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Abstract

As Large Language Models (LLMs) evolve into increasingly autonomous agents,1

fundamental questions about their epistemic foundations remain unresolved: What2

defines an agent? How should it make decisions? And what objectives should guide3

its behavior? In this position paper, we argue that true autonomy requires agents4

to be grounded in a coherent epistemic framework that governs what they know,5

what they need to know, and how to acquire that knowledge efficiently. We propose6

a unified theory that treats internal reasoning and external actions as equivalent7

epistemic tools, enabling agents to systematically coordinate introspection and8

interaction. Building on this framework, we advocate for aligning an agent’s tool9

use decision-making boundary with its knowledge boundary, thereby minimizing10

unnecessary tool use and maximizing epistemic efficiency. This perspective shifts11

the design of agents from mere action executors to knowledge-driven intelligence12

systems, offering a principled path toward building foundation agents capable of13

adaptive, efficient, and goal-directed behavior.14

1 Introduction15

Large Language Models (LLMs) have rapidly evolved beyond text generation into autonomous agents16

capable of independently planning and executing complex tasks with minimal human oversight [1].17

These emerging capabilities have enabled a broad range of real-world applications, including travel18

planning [2], human-computer interaction [3–5], and scientific research [6–9]. However, as these19

systems grow increasingly agentic, foundational questions remain unresolved: What is an agent?20

What constitutes its optimal behavior? And how can such optimality be realized in practice?21

From a conceptual standpoint, the dominant view frames agents as LLMs that interleave internal22

reasoning and external actions to complete tasks. While functionally effective, this pragmatic framing23

lacks a principled account of how such behaviors should be coordinated or optimized. From an24

empirical standpoint, existing agentic systems primarily rely on prompting [10, 11] or supervised25

fine-tuning [12, 13], but seldom investigate how these training paradigms relate to the optimality26

of agent behavior, leaving opaque the reasons behind agentic success or failure. To address this27

theoretical and empirical gap, we propose a bottom-up formalization of agency grounded in four key28

constructs: what is a tool, what is an agent, what constitutes optimal behavior, and how to achieve29

it. Specifically, we posit that: (1) A tool is any process or interface, whether internal reasoning or30

external interaction, that contributes to knowledge acquisition towards goal completion. (2) An agent31

is a decision-maker that dynamically coordinates internal and external tools in pursuit of specific32

objectives. (3) Optimal behavior occurs when an agent aligns its tool use decisions with its knowledge33

boundary. (4) This alignment can be operationalized by minimizing the agent’s unnecessary tool use.34

In summary, we argue an optimal agent is one that adaptively coordinates internal reasoning and35

external action to acquire only the knowledge it needs, achieving goals efficiently by minimizing36

unnecessary tool use.37
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Figure 1: Conceptual framework of agent decision-making based on tool use and knowledge bound-
aries. The agent is modeled as a goal-directed decision-maker that coordinates internal cognitive
tools (e.g., chain-of-thought, reflection) and external physical tools (e.g., actions, models, functions)
across a tool use decision boundary. Optimal behavior emerges when tool use decisions align with
the knowledge boundary, ensuring the agent invokes only the tools necessary to acquire missing
knowledge and efficiently achieve task objectives.

To arrive at these positions, we systematically introduce the Theory of Agent, inspired by the cognitive38

concept of Theory of Mind, which characterizes an agent’s capacity to model not only external39

environments but also its own internal knowledge state. This theory is grounded in the core insight40

that reasoning and acting are not distinct behaviors but rather epistemically equivalent tools for41

acquiring task-relevant knowledge. This allows us to conceptualize agents as knowledge-driven tool-42

use decision-makers that adaptively choose between internal introspection and external interaction (As43

shown in Figure 1). Our theoretical framework is developed in two stages: (1) a unified behavioral44

framework (Section 2) that models reasoning and acting under a shared decision-making logic,45

treating them as internal and external tools for retrieving different sources of knowledge. This46

unification enables us to frame all agent interactions as tool use decisions; (2) three core principles47

of knowledge (Section 3) that define the structure and dynamics of an agent’s epistemic state and48

decision-making process, providing theoretical lemmata for what constitutes optimal behavior.49

Building on this theoretical foundation, we first articulate the importance of aligning an agent’s50

knowledge boundary with its decision boundary, and explore how this alignment is manifested51

through training and inference (Section 4.1). Furthermore, we identify four distinct behavior modes52

of agents, and argue that an autonomous agent should learn to accomplish its predefined goals with53

the minimal number of external tool calls (Section 4.2): an objective that aligns closely with expert’s54

vision for autonomous machine intelligence [14], where “a truly autonomous machine intelligence55

is designed to minimize the number of actions a system needs to take in the real world to learn a56

task.” In our framework, the world model is embodied by the LLM itself, as proposed in recent57

studies [15, 16]. Finally, we outline a general roadmap toward building foundation agents that realize58

these properties and principles in practice (Section 4.3).59

2 Foundations60

2.1 The Unification of Reasoning and Acting61

It is widely recognized that reasoning and acting constitute the two fundamental capabilities of62

intelligent agent behavior [10, 17]. Reasoning enables an agent to plan, infer, reflect, and monitor63

its internal cognitive state, while acting allows it to engage with the external environment to gather64

new information or carry out tasks. Rather than viewing these modalities as distinct or sequential65

processes, we propose that:66
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Position: A Unified View of Reasoning and Acting

Reasoning and acting should be treated as equivalent epistemic tools within a unified framework, where
reasoning entails an internal cognitive tool for manipulating information within the agent’s parametric
knowledge space, while acting entails an external physical tool for acquiring information beyond the
agent’s internal capabilities.

67

This unified perspective aligns with the affordance theory [18], which suggests that actions arise from68

the interplay between perception and interaction. From this perspective, reasoning and acting are not69

hierarchically ordered or merely sequential but are co-equal capabilities of decision-making. Each70

plays a complementary role in enabling agents to resolve uncertainty and make progress toward task71

completion. Embracing this integrated view encourages the development of intelligent systems that72

can seamlessly coordinate their internal cognitive mechanisms and external interactive capabilities,73

based on their current knowledge state and the epistemic demands of the task at hand.74

Internal cognitive tools. Cognitive tools refer to internal cognitive mechanisms that support sys-75

tematic or investigative thinking to solve problems [19, 20]. In the context of intelligent agents,76

various reasoning modules [11, 21], such as Chain-of-Thought [22], reflection, decomposition, and77

alternative-thinking, function as cognitive processes that enable the retrieval and manipulation of78

internal knowledge to guide problem-solving. For instance, Reasoning via Planning (RAP) [15] con-79

ceptualizes the language model as both a world model and a reasoning engine, incrementally accumu-80

lating knowledge through iterative reasoning steps. Similarly, Self-Discover [11] constructs abstract81

reasoning structures and then instantiates them to address complex tasks, mirroring the approach of82

tool-based agents that first generate plans for tool use and then execute them sequentially [23, 24].83

Beyond these, other cognitive tools appear in diverse applications, such as conversational strategies84

in dialogue systems [25] and psychologically inspired mechanisms designed to model uncertainty,85

emotion, or user intent [26]. Despite their varied forms, these tools share a common function: they86

serve as triggers for internal knowledge retrieval, allowing the model to reason and act based on its87

embedded understanding of the world.88

External physical tools. External physical tools refer to modules or interfaces outside the model89

that are invoked through specific triggers, such as rules, actions, or special tokens, whose outputs90

are then incorporated into the model’s context to inform subsequent reasoning [27, 24]. These91

tools function as vital interfaces between the agent and its environment, enabling the acquisition of92

task-relevant knowledge that lies beyond the agent’s internal parameters. Importantly, external tools93

span a wide spectrum of interactions, capturing how agents, like humans, leverage their surroundings94

to reduce uncertainty or complete tasks. Examples include querying a search engine, calling an API,95

processing sensor input, or performing physical actions [27, 28]. For instance, clicking a button in a96

user interface may be represented as an external tool call, where the input parameter is the button’s97

location and the resulting webpage serves as the observation. Similarly, in embodied settings, actions98

such as “MoveTo(Room A)” can be interpreted as tool invocations, with “Room A” as the parameter99

and the resulting sensory output as the feedback. This perspective enables a unified treatment of100

diverse forms of interaction as structured tool use: they serve as interfaces for external knowledge101

acquisition, allowing the model to access and interact with knowledge beyond its epistemic capacity.102

2.2 Tool-Integrated Agents103

Building on the unification of reasoning and acting, we further propose a redefinition of the agent104

grounded in this integrated perspective:105

Position: Definition of Agent

An agent is an entity that coordinates internal cognitive tools (e.g., reflection) and external physical
tools (e.g., function callings) to acquire knowledge in order to achieve a specific goal.

106

From this viewpoint, an agent is fundamentally a knowledge-driven decision-maker that navigates a107

task by alternating between internal reasoning and external interaction. Formally, a tool-integrated108

agent trajectory can be described as τ = (t1, k1, t2, k2, ..., tn, kn), where each ti is either an internal109

or external tool invocation, and each ki represents the corresponding knowledge retrieved. Here,110
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“knowledge” is broadly defined as any information that advances the agent’s problem-solving state.111

At each step, the agent must choose the most epistemically valuable tool based on its current state,112

aiming to progressively bridge the knowledge gap toward a complete solution. The process concludes113

when the agent has accumulated sufficient knowledge to achieve the pre-defined goal.114

This unified framework offers several key advantages: (1) It generalizes prior approaches such as115

ReAct [10], which can be viewed as special cases where internal tool steps (e.g., reasoning) are116

treated as monolithic thought units ri, leveraging the model’s pre-trained cognitive abilities without117

requiring explicit tool separation. (2) It aligns with findings from large reasoning models (LRMs),118

which show that outcome-based reinforcement learning (RL) can effectively train agents to discover119

and utilize internal cognitive tools [29]. The same principle applies to external physical tools, as120

shown in recent studies on tool-augmented agents [30]. Thus, the framework provides a coherent121

foundation for agentic learning across both domains. (3) Most importantly, this perspective leads122

to a new learning paradigm: next tool prediction. Just as next-token prediction enables LLMs123

to learn a compressed representation of the world from text, next-tool prediction allows agents124

to learn procedural knowledge through interaction. By learning to choose the right tool, agents125

can dynamically update their internal representations and evolve through experience, mimicking126

human-like adaptation and learning.127

3 Principles of Knowledge and Decision in Model128

As established earlier, an agent functions as a knowledge-driven decision-maker regarding the use129

of internal or external tools. This implies the existence of a knowledge space defined by the agent’s130

own knowledge boundary, which informs its decisions, and a corresponding decision boundary that131

determines whether internal or external tools are employed. Understanding these boundaries is crucial132

for analyzing agent behavior and serves as a basis for optimizing it. In this section, we formalize the133

concepts of knowledge and decision boundaries (Section 3.1), and, based on their definitions, we134

introduce three key principles that highlight optimal agent behavior (Section 3.2 to Section 3.4).135

3.1 The Definition of Knowledge and Decision Boundaries136

Knowledge Boundary. At any time step t, let W represent the complete set of world knowledge.137

We define the model m’s internal and external knowledge as:138

Kint(m, t) ⊆ W and Kext(m, t) = W \Kint(m, t)

where Kint(m, t) denotes the internal knowledge embedded in m, and Kext(m, t) represents the139

external knowledge accessible from the world. The knowledge boundary is defined as the frontier140

between the two:141

∂K(m, t) = ∂Kint(m, t) = ∂Kext(m, t)

This boundary marks the epistemic limit of the model’s internal knowledge. We assume all internal142

or external knowledge is accurate, leaving discussion of overlap or conflict to Appendix B.143

Decision Boundary. Given a time step t, let Tint = {t1int, ..., tnint} be the set of internal cognitive144

tools and Text = {t1ext, ..., tmext} the set of external physical tools. The decision boundary ∂D(m, t)145

is the point at which the model decides whether to use internal or external tools to acquire additional146

task-relevant knowledge:147

∂D(m, t) = ∂Tint(m, t) = ∂Text(m, t)

where Tint(m, t) and Text(m, t) denote tool choices leading to internal or external knowledge acqui-148

sition, respectively.149

In summary, the knowledge boundary defines the model’s epistemic limits, while the decision150

boundary governs how the model navigates these limits through tool use. Each point in the knowledge151

space corresponds to a point in the decision space, reflecting how the model chooses to engage with152

that knowledge through tool use. In this way, the decision boundary operationalizes the knowledge153

boundary, shaping the model’s policy for knowledge acquisition in pursuit of its goals.154
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3.2 Principle 1: Foundations155

Most existing models are pre-trained on large-scale corpora in an unsupervised manner, embedding156

substantial world knowledge into their parameters [31–33]. However, not all knowledge is internalized157

during pre-training, and external knowledge may still need to be acquired through continual learning158

strategies such as SFT or RL [34, 35]. We introduce two key lemmas that ground the distinction and159

dynamics of internal and external knowledge, forming the basis of the knowledge boundary.160

Lemma 1.1: Over long horizons, scaling laws enable the expansion of Kint; i.e., the knowledge161

boundary ∂K moves outward. This expansion reflects the model’s increasingly comprehensive162

internal representation of the world across modalities and domains. For instance, Sora1 demonstrates163

the acquisition of rich physical knowledge, enabling the generation of realistic, coherent long-form164

videos. With sufficient training data, architecture, and optimization, the model effectively compresses165

the external world into its internal parameter space [36, 37]. As ∂K expands with scale, the model166

may ultimately support real-time abstraction of the world, or even autonomously discover knowledge167

beyond existing human understanding [38–40], leading toward AI for scientific discovery.168

Lemma 1.2: Continual learning methods such as SFT can reshape both the knowledge boundary169

and the decision boundary. To stay current and improve performance, models must update out-170

dated knowledge or acquire new information through continual learning, including prompting [41],171

supervised fine-tuning [42, 43], and knowledge editing [44, 45]. These processes naturally shift172

the knowledge boundary to reflect updated internal states. In parallel, decision boundaries can be173

adjusted to improve tool use behavior, such as encouraging external tool invocation only when neces-174

sary [46, 47]. Central to this is the model’s meta-cognitive ability to assess its current knowledge and175

decide which tool to use accordingly, which we will discuss in Section 4.1.176

3.3 Principle 2: Uniqueness and Diversity177

Across open-source and proprietary models, both unique and shared characteristics emerge. To better178

understand model capabilities and limitations, we posit that while each model has distinct boundaries,179

there also exist universal properties common to all.180

Lemma 2.1: Each model has its own knowledge boundary and decision boundary. These boundaries181

differ due to variations in model size, architecture, training data, and learning objectives. Larger182

models trained on more diverse corpora tend to internalize a broader scope of world knowledge [33,183

37]. In contrast, decision boundaries are primarily shaped through explicit tool use training [13],184

leading to variation in how models interact with tools to acquire knowledge.185

Lemma 2.2: There exist minimal and maximal knowledge (and decision) boundaries across all186

models. The minimal knowledge boundary ∂Kmin =
⋂N

i=1 ∂K(i) represents the smallest common187

set of internalized knowledge shared by all models, regardless of their training setup. Conversely,188

the maximal knowledge boundary ∂Kmax =
⋃N

i=1 ∂K(i) reflects the union of all internal knowledge189

across models, encompassing even niche or domain-specific knowledge found only in specialized sys-190

tems. Analogously, minimal and maximal decision boundaries exist, though they are best interpreted191

as normative alignment goals rather than fixed, objective thresholds.192

3.4 Principle 3: Dynamic Conservation193

Knowledge is inherently dynamic, continuously evolving as new facts emerge and old ones become194

obsolete. To capture this temporality, we propose the principle of dynamic conservation of knowledge,195

emphasizing how models must adapt to an ever-changing epistemic landscape.196

Lemma 3.1: At any time step t, the total world knowledge Wt is fixed and identical across all197

models. Ideally, a model would internalize the entire knowledge set, i.e., Kint(m, t) = Wt, requiring198

no external tool use. This entails an aspirational endpoint for fully autonomous intelligence [14].199

Practically, however, as Wt expands over time, models must also evolve to keep pace. If a model’s200

epistemic growth outpaces that of the external world, this ideal state becomes theoretically attainable.201

1https://openai.com/sora/
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Lemma 3.2: For any task or query q and model m, there exists a minimal and fixed epistemic202

effort N(q,m), allocated between internal and external sources, that is necessary to solve the task.203

This can be decomposed as N(q,m) = kint + kext, where kint reflects knowledge retrieved from the204

model’s internal parameters and kext represents knowledge acquired through external tools. This205

formulation reveals several insights: (1) N(q,m) is jointly determined by the complexity of the206

task and the capabilities of the model, indicating stronger models may satisfy most or all of N207

through internal reasoning (kint → N ), while weaker models may depend more on external assistance208

(kext → N ) [48]. (2) Even models with limited internal capacity can achieve high performance by209

dynamically offloading reasoning or retrieval steps to more capable tools or agents. This suggests210

a form of capability equivalence, where optimal tool use policies allow weaker models to simulate211

stronger ones. (3) The objective is not merely task completion, but the development of behavior212

policies that minimize epistemic effort while managing latency, cost, and cognitive load. In this213

view, intelligent behavior is defined not just by the correctness of outputs, but by the efficiency and214

adaptiveness of the pathways taken to reach them. We expand on these implications in Appendix A.215

4 Agents: From Knowing to Reasoning and Acting216

Building on the principles we discussed, we now explore how these principles shape the design and217

behavior of intelligent agents. As outlined in Section 2.2, we define an agent as a decision-making218

entity that coordinates internal cognitive tools to retrieve internal knowledge (i.e., reason) and external219

physical tools to acquire external knowledge (i.e., act). At each step in a task, the agent must decide220

which tool to invoke based on its current state and what knowledge is needed to move closer to a221

solution. This iterative process continues until the agent accumulates sufficient knowledge to produce222

a final answer or achieve its goal. Drawing on the concept of the agent’s knowledge boundary and223

decision boundary, we arrive at the central position of this paper:224

Position: Decision-Knowledge Alignment Principle

For an agent to achieve decision optimality, its tool use decision boundary should align with its
knowledge boundary. This alignment represents the most efficient way to producing correct answers.

225

In other words, an intelligent agent should invoke internal tools when the needed knowledge lies226

within its parametric capacity and turn to external tools when that knowledge must be acquired from227

the environment. This alignment ensures that the agent’s behavior is both efficient and epistemically228

grounded, leading to more robust and adaptive decision-making. In this section, we first justify229

our position by examining how alignment between decision and knowledge boundaries can be230

operationalized during both agent training and inference (Section 4.1). We then inspect what231

constitutes optimal agent behavior under this principle (Section 4.2), and finally, we outline practical232

pathways for building agents that achieve optimality in practice (Section 4.3).233

4.1 Alignment of Decision and Knowledge Boundary234

Meta-Cognition. Meta-cognition refers to the ability to monitor and regulate one’s own cognitive235

processes: knowing what one knows, recognizing uncertainty, and selecting appropriate strategies236

accordingly [49]. In the context of intelligent agents, meta-cognition is the agent’s capacity to assess237

whether the knowledge required to progress lies within its internal parametric space or must be238

acquired through external tools. Just as humans are often governed by an implicit heuristic to draw239

on external help when uncertain and reason internally when confident, agents must also learn to make240

such distinctions contextually. Therefore, achieving alignment between the knowledge and decision241

boundary ultimately requires cultivating accurate and adaptive meta-cognition, both during training242

and at inference time.243

Training-Time Alignment Dynamic. After pretraining, a model’s parametric knowledge boundary244

becomes relatively static, reflecting what its known knowledge that can be elicited. In contrast, the245

decision boundary remains adjustable during the model alignment phase. As shown in Figure 2,246

misalignment between these boundaries leads to two primary failure modes. If a model uses internal247

tools for knowledge it does not actually possess, this results in hallucinations or incorrect reasoning248

due to internal tool overuse [50]. Conversely, if the model defers to external tools despite already249

knowing the answer, it wastes computation and time, an inefficiency stemming from external tool250
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Figure 2: Training should dynamically adjust the decision boundary relative to the fixed knowledge
boundary to optimize efficiency, minimize hallucinations, and prevent tool overuse or underuse.

overuse [47]. These conclusions actually prove our position from the opposite side that aligning the251

decision boundary with the knowledge boundary is the most efficient strategy for an agent to arrive at252

the correct answer.253

To realize this efficient and accurate behavior, alignment training must enable the model to make254

tool use decisions based on a calibrated understanding of its own knowledge limits. This involves255

fostering meta-cognition: the ability to recognize what is known versus unknown. Techniques such256

as supervised fine-tuning with explicit tool labels or reinforcement learning with task-based feedback257

can guide the model toward more effective tool use strategies, which we will elaborate in Section 4.3.258

Overall, our goal is to shape a dynamic decision boundary that aligns closely with the model’s259

knowledge boundary, enabling more accurate and resource efficient problem solving.260

Inference-Time Alignment Dynamic. During inference, the knowledge required to answer a261

specific query is limited and often partially unknown. As shown in Figure 3, the agent begins with an262

incomplete picture of what it needs to know. By interacting with external tools, such as making API263

calls or executing actions, the agent retrieves missing information and integrates it into its context.264

This process incrementally expands the model’s effective knowledge boundary, forming a temporary,265

task-specific epistemic frontier that evolves as inference progresses.266

Reasoning during inference thus becomes a dynamic feedback loop, where the agent alternates267

between internal cognition and external exploration. Meta-cognition plays a central role in this268

process: the agent must continually assess whether it possesses sufficient knowledge to proceed or269

should gather more. Without this adaptive self-assessment, the agent risks terminating prematurely or270

inefficiently overusing tools. Robust inference-time meta-cognition enables agents to regulate this271

loop effectively: balancing accuracy, efficiency, and completeness in real-time decision-making.272

4.2 Optimal Agent Behavior273

Aligning an agent’s decision boundary with its knowledge boundary is empirically challenging,274

as the knowledge boundary is inherently abstract and often difficult to detect without extensive275

probing [38, 39]. Therefore, we shift our focus from detecting the boundary itself to evaluating the276

behavior of the agent - specifically, what we consider optimal from a human perspective. While277

correctness is a primary goal, as discussed in the previous section, an agent can still produce278

correct answers while inefficiently overusing external tools. Thus, correctness alone is not sufficient279

evidence of alignment. To better characterize optimal agent behavior, we argue that efficiency should280

accompany correctness, as an ideal agent not only solves the problem but does so with judicious281

coordination of its internal and external tools. In this section, we examine four representative agent282

behaviors based on their patterns of tool use, evaluating the strengths and weaknesses of each in283

terms of alignment and efficiency in agent decision-making.284
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• Maximizing both internal and external physical tool use. In this case, the agent produces the285

correct answer but does so through excessive use of both internal and external tools, regardless286

of necessity. This behavior is inefficient, consumes unnecessary resources, and increases the287

risk of error propagation or tool misuse. It also obscures the decision-making process, reducing288

transparency and trust. Rather than reflecting strategic reasoning, this mirrors brute-force search,289

which is misaligned with the goals of scalable and interpretable AI systems.290

• Maximizing external tool and minimizing internal tool use. This entails the agent over-relies on291

external tools while underutilizing its internal reasoning capacity. This may yield correct results,292

especially for smaller models, but it results in inefficiency and increased dependence on external293

systems. More importantly, it conflicts with the core aim of model scaling: to internalize knowledge294

within parameters. By deferring to external tools, the agent misses opportunities to reinforce and295

generalize its own representations, limiting long-term autonomy and adaptability.296

• Maximizing internal tools and minimizing external tool use. In this setup, the agent leans297

heavily on internal reasoning and avoids external tool use [51]. This behavior promotes autonomy298

and efficiency, especially in constrained environments, and aligns with the principle of maximizing299

model capacity. However, excessive internal deliberation can lead to overthinking, producing300

unnecessarily long reasoning chains. While this reflects strong use of internal knowledge, it may301

overlook more efficient external solutions in certain cases (See $ B), indicating a need for better302

tool use calibration.303

• Minimizing both internal and external physical tool use. This represents the most efficient304

trajectory: solving tasks with minimal use of tools, internal [52] or external [51]. It reflects optimal305

behavior of using tools only when necessary, guided by precise self-monitoring and calibrated306

decision-making. However, extreme minimalism can risk underthinking or skipping essential steps,307

especially in complex tasks. In addition, empirically training agents toward this behavior is difficult,308

as it requires balancing correctness with efficiency, which is a more delicate optimization than309

correctness alone.310

4.3 Paths for Agent Optimality311

Among the four agent behaviors discussed, the third and fourth configurations offer more promising312

directions for building efficient and autonomous agents. While they differ in their reliance on internal313

reasoning, both aim to minimize reliance on external systems while preserving task success. As314

discussed in Section 4.1, this objective implicitly reflects an alignment between the decision and315

knowledge boundaries, yet provides a more actionable proxy that avoids the need to explicitly probe316

the agent’s often abstract and difficult-to-measure knowledge boundary.317
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This perspective also aligns with the expert vision that autonomous machine intelligence should318

minimize the number of real-world actions required to solve a task [14]. However, achieving such319

minimization remains an open challenge. In this section, we examine existing approaches that aim320

to reduce external tool use, analyzing their strategies, assumptions, and limitations in the context of321

scalable and efficient agent design.322

Agentic Pretraining. Next-token prediction has been foundational in compressing world knowledge323

into a model’s parametric space [36]. However, this alone does not equip models to acquire new324

knowledge through interaction. We propose augmenting this paradigm with next-tool prediction:325

a learning objective where the model learns to predict the most appropriate external tool to invoke326

at each step. This transforms interaction itself into a first-class modeling target, allowing the agent327

to learn how to gather information it doesn’t already possess. As research trends toward unified328

agent architectures, modeling all forms of interaction (API calls, UI navigation, or environment329

manipulation) as structured, learnable outputs opens the door to a new kind of scaling law: one that330

governs knowledge acquisition, not just compression. This shift is essential for building adaptive,331

self-improving agents in open-ended, dynamic environments [3, 53].332

Agentic Supervised Fine-tuning. Supervised fine-tuning (SFT) remains the most common ap-333

proach for teaching agents tool use, using small task-specific datasets (e.g., math, code) to demon-334

strate when and how to call external tools [12, 13]. However, it often assumes a uniform knowledge335

boundary across models, which is unrealistic. As discussed in Lemma 2.1, this mismatch leads to336

inefficiencies: what is helpful for a small model may be redundant or even distracting for larger ones.337

One solution is to create custom SFT datasets tailored to each model’s knowledge boundary, but this338

is resource-intensive and hard to scale. A more practical alternative, as outlined in Lemma 2.2, is339

to approximate a maximal knowledge boundary and train agents to defer intelligently when faced340

with unfamiliar content [47]. While this approach offers greater generality, it may lack the precision341

needed for fine-grained domains, highlighting a trade-off between scalability and behavioral fidelity.342

Agentic Reinforcement Learning. Reinforcement learning (RL) offers a more promising path343

for aligning a model’s decision-making with its own knowledge boundary, as agents can learn from344

experience how to adaptively use tools. The key challenge lies in designing reward functions that go345

beyond correctness. While many RL agents are trained to maximize answer accuracy, this ignores346

how the answer is reached, including whether reasoning is efficient, whether tool use is justified, and347

whether the trajectory is optimal [30, 54]. Recent work like OTC-PO [51] addresses this by balancing348

correctness with penalties for unnecessary tool calls, encouraging agents to act with restraint and349

self-awareness. By optimizing not only for outcomes but for processes, RL can produce agents that350

are not only accurate but also efficient, interpretable, and better aligned with real-world deployment351

constraints 2.352

5 Conclusion353

In this position paper, we introduced a unified epistemic theory of agents that reframes reasoning354

and acting as equivalent tools. By aligning an agent’s decision-making boundary with its knowledge355

boundary, we advocate for the design of agents that are not only capable of completing tasks but do356

so with epistemic efficiency - minimizing unnecessary interactions while maximizing knowledge357

gain to achieve task success. This perspective moves beyond the current paradigm of tool-augmented358

LLMs and points toward a future in which agents exhibit genuine autonomy grounded in principled359

decision-making.360

Looking ahead, this framework offers a roadmap for developing foundation agents that can operate361

effectively in open-ended environments, learn efficiently with minimal supervision, and generalize362

across domains. By emphasizing knowledge - driven intelligence, this theory invites a rethinking of363

how we measure and build capable AI agents - not by their frequency of action, but by their ability to364

know when to reason and when to act. We believe this epistemic perspective will play a foundational365

role in the next generation of AI systems, shaping agents that are not only more capable but also safer,366

more reliable, and better aligned with human values and long-term goals.367

2We left some discussion ragarding future directions in Appendix C.
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Figure 4: A high-level illustration of Lemma 1.1 for a specific model m.

A Further Discussion: Principles of Knowledge and Decision in Model638

A.1 Principle 1: Foundation of Knowledge and Decision Boundary639

Lemma 1.1: Some may argue that it is possible that the scaling law does not work and the expansion640

may stop at a specific timestep. In this case, there always some knowledge that the models can not641

capture or master, and the model must learn these via another ways, such as learn from interaction, or642

human experts, to expand the knowledge boundary [38].643

Lemma 1.2: It is always desired that the model can gain or update knowledge in specific domains644

without affecting other domains. However, this is extremely challenging, as knowledge in the real645

world is deeply interconnected rather than isolated. During learning on new experience, models are646

prone to catastrophic forgetting [55] or hallucinate [56, 57], where previously acquired knowledge647

fades.648

In summary, Lemma 1.1 and Lemma 1.2 call for a scalable lifelong learning paradigm that can649

dynamically expand and redistribute the model’s knowledge boundary ∂K in response to new data650

and evolving tasks across the time.651

A.2 Principle 2: Uniqueness and Diversity of Knowledge and Decision Boundary652

There are lots of models from both open-source and close-source sides. To better understand the653

diversity and limitations of model capabilities, we posit that there exist both unique and universal654

properties shared across all models [58].655

Lemma 2.1: There are several lines of research direction being affected by this lemma. One line656

of research is the knowledge boundary identification through prompting [59–61], probing [62, 63],657

uncertainty estimation [64–66], and self-consistency checks [67]. For instance, several studies try to658

collect model-specific supervised fine-tuning dataset to teach the model to say “I do not know" for659

the unknown questions and only provide answer for known questions [57, 68, 69]. Another line of660

work involves model specialization and collaborative inference where models with complementary661

boundaries (e.g., generalist vs. domain experts) are orchestrated to jointly solve complex tasks662

[58, 70]. This is particularly relevant in modular systems or tool-integrated agents, where models663

selectively offload tasks based on different specialists.664

External
knowledge

Maximal knowledge
boundary

External
knowledge

Minimal
knowledge
boundary

Figure 5: A high-level illustration of Lemma 2.2 for the all models M = {m0, ...,mn}.
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Lemma 2.2: Both minimal and maximal knowledge boundaries play key roles to better understand665

the mental world of the models. On the minimal side, ∂Kmin captures the foundational knowledge666

consistently learned by all models, such as basic language structures, common facts, and widely667

shared cultural concepts. It effectively defines a shared epistemic core - a common worldview shaped668

by dominant patterns in pretraining data. This boundary reflects the most universal priors across669

models and has important implications for alignment, fairness, and generalization. On the maximal670

side, understanding ∂Kmax helps reveal the outer limits of what any existing model can know. This671

insight motivates strategies like one-fits-all supervised fine-tuning, where models are trained to defer672

or trigger specific actions, such as tool use or human intervention, when a task requires knowledge673

beyond this boundary. For example, several studies collect the well-designed dataset to finetune the674

model to only call tools when the required knowledge is outside the inherent parametric knowledge675

of LLMs, and therefore the dataset can apply for all model [47].676

A.3 Principle 3: Dynamic Conservation of Knowledge677

Knowledge is inherently dynamic—the world is constantly evolving as new information is discovered678

and outdated knowledge becomes obsolete. To capture this temporal nature of knowledge, we propose679

the principle of dynamic conservation of knowledge.680

Lemma 3.1: Current mainstream models, however, primarily function as knowledge distributors681

rather than knowledge discoverers. They optimize for efficiency and effectiveness in retrieving,682

synthesizing and applying existing knowledge, for example, improving task automation, boosting683

productivity, and supporting human decision making. The emerging paradigm of AI for Science seeks684

to bridge this gap by leveraging models not only to encode and apply existing knowledge but to685

generate novel hypotheses, identify hidden patterns, and accelerate scientific discovery.686

Lemma 3.2: There are several RL-based approaches focus exclusively on optimizing final answer687

correctness, without accounting for the underlying reasoning trajectory. In detail, several large688

reasoning models (LRMs), such as OpenAI’s o1 [71], DeepSeek-R1 [29], and QwQ [72], achieve689

exceptional performance by being optimized solely for final answer correctness, regardless of the690

number of reasoning tokens used or the utility of the reasoning process itself. Moreover, few studies691

try to re-produce the success of RL in tool-integrated reasoning which also only focus on the final692

answer correctness [30, 54]. As a result, models often develop inefficient or suboptimal behaviors,693

including overthinking, where excessive internal reasoning leads to inflated tint, and tool overuse,694

where models make frequent, unproductive calls to external tools, increasing text. Although few695

studies focus on the this issue, they mainly focus on one side either the internal or external. In contrast,696

we argue that a more principled and holistic framework is required, one that views internal and external697

tools as complementary actions within a unified decision-making process. Such a framework should698

aim not just to maximize correctness, but also to approximate the minimal epistemic effort N(q,m)699

required for task completion.700

Together, these three principles establish a unified theoretical framework for understanding, analyzing,701

and improving the knowledge structures and behaviors of models and agents, offering foundational702

guidance for developing models that are not only powerful and effective, but also efficient, adaptive,703

and epistemically aware. It is believed to guide the design of next-generation models or agents704

that can reason more effectively, learn continuously, collaborate strategically, and act responsibly in705

open-ended, evolving environments.706

B Other Relationship Between Internal Knowledge and External Knowledge707

In the main pages, we assume that the internal knowledge and external knowledge are two separated708

parts for simplicity and generalization. In practice, it may not hold since the internal knowledge may709

overlap with external knowledge, and there may exist knowledge conflict between these two sources.710

We discuss these situations as follows:711

Knowledge Overlap. This highlights an important possibility: internal cognitive tools and certain712

external physical tools can retrieve overlapping or even identical pieces of knowledge, implying a713

potential for epistemic transferability between the two. For example, a model may answer a factual714

question either by recalling internalized knowledge from its parameters or by querying an external715
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tool such as a search engine, both pathways leading to the same correct answer [73, 46]. A similar716

phenomenon occurs with tasks like simple mathmatical operation, where the model may either717

compute the result internally or delegate it to an external calculator API. This interchangeability718

suggests that internal and external tools can act as substitutes under certain conditions, raising further719

questions about when and how agents should transfer, balance, or even fuse internal reasoning with720

external interaction for optimal epistemic efficiency. In these cases, minimizing external physical721

tools is also maximizing internal cognitive tools as evidenced by recent study [51]. We emphasize722

the opposite is not necessarily true: maximizing the use of external physical tools does not imply723

minimizing the use of internal cognitive tools since not all external tools can map to specific internal724

tools. In many cases, excessive reliance on external tools may reflect insufficient internal reasoning725

rather than optimized epistemic behavior.726

Knowledge Conflict. In some cases, internal and external knowledge sources may conflict [74, 75],727

leading to inconsistent or contradictory information. This typically arises when the model retrieves728

outdated, incomplete, or hallucinated content from its internal memory that contradicts more up-to-729

date or accurate external sources. Such conflict is especially pronounced when the model attempts to730

generate knowledge beyond its internal boundary, often resulting in hallucinations [50]. For instance,731

a model may confidently generate an incorrect answer based on memorized but obsolete knowledge,732

even when a correct answer is accessible via an external tool like a search engine or database. These733

situations highlight the importance of epistemic calibration: the model must learn not only what it734

knows, but also when its internal knowledge is unreliable and should be overridden by external input.735

Addressing knowledge conflict requires mechanisms for knowledge arbitration, where agents resolve736

discrepancies by evaluating the reliability, recency, and epistemic certainty of each source - an open737

challenge for building robust decision boundaries under uncertainty.738

C Future Directions739

Vision Agent. Vision agents extend our unified framework of reasoning and acting by incorporating740

visual affordances as part of the decision-making loop. In our definition, external physical tools741

are invoked based on an agent’s knowledge gaps; in vision agents, visual input becomes a direct742

means of detecting such gaps and informing tool use decisions. To realize this, future systems should743

treat visual understanding not as passive recognition but as actionable epistemic input. This involves744

embedding affordance-aware modules into vision-language models that not only recognize objects745

but predict possible interactions. Moreover, meta-cognitive control should guide visual attention: the746

agent must actively attend to regions most likely to resolve its uncertainty. Training in simulation747

with reinforcement learning can allow agents to learn the utility of visual exploration for acquiring748

external knowledge, enabling more precise tool invocation grounded in perception.749

Embodied Agent. Embodied agents concretize the external physical tool dimension by extending750

it into the physical world, where the agent’s own body becomes a tool, and the environment imposes751

dynamic constraints. Within our framework, this embodiment means that the agent’s knowledge752

boundary is not only cognitive but also physically bounded (e.g., what can be seen, reached, or753

manipulated). To operationalize this, agents should be equipped with real-time sensorimotor feedback754

loops and control modules that treat actions as epistemic moves: physical actions (e.g., MoveTo,755

PickUp) should be treated like external tool calls that yield knowledge from the environment.756

Learning here must be closed-loop and incremental—using reinforcement signals from physical757

interaction to adjust the decision boundary over time. Physical meta-cognition, such as failure758

detection or confidence in execution, should guide whether to reason further, retry an action, or759

explore alternatives.760

Multi-Agent Coordination. Multi-agent coordination extends our framework from individual761

agents aligning their decision and knowledge boundaries to a collective setting where these boundaries762

are distributed across multiple agents. In this paradigm, each agent operates with a local view (its763

own knowledge and decision boundaries), but contributes to a shared task by reasoning about and764

interacting with other agents. The key challenge is aligning these distributed boundaries to form765

a coherent collective intelligence. To achieve this, agents must be equipped with mechanisms766

to communicate epistemic state, and dynamically delegate subtasks to peers whose knowledge767

boundaries better match the problem context. This requires structured communication protocols, role768
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inference strategies, and shared meta-cognitive modules that manage when to ask, respond, or act.769

Practically, this can be developed through multi-agent reinforcement learning in environments where770

cooperation is required for successful task completion, with reward functions encouraging efficient771

division of cognitive and physical labor.772
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