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D-STAR: Diffusion-Based Sparse Tomographic
Angular Recovery for Isotropic-Resolution
Photoacoustic Imaging
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Abstract— Anisotropy in imaging systems often results
in directional degradation, impairing image quality and com-
plicating subsequent analyses. While multiangle imaging
has proven effective in mitigating these effects, it intro-
duces challenges such as extended imaging times and
increased excitation doses. To address these limitations
in Photoacoustic Tomography (PAT), we propose a novel
approach—Diffusion-based Sparse Tomographic Angular
Recovery (D-STAR). D-STAR significantly reduces the num-
ber of required angles for high-resolution PAT while
maintaining image quality comparable to full tomographic
angular imaging. By training a diffusion model on a custom
3D PAT dataset, we optimize the balance between spatial
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and temporal resolutions, signal-to-noise ratio (SNR), and
laser exposure. Our experiments with excised brain and
vessel phantoms demonstrate that D-STAR produces high-
fidelity images suitable for both structural and molecular
imaging. This method outperforms existing approaches in
static structural recovery and quantitative data extraction,
offering substantial improvements in imaging quality, par-
ticularly in resolution and contrast. Furthermore, D-STAR
enhances flexibility in imaging system design, reducing
the need for hardware upgrades while improving temporal
resolution and minimizing laser exposure.

Index Terms—Photoacoustic tomography, diffusion
probabilistic models (DPMs), molecular photoacoustic
imaging, isotropic-resolution imaging.

[. INTRODUCTION

N IMAGING systems, resolution describes the ability to

distinguish fine details—think of it as how sharply a camera
or microscope can capture the edges of an object. Ideally,
resolution is isotropic, meaning it’s consistent in all directions.
For instance, a tiny circle would appear equally clear whether
viewed horizontally, vertically, or diagonally. However, many
real-world systems exhibit anisotropic resolution, where the
sharpness of details depends on their orientation. Such limita-
tion often arises from directionally biased sampling schemes
or system geometry. As a result, tasks such as image reg-
istration and quantitative analysis become more challenging.
To mitigate this issue, multiangle imaging and reconstruc-
tion have emerged as effective strategies (Fig. 1). This
approach has been adopted by a variety of imaging techniques
such as Optical Diffraction Tomography (ODT) [1], Light-
Sheet Microscopy [2], Structured Illumination Microscopy
(SIM) for super-resolution [3], Ultrafast Doppler Tomography
(UFD-T) [4], and Photoacoustic Tomography (PAT) [5], [6],
[7]. These methods utilize optical or mechanical scanning to
alter the direction of degradation and integrate data from mul-
tiple angles to enhance image quality. They have demonstrated
efficacy in their respective applications.

However, this multiangle approach introduces notable draw-
backs. The scanning process prolongs imaging time, which
is problematic for applications requiring high temporal res-
olution. Additionally, the increased excitation dose—such as
laser exposure or ultrasound emission—can lead to sample
bleaching [8] or exceed safety limits [9]. Consequently, a per-
tinent question arises: What is the minimum number of
angles required? Existing methods employing full tomographic
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Multiangle fusion process and issues of STAR. The object b is convolved with the PSF p, producing images y; = Rot(6;)p * b, which are

Fourier-transformed into y; = FT(y;). The right panel compares full (green) and sparse (red) angle sampling in Fourier space, showing expected
frequency support (orange), angle step (blue), and critical angle (yellow). Sparse angles cause reconstruction errors in the estimated image.

angular imaging typically involve rotation steps of less than
twice the critical angle (the half-angle of the arc on the
expected boundary of the frequency support occupied by a
single-angle image, Fig. 1), ensuring comprehensive coverage
of the frequency spectrum through the union of observed
spectra from different angles [10]. Fortunately, sparse sam-
pling theory [11] allows for recovery of the original image
using a limited number of angles (termed Sparse Tomographic
Angular Recovery, STAR) by incorporating prior information.
In this context, the reconstruction problem transitions from
being overdetermined to underdetermined, with its success
heavily dependent on the quality of the prior information [12].

Deep learning, especially generative models [13], [14], [15],
has emerged as a promising solution to ill-posed inverse prob-
lems, where traditional methods may falter. This capability has
led to deep learning-based methods being extensively studied
and widely adopted for tackling problems similar to STAR,
such as image denoising [16], [17] and super-resolution [18],
[19], particularly in the realm of light microscopy. Research
has consistently demonstrated the effectiveness of deep learn-
ing techniques in overcoming the challenges associated with
STAR, highlighting their potential to enhance image quality
and analytical accuracy [20].

In this study, we focus on the photoacoustic imaging
modality, specifically Photoacoustic Tomography (PAT), due
to its unique combination of optical contrast and acoustic
penetration depth [21]. This integration provides fine struc-
tural and molecular information within deep tissues. Although
isotropic photoacoustic imaging systems exist [22], [23], [24],
their systems are complex, expensive and bulky. Anisotropic
systems, by contrast, offer greater flexibility and are more
commonly employed in clinical and preclinical research [25],
[26], [27]. But the drawbacks associated with full tomographic
angular imaging are particularly pronounced in these contexts;
for instance, a 32-angle scan may be required to achieve a
resolution of 150 um within a 24 x 24 x 24 mm?> FOV, taking
up to 3 minutes for single-wavelength imaging. This duration

is often unacceptably long for clinical applications and poses
a risk of tissue damage when using contrast agents [5].
Therefore, it is essential to minimize the number of angles
required for effective imaging.

However, STAR poses additional challenges in photoacous-
tic imaging, where bipolar photoacoustic signals can result
in the loss of directional features at certain angles, reducing
the information available for recovery and complicating the
problem [28], [29]. Furthermore, the spatially varying point
spread function (PSF), influenced by non-uniform sound speed
distributions in biological samples, limits the effectiveness of
traditional deconvolution methods. Additionally, the scarcity of
physically acquired 3D PAT datasets means that most existing
studies rely on simulated data for training, constraining the
performance of their networks and leaving the STAR problem
in PAT largely unexplored [30], [31], [32].

To address these challenges, we propose a diffusion-based
sparse tomographic angular recovery (D-STAR) method to
reduce the number of angles required for high-resolution
PAT. This approach involves constructing a 3D PAT dataset
using a custom-built rotatable PAT system and training
a diffusion-based network specifically designed for PAT.
This methodology aims to optimize the balance between
imaging time, resolution, signal-to-noise ratio (SNR), and
laser exposure dose. Our results, demonstrated on both
excised brains and vessel phantoms, indicate that the trained
D-STAR method can approximate the quality of full tomo-
graphic angular imaging. Furthermore, we show that the
high-fidelity outputs from D-STAR can be directly employed
in molecular photoacoustic imaging, a capability that repre-
sents a significant improvement over the limitations faced by
previous network.

[I. PRELIMINARIES
A. Multiangle Image Fusion

Assuming an imaging system characterized by anisotropic
resolution (Fig. 1), with a PSF p elongated in the y-direction,
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the imaging or observation process can be described as a
convolution operation: y = pxb, where b denotes the imaging
object and * represents the convolution operator. It is evident
that the resulting observed image y will exhibit blur along
the y-direction. To mitigate this directional blur, the imaging
system is rotated, equivalently rotating the PSF to alter the
direction of the blur. Consequently, a series of observed images
are obtained:

yi =Rot(p) b, Vi € {1,...,n}, 1)

where Rot)(-) denotes the i-th rotation of the PSF. In this
context, the objective of multiangle imaging fusion is to
reconstruct the original image » with isotropic resolution from
the blurred observations {y;}!"_,. The problem is formulated as:
" . 2
min >" [Rot® (p) e = yi| ", @)

i=1

where e represents the estimated image. If the PSF is known
from simulation or experimental methods, this problem can
be addressed using traditional deconvolution techniques. In
the absence of prior PSF knowledge, deconvolution methods
without prior knowledge must be employed, which entails
substantial computational complexity. In PAT, the PSF lacks
both spatial and rotational invariance, further exacerbating the
computational challenges.

As an alternative approach, the image can be transformed
from the spatial domain to the spatial frequency domain
(k-space). For each spatial frequency, values are selected from
the angle with the largest magnitude and incorporated into
the fused data e. This method inherently satisfies Equation 2
without requiring prior knowledge of the PSF. However, this
approach necessitates full tomographic angular scan. In cases
of STAR, missing spatial frequencies can introduce significant
artifacts.

B. Diffusion Probabilistic Model for Content Restoration

Before the advent of Diffusion Probabilistic Models (DPMs)
[33], the most widely used generative models were Generative
Adversarial Networks (GANs) [13]. While GANs are known
for generating high-quality images, they present challenges
such as training instability and mode collapse. Variational
Autoencoders (VAEs) [14] provide a more stable training
process but tend to produce blurrier reconstructions due to fac-
tors like simplified reconstruction loss and the regularization
imposed by the KL divergence term. DPMs, by framing image
generation and restoration as a gradual diffusion process, offer
a strong balance between image quality and stability. This
multi-step approach addresses some of the key challenges
faced by GANs and VAEs, making DPMs particularly suitable
for tasks requiring precise image restoration.

1) Noise Addition: In the forward process, a sequence of
images x, ..., x7 is generated by gradually adding noise to
the original image. The amount of noise increases as timestep
t progresses, where x© is the original clean image and x7 is
essentially pure Gaussian noise.

2) Denoising: A denoising neural network, often parame-
terized as €g(x’, 1), learns to predict the added noise at each
timestep . The reverse process then uses these predictions to
iteratively refine the noisy image back towards its clean form.

3) Content Restoration in STAR: In STAR for PAT, incom-
plete imaging data can be viewed as noisy or missing
information. The diffusion model addresses this by filling
in the gaps using prior knowledge learned during training,
effectively mitigating anisotropic degradation caused by sparse
angular acquisitions, which results in directional information
loss. Compared to GANs and VAE, the diffusion model’s grad-
ual reconstruction process aligns closely with the fundamental
nature of content restoration, allowing it to progressively
remove noise or add details. Its single training objective makes
the training process more stable, without needing complex
adjustments, and it avoids problems like mode collapse. The
model also provides better probabilistic interpretation, which
helps prevent blurring issues that are common with other
methods. Additionally, the multi-stage reconstruction process
allows for more control, as conditions can be added at each
step, unlike in one-stage methods.

[1l. METHODS
A. Imaging System Setup

The homemade imaging system includes an excitation laser,
scanning stages, and an ultrasound detection module (Fig. 2).
The excitation of PA signals was carried out using an optical
parameter oscillator (LP604, Solar Laser) together with its
pump source (LQ929B, Solar Laser). The scanning strat-
egy was accomplished by two motors: a direct-drive motor
(ADRS-200-M-A-NS, Aerotech Inc.) for rotational movement
and a linear motor (ANT 25L, Aerotech Inc.) for translational
motion. We integrated a half-ring array transducer from ULSO
TECH Co., Ltd., featuring a 55 mm radius. This transducer
operates at a central frequency of 5.5 MHz and has a detection
bandwidth of —6 dB at 60 %. It consists of 128 elements,
each with an arc-rectangular aperture of 1.32 mm pitch and
an elevational length of 20 mm, which collectively provide
a cylindrical focus with a numerical aperture of 0.2. The
ultrasound signals were recorded using a low-noise data acqui-
sition system with 128 channels (MarsonicsDAQ128, Tianjin
Langyuan Inc.).

B. Multiangle PAT Imaging

The multiangle PAT employs a mechanical translation-
rotation scanning strategy for the ultrasound transducer.
Initially, the transducer is linearly scanned along the eleva-
tional direction with a step size of 0.6 mm, approximately half
of the elevational resolution. Following this, the transducer is
rotated to perform the subsequent linear scan. The angular
step size for rotation is determined based on experimental
requirements, specifically 5.625 ° for acquiring 32 angles and
45 ° for acquiring 4 angles.

The subsequent image reconstruction process is a simple
solution to the problem raised in Section II-A, with the
following steps:
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Fig. 2. Diagram of multiangle PAT system. The ultrasound transducer
array is linearly scanned along the elevational direction (straight arrow)
and rotated (curved arrow) to vary the linear scan orientation.

1. Reconstructing the raw PA signals into 2D images using
the delay and sum algorithm.

2. Stacking these images along the elevational direction with
respect to their scanning angle.

3. Filtering the stacked 3D images to flatten the uneven
sampling density in k-space [5]. The filter H (kx, kz) in the
k-space of the plane perpendicular to y-axis can be described
as:

1
>, Stkx, kz; 0)°

where S(kx, kz; 0) represents a transfer function correspond-
ing to a translationally-scanned tomogram at angle 6:

H(kx,kz) = S(kx, kz; 0) - 3)

S(kx, kz; 0) = step(kx cos(0)—kzsin(0) + W,)
— step(kx cos(0)—kzsin(0) — W,). (4)

W, is the cutoff spatial frequency in the elevational direction
and step(-) denotes the step function.

4. Rotating and registering 3D images of different angles in
the same coordinates and then summarizing them. The result-
ing near-isotropic 3D volume is ready for dataset constructing.

C. STAR Using Conditional Diffusion Model

Given an input 4-angle image, our model takes it as a
condition ¢, then gradually refines the reconstruction from
noisy initialization to high-quality outputs using a guided
reverse process (Fig. 3).

Following [15] and [33], the forward diffusion process
incrementally adds Gaussian noise to the ground truth data,
progressively corrupting the high-quality full-angle image x°.
This process can be modeled as a Markovian chain, denoted
by g, where each noisy image x’ at timestep ¢ is obtained by

conditioning on the previous step:

gx'Ix" = N(x"; V1= B x"", B), (5)

Here, B; represents the noise schedule, which controls
the variance of the added Gaussian noise € ~ N(0,I) at
each timestep ¢, where I denotes the identity matrix. From
Equation 5, x' = /T — B; x'~! + \/B; €. The forward diffu-
sion process continues until the final noisy image becomes
indistinguishable from pure noise x” ~ N(0, I).

In the conventional, generation-oriented DDPM framework,
the reverse sampling process trains the denoising network to
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Fig. 3. Architecture along with training pipeline of D-STAR. a) The
forward diffusion process progressively corrupts the 32-angle ground
truth image X0 to generate a noisy representation xT. The reverse
sampling process denoises xT to recover the full-angle image, guided
by both low-level (direct image concatenation) and high-level (features
via cross-attention) conditioning from the sparse 4-angle input c. During
training, sliced images from the GT voxel x0 and the reconstructed
voxel xg are used for supervision. b) For low-level conditioning, at each
denoising step, cis concatenated with x! and fed into the denoising U-Net.
Then a PA Shape Encoder Es is trained to extract shape features fs from
¢, which are integrated into the denoising process via cross-attention.

1

Noisy Intermediary ! Noisy Intermediary xt

predict the noise € added at each step. This noise is then used
to estimate the clean image x°. Specifically, at timestep f,
given the noisy image x’, the denoiser estimates the added
noise via a neural network €q(x’, t, ¢):

-0 xt — JT—a;e9(x!,t,0)

X = - . (6)

oy

where a; = Hﬁ:l «; is the cumulative noise schedule, and
o, = 1 — B;. The reverse diffusion step then samples:

' =a B+ 1@ e & ~NOD. (]

In contrast, we directly train the denoiser to predict the
clean image x° instead of the noise. This change better aligns
with our reconstruction-oriented task, where structural fidelity
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is crucial. The network xg (x',1,¢) directly estimates the
underlying clean image from x’, and the reverse step becomes:

xr71 = &,_lxg(x’,t,c)—i-\/l—51;_161, GINN(()’I)'
®)

Given the sparse tomographic angular acquisition, we con-
dition the reverse sampling process using the input 4-angle
images c. For this conditional control, we use two approaches
to implement it. In the first approach, inspired by the super-
resolution works [34], we use a simple and effective method
to modify the intermediate noisy image x’ by channel-wise
concatenating the 4-angle images. Our model uses fczz‘w’ ny =
xl(l’w)h) @ c(1,w,n) as input to the denoising process at each
timestep, where & denotes channel-wise concatenation. This
formulation incorporates an additional 4-angle image channel
to guide the generation process during denoising. The second
approach, in order to reduce the interference of redundant
noise information as well as to enhance the fusion of informa-
tion between the condition and the network output, we provide
conditional control of the feature dimension by introducing the
cross-attention mechanism [35], implemented in the middle

block of the denoising U-Net:

Attention(Q, K, V) softmax(QKT) Vv )]
with Q = Wyo - o(x' ®¢), K=Wg-f,, V=Wy-f,.
Here, d is the dimensionality of the query and key vectors,
while Wo, Wk and Wy are learnable matrices that project
the input features into the query, key, and value spaces. And
@(x" @ c) represents a flattened intermediate feature map
from the denoising U-Net, parameterized by 6. Additionally,
fs = Es(c), where E; is a pretrained ResNet-50 [36],
referred to as the PA Shape Encoder. This encoder captures
the morphological information of the objects imaged from the
4-angle input, enhancing the model’s ability to faithfully
restore the structural details in the decoding phase. By lever-
aging these two modes of conditional control, our model is
able to reconstruct a high-resolution image along the slice
direction. The 4-angle input data provides crucial structural
information that guides the denoising process, allowing the
restoration of fine features that are otherwise lost. The reverse
sampling process is defined as:

poxNx' e, £ =N nex' €, fy, 0, o7 ),
(10)

where g is the predicted mean from the denoising network,
and 6 is the learnable parameter. The variance o2, with some
algebraic manipulation, is derived from ;. The reverse process
iterates from t = T (final timestep) down to ¢ = 0, gradually
removing the noise introduced in the forward process.

By concatenating the input image ¢ and intermediate image
x', we create a 2-channel input for the denoising network,
which is structured as a convolutional U-Net. A key strength
of our U-shaped network is its ability to maintain a broad
bandwidth, capturing and preserving detailed structural infor-
mation essential for high-fidelity 2D image recovery and richly
detailed 3D volume generation. The network’s convolutional

layers fully leverage the geometric priors in the input data,
effectively managing complex spatial relationships among dif-
ferent slices, resulting in consistent and geometrically accurate
3D representations, evident in the spatial alignment of the
output images along both the x-axis and z-axis.

To further enhance the quality and robustness of our model,
we introduce key improvements in training the conditional
diffusion models: (1) Zero-SNR Training [37]. We apply
the zero-SNR technique, which helps address the discrepancy
between the initial Gaussian noise in the sampling process and
the noisiest training samples. (2) Sample Prediction. Instead
of predicting the added noise €, our model is trained to directly
predict the full-angle image x°. This approach shifts the focus
from noise estimation to image reconstruction, making the
model more adept at restoring the high-resolution image from
each noisy step. The training is structured to minimize the
difference between the predicted image xg(xt, ¢, t) and the
full-angle image x°. The loss function is defined as the mean
squared error (MSE) between these two images:

Lyvse =By ., [on —x0(x', ¢, Es(e), I)HZ]. (1)

D. Temporal Unmixing For Fluorescent Proteins

For most fluorescent proteins, the excitation light causes
photobleaching during the imaging process, leading to an
exponential decay in PA signals [38]. In our temporal unmix-
ing algorithm, we model this PA amplitude decay using the
equation:

A(t) = a - exp(—bt) +c, (12)

where b represents the bleaching rate, a denotes the PA signal
strength contributed by the fluorescent proteins, and ¢ accounts
for the PA signal strength from any unbleached background
chromophores. In this work, the 4-angle imaging cycle was
performed 24 times to generate 24 frames. To achieve a more
precise analysis, the multiangle fusion procedure was applied
to every set of 4 adjacent angles throughout the scanning
process, resulting in a temporal interpolation that produced
93 virtual frames for exponential fitting.

E. Sample Preparation

All experimental procedures of rodents were approved by
the Institutional Animal Care and Use Committee (IACUC) of
Tsinghua University and were performed using the principles
outlined in the Guide for the Care and Use of Laboratory
Animals of Tsinghua University.

The brains used to construct the dataset were pre-
pared through standard transcardiac perfusion with phosphate
buffered saline (PBS) followed by 4% paraformaldehyde
(PFA). After this processing, the samples were ready for PAT
imaging. The imaging data presented in Fig. 11 were obtained
from a brain that had been injected with AAV-hsyn-iRFP-
EGFP.

The vessel dataset was constructed by imaging vessel-like
seaweed samples submerged in a 3.6% v/v 30%-intralipid
emulsion solution.
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The in vivo dataset was established by imaging subcuta-
neous tumors in tumor-bearing mice. For this experiment,
NU/NU mice were employed as the animal model, and 4T1
cells were orthotopically implanted into their dorsal region.
Tumors were grown for approximately 7 days before being
used for experiments.

IV. EXPERIMENTS AND RESULTS
A. Datasets and 3D Image Preprocessing

We prepared the brain, tumor and seaweed samples as
described in Section III-E for the dataset, followed by mul-
tiangle imaging procedure described in Section III-B using
the homemade PAT imaging system (see Section III-A for
details). In our proposed dataset, we used 3D images fused
from 32 different angles as the Ground Truth and 4 angles as
the input image of the model. In total, we collected 86 mouse
brains, 32 mouse tumors and made 75 vessel phantoms to
make our dataset, the STAR-PAT. The data in STAR-PAT
are divided into training, validation and testing datasets, con-
taining [76, 5, 5] mouse brains, [24, 4, 4] mouse tumors, and
[65, 5, 5] vessel phantoms. The brain and vessel 3D volumetric
images each have a data size of 256 x 256 x 256, while the
tumor data has a size of 288 x 288 x 288.

For 3D image preprocessing, following [32], with efficiency
concerns in 3D network to be compared in the experiments,
the 3D voxels were cropped into 8 cubes with 128 pixels
along each dimension as the input of the network. And after
data augmentation, 4864, 320,320 brain matrices, in addi-
tion of 4160, 320, 320 vessel matrices, both with dimensions
of 128 x 128 x 128, make up the 3D STAR-PAT dataset,
which is the largest real 3D dataset in photoacoustic imaging
neural network training. Next, we processed the original
256 x 256 x 256 / 288 x 288 x 288 3D image data into
256 x 256 / 288 x 288 2D slices along the y-axis to fit our
proposed D-STAR model. We only took out the slices contain-
ing object information, and finally obtained [7243, 454, 457]
mouse brain slices, [4847, 614, 672] mouse tumor slices and
[14728, 1175, 1170] vessel phantom slices. The index of each
2D slice was recorded so that they could be stacked into the
3D voxel again after the network processing, and the same
went for 3D cubes.

B. Network Architecture

The conditional diffusion model is based on a U-Net archi-
tecture and contains around 605M parameters. The denoising
network follows an encoder-decoder structure with feature
channels of [128, 256, 512, 512, 1024, 1024]. Each downsam-
pling level consists of three residual blocks followed by a
downsampling operation. Self-attention blocks are applied at
resolution [32, 16, 8] to enhance feature representation. The
middle block contains two residual blocks and one cross-
attention block, which facilitates interaction between sparse
input features and the latent representation for improved
recovery. The upsampling phase mirrors the downsampling
phase, with each level containing three residual blocks and
self-attention blocks at the same resolutions.

C. Implementation Details

The conditional diffusion model was trained on 4 NVIDIA
A100 40GB GPU cards for 3 days with 150 epochs (that is
130k iterations) for ex vivo Brain data and for 4 days with
180 epochs (that is 320k iterations) for Vessel phantom data.
The model was trained with batch size 8. We used the AdamW
optimizer with initial learning rate 5¢ — 5 and adjusted the
learning rate to le — 5 after epochs 100. We set the number
of timesteps 7 = 1000. During sampling, the conditional
diffusion model was sampled with 50 steps using DDIM [40].

D. Quantitative and Qualitative Results

We validated the performance of our method in two cate-
gories of data, namely, the ex-vivo data of mouse brain and
the phantom data of vessels (shown in Fig. 4 and Fig. 5).

1) Qualitative Results: To validate the effectiveness of
our method, we qualitatively compare our results with pre-
vious works, including 3DFD U-Net [32], Deep-E [30],
SRGAN [41] and PAT-Diffusion [42]. Since 3DFD U-Net is
not open-sourced, we use Open3DFD U-Net [43], an open-
source implementation of 3DFD U-Net, for comparison. For
the other baselines, we use their official codes and retrain the
checkpoints. Clearly, our method reconstructs 3D images with
higher fidelity and reduced background noise (Fig. 4 (a) and
Fig. 5 (a)). The reconstructed 3D images from other baselines
looks blurry, as evidenced by the enlarged images in the
(Fig. 5 (b)). This is because our model fully utilizes the pixel
spatial alignment of every input 2D slice along the longitudinal
space of the y-axis, and distinguishes the object information
and interference information such as reflection artifacts and
noise in each slice, then completes the missing information of
sparse angular scan, and finally superimposes them to output
a 3D image expressed in the form of voxel.

Additionally, the images generated by our method have
more natural and smooth edge transitions, better structural
details, and the most accurate restoration that is closest to
the 32-angle images (Fig. 4 (b) and Fig. 5 (c)). It is worth
mentioning that our method is the only one succeeded in
restoring the hippocampus structure, whereas other compared
baselines failed (Fig. 4 (c)).

Moreover, the spatial frequency spectrums indicate signif-
icant improvement of our method compared to the 4-angle
images (Fig. 4 (d) and Fig. 5 (d)). Compared to other baseline
methods, our spatial frequency spectrum is the closest to that
of the 32-angle images in the meaningful spectrum distribution
area where we focus on, and we have achieved a great expan-
sion on the basis of the original sparse spectrum distribution.

2) Quantitative Results: We quantitatively evaluated the
quality of outputs from our method and baselines by cal-
culating the root mean square error (RMSE), the peak
signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM), following [32], which measure the resem-
blance in appearance between the generated 3D image and
the original ground truth (documented in Table I). Our method
consistently surpasses the baselines across all metrics, demon-
strating its effectiveness in producing accurate reconstructions,
reducing noise, and achieving greater similarity to the ground
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Input 3DFD U-Net Deep-E SRGAN  PAT-Diffusion Ours Ground Truth

0.72 mm"
]

Fig. 4. Qualitative comparison with baselines using the mouse brain dataset. a) Maximum intensity projection (MIP) of the reconstructed brain
images. b) 2D slices extracted from the 3D images in (2), as shown in the inserted pannel. ¢c) Zoom in on the red boxes in (b), respectively. d) MIP
of spatial frequency spectrum of each image in (a).

Input 3DFD U-Net Deep-E SRGAN  PAT-Diffusion Ours Ground Truth

-
B 036 mm'!

Fig. 5. Model performance evaluation using the vessel phantom dataset. a) MIP of the reconstructed vessel phantom images. b) Zoom in on the
red boxes in (a), respectively. c¢) 2D slices from 3D images in (a), indicated by the inserted pannel. d) MIP of spatial frequency spectrum of each

image in (a).

truth. For voxel geometry evaluation, we report Volume IoU, and ground truths. The 3D images generated by our model
which measures the geometric similarity between the outputs also outperform those of all baselines.
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TABLE |
QUANTITATIVE COMPARISON WITH BASELINES. PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE EX VIVO MICE BRAIN DATASET
AND THE VESSEL PHANTOM DATASET. ALL METRICS ARE COMPUTED ON THE TEST SET, WITH HIGHER VALUES INDICATING BETTER
PERFORMANCE FOR PSNR, SSIM, AND VOL. IoU, AND LOWER VALUES INDICATING BETTER PERFORMANCE FOR RMSE

Methods Brain Vessel

RMSE| PSNR1 SSIM1 Vol. IoU?T RMSE] PSNR?T SSIM? Vol. IoU?T
3DFD U-Net [32] 0.0569%:#* 29.057%%** 0.909%3#:* 0.756%%#* 0.0540%** 26.597%%* 0.872%#:% 0.778%*:%
Deep-E [30] 0.0358%:#:* 30.758%#:* 0.913%:* 0.763 %% 0.0419%:#:* 29.565%:#:* 0.91 1% 0.8083#:*
SRGAN [41] 0.0357%3#:* 30.254 %33 0.91 1% 0.781 %% 0.0528:#:* 28.155%:#:% 0.902%3#:% 0.792%3#:%
PAT-Diffusion [42] 0.0403%#3#* 29.930%#:* 0.895%#: 0.753 %% 0.0493 %% 28.173 %% 0.829%3#:* 0.758%*%
Ours 0.0249 33.063 0.947 0.824 0.0318 32.736 0.927 0.859

*p<0.05, **p<0.01, ***p<0.001 (based on paired t-tests conducted across all metrics, comparing our method with each baseline.)

TABLE Il
EVALUATION OF D-STAR’S GENERALIZATION CAPABILITY AND
ADAPTABILITY ON IN VIVO MICE TUMOR DATA

Metric Input Zero-Shot Fine-Tuned
RMSE | 0.0879 0.0484 (-0.0395) 0.0257 (-0.0622)
PSNR 1 22.009 28.439 (+6.430) 34.160 (+12.151)
SSIM 1 0.579 0.929 (+0.350) 0.961 (+0.382)
Vol. ToU 1 0.614 0.855 (+0.241) 0.893 (+0.279)

E. Generalization Capability of D-STAR

We then conducted in vivo experiments using mice tumor
dataset, where we first evaluated the performance of D-STAR
in a zero-shot setting (using a model trained on the ex vivo
brain dataset) and after fine-tuning on the in vivo tumor dataset
for only 8 epochs. The quantitative results are summarized
in Table II, and qualitative results are presented in Fig. 6.
These results demonstrate that even without fine-tuning, the
model trained on the brain dataset effectively denoises the
sparse-angle input and partially recovers structural details of
the tumor, as evident in both 3D and 2D reconstructions,
suggesting that D-STAR has inherent generalization capability,
even when applied to different anatomical regions without
additional training. And with only 8 epochs of fine-tuning on
the tumor dataset, D-STAR achieves a substantial improvement
across all metrics, recovering fine-scale structures such as
tumor morphology and vasculature. The 3D FFT visualization
further supports these findings, showing that the fine-tuned
model effectively completes missing frequency components,
enhancing spatial resolution. These results confirm that
D-STAR is not limited to a specific dataset or anatomical
region but can adapt effectively to new imaging conditions
with minimal fine-tuning (only 8 epochs, requiring less than
2 hours on a single NVIDIA A100 GPU), highlighting its
potential for real-world clinical applications.

F. Resolution Enhancement Brought by D-STAR

We subsequently performed PSF measurements to demon-
strate the substantial improvements in spatial and temporal
resolution achieved by our method, addressing the inher-
ent trade-offs typically encountered in imaging systems.
To approximate real imaging conditions, we selected a
microbubble near the brain from our test dataset for PSF
evaluation (Fig. 7 (a)). Artifacts were clearly evident in
the data acquired with 4 angles, whereas D-STAR produced

Zero-Shot Fine-Tuned Ground Truth

Input

Fig. 6. Performance validation on in vivo mouse tumor data.
a) and d) MIP of the reconstructed in vivo tumor images. b) and e) 2D
slices from 3D images in (a) and (d), indicated by the inserted pannel.
c) and f) MIP of spatial frequency spectrum of each image in (a) and (d).

images with spatial sharpness comparable to those obtained
using the full 32 angles (Fig. 7 (b)). Quantitatively, each
volume was fitted to a 3D-Gaussian distribution to determine
the full width at half maximum (FWHM). D-STAR enhanced
the spatial response bandwidth by up to 6.9 times, with no
compromise in imaging speed. This advancement results in
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Fig. 7. Resolution Enhancement brought by D-STAR. a) MIP of PSFs
of 4-angle image, 32-angle image and D-STAR output. b) PA amplitude
profile along the dashed yellow lines in (a). Blue, green and red curves
represent the input, ground truth and output, respectively. c) Comparison
on imaging speed and spatial response bandwidth.
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Fig. 8. Low-Dose, High-Contrast Imaging with D-STAR. a) Transectional
slices of a brain imaged under conditions of 32 angles with low dose,
D-STAR with low dose and 32 angles with high dose, respectively.
b) Comparison on excitation efficiency and CNR.

an imaging approach that is 7 times faster than the full
angular imaging method, effectively breaking the spatial and

w/o SFCAM w/ SFCAM Ground Truth

Input

Fig. 9.  The Shape Feature Cross-Attention Module (SFCAM) is
beneficial for our model. a) Without SFCAM, the predicted brain misses
key structures and fails to restore the overall outline. With SFCAM, the
result is more accurate. b) For vessel reconstruction, the result without
SFCAM shows twisted and unsealed shape, while SFCAM improves
shape consistency and completeness.
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Fig. 10. Training cost comparison on brain dataset. Sample Prediction
require much less computation cost than Noise Prediction.

temporal bandwidth product constraint of our system (a dashed
reciprocal curve in Fig. 7 (c)).

G. Low-Dose, High-Contrast Imaging With D-STAR

Despite certain exceptions, PAT can generally be considered
a linear system with respect to excitation laser energy [44].
Consequently, when the total exposure of laser energy is
constrained, it is preferable to use fewer imaging acquisitions
with higher pulse energy rather than more acquisitions with
lower pulse energy. This preference arises because the noise
level in imaging is inversely proportional to the square root
of the number of imaging acquisitions. This observation led
us to hypothesize that with fewer scanning angles, the SNR
could be enhanced by a factor up to the square root of
the compression ratio (32 angles / 4 angles = 8 in this
study). To test this hypothesis, we compared the contrast-to-
noise ratio (CNR) of the images and the corresponding total
excitation dose acquired under different imaging parameters
for the same brain: 32 angles with an excitation laser fluence
of 0.79 mJ/cm?, 4 angles with 7.3 mJ/cm?, and 32 angles with
3.2 mJ/cm? (Fig. 8 (a)). For ease of comparison, we defined
excitation efficiency as the inverse of the total excitation
dose. Under conditions of high excitation efficiency, D-STAR
yielded a significant increase in CNR—6.7 dB and 1.2 dB
greater compared to the 32 angles with low and high excitation
doses, respectively (Fig. 8 (b)). This improvement exceeded
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Fig. 11. Employment in molecular photoacoustic imaging using D-STAR. a) Imaging sequence for temporal unmixing. b) Expected bleaching curve.
c) 3D-image stacks of initial reconstruction. d) Bleaching curve referred to the arrow in (c). e) 3D-image stacks of D-STAR output. f) Bleaching curve
referred to the arrow in (e). g) 3D-rendered volume of unmixed iRFP (red-yellow) and tissue background (grayscale). h) Tomographic view related
to the plane in (g). i) The same slice in (h) via confocal microscopy. j) Comparison of fitting errors between initial reconstruction and D-STAR.

the expected gain constrained by the square root of the
compression ratio, which would predict increases of 5.1 dB
and —0.96 dB after adjusting for total excitation dose. This
evidence suggests that D-STAR effectively reduces image
noise, thereby extending the trade-off boundary (a dashed
exponentially decaying curve in Fig. 8 (b)) between image
contrast and excitation efficiency.

H. Ablation Study and Analysis

1) Design of Conditional Diffusion: Here we examine the
effectiveness of the design of conditional diffusion models.
Table III provides a quantitative analysis of our Zero-
SNR strategy and Shape Feature Cross-Attention Module
(SFCAM). Removing SFCAM (denoted as w/o SFCAM)
results in significant performance degradation, indicating that
SFCAM plays a crucial role in preservation of structural
details. Fig. 9 further provides qualitative evidence of the
importance of SFCAM. Without this module, the reconstructed
brain images fail to preserve structural integrity, and the
vessel predictions exhibit distortions and discontinuities. By

TABLE IlI
ABLATION ANALYSIS ON BRAIN DATASET. THE TABLE ILLUSTRATES THE
DIFFERENCES IN MODEL PERFORMANCE AFTER REMOVING THE
DESIGN OF Two KEY MODULES. HERE, SFCAM DENOTES THE
SHAPE FEATURE CROSS-ATTENTION MODULE

Methods RMSE| PSNR? SSIM?T Vol. IoUT
w/o SFCAM 0.0278 32.039 0.919 0.798
w/o Zero-SNR 0.0262 32912 0.942 0.820
Ours 0.0249 33.063 0.947 0.824

incorporating SFCAM, the model successfully restores the
missing structures, leading to more accurate and reliable recon-
structions. Similarly, removing Zero-SNR (w/o Zero-SNR)
leads to a drop in performance across all metrics, confirming
its effectiveness in enhancing image quality. It can be seen
that both the Zero-SNR trick and SFCAM are beneficial.

2) Importance of Sample Prediction: We examine the impor-
tance of the sample prediction that is direct prediction of
images instead of noise. To compare, we train an e-Prediction
model and a x°-Prediction model on brain dataset. The results
are shown in Table IV and Fig. 10. It can be seen that
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TABLE IV
ABLATION STUDY ON THE DESIGN OF SAMPLE PREDICTION.
WE REPORT THE METRICS OF RMSE, PSNR, SSIM
AND VOLUME loU ON BRAIN DATASET

Methods RMSE]  PSNRT _ SSIM{ Vol loUT
w/ e-Prediction 0.0392 31.191 0.931 0.809
w/ z0-Prediction | 0.0249  33.063 0.947 0.824

x%-Prediction provides a more accurate reconstruction with a
faster convergence. This is because sample prediction avoids
the challenges of learning complex, non-Gaussian noise dis-
tributions in sparse-angle photoacoustic reconstruction, and
instead focuses on structural restoration.

I. Employment in Molecular Photoacoustic Imaging

Quantitative photoacoustic imaging, which aims to extract
molecular or functional information for each pixel or voxel
from multiple frames of the same object, is crucial for various
applications [45], [46], [47]. In such scenarios, pixel values
across different frames are subject to physical constraints. For
example, in bleaching-based temporal unmixing, the photoa-
coustic amplitude values of sequential frames are expected
to exhibit an exponential decay [48], a characteristic that the
network does not learn inherently. To assess whether D-STAR
can address the inter-frame constraints using only spatial
information, we applied it to the unmixing of a fluorescent
protein expressed in a mouse brain. Initially, we designed an
angular scan sequence consisting of 0°, 90°, 45°, and 135°,
with a total of 24 cycles (Fig. 11 (a)). This configuration
was intended to minimize errors in the fused photoacoustic
amplitude due to anisotropic spatial frequency response and
to ensure complete bleaching of the protein (Fig. 11 (b)).
The imaging data were processed according to Section III-B,
resulting in an initial reconstruction (Fig. 11 (c)). Subse-
quently, the bleaching curve for each voxel was determined
using these frames (Fig. 11 (d)). This procedure was repeated
for high-resolution images generated by D-STAR, using the
initial reconstruction frames as input (Fig. 11 (e)). The RMSE
value of the exponential fitting of the curves indicated minimal
deviations from the expected exponential model, attributable
to the D-STAR approach (Fig. 11 (f)). The fitting results
were then employed to produce the unmixing outcomes, with
iRFP visualized in red-yellow and the tissue background in
grayscale. D-STAR effectively resolved the neuronal projec-
tions from the medial entorhinal cortex to the dentate gyrus
(Fig. 11 (g, h)). To further validate spatial precision, brain
slices of the same sample were prepared and imaged using
confocal microscopy. The unmixed PAT images demonstrated
consistent fluorescent signals with the confocal images, which
served as a reliable reference (Fig. 11 (h, i)). Concurrently,
the fitting RMSE showed a significant reduction with D-
STAR, demonstrating its high fidelity in the temporal domain
(Fig. 11 G)).

V. CONCLUSION AND DISCUSSION

Multiangle imaging is a widely utilized methodology that
trades off temporal resolution and excitation dose to achieve
enhanced spatial resolution and imaging SNR. Although the

priorities for these factors vary depending on specific appli-
cations, they all hold significant importance in the realm
of bioimaging. In this work, we introduce D-STAR, a suite
of deep generative model-based methods that substantially
reduce the required number of angles while maintaining image
quality comparable to full tomographic angular imaging. This
approach provides an effective means to balance these imaging
factors. We demonstrate the high fidelity of D-STAR, which
is capable not only of recovering static structural information
but also of extracting quantitative data from multiple frames.

To the best of our knowledge, we are the first to introduce
diffusion model into 3D photoacoustic image reconstruction
task. Our proposed method, D-STAR, has achieved optimal
performance in both quantitative and qualitative comparisons.
Previous U-shaped approaches, such as 3D-pU-Net [23],
which uses a multi-stage progressive learning method to
recover high-resolution images from low-resolution inputs,
and 3DFD U-Net [32], specifically designed to improve
the quality of vasculature photoacoustic images, have made
notable progress in similar 3D super-resolution tasks. How-
ever, these networks have a common limitation, that is, they
generate output in a single pass during inference, which
makes it difficult to accurately reconstruct complex structures
and often suffers for missed details. In contrast, our model
performs multi-step denoising, allowing for a more organized
reconstruction process that better captures intricate structures.
Instead of requiring the model to remember the entire object
and reconstruct it directly, we empirically believe it is more
reasonable and efficient for the model to focus on what needs
to be done at each step. Furthermore, in this conditional
reconstruction task, we apply the condition at each timestep of
the denoising process, guiding the model step-by-step. Given
the complex data distribution in the STAR-PAT dataset, the
diffusion model is trained by maximizing the data likelihood,
which enhances its ability to generalize and handle these
intricate distributions more effectively. To improve robustness
against slight inconsistencies in the series of reconstructed
images from the same sample, we added a small amount
of Gaussian noise to the inputs during both the training and
inference phases. The reliability of D-STAR is also evident in
molecular imaging, which leverages a series of images of the
same sample to extract additional information. Notably, the
output from D-STAR adheres to the same exponential decay
constraints as the input, yielding a more accurate estimation
of bleaching extent. This accuracy is primarily attributed
to the low noise output of D-STAR and the high-quality
training dataset obtained from real-world conditions, which
encapsulate the underlying physical laws. To further enhance
the fidelity of D-STAR, integrating such physical priors into
the model for multi-frame reconstruction could be beneficial.

Although theoretically capable of providing optimal imag-
ing quality, temporal and spatial resolutions of 3D PAT
systems using hemispherical ultrasound transducer arrays are
still ultimately constrained by the channel count of the data
acquisition system, which can be costly to augment [49],
[50]. In contrast, D-STAR offers a cost-effective alterna-
tive that delivers high-performance imaging compatible with
hemispherical systems. The cylindrical-focused ultrasound
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transducer arrays used in D-STAR are established commercial
products, which promotes wider adoption. Furthermore, the
insensitivity of the approach to prior knowledge regarding the
PSF alleviates some of the complexities associated with PAT,
resulting in a computationally efficient reconstruction process.
In addition, although D-STAR was designed and validated for
the PAT modality, it can be generalized to various imaging
techniques. The prerequisites for its application include: (1) the
ability of the imaging system to generate 3D data stacks from
multiple angles, (2) minimal distortion and adequate overlap
among these angles to permit preprocessing and registration,
and (3) a linear or otherwise resolvable response function for
multi-image fusion.

We have demonstrated that D-STAR effectively eliminates
the need to compromise on temporal resolution or SNR
to achieve improvements in spatial resolution and sample
health. This capability is particularly valuable in clinical
settings, where maintaining high image quality while min-
imizing patient exposure to excitation doses is crucial for
both diagnostic accuracy and safety. By leveraging exist-
ing hardware more efficiently, D-STAR reduces the need
for costly equipment upgrades, making high-quality imaging
more accessible and cost-effective in clinical environments.
While D-STAR is not intended to compete with advanced full
tomographic angular imaging methods, it provides additional
flexibility in adjusting imaging parameters, allowing clinicians
to tailor protocols to specific imaging needs or clinical sce-
narios. For instance, reduced excitation laser exposure can
benefit imaging of light-sensitive monoclonal agents, such
as photo-switchable proteins [54], [55], [56]. Additionally,
enhanced temporal resolution afforded by D-STAR can facil-
itate the observation of rapid physiological phenomena such
as cardiac rhythms [23], [51], vascular perfusion [52], and
drug metabolism [53]. Consequently, integrating D-STAR into
existing imaging frameworks, such as PAT, can expand the
applicability and effectiveness of these techniques. By improv-
ing image quality while reducing excitation doses, D-STAR
not only enhances patient safety and comfort but also opens
up new possibilities for longitudinal studies in both clinical
and research settings.
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