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Abstract

Estimating heterogeneous treatment effects from
observational data is a crucial task across many
fields, helping policy and decision-makers take
better actions. There has been recent progress
on robust and efficient methods for estimating
the conditional average treatment effect (CATE)
function, but these methods often do not take into
account the risk of hidden confounding, which
could arbitrarily and unknowingly bias any causal
estimate based on observational data. We pro-
pose a meta-learner called the B-Learner, which
can efficiently learn sharp bounds on the CATE
function under limits on the level of hidden con-
founding. We derive the B-Learner by adapting
recent results for sharp and valid bounds of the av-
erage treatment effect (Dorn et al., 2021) into the
framework given by Kallus & Oprescu (2023) for
robust and model-agnostic learning of conditional
distributional treatment effects. The B-Learner
can use any function estimator such as random
forests and deep neural networks, and we prove
its estimates are valid, sharp, efficient, and have
a quasi-oracle property with respect to the con-
stituent estimators under more general conditions
than existing methods. Semi-synthetic experimen-
tal comparisons validate the theoretical findings,
and we use real-world data demonstrate how the
method might be used in practice.

1. Introduction

Using data to estimate the causal effect of actions is a fun-
damental task in medicine, economics, education research,
and more. For instance, we might wish to use patient data
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to estimate which patients react well to a certain medication
and which patients should avoid it. In many cases, due to
economic and ethical considerations, the data available for
these tasks is observational data, i.e. data that was not col-
lected as part of a randomized experiment. Using such data
carries the risk of unobserved confounding: correlations
between the observed interventions and outcomes that are
not accounted for in the available data. For example, pa-
tients with more social support might tend to receive certain
interventions over others. If the level of a patient’s social
support is not recorded in the data, the estimated effect of
the intervention will be biased due to not observing the con-
founder of social support. Unobserved confounding cannot
be detected from data, and its presence can lead to arbitrary
and unknown bias in causal effect estimates. Such bias can
lead to unreliable and potentially harmful policies.

In this work we are concerned with estimating causal ef-
fects on an individual level in the presence of a limited
degree of unobserved confounding. Specifically, we give
a method for effectively learning upper and lower bounds
on the conditional average treatment effect (CATE) func-
tion that allows for flexible nuisance estimation and high-
dimensional conditioning sets like patient medical records.
The degree of allowed hidden confounding can be set by do-
main knowledge; alternatively, we can estimate what degree
of hidden confounding is needed to significantly change our
understanding of the CATE for any particular instance or
sub-population.

We pursue the desirable treatment effect bound properties
of validity, sharpness, efficiency, and robustness. A bound
is called valid if it contains the true value of the causal es-
timand. A sharp bound is a valid bound that contains only
those values of the causal estimand that could emerge from
a plausible data generation process that could have produced
the observed data (Ho & Rosen, 2017). Therefore, sharp
bounds are the smallest possible bounds accounting for both
observational data and domain knowledge (in the form of the
degree of hidden confounding), a property which is impor-
tant for precise decision making under hidden confounding.
In contrast, a valid bound could in principle contain extra-
neous values, leading to overly cautious decision making.
Efficient bounds converge to their target values using as lit-
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tle data as possible. Typically, efficiency at best corresponds
to quasi-oracle performance, where only slowly-consistent
first-stage estimates are needed to achieve the same error
bounds as we would obtain with access to oracle knowledge
(Nie & Wager, 2021). Finally, a robust bound will be insen-
sitive (within limits) to biases in the constituent estimators.
We formalize these properties in Section 2.

In this paper, we present the B-Learner, for “bound-learner”,
a scalable and flexible meta-learner for estimating bounds
on the CATE function. The B-Learner is a meta-learner
that uses a partially double-robust, Neyman-orthogonal esti-
mating equation for the valid CATE bound characterization
(Dorn et al., 2021). For unconfounded CATE estimation,
there are several well-known meta-learners such as the X-
Learner (Kiinzel et al., 2019), DR-Learner (Kennedy, 2020),
and R-Learner (Nie & Wager, 2021). These methods allow
the user to use any combination of learning methods (be it
random forest, linear regression, or deep neural nets) and
combine them efficiently to estimate the CATE function. In
addition to flexibility, some of these methods have desir-
able rate and quasi-oracle properties. The B-Learner offers
analogous flexibility, rate, and quasi-oracle guarantees for
CATE bounds estimation, as well as novel bound validity
and sharpness guarantees under appropriate conditions. We
study the CATE bounds under Tan’s marginal sensitivity
model (MSM) (Tan, 2006), which quantifies the degree of
unobserved confounding through odds ratios. The proper-
ties of Tan’s MSM give the B-Learner validity under notably
weak conditions.

We evaluate the B-Learner using synthetic and semi-
synthetic experiments. In the synthetic experiments, the
B-Learner displays quasi-oracle efficiency, requiring only a
moderate amount of data for it to perform near-identically
with estimated and oracle first-stage nuisances. The B-
Learner also performs at least comparably to existing meth-
ods with analogous nuisances and can perform better with a
well-tailored choice of second-stage regression function. In
semi-synthetic experiments, we find the B-Learner is at least
as effective as existing state-of-art models on a previously
proposed benchmark. Finally, we illustrate the use of the
B-Learner using real data to estimate the effect of 401(k)
eligibility on financial wealth.

Related work. To the best of our knowledge, existing
methods for CATE sensitivity analysis have yet to show all
four of the properties of our proposed B-Learner. In par-
ticular, Kallus et al. (2019), Jesson et al. (2021) and Yin
et al. (2022) each present methods that only achieve validity,
and, to some degree, rate properties. These approaches start
with estimators that have good properties under unconfound-
edness and then optimize the estimated CATE or average
treatment effect (ATE) bounds subject to a subset of the con-
straints implied by Tan’s MSM. Because these approaches

do not impose all implications of the MSM, they lack sharp-
ness outside knife-edge cases. They also do not actively
exploit the Neyman orthogonality of their solution, so they
do not have the same rate guarantees that can be obtained un-
der unconfoundedness. Lastly, these methods are tailored to
specific learners and do not allow for the same flexibility as
a meta-learner. Works such as Yadlowsky et al. (2022) and
Chernozhukov et al. (2022) study bounds under other sensi-
tivity assumptions. Yadlowsky et al. (2022) exploit Neyman
orthogonality to obtain rate guarantees on CATE estimates
and fast root-n guarantees on ATE estimates in Rosenbaum
(2002)’s model, which they show are sharp when certain out-
come symmetry properties hold. Chernozhukov et al. (2022)
provide a method guaranteeing root-n consistency for av-
erage potential outcomes, treatment effects, and derivative
bounds under limits on variance and covariance, and show
that their estimates are sharp provided the bounds do not
violate any implications of the observable data distribution.
A rich literature on sensitivity analysis for ATEs exists, from
as early as Cornfield et al. (1959) through Rosenbaum &
Rubin (1983) to recent work like Colnet et al. (2022), but
commentary on these methods is out of scope for this work.

2. Background and setup

We work in an observational data setting using the Neyman-
Rubin potential outcomes framework. We assume data
is drawn from an unobservable distribution Py over
(X,A,Y(1),Y(0),U), where A € {0,1} is a binary treat-
ment, X is a set of baseline covariates in R%, Y (1) and Y (0)
are the real-valued treated and untreated potential outcomes,
respectively, and U € R is an unobserved confounder.
However, we face the fundamental problem of causal infer-
ence and only observe n draws from the coarsened distribu-
tion P over the observed variables Z = (X, A,Y), where
we assume that Y = Y (A), i.e. (causal) consistency.

We are interested in learning about the conditional average
treatment effect (CATE):

T(l‘) = EPl'ul] [Y(]*) - Y(O) | X = (E]

The average treatment effect (ATE) is E[7(X)]. When the
(untestable) unconfoundedness assumption holds, formally
A 1 Y(1),Y(0) | X, then the CATE is equivalent to
the difference in expected observed potential outcomes:
T() =EplY | X =2,A=1]-Ep]Y | X =2,A=0].
With the additional assumption of positivity, the CATE can
be estimated with standard tools. However, the unconfound-
edness assumption is untestable and often unrealistic, as
we often have at least some degree of confounding un-
accounted for by the observed covariates X. Therefore,
we will assume unconfoundedness only holds with the ad-
dition of an unobserved U € R* for some k, such that
A 1 Y(1),Y(0) | X,U. In this case, it is possible to
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bound 7(z) pointwise, for example, by assuming that un-
observed confounding induces only a limited divergence
between P and Pyy.

We proceed under Tan’s Marginal Sensitivity Model (MSM)
(Tan, 2006). Formally:

Assumption 1. Lete(x,u) = Py(A=1|X =2,U = u)
and e(x) = P(A = 1| X = x) be the full and observed
propensity scores, respectively. We assume e(x), e(z,u) €
(0,1) and that there exists A > 1 such that the following
holds almost surely under Py :

AL < e(z,u) /

1—e(z,u)

e(x)
1—e(x)

<A.

The MSM imposes a bound on ratio between the full odds
of treatment e(z, u)/(1 — e(z,u)) and the observed odds of
treatment e(x)/(1 — e(x)). (The MSM is sometimes equiv-
alently described using the log odds ratio bound log(A).)
When A = 1, Assumption 1 is equivalent to the classic as-
sumption of unconfoundedness with respect to the observed
X. As A grows away from 1, greater unobserved confound-
ing is allowed under the MSM and we can generally only
estimate bounds on the CATE. In this paper our goal is
to characterize these bounds, which describe a notion of
“causal” uncertainty in the CATE estimate.

Remark 1. The sensitivity parameter A is a user-defined
hyper-parameter as it specifies how much confounding to
allow for. Choosing a suitable A is an ongoing area of study.
Hsu & Small (2013) propose a procedure where we assess
A values that correspond to dropping observed covariates
and using domain knowledge to judge whether we omitted
variables as important as these. Inversely, as our intervals
increase with A, we can seek the A where a conclusion
or decision would be overturned and judge whether the
implied confounding is plausible. Ultimately, the choice of
A is domain-specific and an analyst’s choice.

Notation. We now define the main notation, with a more
detailed notation table available in Appendix A. To unify
the analysis for upper (largest plausible CATE) and lower
(smallest plausible CATE) bounds, we employ the conven-
tion that +, — indicators symbolize upper and lower bounds,
respectively. For nuisance functions (e.g. quantiles), these
signs also encode the dependence on @ = A/(A + 1) (and
A) which we otherwise generally suppress in the remainder
of the paper. We define the conditional outcome quantile
and shorthand quantile notation:

Gi(ea) = {8 F(8 | 2.0) > ¢}
qj_(x,a) = q;(x,a),qi(x,a) = qik—a(m7a)'

The + and F symbols signal that an equation should be
read twice, once with + = +, F = — and once with + =
—,F = + (see example in Appendix A, Table 1). For

conciseness and clarity, we focus our main discussion on
CATE upper bounds. In Appendix B, we provide a similar
analysis of CATE lower bounds.

2.1. Properties of bound estimates

Our goal is to estimate the identified set: the set of CATEs
that can be obtained in the unobserved distribution Pr
generating the observed distribution P and satisfying the
requirements of Assumption 1.

Definition 1. The identified set of estimands under As-
sumption 1 is the set of estimands that can be obtained for
a distribution Q over (X, A, Y (1),Y(0),U) such that the
distribution of (X, A4,Y") under ) matches the observed dis-
tribution P and A~ < Bla=fi=et=y [l < o
almost surely. Let M(A) be the set of distributions () that
the observed data Z = (X,Y, A) and Assumption 1 cannot
rule out. Then, the sharp (upper) bounds on the identified
set of conditional average potential outcomes and CATEs
for a given point x are given by:

YT (z,a) = sup Eg[Y(a)| X =1]
QEM(A)
()= sup EglY (1) —-Y(0)| X =az].
QEM(A)

Lower bounds follow symmetrically by replacing the
suprema with infima. We note that the requirements of
Assumption 1 decouple across x and are convex, so finding
the identified set reduces to finding pointwise bounds. As
we will see in Section 2.2, the CATE upper bounds 7 ()
depend only on the observed distribution of data Z and the
sensitivity parameter A. We can therefore ask what good
properties we might want estimates 71 () to have. We
suggest four desirable properties for bound estimation, of
which the last two are closely linked:

Valid estimates. If 7+ (z) < 77 (2) — 0,(1), then our es-
timated bounds would fail to cover the identified set and
rule out plausible CATEs even asymptotically, which would
be undesirable. Conversely, bound characterizations T sat-
isfying 71 (x) > 7% (x) are called “valid” in the partial
identification literature (Ho & Rosen, 2017), since Assump-
tion 1 implies 7" (z) > E[Y (1) — Y(0) | X = z]. Valid
bounds (illustrated in Figure 1) give us some but not all
information from our assumptions: every value they rule
out is implausible, but some values they do not rule out may
be implausible as well. We relax the notation and say that
bound estimates 7 are valid if 77 (z) > 77 (x) — 0,(1).

Sharp estimates. If 7 (z) > 71 (z) + 0,(1), then our
estimated bounds would fail to rule out impossible CATEs
asymptotically under our assumptions. Exact characteriza-
tions of the identified sets are called “sharp” in the partial
identification literature (Ho & Rosen, 2017). Sharpness is a
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100 —— True T(x)

—— Confounded T(x)

--- log(A)=0.5
—-— log(A) =1.0

log(A) =1.5

(a) CATE bounds for different values of A

100 —— Confounded T(x)

Possible T(x)

---- Sharp bounds r
Valid bounds el

(b) Sharp and valid bounds

Figure 1. Example of a confounded CATE function with a true odds ratio A* given by log(A*) = 1.0. The true 7(x) is the unobserved
CATE in the full distribution, Ep,, [Y'(1) — Y (0) | X = «]. The confounded 7(z) is the biased estimand under assumed uncondounded-
ness, Ep[Y | X =z, A=1] —Ep[Y | X =z, A = 0]. (la): The sharp bounds from Result 1 for different levels of A. The true 7(x)
is inside the sharp bounds for log(A) = 1.0 (green). (1b): Example of valid and sharp CATE bounds as defined in Section 2.1.

stronger property than validity. We use lax notation to say
that bound estimates 7 are sharp if 7 (z) = 71 (z) + 0,(1).

Efficient and robust estimates. We would like our bound
estimates to converge to their limits at desirable rates and
have multiple chances at sharp or valid limits. Ideally, we
would be able to learn CATE bounds at the same rate as
we could obtain under unconfoundedness. These properties
relate to “double robust” estimators and may require con-
structing Neyman-orthogonal characterizations of valid, and
ideally sharp, bounds.

2.2. Identification and estimation of sharp bounds

In this section, we use results from Dorn et al. (2021) to
show how we can identify and estimate sharp CATE bounds
from the observed data distribution, P. In order to ex-
press the sharp bounds, we introduce the following pseudo-
outcomes from Dorn et al. (2021) that will correspond to
the Conditional Value at Risk and the unobserved outcome
bounds under Assumption 1:

Ha(2,0) = (e, 0) + T2 {y — a(r, )}

Ri(z,q) = A"y + (1= A7) He(2,9)
pi(z,a,q) =E[Ry(2,9) | X =z, A =a].

We use the shorthand p (z,a) = pi(x,a, ¢}) to write the
P24 function evaluated at the true conditional quantiles g7
(which will end up corresponding to sharp bounds). The
quantity CVaRy (z,a) := E[Hy(z,q}) | X = 2, A = a]
is known as the Conditional Value at Risk (Artzner et al.,
1999; Kallus, 2022). In the distribution Y | X = 2, A = a,
CVaR  (z, a) is the expectation above the (1 — «) quantile,
whereas CVaR_ (z, a), is the expectation below the v quan-

tile. Hence, the pseudo-outcomes H and R correspond to
the Conditional Value at Risk and conditional unobserved
potential outcome, respectively.

Let p*(z,a) = E[Y | X = 2, A = a] be the conditional
outcome regression in the observed data. Note that we
can write the conditional potential outcome under @) as
Eg[Y(a) | X = 2] = P[A =a | X = z|lp*(z,a) +
PA=1-a|X =2]Eg[Y(1—a) | X =z, A = a] since
() must be consistent with the observed distribution P. Thus,
it suffices to bound the conditional unobserved potential
outcome Eq[Y (1 —a) | X =z, A = a], which leads to the
following result in terms of p% (z,a) = pi(x,a, ¢} ):
Result 1 (Sharp bounds, (Dorn et al., 2021)). The condi-
tional average unobserved potential outcome Eq[Y (1—a) |
X = x, A = a] has sharp upper and lower bounds under
Assumption 1 given by p% (x,a) and p* (x, a), respectively.
Thus, the sharp bounds on the conditional average potential
outcomes can be written as:

Yi(@,1) = e (2)p" (2, 1) + (1 — (@) (2, 1)
Y~ (x,0) = (1 —e*(z))u*(z,0) + e*(z)p* (z,0).

The sharp CATE upper bound is further given by 7% (x) =
Y*(x,1) — Y~ (x,0).

Thus, the bounds are a convex combination of the condi-
tional outcome function p*(z,a) and the corresponding
conditional CVaR terms, all of which can be estimated from
P. As A grows, both the weight on the CVaR term in p*
grows and the CVaR term itself become more extreme. If
the wrong putative quantile ¢ is used instead of the true
q*, the CVaR term moves the bound in a conservative yet
valid direction. Finally, the difference between sharp con-
ditional average potential outcome bounds 77 (z) clearly
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yields valid CATE bounds; those bounds are shown to be
sharp by arguments outside the scope of this paper (Dorn &
Guo, 2022). As we will see, this characterization of sharp
and valid bounds alone will be insufficient for quasi-oracle
estimation.

Pseudo-outcome regression for quasi-oracle estimation.
The expression of 77 (x) suggests a plug-in strategy. We
can estimate e, u, and p through classification and regres-
sion and obtain bound estimates. However, such plug-in
estimators are known to suffer from excessive bias due to
the estimated nuisances (Kennedy, 2020; Kallus & Oprescu,
2023), especially when the nuisance functions are more
complex than the CATE bounds. We follow the Kallus
& Oprescu (2023) strategy and derive an efficient pseudo-
outcome for the bounds based on the relevant influence
function; we then regress that pseudo-outcome on X. We
build on this literature to similarly provide an estimator for
sharp CATE bounds with desirable properties beyond those
of the plug-in estimators implied by Result 1.

Henceforth we will refer to e, g, p as nuisances as they will
need to be estimated from data.

3. B-Learner: Pseudo-Outcome Regression for
Doubly-Robust Sharp CATE Bounds

We propose a debiased learning procedure that consists of
regressing a carefully constructed and nuisance-debiasing
pseudo-outcome on covariates (Kennedy, 2020; Kallus &
Oprescu, 2023).

Definition 2 (CATE Bounds Pseudo-Outcome). Let7; =
(a a—(’v 0)7 a—‘-('v 1)7 ﬁ—('a 0)7 ﬁ-‘r('? 1)) € Z be a set of es-
timated nuisances. We define the pseudo-outcome corre-
sponding to the bounds for Y (z,1),Y ~(z,0) and 7 ()
from Result 1 by:

1 (2,7) = AY + (1 = A)p4(X,1)
+ US004 (R(2,30(X, 1) = e (X, 1)),
60 (2,7) = (1= A)Y + Ap_(X,0)

+ 200 (R(Z,G-(X,0) — p-(X,0)),

The expressions in Definition 2 depend purely on the ob-
served data distribution PP, and so can be viewed as statisti-
cal estimands to be learned from the observed distribution.

When A = 1 and unconfoundedness holds, the expres-
sion for ¢ (Z,7n) reduces to the familiar doubly-robust
pseudo-outcome for CATE estimation, j1(X, 1) — u(X,0) +

A—el ~
2ty (Y —Ai(X, A)) (Kennedy, 2020; Knaus, 2022).

The pseudo-outcome is based on the efficient influence func-
tion of the estimand E[7T(X)], so as we will see, small

errors in the nuisance estimation lead to “doubly small”
(second-order) errors in the 71 (z) estimates. This spe-
cial structure orthogonalizes the p, estimation error in the
plug-in bound estimand AY + (1 — A)p, using the added
(d—e(x))A
e(X)
The weighted CVaR terms p? (X, a, ) involve an objective
which is sharpest when ¢+ = ¢} and which turns out to
have a second-order dependence on g+ — ¢7i. Thus, quan-
tile regression errors will move the pseudo-outcome in a
conservative but still valid direction and consistent quantile
regression errors will have favorable rate properties.

term (R4 — py ) that debiases p estimation error.

Algorithm 1 The B-Learner (detailed in Appendix E)
input Data {(X;, A;,Y;) : i € {1,...,n}}, folds K > 2,
nuisance estimators, regression learner IEn
1: fork e {1,..., K} do
2:  Usedata {(X;,A4;,Y;) : i #k—1 (mod K)} to
construct nuisance estimates (%) = (%), g*) 5(k))
3: fori=k—1 (mod K) do

4 Setdl, = ¢t (Zi,7™)
5:  end for
6: end for

output 7+ (z) = E,[¢F | X = a]

B-Learner. We call our full two-stage estimation procedure
the B-Learner. Our procedure is summarized in Algorithm 1
(see Appendix E for a detailed version). In the first stage,
we estimate the nuisances (outcome regression, propen-
sity score, CVaR) with K-fold cross-fitting and construct
Neyman-Orthogonal pseudo-outcome estimates based on
Definition 2. In the second stage, we regress the estimated
pseudo-outcomes on our covariates X, resulting in an es-
timated CATE bound function. As we will see now, the
properties of this function depend on both the choice of
nuisance estimators and the second-stage regressor.

Nuisance estimation. The propensity score e*(z) can be
estimated using any standard probabilistic binary classi-
fier. The quantiles ¢} can be likewise estimated using
any of several standard quantile regression methods (Yu
& Jones, 1998; Meinshausen & Ridgeway, 2006; Athey
et al., 2019). The modified outcome regression p? (z,a) =
A1 (z,a) + (1 — A)7'CVaR4(z,a) is less standard,
but it can be learned by either treating the CVaR pseudo-
outcome R as an outcome, or separately learning the p*
and CVaR . components of E[Ry | X =z, A = a]. In the
first approach, where we plug in the estimated quantiles into
the expression for Ry (Z, 7) and then regress Ry onto X
using any standard regressor, further sample splitting is the-
oretically required for estimating ¢* and p*. In the second
approach, we can learn the p* and CVaR components on
the same sample and then weight them accordingly to ob-
tain estimates of p*. The outcome regression p*(z, a) can
be estimated via any regression learner and CVaR_ can be
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likewise estimated using several existing approaches (Athey
et al., 2019; Kallus & Oprescu, 2023).

4. Theoretical properties of the B-Learner

We now describe the theoretical properties of our estima-
tor. All proofs are in Appendix D. In Section 4.1, we use
Kallus & Oprescu (2023)’s generic approach and Dorn et al.
(2021)’s validity results to study the bias of the pseudo-
outcome with first-stage nuisances. The pointwise bias from
the sharp bounds is on the order of [e—e*||p—p*|+(7—q¢*)?.
When the quantiles are inconsistent, (74 — ¢%)* and
(@ — ¢*)? do not vanish. The pseudo-outcome bounds
still remain valid in expectation, and any bias in the direc-
tion of failing to cover the identified CATE set disappears at
a rate on the order of |€ — e*||p — p*(+, q)|- In Section 4.2,
we characterize the second-stage regression and we show
that we can learn CATE bounds at a rate dominated by the
complexity of the target class. As a result, the estimator
has robustness properties from the product-of-errors bias,
with two chances at sharp bounds in L, norm and two
chances at valid bounds on average. Our main text focuses
on ERM-based second stage estimators with Lo sharp bound
guarantees. We show similar guarantees hold pointwise for
linear smoother second-stage estimators in Appendix C.2.

4.1. Pseudo-outcome properties

We first analyze the bias in our proposed pseudo-outcomes.

Definition 3 (Conditional Pseudo-outcome Bias). Take
7 € Z be a set of estimated nuisances and let ¢ €
{0, 1, 7}. We define the signed conditional pseudo-outcome
bias: & (v;7) = E[¢3(Z,7) — ¢3(Z,n*) | X = ] and
E (@) =Ko (Z,1) — ¢35 (Z,m") | X = x].

It immediately follows from Definition 3 that £} (z;7) =
EF (@) — & (x:7) and [EF(@37)| < |& (@A) +
|€y (x;M)|. The pseudo-outcome bias can be understood
as the error incurred when performing pseudo-outcome re-
gression with estimated nuisances rather than oracle nui-
sances. While any bias is undesirable, bias in one direction
is worse. When &, > 0, the pseudo-outcomes are biased
in a conservative but still valid direction. When &, < 0,
the expected pseudo-outcomes are too aggressive and in

expectation exclude plausible CATEs.

Our pseudo-outcomes fit into the framework of Kallus &
Oprescu (2023) since the estimands and the nuisances are
the solutions of conditional moment restrictions (see Proof
of Theorem 1). Thus, under mild boundedness conditions,
we can leverage their results to upper bound |E|.

Assumption 2 (Boundedness). Let 7 € = be a set of

estimated nuisances, and take 77 € conv{(n*,7)}.
(i) P(e < e*(x),e(x) <1—¢) =1 forsome e > 0.

(") Yva Q+( 9

)aQ—( 70)7p+( 71)vﬁ7<'70)af(6+<x7 1) | 3771)’

f(@_(x,0) | z,0) are all uniformly bounded.

The first condition in Assumption 2 is a standard require-
ment known as positivity, ensuring that both treatments and
controls can be observed for any X with non-zero prob-
ability. The second condition is a common boundedness
assumption often made in debiased machine learning for
ATE and CATE in order to control the growth of |£;F|. We
now state the conditional Neyman orthogonality result we
require, which we derive using the tools from Kallus &
Oprescu (2023) and Dorn et al. (2021).

Theorem 1 (Pseudo-Outcome Conditional Neyman Orthog-
onality). Suppose Assumption 2 holds. Then a Neyman-
orthogonal characterization of the conditional outcome mo-
ment E[AY + (1 — A)pi(X,1) =Y (X,1) | X] =0 has
the form of (bf from Definition 2, and the symmetric result
holds for ¢, . The absolute bias of the CATE upper bound
has the product of rates bound:

|E5 ()| < [e(z) — ™ ()| [P (2, 1) — P (x, 1))
+ [e(@) — e*(2)] [p—(2,0) — p~(x,0)]|
+ (@4 (2,1) = (2, 1))
+(7-(2,0) — ¢" (2,0))*.

The undesirable direction of bias has the more favorable
bound in terms of p*(x, a, q):

*

EX(@;7) 2 —[é(@) — " (@)] [P+ (2., 1) — p} (2, 1,44))|
— [e(z) — e (2)] [p—(2,0) — p=(2,0,4-)|-

*

Theorem 1 lets us characterize the pseudo-outcome biases.

Sharp pseudo-outcome bias. An immediate results is that
the pseudo-outcome bias for the CATE (upper) bound is
pointwise “doubly sharp” (Dorn et al., 2021): its bias tends
to zero if ¢+ and one of € or p are consistent, and the rate
of bias goes to zero faster than the individual nuisances if
all nuisances are consistent.

Valid pseudo-outcome bias. In some cases it may be dif-
ficult to estimate quantiles consistently or at a sufficient
rate for the quantile error (7 — ¢*)? to vanish faster than
|e—e*| |p—p*|. If so, the absolute value of pseudo-outcome
bias relative to sharp bounds might be relevant to the second-
stage estimates, but the level of bias in the direction of fail-
ing to cover the identified set still disappears at a product
rate |e—e*| |p— p*(+, ¢)|- The pseudo-outcome estimator is
therefore “doubly valid” (Dorn et al., 2021): its undesirable
bias tends to zero if one of € or p4 is consistent, and the
rate of bias goes to zero faster than the individual nuisances
if both are consistent.

Next, we leverage these results to illustrate the quasi-oracle
properties of our B-Learner.
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4.2. ERM-based estimators

We consider Algorithm 1 with an empirical risk minimiza-
tion (ERM) algorithm as the second-stage estimator. In
other words, given a class of functions 7 C [X — R], the
regression learner ]En satisfies:

n

Sy B 1 ~ 2

En [¢f | X =] carg min Z (6, — F(X)". ()
In this scenario, the error rates of our estimation procedure
depend on the complexity of the class F. These were stud-
ied in the context of learning with nuisance components in
several works including Foster & Syrgkanis (2019); Kallus
& Oprescu (2023). The implication of Theorem 1 is we can
immediately apply Kallus & Oprescu (2023)’s Theorem 2
in our setting, employing bracketing entropy as a class com-
plexity measure. We note that bracketing entropy is a global
technique, with guarantees on the L5 loss over the support
of the estimand, in contrast with the local methods presented
in Appendix C.2 which enable pointwise guarantees.

Corollary 1 (Rates for ERM Estimators, Theorem 2 from
Kallus & Oprescu (2023)). Suppose Assumption 2 holds for
" e ke{l,.. K} Lt EF () == S0 EF (a; M)
and let Iﬁn[ | X = z] be as in Equation (1). Further,
suppose F is convex and closed and has bracketing entropy
log Nj(F,e) S e " with0 < r < 2 and that |f(z)] is
bounded Vf € F,x € X. Then,

17+ (2) = 7 @) £ Op(n™ V) +[IEL ()]

Second-stage sharp consistency and robustness. When
lEF (z)|| = op (1) and the conditions above hold, Corol-
lary 1 shows that ERM estimates are Lo consistent for the
sharp CATE bounds. Learners satisfying the conditions
of Corollary 1 include sparse linear models, neural net-
works, kernel classes (Foster & Syrgkanis, 2019), and Besov,
Sobolev, Holder-type function classes (Nickl & Potscher,
2007). Lo consistency of the pseudo-outcome bias follows
if ¢ and one of € or p are Lo consistent.

Second-stage sharp rates. If ||£; (2)|| = o, (n™1/(+7)
and the conditions of Corollary 1 hold, the pseudo-outcome
bias has a negligible contribution to the CATE bounds esti-
mation error. Thus, the estimation error is equivalent to the
error as if the nuisances were known, a result known as the
“quasi-oracle property” ((Nie & Wager, 2021)). Because
the pseudo-outcome bias involves the product of rates, it
will be sufficient to ask all pseudo-outcome nuisances to
be consistent at an o, (n~'/4) rate. We give an example of
sufficient conditions for our estimator to be oracle efficient
(the property we synonymously call “quasi-oracle” in our
main text) in Appendix C.1.

Second-stage validity. When the quantile estimates are
inconsistent, we cannot apply Corollary 1 directly. Still, we

will have two chances to derive CATE bound estimates that
are valid on average. In Appendix C.2, we show that linear
smoothers can yield stronger pointwise validity guarantees.

Corollary 2 (ERM Validity on Average). Assume the con-
ditions of Corollary 1 are satisfied and for all f € F and
¢ € Rwe have f+c € F. If |3u(-1) — g4 (- ]| =
op(1) and [g-(-,0) — (- 0)l| = op(1) for a (poten-
tially inconsistent) putative quantile function q and either
Ie = eIl = op(1) or both (1) — pi( L) =
0p(1) and [[p—(+,0) = p* (,0,G)|| = 0p(1), then the esti-
mated CATE bounds are valid on average in the sense that

LN T(XG) = TT(X;) > —op(1).

5. Experiments

In this section, we demonstrate our method on synthetic
and semi-synthetic datasets, as well as on a real-world case
study. We first benchmark the B-Learner using a synthetic
example similar to that in Kallus et al. (2019). We then
illustrate how CATE bound estimators can be used for treat-
ment deferral by using the hidden confounding variant of
the IHDP dataset introduced by Jesson et al. (2021). For
both sets of experiments, we compare with state-of-the-
art methods proposed by Kallus et al. (2019) (Sensitivity
Kernel) and Jesson et al. (2021) (Quince'). We illustrate
the usage of the B-Learner with real data through a case
study of 401(k) eligibility effects on wealth. While we
have focused our discussion on CATE upper bounds, our
real data experiments also require estimating the CATE
lower bounds we discuss in Appendix B. Details about the
data generation processes, specific model implementation,
hyperparameter selection and validation procedures used
are given in Appendix F. We provide replication code at
https://github.com/CausalML/BLearner.

While the Sensitivity Kernel approach uses Gaussian kernels
and the Quince model uses Bayesian neural networks, the
B-Learner (Algorithm 1) is flexible in the types of estima-
tors allowed for both the first- and second-stage learners.
We therefore compare three classes of nuisance and second-
stage estimators: Random Forests (RF), Gaussian Kernels
(GK), and Bayesian Neural Networks (NN). Whenever pos-
sible, we use the same hyperparameters and validation rou-
tine across models. For example, the B-Learner with NN
nuisances uses the exact same neural networks as Quince.

We denote the upper bound given by the B-Learner out-
put (Algorithm 1) by 7 ({1% stage}, {2" stage}) (e.g.
TY(RF, RF)) to indicate the type of first- and second-stage
learners used. For insight into the theoretical properties of
our estimator, we also provide an oracle first-stage estimator

!Jesson et al. (2021) train an ensemble of several models, which
is a computationally intensive task. For the purposes of this section,
we do not ensemble any of the compared methods.
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Figure 2. Mean squared error (MSE) for different 71 learners. Shaded regions depict plus/minus one standard error over 50 simulations.

7+ (Oracle, {2" stage}) which uses the true nuisances in

the pseudo-outcome calculation, as well as a “plug-in” esti-

mator 71 ({1% stage}, Plugin) which plugs in the estimated
nuisances into the expressions from Result 1.

5.1. Simulated Data
Our synthetic dataset is sampled as follows:

X ~ Unif([-2,2]%), A|X ~ Bern(c(0.75X, + 0.5)),
Y ~ N((24 —1)(Xo + 1) — 2sin (44 — 2)Xp, 1),

where o is the sigmoid function. We wish to provide an
estimate 71 (x) for the CATE upper bound under a level
of confounding given by log A = 1. With this simulation,
it is straightforward to obtain the true nuisances e*, u*, p*.
These, along with Result 1, allow us to determine the true
value 77 (z) of the upper bound. We run 50 simulations
for sample sizes n = 100, 200, 400, ..., 12800 and evaluate
the different models on a fixed test set of 400 data points
initially drawn at random. We compare the mean squared
error (MSE) performance of each estimator with respect to
the true bound and depict our findings in Figure 2.

In Figure 2a, we study the MSE convergence rates of the
7T (RF, RF) estimator, along with its oracle and plug-in
variants. The convergence rate of our estimator matches the
rate of the oracle estimator. That is, Algorithm 1 with more
than a few hundred observations performs essentially as well
as if the estimator had access to the true, oracle nuisances.
This confirms our theoretical results from Corollary 1 in that
small errors in the nuisance estimation lead to second-order
errors in 7(x). Moreover, we see that the simple plug-in
estimator suffers from so-called plug-in bias for every value
of n, as anticipated. The B-Learner MSE improvement
slows for large n, which we expect reflects our use of rules-
of-thumb to extrapolate hyperparameters to large samples.

In Figure 2b, we benchmark our estimator against Sensitivity
Kernel and Quince for various first- and second- stage com-
binations. We see that using the same nuisances (GKs and
NN, respectively) leads to our method performing compa-

---- Quince

- T (NN, NN)
N N ---- T*(RF, RF)
@ oy N Sensitivity Kernel
T s g
& 10 ) S
e \\\ \\\‘\
c «® [/
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= -3 s \‘\\
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&, -4 ey \
10 \ \
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Figure 3. IHDP Hidden Confounding: Error recommendation rate
for different values of the percentage of deferred points. The x-axis
represents different levels of practitioner caution by varying the
percentage of recommendations deferred.

rably with competitors. However, the B-Learner with NN or
GK first stages and with RF second stage learners performs
better than the state-of-the-art methods. This result under-
scores the importance of flexibility in choosing nuisance
estimators, a key property of our method.

5.2. IHDP Hidden Confounding

We now show how the B-Learner can be used for other
causal inference tasks, such as informing deferral policies
for treatment recommendations. We replicate the experi-
ment from Jesson et al. (2021) on IHDP Hidden Confound-
ing. The dataset is multi-dimensional, has low overlap, and
has hidden confounding due to a single covariate being hid-
den from the training models. The dataset contains synthetic
potential outcomes generated according to the response sur-
face B described by Hill (2011). We use the same deferral
policy as in Jesson et al. (2021), namely, the policy simu-
lates either recommending treatment or deferral to an expert.
We make a treatment recommendation (either A = 0 or
A =1, according to the sign of CATE estimate) if and only
if the predicted CATE interval excludes zero.
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Figure 4. Example of lower and upper bound effect distributions
for log A = 0.2, as well as the percentage of negative effect lower
bounds for as a function of log(A) = 0.1, ..., 1.0.

We measure model performance in terms of recommenda-
tion error rate across multiple deferral rates. The deferral
rate is the fraction of observations for which we defer the ac-
tion decision to the expert. The error rate is the percentage of
observations for which we recommend the wrong treatment,
among those in which we did not defer. Note that in this
experiment we know the best treatment for each unit since
we simulate both potential outcomes, although these effects
do not correspond to a sharp bound under Assumption 1.

We compare two different variants of our B-Learner:
7¥(RF, RF) and 75 (NN, NN) with Sensitivity Kernel
and Quince. We see in Figure 3 that the RF B-Learner
outperforms the GK-based Sensitivity Kernel method, and
that the best performing methods are the NN B-Learner and
Quince which perform very similarly.

5.3. Impact of 401(k) Eligibility on Wealth Distribution

We apply the B-Learner to illustrate the impact of hidden
confounding in a study of 401(k) eligibility and its effects
on financial wealth. We use the real-world dataset from
Chernozhukov & Hansen (2004) that draws on the 1991
Survey of Income and Program Participation. The treatment
of interest is 401(k) eligibility, while the target outcome
is the net financial assets of an individual (taken as the
aggregate of 401(k) balance, bank accounts and interest-
earning assets minus non-mortgage debt).

This 401(k) eligibility dataset has been used in many analy-
ses (Poterba et al., 1994; Chernozhukov & Hansen, 2004),
often assuming unconfoundedness holds given observed
covariates and finding a strong positive effect. However,
unconfoundedness is an untestable assumption, so here we
explore the uncertainty in the (conditional) treatment effects
under varying degrees of hidden confounding. To that end,
we apply the B-Learner algorithm repeatedly for different
settings of A: log A = 0.1,0.2, ..., 1.0. The nuisances are
all estimated using Random Forest models with hyperparam-
eters as in (Chernozhukov et al., 2018). We also estimate
the CATE under unconfoundedness (log A = 0 which cor-
responds to the DR-Learner (Kennedy, 2020)).

In Figure 4, we plot the distribution of predicted conditional
effects on the 9,915 observations for log A = 0.2 as well
as the fraction of negative lower bound effects (frequency
of I(7~ (z) < 0)) as we vary A. For lower values of A, the
majority of lower bounds are still positive, which means that
under those levels of confounding, most true conditional
treatment effects are still positive. However, as we increase
A, more and more of the true effects could be negative as the
lower bound is comprised of mostly negative effects. For
example, at log(A) = 0.6, about half of the CATE lower
bounds are negative which is to be interpreted as: if the data
were truly confounded at this level, 50% of the effects mea-
sured as positive could in reality have been negative due to
unobserved confounders. Regardless of what A level is most
appropriate here, we see the B-Learner is a powerful tool
for practitioners who wish to conduct what-if experiments
for potential unobserved confounding.

6. Conclusion

We presented the B-Learner, a meta-learner for estimat-
ing bounds on the CATE function. The B-Learner can use
any learning method as its base learners, including random
forests and neural nets. We showed that the B-Learner pro-
vides bound estimates that are valid, sharp, robust, and have
quasi-oracle rate properties, making it (to the best of out
knowledge) the first CATE sensitivity analysis method with
all these properties. Experiments validate our theoretical
findings, show that the B-learner is comparable in perfor-
mance to existing state-of-the-art methods, and demonstrate
it can be used with real-world data to gain insight into the
uncertainty of estimated causal effects.
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Note: Throughout the appendix, we use £ notation to encode either upper/ lower bounds results. This allows us to unify
upper/ lower results and proofs at the cost of some readability.

A. Notation

We summarize the notation we use throughout this work in Table 1. In addition, note that we use upper case letters (e.g. X)
to denote random variables and lower case letters (e.g. x) to refer to specific values of a random variable.

(1), Y(0)

SN

Pr

{0}+. {0} -
b<d

Table 1. Notation

The observed covariates in R?

A binary treatment (4 € {0,1})

The outcome

(X, A,Y) which is drawn from an observed distribution P

Real-valued treated and untreated potential outcomes, respectively

The unobserved confounder in R*

An unobservable distribution over (X, A,Y(1),Y(0),U)

=7 €[0.5,1) for A > 1

max{b,0} ,min{b, 0} respectively, for a real number, b

b < Cd, forb,d € R, and for some universal constant C'

The true value of a function g

A putative value of a function g

An estimated value of a function g from data

The Lo norm of g given a probability distribution F'(z) and a function g(2)
Indicators to symbolize upper and lower bounds, respectively

Symbols signal that an equation should be read twice,

once with + = 4+, F = — and once with + = — F = +

E.g.: a* = b* + T encodes two equalities: a* = b+ + ¢~ anda™ = b~ + ¢t
The observed propensity score P(A=1| X = z)

The full propensity score Pa(A=1|X = z,U = u)

The conditional outcome distribution, P(Y <y | X =2z, A = a)

The conditional outcome density, d%F(y | z,a)

E[Y | X =z, A = a], outcome regression

inf{s: F(B | z,a) > c}, conditional outcome quantile

¢’ (x, a), shorthand o'" quantile notation

q;_,(z,a), shorthand (1 — o) quantile notation

q(z,a) + = {y — q(,a)} ,, Conditional Value at Risk pseudo-outcome

E[H1(z,q%) | X =z, A = a], the Conditional Value at Risk

The expectation above the (1 — «) quantile

The expectation below the o quantile

A=ty + (1 — A~Y)Hi(z,q), pseudo-outcome for the (conditional) unobserved potential outcome
E[R+(z,q) | X = z, A = a], the (conditional) expected unobserved potential outcome

A shorthand for p? (z, a, ¢+ )*, the p%. function evaluated at the true conditional quantiles g7}

CATE Bounds Pseudo-Outcomes

1 (2,7)
o (Z,1)
£(2,79)

)

AY + (1= A)pe (X, 1) + CGPE - (R(2,30(X, 1)) — 51 (X, 1))
(1— A)Y + Ap_(X,0) + T8 - (R-(2,3-(X,0)) — p_(X,0))

B. Results for CATE Lower Bounds

The results for the CATE lower bound 7~ (z) can be obtained by interchanging + and — symbols in the nuisances and/or
replacing A with 1 — A. We state them here for completeness.

12
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CATE lower bounds identification (Result 1). The sharp CATE lower bound is given by 7~ (x) = Y~ (z,1) — Yt (z,0),
where the relevant bounds on the conditional average potential outcomes can be expressed as:

Y~ (1) = e (@)p" (e, 1) + (1 - e (2))p (2, 1),

YH(2,0) = (1 - ()" (2,0) + " (@)} (2, 0).
Thus, the lower bounds can be expressed as a convex combination of quantities that can be estimated from the observed data
alone, i.e. they are identifiable from data.

Pseudo-outcomes for CATE lower bounds (Definition 2). Let 77 = (e, qA (,0),q-(-,1),p4(-,0),p_(-,1)) € Zbe aset
d7~(z)

of nuisances. The pseudo-outcomes for the bounds Y~ (z,1), Yt (z,0) and 7~ () are given by:
o7 (2. =y + (- ap-xn + T Rz () - o),
GHZR) = (1= A)Y +47,(X,0)+ T2 (Ru(2.30(X.0) = 5 (X.0).

o7 (Z,75) = ¢1 (Z,0) — 6§ (Z,7).

Validity and sharpness for CATE lower bounds. We call lower bound estimates 7~ (x) valid if 7~ (z) — 7~ (x) < —op(1).
Similarly, the lower bound estimates 7~ () are sharp if 7~ (z) = 7~ () + op(1).

Pseudo-outcome bias for CATE lower bounds. The absolute bias of the CATE lower bound pseudo-outcome has the form:

&7 (@s0)| S [e(@) —e*(2)] 1p-(2,1) — p* (,1)]

+ [e(z) — e ()] [P (2,0) = pi (2, 0)]
+(@-(2,1) = ¢“(2,1))?
+ (@1 (2,0) — q+(x 0))%.
whereas the signed bias bound is given by:

& (i) S le(x) — e (2)] [p-(2,1) — p (2, 1,4 )]
— [e(@) — e*(@)] [Py (2,0) = p3(x,0,q1)]-
O

The proofs of the theorems and corollaries in the paper (Appendix D) are unified across lower/upper bounds by using the +
notation described above. For example, we will write the consolidated pseudo-outcome bias bounds as:

€2 ()] S [e(w) — e* ()] 1px(x, a) — pi(z,a)]
+ (@x(,0) - ¢i(v,a))?
FEo (@30) S [ex) — ()] 1o (2, a) — pi(z,a,3x)].

which, together with £ (x; 7)) = i (2;7) — £F (2;7), yield the bias bounds for the lower and upper CATE bounds.

C. More Estimation Results
C.1. More ERM Results

Corollary 3 (Conditions for ERM Oracle Efficiency). Let F be a class of B-smooth functions in d dimensions
(i.e. Holder) and let e, p+,q+ be e, Y, and vq-smooth functions, respectively. Then, the Ly error rate of Algo-
rithm 1 is Oy, (n=1/Fd/8) 4 n=2/C+d/va) 4 p=(/@Fd/r)+1/(24d/%)) - Furthermore, if v, > % and vpYe Z
d; — W, our estimator is oracle efficient in the sense that the leading order error is that of the oracle estimator,

En[o(Z,7%) | X = a].

13
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C.2. Doubly Robust-Style Smoothing Estimators

We now study the behavior of Algorithm 1 with a DR Learner-style smoothing estimator as the second-stage learner. This
technique was introduced in Kennedy (2020) and includes a wide range of estimators satisfying certain stability conditions,
with linear smoothers as the archetype of this class. In this section, we analyze a generic linear smoother defined as follows:

~ r~ 1 & ~
E,|l¢of | X =2| == ’ =
(621X =a] == §Hj wi(2)d%,
where the w;(x)’s are weights learned on a different sample than Zsf , (which can be achieved by sample splitting). Under

mild regularity assumptions, this estimator can yield stronger guarantees in the form of pointwise error bounds.
Theorem 2 (Rates for Linear Smoothing Estimators). Assume the conditions of Assumption 2. Then:

" 1/2
74 @) = 75 (@)] S [FH @) = (@) + 6 @)+ Oy | (1% = 0102+ 0,(1) (;wam)?)

(

where T=(x) corresponds to the linear smoother procedure with oracle first-stage nuisances,
w;(x)?-weighted distance of Kennedy (2022), and the bt (x) bias function is of the form:

- |lw2 is the empirical

I .
by (2) = - Zwi(x)gf(Xi;n)
=1

Second-stage sharp consistency and robustness. 7 consistency follows under weak conditions like % S wi(Xy)| < C
(Stone, 1977). Thus, we can state corollaries that prove consistent estimation of sharp bounds under either strong restrictions
on weights or strong requirements on consistency. We show one such corollary for a wide class of linear smoothers that
includes linear and ridge regression, local polynomial and RKHS regression, kernel estimators, and some tree methods
(Wasserman, 2006). In this corollary, we ask for uniform nuisance consistency to make the bias term b, tend to zero.

wi(x)

Corollary 4 (Pointwise Consistency of Sharp CATE Bounds). Assume the conditions of Theorem 2 are satisfied, the ==
weighting functions satisfy the requirements of Stone (1977) Theorem 1, and % > |wi(z)] = Op(1). If @ and either € or p
are uniformly consistent, then T+ (x) converges to the true pointwise sharp CATE bounds.

Second-stage sharp rates. Take 7+, ¢, p+, ¢+ be 74 to be Holder with smoothness 3, 7, 7,, and ~y,. Then, the pointwise
error rate of Algorithm 1 is O, (n =1/ (+d/8) 4 n=2/(2+d/va) 4 p=(1/(2+d/7)+1/(2+d/70) ) and the estimator will be oracle
efficient, though the error bounds here are pointwise (local), whereas the ERM-based bounds are L, (global).

Second-stage validity. The linear smoothers also have pointwise validity. Unlike in the ERM case where the best model fit
to conservative bounds might extrapolate to invalid bounds for some regions of the covariates, the linear smoothers will have
pointwise validity guarantees.

Corollary 5 (Pointwise Validity of Lax CATE Bounds). Assume the conditions of Theorem 2 are satisfied, w;(x) satisfies
the requirements of Theorem 1 in Stone (1977), and = 3", |w;(x)| = Oy (1). If @x is uniformly consistent to some limiting
quantile qy. and € is uniformly consistent for e* or py is uniformly consistent for p (X, A, qy) and f(G+(z,a) | z,a) > 0.
Then the estimated bounds are pointwise valid in the sense that + (7% (x) — 7% (x)) > —op(1).

D. Proofs

Note: we assume throughout that X, U, Y(0), and Y (1) to have probability measures absolutely continuous w.r.t. the
Lebesgue measure so that we can condition on the event X = z.

Proof of Theorem 1. We start with the bound for the unsigned bias. Consider the Y+ (X, 1) bound for simplicity. We first
show that our problem fits into the framework of Kallus & Oprescu (2023) since the estimand and the oracle nuisances are
the solutions of following conditional moment restrictions:

E[AY + (1 — A)pi (X, 1) - YT(X,1) | X] =0 (Estimand moment)
ER (Z,¢1(X,1)) —pi(X,1) | X,A=1]=0 (Modified outcome moment)
Ela-IY <¢1(X,1)| X,A=1]=0 (Quantile moment)

14
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Let v be the nuisance set corresponding to this set of moments (as defined in Kallus & Oprescu (2023)). Then v (X) =
(YH(X,1),p%(X,1),¢%(X,1)). This is different from n* since the propensity does not have an estimating conditional
moment. The Jacobian of the moments with respect to v is thus given by:

-1 1-e*X) 0
JJX)={( 0 -1 0
0 0 —flat(X,1) [ X,1)
where f(y | x,1) be the conditional density at a point y for a = 1. The first row of the inverse is then given by

@ (X) == (JF(X));' = (=1,e*(X) — 1,0). Thus, using the pseudo-outcome in Definition 3 of Kallus & Oprescu (2023),
replacing v5, o with their estimated counterparts 71 (X) = (Y (X, 1), p4 (X, 1),¢+ (X, 1)), a1(X) = (—1,e(X) — 1,0),
and noting that the first moment is conditional only on X, we obtain the pseudo-outcome:

SHZA) =AY + (1= APy (X1 + E T (R (280 - pu(x1)

as desired. Therefore, our Assumption 2 is a direct application of the boundedness assumption (Assumption 1) in Kallus &
Oprescu (2023) and the bound for the unsigned bias follows largely from their Theorem 1. We first note that the results of
Theorem 1 in Kallus & Oprescu (2023) also hold pointwise (see the proof in their Appendix A). It now remains to calculate
the H and GG matrices in their Assumption 1:

0 00 0
o), H=[0 0 0
1 00 1

since G is just a binary mask for J;(X) and H involves second order derivatives of the moments. Plugging these into the
bound for the unsigned bias, we obtain:

3 3 3 3
EF @] $D0D 0 Gijlani(@) — of y(2)] [P (@) = vi (@) + DD Hij |Pra(a) — vi(@)] [P () — v ()]
i=1j=1 i=1 j=1

S [e(@) — e (@) [P (2, 1) = pf (2, D] + (@ (2, 1) = ¢ (2, 1))

The result for £ (z; 7)) follows from replacing a = 1 with a = 0 everywhere. The bound for £, (z;7) follows from writing
the corresponding conditional moments for Y~ (X, a).

We now study the bound for the signed bias. We first take the expectation of ¢} (Z,7):

B (o] (Z) | X] =B [AY + (1= 255 ) e )+ AT B2 80 X

ax)
ey + LSS oy + (55 - o) s

er(X)
e(X)

e 0 + (1= S8 (31X, 1) = (X 1,30) + (1 - (X)) (X, 1,1)

As a result, we can write write:

E[64(2.7) — 67 (Z.r) | X] = LX)

oxX) (P (X, 1) = ph(X,1,34)) + (p3(X, 1,34) — p3(X, 1)) (1 - e*(X))

Recall the CVaR property that p* (X, 1) = inf; p% (X, 1,q), so that p* (X, 1,q4) > p% (X, 1).
Therefore we have:
—& (w;0) =E [¢1 (Z,n") — ¢ (2,7) | X = «]
e(r) —e*(x) ,.. N ~ X ~ " %
=S (1) = 0 1,22) = (18 = 1) (1= € (0)

< _é\(x)é\zwc;*(x) (Z)\+(Z‘, 1) — pi(ﬂf, 17(/]\-5‘))

< —[e(z) — e (@)] |+ (2, 1) = pi(2, 1G4 )|
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The result for Y™ (X, 0) follows by symmetry. The result for Y~ (X, a) follows by negating Y, applying the argument, and
negating the argument. Results for 7% (X) follow by Result 1. O

Proof of Corollary 1. Since we showed in the proof of Theorem 1 that our pseudo-outcomes fit into the framework of Kallus

& Oprescu (2023) and our Assumption 2 maps to their Assumption 1, we can apply their Theorem 2 directly to our setting,
yielding the statement of our theorem. O

Proof of Carollary 2. Usmg lax notation, choose an estimated f £ € F to minimize Equatlon (1) and then an estimated
¢+ € R such that f £+ + ¢F is a minimizer of Equation (1). By construction, we must have f £ 4+ 0isan optimizer.

If we differentiate (1) with respect to ¢*, evaluate it at 0, and divide by 2, we obtain the requirement on any optimizer that

N ((Efl — ]?i(XZ)) = 0. As aresult:

(i ros-e) -+ (1555 o)
i=1 i=1

By applying Chebyshev’s inequality to the average of zero-meaned bounded random variables 7+ (X ;) —7%(X;) - X (X;; 1),
we can further obtain:

+ (Tll i?i(Xz) - Ti(Xi)> = i% igfri(Xz,ﬁ) . Op(n_l/Q)
- i=1
2 7% ZO <|€(X) - 6*(X)| Z |ﬁj:(X, a) — p*:t(X;ay(’]\j:)') o Op(’n,il/z)

-0 (IIg— 1) 1= a) = pi(a, CYi)I) —0p(1) = —0p(1),

Y]

demonstrating the desired bound. O

Proof of Corollary 3. The Ly convergence rate for a Holder 5-smooth functions in d dimension is O p(n’l/ (2+d/8 )). Taking
e, p+, g+ to be e, 7,, and v,-Holder, we have that their convergence rates are Op(n =1/ (2+d/7¢)) Op(n=1/Z+d/7)),
and Op(n~1/(2+4/7a)) respectively. Thus, the Lo conditional bias in Theorem 1 is bounded above by a term that is
O, (n=%/(+d/7a) 4 n=(1/(2+d/7e)) - Applying Corollary 1 with a 3-smooth function class F, we obtain the desired rate
Op (n=V/EHd/B) 4 =2/(24d/70) 4 = (1/(2+d/7e)+1/(2+d/70))  The rest follows by algebraic manipulation. O

Proof of Theorem 2. We first derive:

75 (@) — 7 ()| = |7F (2) + 75 (2) — %Hx)l
= %i(I) Zwl Zun) ¢7j—:(21777*))>‘
— 7 (2) — sz S(Xs0) + 67 (Zis ) — 67 (Zin™) — E5(Xi; 1)
< |7 (@) - sz = (Xis7) Zwl +(Zi,1) — ¢f<Zi7n*)—6$<Xi;ﬁ>)'

Since ¢ (Z;, 1) — ¢ (Z;i,m) — EX(Xy; 1) is zero-meaned conditional on X and nuisances (including weights), we can
apply Chebyshev’s inequality to randomness in (4,Y") | X to obtain:
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Op (II&E— 5illw2 sz )

Since £X(X;7) = E [(}S\f —¢F | X ] , we can take advantage of the weighted L2 norm and the weak law of large numbers
to further bound [|6F — ¢F — £F |2 < [[0F — ¢F |l + 0p(1):

1/2
75 (2) — 75 (2)| < [7E (@) — 75 (@)| + bE (@) + Op | (65 — dF ]z + 0,(1 ( 2 Zw’ ) ’

which is the desired inequality. O
Proof of Corollary 4. By Stone (1977) Theorem 1 and since |¢=| is bounded, 7(z) =P E[¢F(Z,n) | X = z] = 75 (z).
For the second term, we use the Theorem 1 and the supremum assumptions to derive:

by () Z [wi(@)|sup € (23 7)|

< (sgp la) — (@) <sup pe(r,0) - p;<x7a>> +oup(@a(r,) - g} (x,0))?

= 0p(1)

For the final term, the sup consistency implies ||g/z§$ — ¢ = 0,(1). We also have:
I I ’
> ey < (n > Iwi<x>|> = 0,(1)
i=1 i=1

So that O, (& Sy wi(@)2]|6F — ¢ [|u2) = 0p(1). O

Proof of Corollary 5. 1f we define 7% () for the linear smoother estimate that uses 7 as first-stage nuisances, we can
similarly argue that:

75 (@) = 75 (2)] = [75(2) = 75 (2) + 75 (2) — 7 ()

> fwil@)| [EF (X 9) — 5 (X))

1=

n 1/2
+ Op ||¢ ( M lw2 + 0p(1 < Z )
1)

»(1

B

IN
S\P—‘

By Stone (1977) Theorem 1, 7+ (z) =P E[¢F(Z,7) | X = x].
By Theorem 1, + (E[¢(Z,7) | X = 2] — 7%(z)) > 0
Therefore & (7+(z) — 75(x)) > —o0,(1). O

E. Detailed Algorithm

We present a more detailed version of the B-Learner pseudocode in Algorithm 1.

F. Additional Experimental Details

The replication code for all simulations is distributed under an MIT license.
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Algorithm 1 The B-Learner: Detailed
input Data {(X;, A4;,Y;) : ¢ € {1,...,n}}, folds K > 2, sensitivity parameter A > 1, nuisance estimators, regression

learner E,,.

1: fork e {1,..,K} do
2 SetSk—{(XZ,Al,Y):i#k—l(modK)}

Using Sy: R
3:  Learn outcome model: i*)(z,a) = E[Y|X = 2, A = q]
4:  Learn propensity model: ¢¥)(z) = p(A = 1|X = x)
5:  Learn conditional outcome quantile models:

G (z,a) =b{B: F(B| X =2, A=a) > A/(A+1)}

(x,0) = f{5: F(B| X =2, A=a) > 1/(A+1)}
6: Iﬁar\n&())nditional value at risk models:

CVaRy (x,a) =31 (w,0) + A+ DE[{Y — ¢ (z,a)}s | X =2, A = q

Set 5% (2, a) = A1i®) (z,0) + (1 — A-))CVaR (2, )

7:
8: forz =k —1 (mod K) do
90 SetRy,; =AY+ (1— A (@ (X0 A) + 25 {v - P (X, A}
10: Set pseudo-outcomes for Y+ (X, 1):

~ 1—e® (X)) A;

¢it,i =AY+ (1 - Ai)ﬁ(f)(Xi7 1)+ (QUCT)) ' (R:t,i - /A?(ik)(Xi, 1))
11: Set pseudo-outcomes for Y+ (X, 0):

4 ~ e (X)) (1—A; k

bo; = (1 —A)Yi+ Aipx(Xi, 1) + % . (R:I:,i - ﬁ(j:)(XiaO))
12: Set pseudo -outcomes for CATE:

¢7:Fz = ¢ (7250,1
13:  end for
14: end for

15: Create datasets 7+ = {(X; ot )N

TZ

16: Learn upper- and lower- bound functions 7+ (z) = E, [(Ef | X = x] from the datasets 7+
output 7+

F.1. Simulated Data

The results in Section 8 were obtained using an Amazon Web Services instance with 32 vCPUs and 64 GiB of RAM. For
the Random Forest (RF) models, we use the RandomForestRegressor model from scikit-1learn. For Gaussian
Kernels (GK), we use RBF (radial basis function) method from scikit—1learn. Finally, for the Bayesian Neural Networks
(NN) we use several functions from the PyTorch package. The quantile estimators use weights from the nuisance regressors
when RFs or GKs are used or are calculated from the sampled outcome distributions when NNs are used. We include the
hyperparameters for the different models used with the synthetic data in Table 2.

Table 2. Hyperparameters for model choices in synthetic data experiments.

Model Hyperparameter ~ Value
Random Forest (scikit-learn) max_depth 6

min_samples_leaf  0.05
RBF (scikit-learn) length_scale 0.9 x n~7+a
Neural Network (PyTorch) hidden units 100

network depth 4

negative slope 0.3

dropout rate 0.2

batch size 50

learning rate Se-4
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Table 3. IHDP Covariates Binary covariates x9 — x1g are attributes of the mother. Mother’s education level “College” indicated by
covariates X109 — x12 all zero. Site 8 indicated by covariates x19 — x25 all zero. We show the frequency of occurrence for each binary
covariate p(x = 1), as well as the adjusted mutual information I (x; t) between the binary covariate and the treatment variable.

Continuous Binary
Covariate Description Covariate  Description I(x;t) p(x=1)
X1 birth weight X7 child’s gender (female=1) 0.00 0.51
X9 head circumference Xg is child a twin 0.00 0.09
X3 number of weeks pre-term | xg married when child born 0.02 0.52
X4 birth order X10 left High School 0.00 0.36
X5 “neo-natal health index” X711 completed High School 0.00 0.27
Xg mom’s age X192 some College 0.00 0.22
X13 child is first born 0.00 0.36
X14 smoked cigarettes when pregnant .01 0.48
X15 consumed alcohol when pregnant ~ 0.00 0.14
X16 used drugs when pregnant 0.00 0.96
X17 worked during pregnancy 0.01 0.59
X18 received any prenatal care 0.01 0.96
X19 site 1 0.00 0.14
X290 site 2 0.01 0.14
X21 site 3 0.00 0.16
X292 site 4 0.01 0.08
X23 site 5 0.02 0.07
Xo4 site 6 0.01 0.13
X925 site 7 0.02 0.16
F.2. IHDP Dataset

We use Jesson et al. (2021)’s hidden confounding version of the Infant Health and Development Program (IHDP) that
was introduced by Hill (2011). The data comes from an experiment that targeted “low-birth-weight, premature infants,
and provided the treatment group with both intensive high-quality child care and home visits from a trained provider”
(Hill, 2011). For the purpose of simulating an observational study, Hill (2011) generates simulated outcomes using the
following features: measurements on the child—birth weight, head circumference, weeks born preterm, birth order, firstborn,
neonatal health index, sex, twin status—as well as behaviors engaged in during pregnancy—smoked cigarettes, drank alcohol,
took drugs—and measurements on the mother at the time she gave birth—age, marital status, educational attainment (did
not graduate from high school, graduated from high school, attended some college but did not graduate, graduated from
college), whether she worked during pregnancy, whether she received prenatal care, and the site (8 total) in which the family
resided at the start of the intervention. A non-random portion of the treatment group, the children of non-white mothers, are
excluded from the study in order to mimic confounding in an otherwise randomized trial. Covariates consist of 6 continuous
variables and 19 binary variables. We use the covariate descriptions from Jesson et al. (2021) which we replicate in Table 3
for completeness. The dataset consists of 747 samples, of which 139 are in the treatment group.

Jesson et al. (2021) create the Hidden Confounding of IHDP by hiding the covariate xg from models during training,
however, the causal model depends on it for the data generation. Following is the data generation process of the Hidden
Confounding version of response surface B (Hill, 2011), we restate the data generation process from Jesson et al. (2021):

u = Ny, (2a)
x = Ny, (2b)
t = N, 2¢)
y = (t — 1)(exp(Bx(x + W) + Bu(u + 0.5)) + Nyo) + t(Bxx + Byt — w” + Ny1)), (2d)

where (Ny, Ny, Ny) ~ pp(xg, {X1,...,X8,X10,---,%X25}, 1), Nyo ~ N(0,1), and Ny1 ~ AN(0,1). The coefficient 3,
is randomly sampled from (0.1,0.2,0.3,0.4,0.5) with probabilities (0.2,0.2,0.2,0.2,0.2), B is a vector of randomly
sampled values (0.0,0.1,0.2,0.3,0.4) with probabilities (0.6,0.1,0.1,0.1,0.1), w is a vector with all the coordinates
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equals 0.5, where w® was chosen as in Hill (2011): "for the s™ simulation, it was chosen in the overlap setting, where we
estimate the effect of the treatment on the treated, such that CATT equals 4; similarly it was chosen in the incomplete setting,
where we estimate the effect of the treatment on the controls so that CATC equals 4”.

Following Jesson et al. (2021)’s Hidden Confounding experiment, we generate 400 realizations of the IHDP dataset, such
that the seed for each realization is the corresponding index of the realization, where the indices are 0, 1, ...., 400. Each
realization is split into training (n = 470), validation (n = 202), and test (n = 75) subsets. For the B-Learner with NNs, we
use the same models and hyperparameters used by Quince in Jesson et al. (2021). For the B-Learner with RF base estimators,
we use the RandomForestRegressor from scikit—-learn and ForestRegressor from econml . grf where
we control for forest growth only through the max_depth (= 6) and min_samples_leaf (= 0.01) parameters. As for Kernel
Sensitivity and Quince, to replicate the results from Jesson et al. (2021), we use the same models and hyperparameters they
used for the Hidden Confounding IHDP experiment. Note: we exclude 5 of the 400 IHDP trials from the original analysis
due to poor data quality (e.g. low overlap) that affects the NN training. These issues seem to be mitigated by ensembling
which is why they do not pose a problem for the experiments in Jesson et al. (2021). We will perform a comparison of the
ensembled methods in a future iteration of this work.

F.3. 401(k) Eligibility Study

The dataset includes 9,915 observations with 9 covariates such as age, income, education, family size, marital status, IRA
participation, etc. We describe the features of the 401(k) dataset in Table 4. In order to replicate the CATEs obtained by
(Chernozhukov et al., 2018), we use the same models (RandomForestRegressor and RandomForestClassifier
from scikit-learn) and hyperparameters (n_estimators = 100, max_depth = 7, max_features = 3, min_samples_leaf =
10) for our nuisance estimators and second stage models.

Table 4. Features of 401(k) dataset.

Name Description Type

age age continuous
inc income continuous
educ years of completed education continuous
fsize family size continuous
marr marital status binary
two_earn  whether dual-earning household  binary

db defined benefit pension status binary
pira IRA participation binary
hown home ownership binary
e401 401 (k) eligibility binary
net_tfa net financial assets continuous
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