically, 15% of elderly patients develop PIs 

within the first week of stay at the hospital and within the 

first four weeks of stay in long-term care facilities [4]. 

    While repositioning patients every two hours is a crucial 

element of PI prevention, it can be challenging to integrate 

this practice seamlessly into busy healthcare environments 

[1] [5] [6]. Therefore, to ensure patients are receiving proper 

care and to alleviate some of the workload on the healthcare 

workers, an in-bed posture monitoring system needs to be 

developed. In this paper, we introduce a new system that uses 

a pressure mat, placed underneath bedsheets, and deep 

learning models to capture and classify real-time in-bed 

postures via pressure distribution images. 

    We use Convolutional Neural Networks (CNNs) and a 

Vision Transformer (ViT) to analyze pressure distribution 

images, aiming to classify these images into 10 distinct sub-

postures. We explore two approaches: directly classifying 

all sub-postures (Approach 1) and a hierarchical 

architecture (Approach 2), which first classifies high-level 

positions (supine, right lateral, and left lateral) followed by 

a sub-posture classification within each high-level category. 

Both approaches are evaluated using holdout and Leave-

One-Subject-Out (LOSO) cross-validation techniques. 

    The subsequent sections are organized as follows. In 

Section II, we describe previous works in this field. Section 

III discusses the dataset used and the proposed algorithms 

for the in-bed posture classification. In Section IV, we 

present the experimental results along with related 

observations and limitations. Lastly, Section V summarizes 

the concluding remarks. 

II. RELATED WORKS 

Currently, devices, such as video infrared cameras or 

wearable technologies, have been developed to monitor in-

bed postures and their corresponding durations [5]. 

However, there are some limitations to these devices. For 

example, video infrared cameras can be susceptible to 

environmental changes, such as the motion of a blanket, and 

have associated privacy concerns [5]. Similarly, wearable 

technologies, such as rings and wristbands, can obstruct 

sleep, reducing sleep quality, and are sensitive to motion 

artifacts [7]. The use of wearable e-textile sensors such as 

smart shirts [8] and underwear [9], for PI monitoring will 

introduce new challenges for care providers, as additional 

layers between the patient and the bed could increase the risk 

of PI development [10]. Therefore, there is a need for a 

privacy preserving and unobstructive system to monitor 

patients’ in-bed body postures and prompt caregivers to 

reposition the patients if necessary. Pressure mats have 

gained traction as they offer an unobstructive and privacy 

preserving method to accurately detect in-bed postures that 

allow patients to move freely. 

There are a variety of studies that have investigated in-

bed posture detection using a smart mat composed of either 

pressure sensors or force sensors. Many of these studies 

only classified the main three or four in-bed postures, which 

include the supine, right lateral, left lateral, and sometimes 

prone postures [11] [12]. However, there are a few studies 

that classified multiple sub-postures correlated to the 



positions listed above, which can provide the caregiver with 

a better understanding as to which areas along the body 

require offloading. Pouyan et al. conducted an experiment 

in 2013 on 20 subjects to classify eight different sleeping 

postures: supine, supine hands-on body, supine folded legs, 

supine crossed legs, right yearner, right fetus, left yearner, 

and left fetus [13]. This study used a commercially available 

pressure mat composed of 2,048 pressure sensors to capture 

these eight sub-postures. Using a K-Nearest Neighbour 

(KNN) classification algorithm, the study achieved an 

accuracy of 97.10% using a 10-fold cross validation 

technique [13]. Hu et al. conducted a study in 2021 on five 

subjects to classify six different sleeping postures: supine, 

log, right yearner, right fetus, left yearner, and left fetus 

[14]. This study used a pressure mat composed of 1,024 

pressure sensors to capture in-bed sub-postures. A 

Convolutional Neural Network (CNN) algorithm was used 

to classify these six postures, resulting in an accuracy of 

91.24% using a 20% test set holdout cross validation 

technique [14].  Xu et al. conducted an experiment in 2015 

on 14 subjects using a pressure sensitive smart sheet 

composed of 8,192 pressure sensors [15]. Combining the 

body-earth mover’s distance with a KNN algorithm to 

classify six postures, the study achieved an accuracy of 

90.78% using LOSO cross validation [15]. Although these 

studies achieve high accuracies in classifying various sub-

postures, none have evaluated the use of deep learning 

models to improve the classification performance, 

especially for LOSO cross validation. The LOSO cross 

validation technique is a necessary tool to evaluate the 

performance of classification models as the application of 

these models is for new and unseen users. Previous 

literature showed that most of the time the performance of 

algorithms drops when LOSO is used compared to the 10-

fold or holdout cross validations [16] [17]. In this paper, we 

will evaluate the performance of various pre-trained deep 

learning models in classifying 10 different in-bed body 

postures using LOSO cross validation, and a holdout method 

with 20% of the data as the unseen test set. 

A. Dataset 

The dataset used in this paper was collected by Pouyan et 

al. and made available through PhysioNet [18]. This dataset 

was collected in 2017. This dataset consists of two sections: 

the first section was collected on the Vista Medical FSA 

SoftFlex 2,048 pressure mat which was placed on top of a 

regular home mattress and the second portion of the data was 

collected on the Vista Medical BodiTrak BT3510 pressure 

mat that was placed on top of a sponge and air mattress [18]. 

In this paper, we have only used the first section of the dataset 

to classify in-bed sub-postures. The pressure data was 

collected with a sampling rate of 1.7 Hz. This data was 

reconfigured into pressure distribution images for each 

posture and subject. 13 subjects were evaluated, each lying in 

17 different postures. Table I shows the subject-specific 

demographic information. Of the 17 postures, nine are in the 

supine position, four are in the right lateral posture, and four 

are in the left lateral position. Fourteen of these in-bed 

postures were recorded on a flatbed (zero incline), whereas 

three of the supine postures were recorded at different bed 

inclines. To ensure consistency within our analysis, the three 

inclined supine postures were excluded. Due to the 

similarities between the Log 30° and Log 60° postures in the 

right and left lateral positions, which only differ slightly in 

torso angle, we merged these two classes into a single posture 

called “Log”. The Bent knee and Fetus postures only had a 

small variation in torso and leg angles, merging these two 

postures into a single class called “Bent Knees”. Fig. 1 

displays sample frames correlated to the sub-postures within 

the supine, right lateral, and left lateral classes.  

TABLE I.  SUBJECTS’ DEMOGRAPHIC INFORMATION  

Subject ID Age Height (cm) Weight (kg) 

1 19 175 87 

2 23 183 85 

3 23 183 100 

4 24 177 70 

5 24 172 66 

6 26 169 83 

7 27 179 96 

8 27 186 63 

9 30 174 74 

10 30 174 79 

11 30 176 91 

12 33 170 78 

13 34 174 74 

 

 

Fig. 1. Sample frames of the sub-postures pertaining to the supine, right 

lateral, and left lateral classes (14 classes on zero incline). 

B. Preprocessing 

The dataset provided from PhysioNet was initially 

formatted in text files pertaining to each posture for each 

participant, where each row corresponded to a frame of data. 

This data was then preprocessed, where it was reconfigured 

into pressure distribution images with a size of 224×224 

pixels. 



C. Deep Learning Algorithms 

Four pre-trained 2D CNNs, AlexNet, GoogLeNet, ResNet-

18, and ShuffleNet, and a Vision Transformer - Large (ViT-

Large) were used to classify the in-bed postures. All four 

CNNs have been pre-trained on the ImageNet database 

composed of over a million images correlated to 1,000 object 

categories, such as a keyboard, a coffee mug, and various 

animals. AlexNet shown in Fig. 2 (a) is composed of eight 

layers in total, including five convolutional layers, two fully 

connected hidden layers, and one fully connected output layer 

[19]. Additionally, AlexNet uses the ReLU activation 

function, which involves a simple computation and facilitates 

easier model training [19].  GoogLeNet shown in Fig. 2 (b) is 

composed of 22 layers, including three convolutional layers, 

nine inception blocks, and one fully connected output layer 

[20]. Each inception block is composed of four parallel 

branches which outputs a concatenated value of the four 

branches [20]. ResNet-18, shown in Fig. 2 (c), is composed 

of 18 layers, including 17 convolutional layers, one fully 

connected layer, and one SoftMax layer [21]. Similar to 

AlexNet, ResNet-18 uses the ReLU activation function, with 

the option of a skip ReLU between each convolutional block 

if the block does not provide additional useful information to 

the model [21]. ShuffleNet, shown in Fig. 2 (d),   is composed 

of 50 layers, using pointwise group convolution and channel 

shuffle to reduce computational costs while maintaining 

accuracy [22]. The ViT-Large, shown in Fig. 2 (e), was 

pretrained on the ImageNet-21k database and fine-tuned on 

the ImageNet database. This is a self-attention algorithm 

which divides an image into patches and embeds them 

linearly into a Transformer encoder, which includes multi-

head attention and multi-layer perceptron (MLP) blocks, to 

effectively model long range interactions within images [23]. 

Transfer learning was used within all algorithms to apply 

the architect of those algorithms to the in-bed posture data. In 

total, 2,912 images were used to train and validate all models: 

1,248 in the supine class, 832 in the right lateral class, and 

832 in the left lateral class. These models were evaluated 

using both holdout and LOSO cross validation techniques. 

For our purposes, when using the holdout cross validation 

technique, we held out 20% of the data as a test set and trained 

the algorithms on the remaining 80% (train and validation 

sets). With this 80% of data, we used a 5-fold cross validation 

technique, where the algorithm separates the data into five 

folds, training on four of the folds and validating on the fifth 

fold. This was repeated five times to discover the best hyper-

parameters. Once the algorithm is trained on 80% of data, we 

then tested it on the unseen 20% of data to understand its 

performance. The LOSO cross validation technique consists 

of training the algorithm on all participants’ data except for 

one participant, and then testing the algorithm on that 

remaining unseen participant’s data. This gets repeated 

several times until each participant is ‘left out’. For example, 

in our dataset, the data from the first 12 of the 13 subjects was 

used to train the algorithm, with participant 13’s data used as 

the test set. This would be repeated 13 times to complete the 

validation with all participants.  

  

Fig. 2. Algorithmic architectures of (a) AlexNet [19], (b) GoogLeNet [20], (c) ResNet-18 [12], (d) ShuffleNet [22], and (e) Vision Transformer [23]. 
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D. Direct Classification and Hierarchical Architecture  

Two different methods were used to classify the 10 

postures: a direct classification (Approach 1) and a 

hierarchical architecture (Approach 2), shown in Fig. 3. 

Approach 1 is a single-step classification model, which 

directly classified all 10 sub-postures as 10 separate classes, 

creating an inter-class comparison. Approach 2 is a two-step 

classification model, using a multi-algorithmic approach, 

inspired by a previous study in [11] that obtained over 98% 

accuracy for LOSO cross validation. In stage I, a single 

algorithm classifies all images into one of 3 high-level 

categories (supine, right lateral, and left latera). In stage II, 

three algorithms—one for each high-level class—are used to 

further classify sub-postures within their respective 

categories, enabling detailed, within-class comparison. 

 
Fig. 3. Model schematics for (a) Approach 1 and (b) Approach 2. 

E. Hyper-Parameter Tuning 

Five-fold cross validation was used to tune the hyper-

parameters for the four 2D CNN models for both approaches. 

Four hyper-parameters were examined: batch size, number of 

iterations, number of epochs, and learning rate. We tried 

various batch sizes ranging from 20 to 70, three epochs:10, 

20, and 30, three learning rates: 0.1, 0.001, and 0.0001, and 

iterations ranging from 20 to 120 to find the optimal value for 

each hyper-parameter that would produce the best validation 

accuracy. Fig. 4 shows box plots related to the validation 

accuracies for each 2D CNN algorithm.  Fig. 4 (a) and (b) 

show the results of Approach 1 and Approach 2, respectively. 

We observe that the ShuffleNet algorithm consistently 

achieved high accuracies of over 95% for both approaches. 

The ResNet-18 algorithm showed more consistent behaviour 

compared to the AlexNet and GoogLeNet algorithms. 

Overall, Approach 1 provided more stable accuracy values 

compared to Approach 2. The hyperparameters used for the 

ViT-Large were taken from the ShuffleNet algorithm, due to 

high performance and stability. 

 
Fig. 4. Box plots representing the hyper-parameter tuning performance for 

all four 2D CNN algorithms using 5-fold for (a) Approach 1 and (b) 

Approach 2. 

III. EXPERIMENTAL RESULTS 

The macro classification metrics, such as accuracy, 

sensitivity, specificity, and F1-Score, shown in the following 

equations, were calculated to demonstrate the performance of 

all five algorithms. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝+𝑇𝑛

𝑇𝑛+𝑇𝑝+𝐹𝑛+𝐹𝑝
          𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑝 

𝑇𝑝+𝐹𝑛
       

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑛

𝑇𝑛+𝐹𝑝 
                    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑝

𝑇𝑝+𝐹𝑝
  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
  

Where TP, TN, FP, and FN denote true positives, true 

negatives, false positives, and false negatives, respectively. 

Fig. 5 displays the classification metrics for all five 

algorithms in both approaches using holdout and LOSO cross 

validation. ShuffleNet was the algorithm that achieved the 

highest performance. For Approach 1, it obtained F1-scores 

of 99.66% and 92.92% ± 9.11% for holdout  and LOSO cross 

validation, respectively. For Approach 2, it achieved F1-

scores of 99.75% and 93.53% ± 7.37% for holdout and LOSO 

cross validation, respectively. This was to be expected as 

ShuffleNet is known to be an efficient and highly accurate 

algorithm to classify images [22]. The higher performance in 

Approach 2 could be due to the high performance achieved 

from the high-level class algorithm from [11], reducing inter-

class misclassification. 

    The ResNet-18 algorithm achieved a better performance in 

Approach 1 compared to Approach 2, resulting in F1-Scores 

of 99.79% and 92.56% ± 9.38% for holdout and LOSO cross 

validation, respectively. Contrastingly, the GoogLeNet 

algorithm achieved a better performance in Approach 2, 

resulting in F1-Scores of 99.29% and 91.84% ± 7.05% for 

holdout and LOSO cross validation, respectively.  

    The AlexNet algorithm achieved a better performance 

when using the direct classification in Approach 1, resulting 

in F1-Scores of 99.72% and 90.99% ± 6.33% for holdout and 

LOSO cross validation, respectively. However, notably, the 

AlexNet algorithm also achieved the worst performance of all 

four 2D CNN models, with F1-Scores of 86.94% and 77.74% 

AlexNet  esNet-1  oogLeNet ShuffleNet

AlexNet  esNet-1  oogLeNet ShuffleNet

AlexNet

 esNet-1 

 oogLeNet

ShuffleNet

A
cc
u
ra
cy
  
 
 

 .   

  .   

  .   

  .   

  .   

1  .   

AlexNet

 esNet-1 

 oogLeNet

ShuffleNet

A
cc
u
ra
cy
  
 
 

 .   

  .   

  .   

  .   

  .   

1  .   

 a 

 d 



± 26.54% for holdout and LOSO cross validation, 

respectively, when using Approach 2. These results may be 

attributed to the model's shallow network architecture, which 

might struggle to distinguish between each sub-posture. 

    Lastly, the ViT-Large algorithm achieved a better 

performance using Approach 1, resulting in F1-Scores of 

100% and 90.01% ± 6.02% for holdout and LOSO cross 

validation, respectively. However, a reduction in 

performance occurred with Approach 2, resulting in F1-

Scores of 99.18% and 71.59% ± 10.43% for holdout and 

LOSO cross validation, respectively. This discrepancies 

could be due to the varying dataset sizes in the two 

approaches, as this algorithm is known to perform worse on 

smaller datasets [24].  

    Overall, these results conclude that the performance of the 

direct classification and hierarchical architecture are 

dependent on the algorithm architecture. Additionally, it 

should be noted that the holdout technique consistently 

performed better than the LOSO technique, which is to be 

expected, as previous literature shows that the performance 

of an algorithm decreases when using LOSO [16] [17]. 

Lastly, the 2D CNN algorithms performed better than the 

ViT-Large algorithm, which could be due to the small and 

simple dataset as well as simpler and more efficient 

algorithms [24]. 

 

Fig. 5.  Performance of all four 2D CNN and ViT-Large algorithms, 
with (a) Accuracy, (b) F1-Score, (c) Sensitivity, and (d) 
Specificity. 

Fig. 6 depicts misclassification rates for all models using 

LOSO. The greatest misclassification occurred in the 

AlexNet and ViT-Large models when using Approach 2. For 

the AlexNet model, shown in Fig. 6 (b), most sub-postures 

are misclassified with the left bent knee (L-BentKnee) 

subclass shown in purple. Though this misclassification can 

be understood for the left log (L-Log), right bent knee (R-

BendKnee), and right log (R-Long) subclasses, as these 

postures are all quite similar to each other, it is unclear why 

the algorithm confused the left bent knee sub-posture with 

any of the supine subclasses. For the ViT-Large model, 

shown in Fig. 6 (j), most of the misclassification occurred 

within the supine high-level class. Typically, the 

misclassification occurred between similar postures, such as 

the arms crossed (S-ArmsCrossed), starfish (S-Starfish), and 

straight (S-Straight) postures, as well as the bent knee (S- 

BentKnee), right foot and left foot raised (S-

RightFootRaised, S-LeftFootRaised) postures.  

Contrastingly, the ShuffleNet models provided the lowest 
misclassification shown in Fig. 6 (g) and (h) for Approach 1 
and Approach 2, respectively, indicating the models’ stability. 
For almost all LOSO cross validation models, the supine arms 
crossed (S-ArmCrossed), and supine straight (S-Straight) 
subclasses primarily became misclassified with each other. 
This was anticipated, as these two sub-postures are very 
similar. 

 

 

Fig. 6. Misclassification rate plots for: AlexNet (a) LOSO Approach 1 
and (b) LOSO Approach 2; GoogLeNet (c) LOSO Approach 1 
and (d) LOSO Approach 2; ResNet-18 (e) LOSO Approach 1 and 
(f) LOSO Approach 2; ShuffleNet (g) LOSO Approach 1 and (h) 
LOSO Approach 2; ViT-Large (i) LOSO Approach 1 and (j) 
LOSO Approach 2. 

By examining the pressure distribution images, it was 

evident that in the supine arms-crossed sub-posture, some 

participants kept their triceps on the mattress when crossing 

their arms, while others removed all parts of their arms from 

the mattress. The images that often lead to this 
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misclassification were when participants chose to keep their 

triceps on the mattress as this creates a similar pressure 

distribution image to the supine straight subclass. The supine 

right foot raised subclass was often primarily misclassified as 

the supine left foot raised subclass. This could be due to the 

similarity in sub-postures with different legs raised off the 

mattress. Fig. 7 displays the performance of each model 

versus the heights and weights of the subjects. As shown in 

this figure, for both approaches, there is no clear correlation 

between model performance and the height/weight of the 

subject. 

 

Fig. 7. Subject-specific performance plots of the 2D CNN and ViT-
Large models corresponding to Approach 1 and (a) participant 
height, and (b) participant weight, Approach 2 and (c) participant 
height, and (d) participant weight. 

To further evaluate the results, the gradient weights class 

activation map (Grad-CAM) technique was used. Grad-

CAMs highlight the parts of an image that have the most 

impact on the classification through utilizing the gradients of 

the prediction scores. It is important to note that large 

gradient regions indicate places that most impact the final 

prediction scores. To better understand the highest 

misclassified subclasses in the ShuffleNet models, which 

include the supine arms crossed (S-ArmsCrossed), supine 

straight (S-Straight), and supine right foot raised (S-

RightFoodRaised) subclasses, Grad-CAM images were 

developed for correctly and incorrectly classified images. 

Fig. 8 and Fig. 9 show the Grad-CAM images for Approach 

1 and Approach 2, respectively. Fig. 8 (a) and (b) illustrate 

correctly, and incorrectly classified images of the S-

ArmsCrossed subclass in Approach 1. In both images, it is 

evident that the model is primarily focusing on the upper limb 

region to evaluate the presence of these limbs. Fig. 8 (c) and 

(d) display the correctly and incorrectly classified images of 

the S-Straight subclass. It appears that the correct focus 

should be on the whole body to classify this posture 

accurately. Focusing solely on the upper limb led to incorrect 

classification as S-ArmsCrossed. Fig. 9 (a)-(d) follow similar 

patterns. As mentioned previously, this model confusion 

could be explained through the presence of triceps placement 

on the mattress during the S-ArmCrossed subclass. Fig. 8 (e)-

(g), and Fig. 9 (e)-(g) show that when the model accurately 

classifies the image, the focus of the model is around the torso 

and upper area of the lower limbs. However, when the model 

misclassifies these images with either supine left foot raised 

(S-LightFoodRaised) or supine starfish (S-Starfish), the 

model seems to focus more on the extremities rather than the 

torso placement.  

 

Fig. 8. Grad-CAM images for the ShuffleNet in approach 1. (a) 
correctly and (b) incorrectly classified images for the supine 
arms crossed, (c) correctly and (d) incorrectly classified images 
for the supine straight and (e) correctly and (f), (g) two incorrectly 
classified images for the supine right foot raised subclass. 

 

Fig. 9. Grad-CAM images for the ShuffleNet in approach 2. (a) 
correctly and (b) incorrectly classified images for the supine 
arms crossed subclass, (c) correctly and (d) incorrectly classified 
images for the supine straight subclass, (e) correctly and (f), (g) 
two incorrectly classified images for the supine right foot raised 
subclass. 

  
   
   
   

    

                                        
 
 
 
 
 
 
 
  
 
 

                       

   

   

   

   

    

                                        
 
 
 
 
 
 
 
  
 
 

                       

                                  

   

   

   

   

    

                            
 
 
 
 
 
 
 
  
 
 

                       

   

   

   

   

  

   

   

   

    

                            
 
 
 
 
 
 
 
  
 
 

                       

                                      



Table II compares the previous literature that used smart 

mats to collect in-bed posture data to classify multiple sub-

postures. The corresponding classification algorithms, cross 

validation methods and performance of each study is also 

provided. The accuracy of each study was reported in this 

table as this was a consitent metric reported by all studies. All 

the papers presented in Table II include sub-postures 

correlated to the supine, right lateral, and left lateral 

categories. However, the data within each paper was 

collected from varying subjects lying in various sub-postures 

on different smart mats, which could potentially impact the 

overall performance of the classification algorithms reported. 

Additionally, the classification algorithms evaluated within 

each study also vary, which could influence the overall 

reported performances. Therefore, it is essential to consider 

these factors when comparing the results of each study. 

    Overall, our study performed well compared to the other 

papers listed in Table II. Utilizing the holdout cross validation 

method allowed our model to achieve the highest 

performance in regards to classifying sub-postures. However, 

it is important to note that the performance of the ShuffleNet 

algorithm dropped by 5.63% when using the LOSO cross 

validation technique. [15] was the only other study that 

reported a subject specific cross validation method, which 

could explain the study’s lower performance. Additionally, 

our proposed model factored in more specific sub-postures, 

totaling to 10 subclasses. Due to the high performance in our 

proposed models, this indicates that these models can 

generalize to more specific posture categories. 

TABLE II.  A COMPARISON BETWEEN PREVIOUS LITERATIRE AND OUR 

PROPOSED MODELS 

Ref. #Sub #Postures Algorithm CV1 
Accuracy 

(%) 

[13] 20 8 KNN2 10-fold 97.10 

[14] 5 6 CNN3 Holdout 91.24 

[15] 14 6 
KNN + 

BEMD4 
LOSO 90.78 

Ours 13 10 ShuffleNet 
Holdout 

LOSO 

99.83 

94.20 
1CV: Cross Validation; 2KNN: K-Nearest Neighbour; 3CNN: Convolutional 

Neural Network; 4BEMD: Body- arth  over’s Distance. 

 

    Although all five algorithms achieved high performances 

regarding the classification of the 10 sub-postures, it is 

important to recognize some limitations. Firstly, this dataset 

was collected on healthy participants, with no history of 

pressure injuries, suggesting that this dataset may not 

accurately reflect the target population that is most likely to 

use a pressure injury monitoring system. Additionally, this 

dataset tasked participants to lie in supervised postures for a 

maximum of 2 minutes. This is not the most realistic use case 

as the goal of this in-bed posture classification system is to 

detect participant specific normalized sleeping postures. 

Furthermore, this portion of the dataset was only collected on 

a singular type of mattress, which does not accurately include 

all mattress types that are commonly used within the pressure 

injury risk population, such as therapeutic foam mattresses 

and hospital beds. Therefore, we need a dataset that includes 

patients at risk of developing pressure injuries, collected in 

an overnight setting, and encompassing all common 

mattresses used for such patients. In the future, we plan to 

expand our dataset to address these limitations. 

    Furthermore, when using the hierarchical architecture 

(Approach 2) to classify the postures, only one type of neural 

network was used for both the high-level objective 

classification and the respective sub-posture classification. 

Combining the best-performing models at each phase within 

Approach 2 may lead to a higher performance that will be 

investigated in our future work. Lastly, Approach 1 provided 

a more stable model than Approach 2, requiring future 

modifications to Approach 2 to ensure reliability in real-time. 

Therefore, in the future it will be important to collect a more 

diverse dataset and explore various data augmentation 

techniques to address misclassification errors and reliability. 

IV. CONCLUSION 

    Four 2D CNN models and a Vision Transformer were used 

to classify 10 in-bed sub-postures, correlated to the supine, 

right lateral, and left lateral postures, using their pressure 

distribution images. Two approaches were used in this 

classification: a direct comparison (Approach 1) and a 

hierarchical evaluation (Approach 2). The ShuffleNet 

algorithm achieved the highest performance in Approach 2 

with F1-Scores of 99.75% ± 1.43% and 93.53% ± 7.37% for 

holdout and LOSO cross validations, respectively. However, 

Approach 1 closely followed in performance, achieving F1-

scores of 99.59% ± 0.34% and 92.92% ± 9.11% for holdout 

and LOSO cross validations. These models provide a good 

foundation for developing an automated in-bed posture 

classification algorithm. With a more diverse dataset, that 

includes PI risk patients, non-standardized sleeping postures, 

and various mattress types, an in-depth algorithm can be 

developed for practical use. Eventually, these models can be 

used as a preventative measure for PI development to notify 

caregivers when it is time to reposition the patient if the patient 

has not repositioned themselves naturally. Additionally, since 

full body pressure images are captured, high risk pressure 

regions can be highlighted to aid the caregivers in 

understanding the best posture to reposition the patient, thus 

offloading high risk regions, and decreasing PI development. 

Future considerations for practical use include the use of 

moisture-resistant sheets to protect the pressure mat and to 

maintain patient hygiene as well as investigation into a 

reminder mechanism to avoid notification overload on the 

caregivers and ensure comfort for the patients. It is important 

to co-design this system with users to ensure use and 

maintenance in clinical and non-clinical settings. 
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