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Abstract

Most state-of-the-arts classifiers assume a rela-
tively balanced class distribution and equal mis-
classification cost. Training with imbalanced data
has encountered a significant difficulty of low at-
tainable results. Although many previous work
has addressed various strategies to tackle this is-
sue, these techniques usually come with different
drawbacks and the outcome is still very limited.
Cao et al. introduced two new techniques, label-
distribution-aware margin loss (LDAM) and de-
ferred re-weighting(DRM) [1], which have been
claimed to acieve better performance gains over
the existing techniques. In this work, we re-
produced the baseline experiments reported in the
authors’ work with IMDB and CIFAR-10 bench-
marks. We performed extensive hyper-parameter
tuning on these models and outperformed the orig-
inal reported results. We also proposed a general
scheme for baseline improvement with learning
rate step decay and triangular policy[2]. Based
on the improved results, we studied how differ-
ent techniques affect the performance when learn-
ing imbalanced data (Section 6.3.4), including
class balanced re-weighting[3], class balanced re-
sampling[3] and borderline-SMOTE[4].

1 Introduction

Real world data commonly show the particularity
to have a number of samples of a given class un-
der represented compared to other classes. Most
existing machine learning algorithms optimize
the overall accuracy without taking into account
the relative distribution of each class. Without
good strategies to overcome the class imbalance
problem, most classifiers perform very poorly

on the minority classes. Recent break-through
work, Learning Imbalanced Datasets with Label-
Distribution-Aware Margin Loss, is published by
Cao et al. in NeurIPS 2019 [1]. The main contri-
butions of this work are summarised as follows:

• A theoretically-principled new loss function:
Label-Distribution-Aware Margin loss (LDAM)

• A training process: deferred re-weighting
(DRW) or deferred re-sampling (DRS) optimiz-
ing schedule

• A combined optimal solution: deferred
re-weighting training schedule with label-
distribution-aware margin loss(LDAM +
DRW)

In this work, we reproduced and inspected a sub-
set of the baseline experiments in Cao et al.’s
work and extended the baseline experiments with
SMOTE oversampling experiment. Our work con-
sists of two groups of experiments: one groups
was based on IMDB movie reviews and another
one was based on CIFAR-10. With the same
hyper-parameters, we produced similar results as
reported in the original paper. We analyzed the
learning behaviour for the baselines and proposed
a scheme for hyper-parameter tuning to improve
the baseline results. For IMDB experiments, the
fine tuning of bidirectional LSTM was able to im-
prove around 1% compared to the top reported
result. We also investigated in the performance
of traditional linear models, such as Logistic Re-
gression, Naive Bayes, etc. For CIFAR-10 experi-
ments, our method of learning rate step decay with
triangular policy in the last stage of training was
able to increase the accuracy on all the baseline
models. With stronger model performance, we
performed detailed studies on these baseline mod-
els to understand how different techniques affect
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the performance when learning imbalanced data.
Finally, we incorporate our scheduling method
with deferred re-weighting (DRW). We demon-
strate a process of finding the optimal DRW or
DRS stage transition point. With the same exper-
iment setting, our procedure was able to improve
around 2% compared to the reported results.

2 Background

Our main focus in this work is the proposed meth-
ods in Learning Imbalanced Datasets with Label-
Distribution-Aware Margin Loss by Cao et al.[1].
Here are the brief introductions of their methods.

2.1 Label-Distribution-Aware (LDAM)
Margin Loss

LDAM loss is a class-dependent soft margin loss
function inspired by multi-class extension of hinge
loss and cross entropy loss. The authors sug-
gest that the non-smoothness of hinge loss may
pose difficulties for optimization. Therefore, they
presented a smooth relaxation of the hinge loss.
It is essentially the cross entropy loss with en-
forced margins depending on the class distribu-
tion. LDAM loss is defined with the hyper-
parameter C as: Let the training margin for class j
be:

γj =
C

(nj)1/4
for j ∈ 1, ..., k (1)

Let (x, y) be an example and f be a model.
Let zj = f(x)j be j-th output of the model for the
j-th class. The LDAM loss is defined as:

LLDAM ((x, y); f) = −log exy−∆y

exy−∆y + Σj 6=yezj )

where ∆j =
C

(nj)1/4
for j ∈ 1, ..., k

(2)

It is evident that LDAM loss function encourages
larger margins on minority classes and smaller
margins on majority classes.

2.2 Deferred Re-weighting (DRW) or Re-
sampling Optimizing Schedule(DRS)

DRW/DRS schedule has two stages of training.
The first stage of training uses vanilla empirical
risk minimization (ERM). It is followed by the

second stage of training with annealed learning
rate and re-weighting or re-sampling techniques.
The DRW/DRS schedule is proposed since the
authors discovered the features produced by re-
weighting and re-sampling before annealing the
learning rate are worse than those produced by
vanilla ERM.

2.3 Combined solution (LDAM + DRW)

The authors claimed that either LDAM or DRW
performs over the existing techniques; however,
the combination algorithm(shown in Figure8) was
able to achieve the best result among all the exper-
iments.

3 Related work

To handle the difficulties of learning imbalanced
datasets, the existing solutions can be divided into
data level and algorithmic level. At data level,
there are some strategies to reduce the skewness of
class distribution prior to the training process. As
a result, the algorithms are more likely to detect
the minority during the training process instead
of treating the minor classes as noises. At algo-
rithmic level, various modern techniques are pro-
posed in the last decade targeting the optimization
of training imbalanced data. The LDAM-DRW
approach is a combination of data level and al-
gorithmic level approaches that achieves a better
performance gain over the existing techniques.

3.1 Re-sampling and SMOTE:

Batuwita and Palade[5] discussed in details that
oversampling can produce better classification re-
sults than undersampling by increasing the minor-
ity class recognition rate without losing much of
the majority class recongnition rate. However,
oversampling can suffer greatly from over-fitting
the minority classes and degrade the learning qual-
ity. N. V. Chawla et al.[6] proposed SMOTE
method to generate new synthetic examples by
interpolating between the minority examples and
their selected nearest neighbours. Based on the
traditional SMOTE method, H. Han et al.[4] pro-
posed two new methods, borderline-SMOTE1 and
borderline-SMOTE2. The intuition of borderline-
SMOTE is illustrated in Figure1. Since the bor-
derline minority class examples are more easily to



be misclassified than the ones far from the border-
line. Thus oversampling only the borderline ex-
amples instead of all examples greatly reduces the
overfitting problem.

Figure 1: (a) The original distribution; (b) Bor-
derline minority examples (blue solid squares); (c)
Borderline synthetic minority examples. Figures
taken from the paper Borderline-SMOTE: A New
Over-Sampling Method in Imbalanced Data Sets
Learning[4]

3.2 Re-weighting:

The imbalance of labels usually brings the distri-
bution mismatch, leading to the overfitting to bias
and label noise. In addition to re-sampling, re-
weighting is another approach researchers often
use to solve imbalance of dataset[7]. Compared
to the standard objective function 1

N

∑N
i=1 fi(θ),

where fi(θ) to represent the loss function associ-
ating with data, we introduced training hyper pa-
rameters w∗ into the objective function, which can
be rewrite as:

θ∗(w) = arg min
θ

N∑
i=1

wifi(θ) (3)

The collection of w can be selected based on the
validation performance:

w∗ = arg min
w,w≥0

1

M

M∑
i=1

fvi (θ∗(w)) (4)

wi should larger or equal to 0 for all i, since the
minimization of the negative training loss can re-
sult in instability of model.

3.3 Class-Balanced Loss Based on Effec-
tive Number of Samples

Cui et al.[3] argue that as number of samples in-
creases, the additional benefit of a newly added
data point decreases. They quantify the effective
number of samples in a large-scaled dataset by a

single formula, where n is the number of samples:

(1− βn)/(1− β), where β ∈ [0, 1) (5)

By adding this class-balanced term to existing to
existing commonly used loss functions, such as
softmax cross-entropy, sigmoid cross-entropy and
focal loss, can achieve a significant performance
improvement.

3.4 Step Decay and Cyclical Learning

Figure 2: Triangular learning rate policy: The
blue lines represent learning rate values changing
between bounds. Step size is the number of itera-
tions in a half cycle.

When training a deep neural network, adaptive
learning rate usually settles down into deeper and
narrower local minima of the loss function [8]. In
practice, step decay is often used since it is eas-
ier for hyper-parameters interpretation. Decay-
ing learning rate accelerates the convergence of
Stochastic Gradient Decent (SGD) and often pro-
vides a more stabilized learning result. In 2017,
Leslie N. Smith[2] described a new method to set
the learning rate, named cyclical learning learn-
ing rates. Instead of monotonically decrease the
learning rate, this method lets the learning rate
cyclically vary between reasonable boundaries.
Dauphin et al. [9] argue that the training diffi-
culty arises when the saddle point plateaus with
small gradients. Small gradients slow down the
learning process; however, cyclical learning rate
allows to increase the learning rate to traverse the
saddle surface more rapidly. In the paper Cyclical
Learning Rates for Training Neural Networks, it is
also mentioned that linearly increasing the learn-
ing rate for a few epochs in the beginning can
help with estimating the reasonable bounds. In
our work, we adapted both step decay and cyclical
learning rate with DRW learning schedule. Specif-
ically, we adopted the triangular learning rate pol-
icy at both stages of learning. Triangular policy
interpolates the learning rate linearly within the



boundaries, which is illustrated in Figure2. The
learning rate at each epoch can be calculated as:

η = ηmin + (ηmax − ηmin)(max(0, 1− x))

where x = | epochs
stepsize

− 2 cycle + 1|

wherecycle = floor (
1 + epochs

2 stepsize
)

(6)

4 Dataset and Setup

In this work, we strictly re-constructed and
improved the baseline experiments on IMDB and
CIFAR-10 dataset that Cao et al. proposed in
the paper Learning Imbalanced Datasets with
Label-Distribution-Aware Margin Loss[1].

The IMDB includes 50,000 well-balanced
movie reviews for natural language processing
or text analytics. Specifically, it includes 25,000
reviews for training and 25,000 for testing. To
generate the imbalanced dataset, we removed
90% of the negative reviews manually. For the
cleaning, we lowered, lemmatized each token and
removed the stop words as well as non-character
tokens in the sentences. We used a ratio of 0.8/0.2
to split the development set.

The original version of CIFAR-10 is com-
posed of 10 balanced classes of 50000 training
images and 10000 validation images of size 32 x
32. We manually created an unbalanced training
set by removing some amounts of the training
examples in every class. We manually simulated
a long-tailed imbalance situation with CIFAR-10
data. The sample sizes across different classes
follow a continuous distribution with an exponen-
tial decay. The ratio of class sizes between the
most frequent class and the least frequent class is
defined as:

ρ =
maxi(ni)

mini(ni)
(7)

We simulated an extreme imbalanced setting, in
which the majority class size is 100 times bigger
than the minority class size (ρ=100). We do not
modify the original balanced validation set and use
it to evaluate the algorithms’ performance among
all classes.

5 Evaluation Metrics in Imbal-
anced Domains

To evaluate the performance of a model for im-
balanced datasets, accuracy generally favours the
majority classes more and is much less reliable
for the minority classes. However, in our exper-
iment setup, we manually simulated the imbal-
anced data and kept the validation set uniformly
distributed; therefore, accuracy as an evaluation
metric is still relatively reasonable to use. How-
ever, with the real life imbalanced data in which
the validation set is also imbalanced, it is im-
portant to change the performance metric as the
accuracy or the error rate can be very mislead-
ing. Some more reasonable metrics are confu-
sion matrix, precision, recall and F1 score. In this
work, all the results are reported in terms of the
ErrorRate = 100(1 − accuracy), in order to to
be consistent with the reference paper.

6 Experiments and Results

In this section, we describe our experiments for
reproduction, inspect and improve the baseline re-
sults reported in Learning Imbalanced Datasets
with Label-Distribution-Aware Margin Loss[1].
We re-implemented the learning algorithms based
on the released code by the authors https://
github.com/kaidic/LDAM-DRW.

6.1 Summary of Reproduced Experi-
ments

We start by reproducing a series of results in-
cluding the baselines and the proposed models.
In the original paper, the authors used empirical
risk minimization loss (ERM) (ie. standard un-
weighted cross entropy loss) as a baseline to com-
pare the existing techniques and their proposed
methods. The author applied several state-of-the-
art techniques to mitigate the issues with training
on imbalanced data. We investigated a portion
of the baselines from the paper and also designed
an additional baseline with SMOTE oversampling.
Here is a list of our experimented baselines:

• empirical risk minimization with cross entropy
loss (ERM)

• SMOTE Re-weighting (SMOTE)

• Class Balanced Re-weighting (CB-RWB)

https://github.com/kaidic/LDAM-DRW
https://github.com/kaidic/LDAM-DRW


• Class Balanced Re-sampling (CB-RS)

Finally we validate the authors’ techniques:

• Label-Distribution-Aware Margin Loss
(LDAM)

• Deferred Re-weighting Schedule (DRW)

• Combination of the two methods
(LDAM+DRW)

Our investigations on the baselines consists of
two groups: a text classification task on IMDB
dataset and an image classification task on CIFAR-
10 dataset. Our baseline investigation summaries
for IMDB and CIFAR-10 are reported in Table1
and Table2 respectively.

Experiment ErrorP ErrorN ErrorM
ERM 6.32 26.45 16.48
RS 7.90 31.93 19.916
RW 7.14 31.24 19.19
SMOTE 14.74 27.94 21.34

Table 1: Top-1 validation errors on imbalanced
IMDB review dataset on Bi-directional LSTM
model with different approaches, where ErrorP
means the validation errors of positive review, Er-
rorN means the validation errors of negative re-
views, and ErrorM means mean errors.

Experiment Original Improved
ERM 29.41 27.62(-1.79)
b-SMOTE NONE 68.98
RW+CB 27.88 25.9 (-1.98)
RS+CB 29.43 28.45
LDAM 26.74 24.23 (-2.51)
DRW 25.74 25.01
LDAM+DRW 23.12 21.08 (-2.04)

Table 2: Validation errors of experiments re-
produced with ResNet-32 on imbalanced CIFAR-
10. The improved experiments with our pro-
posed scheme (Section 6.3.3) reduces the error
rate with all the experiments by different amount.
Borderline-SMOTE is not in the original paper;
we extended this experiment to compare different
data re-balancing techniques (Section 6.3.4).

For IMDB, we noticed that the hyper param-
eters for experiments on IMDB was not given in
the paper. However, we found that, by fine-tuning
the bidirectional-LSTM model on its size of
batch, number of epoch, and maximum number

of features, we can achieve better results than the
author’s baseline as shown in the Table1.
For CIFAR-10, we first closely followed the
author’s work using the same hyper-parameters
in the provided code. Our attempts on these
experiments produced very similar to the reported
results in the paper. The original results and our
improved results are all reported in Table 2.

6.2 Baseline Track with IMDB

6.2.1 ERM/RS/RW/SMOTE baseline tuning
experiments

Since the reference paper reported baseline mainly
on the data level without explicitly giving the
hyper-parameters, we constructed the step-by-
step fine-tuning experiment based on four fac-
tors: number of training epoch, max number
of feature, size of batch, and approach method.
The default setting of the two-layer bidirectional
LSTM with Adam optimizer is BatchSize =
128, MaxFeature = 6000, Epoch = 5,
Approach = ERM . We conducted the experi-
ment on size of batch with 32, 64, 128 as shown in
Table 5. We observed that as the number of batch
size increases, the overall mean error decreases.
Then, we tried different max number of features
ranging from 6000 to 12000 as shown in Table
3. We observed that a trade-off between the val-
idation error for positive and negative set. As the
maximum of features increases, the model tends to
capture more features from the positive set and so
can fit on the positive set better, and negative set
worse. When the maximum of features reaches a
certain threshold, the model tends to learn only the
positive set and ignore the negative set, so that it
produced a small loss on the positive set while a
much bigger loss on the negative set. For these
experiment results, we selected the final hyper-
parameters set and visualized the training process-
ing by plotting the loss and accuracy as shown in
Figure 7.
Notice that we only included a detailed description
of tuning experiments for the ERM method, how-
ever, the Re-sampling, Re-weighting, and SMOTE
approachs followed the same procedure of fine-
tuning. For Re-sampling and MOTE, we im-
plemented the oversampling from imblearn[10].
For Re-weighting, we implemented sample weight
from sklearn[11]. The top-1 validation and corre-



sponding configuration is reported in Table 1 and
Appendix A.1. We noticed that the best model re-
sult in a least error rate of 16.48%, outperforming
the all reported mean error in reference paper.

6.2.2 Investigation of linear model perfor-
mance

In addition to the fine-tuning on the neural net-
work, considering efficiency and previous work on
IMDB set, we also implemented the linear models
as shown in Table 4. The learning model is imple-
mented from [11], and we implemented the grid
search to find the optimal hyper-parameter. The
performance of Logistic regression surprised us
compared to other classifier, which all have mean
error around 50%. The Logistic Regression with
balanced re-weighting approach achieved 15.58%
error rate, outperforming the referenced best score
of 17.84%.

6.3 Baseline Track with CIFAR-10

6.3.1 ERM baseline tuning with step decay
learning rate

In our ERM baseline experiment with long-tailed
data, there is 29.41% errors on the validation set,
which is similar to the error rate in the paper
(29.64%). However, by plotting the loss change
over the training duration Figure 3, we discov-
ered that the training with the authors’ hyper-
parameters is extremely overfitted. After about
35 epochs, the validation loss started to increase,
while the training loss continued decreasing until
it reached almost zero after the entire training ses-
sion. Therefore, we decided a new learning sched-
ule in which we decrease the learning rate as soon
as the validation loss does not show the tendency
of decreasing. In this case, it will be around the
35th epoch. We adopted a step decay schedule:
Train the initial 35 epochs with 0.1 learning rate;
then decrease the learning rate to 0.01 and train
the rest epochs. This approach is very effective
as shown in Figure 3, which suggests an evident
drop in both training and validation loss at the 35th
epoch. The adjusted ERM error rate also drops
significantly after the learning rate decay. The
adjusted ERM was able to converge much faster
and achieved 1.79% less validation errors than the
original experiment.

Figure 3: The left figure shows the training loss
and validation loss comparison among the original
ERM, step decay ERM and triangular step decay
ERM. The right figure shows the error rate com-
parison among the original ERM, step decay ERM
and triangular step decay ERM.

6.3.2 ERM baseline tuning with triangular
learning rate policy

While the correctly planned step decay boosts the
performance significantly, we further incorporate
cyclical learning with the decayed learning rate.
Cyclical learning introduces a dynamic learning
rate within reasonable range, which is believed to
be beneficial overall even though it might tem-
porarily harm the network’s performance[2]. We
implemented the triangular learning policy to fa-
cilitate our step decayed learning rate. To estimate
a good value for the step size, Leslie N. Smith [2]
suggests that although the final accuracy results
are quite robust to cycle length but experiments
show that it is often good to set step size equal
to 2 to 10 times the number of iterations in an
epoch. In our case, we have long tailed (ρ = 100)
imbalanced CIFAR-10 data with 20431 examples.
The number of iterations per epoch is calculated
by total number of examples / batch size, in our
case, 20431/32 = 638 iterations. We set our
stepsize = 8 ∗ 638 = 5104. Our step decay train-
ing schedule with triangular policy shows promis-
ing results (Figure3). Although the training loss
with triangular policy is slightly higher, but the
validation loss turned out to be a lot less, espe-
cially in the second stage of training. From the



validation error plot, we can also observe a slight
performance advantage compared to pure step de-
cay ERM.

6.3.3 Scheme for Baseline Improvement

Deep neural networks are expensive to train,
which makes it very difficult to perform extensive
experiments to find the optimal hyper-parameters.
Based on Section 6.2 and Section 6.3, we propose
a relatively forgiving and systematic scheme for
running baselines, which consists of learning rate
step decay and cyclical learning rate.

Estimate reasonable minimum and maximum
boundary values: A simple way to estimate the
learning rate bounding is to run the model for a
few epochs with linearly increasing learning rate.
The optimal learning rate is bounded between the
learning rates that associate with the points when
the accuracy starts to increase or decrease dramat-
ically.

Learning rate scheduling: It is important to de-
cay the learning rate at the right time with the right
amount. If the learning rate is decayed to early,
the model might converges to a bad local mini-
mum. If the learning rate is decayed to late, the
model is already overfitted and the training loss
gets too small to continue training. Our approach
it to run the model with a constant learning rate
first and always record the losses of the last sev-
eral iterations. Anneal the learning rate when the
validation loss decreases too slowly or even starts
increasing. This can be done multiple times until
annealing the learning rate no longer improves the
performance and stop training.

Enforce cyclical learning rate: Enforce a
cyclic function bounding the learning range be-
tween the maximum and minimum boundaries
provides substantial improvements in perfor-
mance. This approach achieves improved accu-
racy without the need of experimental tuning and
often in fewer iterations.

We deployed this scheme in all of the baseline
experiments and observed improvements in some
of them.

Figure 4: The validation error rate of long-tailed
CIFAR-10 data trained with RW+CB, RS+CB,
borderline-SMOTE

6.3.4 Re-weighting and Re-sampling

We experimented on several different data
re-sampling and data-re-weighting approaches
according to the author’s experiments. We also
extended the experiment with borderline-SMOTE
over-sampling. Compare to the original SMOTE
oversampling, borderline-SMOTE minimizes the
intra-class variation and enlarges the inter-class
variation. Moreover, the traditional re-weighting
method is to re-weight by the inverse class
frequency. Cui et al. [3] proposed a better scheme
with re-weighting by the inverse effective number
which is proved to yield better performance
(RW+CB). Similarly, the inverse of effective
number can also be used in data re-sampling
(RS+CB). We compared our experiments with
borderline-SMOTE, RW+CB and RS+CB, the
error rate decay is shown in Figure4. Borderline-
SMOTE converges a lot faster than the other two
methods. With the long-tailed CIFAR-10 data,
borderline-SMOTE drops the error rate rapidly,
and the learning converges after only 10 epochs.
RS+CB and RW+CB trains a lot slower compared
to border-line SMOTE; however, with class
balanced effective number, RS+CB and RW+CB
have been seen a significant benefit after more
iterations. To with RS, RW slightly out performs
RS by around 2%.

6.3.5 Comments on how to find optimal stage
transition points in DRW

LDAM+DRW approach performs great on imbal-
anced datasets compared to all the existing meth-
ods. Choosing the stage transition points carefully
can boost the performance even more. In order
to provide the second stage of DRW/DRS with



Figure 5: The performance behaviour of LDAM
loss with constant learning rate 0.1

Figure 6: The error rate of LDAM+DRW cam-
pared with LDAM or DRW alone

as much potential as possible to continue learn-
ing, train loss cannot be too small before anneal-
ing the learning rate. Therefore, to find the optimal
stage transition point, we start by training without
DRW/DRS schedule. We applied LDAM loss on
the model with constant learning rate 0.1 through-
out the whole training session. The performance
behaviour is plotted in Figure5. We observed that
after 80 epochs, although the training loss is still
decreasing, the loss decrements in training set no
longer yields desirable decrements in either vali-
dation loss or error rate. Therefore, we decide the
stage transition point to be at 80th epoch, where
the learning rate is annealed by 100 times. Figure6
agrees with the authors claim that LDAM+DRW
indeed outperforms LDAM or DRW alone.

7 Discussion and Conclusion

In this work, we performed extensive investigation
on the baselines reported in the paper Learning
Imbalanced Datasets with Label-Distribution-
Aware Margin Loss. We particularly evaluated the
baselines with a text classification task (IMDB)
and an image classification task (CIFAR-10).
With manually created imbalanced IMDB data,
firstly, we observed that traditional approach,
logistic regression with a validation error of 15.85
%, can handle the imbalanced data elegantly. In

logistic regression, for each feature contribute
to the prevalence of target label, the model will
assign an appropriate estimates to the particular
feature. If the feature shows up rarely, then the
resulting intercept will be very small; however,
it still contribute to the prediction of label. Es-
pecially with the re-weighting, the sensitivity of
the weak parameters estimate is further enhanced.
Secondly, we observed that by fine-tuning, the
bidirectional LSTM model achieved a validation
error of 16.48%, better compared to their best
score of 17.84%. Therefore, we concluded that,
the LDAM-DRW model does not have always
significant advantages over the classical approach
on IMDB benchmark.
With the imbalanced CIFAR-10 data, instead of
fine tuning the hyper-parameters, we proposed
a general scheme that can be adopted in many
situations. Our proposed scheme utilized learning
rate decay and triangular policy, which often
boosts the model performance without the need of
extensive hyper-parameter tuning. This scheme
is especially helpful for baseline improvement
in deep neural networks. Since deep neural
networks are expensive to train, researchers often
spend more time on fine-tuning the proposed
models than the baseline. Our approach makes it
possible to achieve close to the optimal learning
rate performance without extensive tuning. This
schemes is applied to all CIFAR-10 baselines
witch results in observable improvements among
all of them. Additionally, our experiment results
also agree with the authors’ claim. We observed
substantial advantage of deploying LDAM-DRW
model on CIFAR-10.

8 Statement of Contribution

Doreen He: Worked on CIFAR-10 result repro-
duction and the write-up
Hehuimin Cheng: Worked on IMDB data set re-
sult reproduction and the write-up
Vitaly Kondulukov: Worked on baseline classic
model result reproduction and the write-up
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A Appendix

A.1 Parameter Setting and Results for IMDB experiments

ERM: BatchSize = 128, Max Feature = 8000, Epoch = 2. Re-samping: BatchSize = 128, Max Feature
= 10000, Epoch = 4. Re-weighting: BatchSize = 128, Max Feature = 10000, Epoch = 5. SMOTE:
BatchSize = 128, Max Feature = 10000, Epoch = 3. Adam Optimizer with default setting.

Figure 7: Accuracy and Loss plot for the best model under different approaches. The top left two plots
correspond to ERM approach. The top right two plots correspond to Re-sampling approach. The bottom left
two plots correspond to re-weighting. The bottom right two correspond to SMOTE approach.

MaxFeature Error on positive reviews Error on positive reviews Mean Error
4000 6.07 43.96 25.02
6000 6.29 31.58 19.15
8000 6.52 26.45 16.48
10000 3.72 39.13 21.43
12000 0.14 90.49 45.32

Table 3: Top-1 validation errors on imbalanced IMDB review dataset on Bi-directional LSTM model for
ERM approach with different maximum number of features based on the best model.

Classifier Error on positive reviews Error on positive reviews Mean Error
Logistic Regression 15.85 15.85 15.85
XGBoost 0.00 100.00 50.00
KNN 0.00 100.00 50.00
NNaiveB 8.42 93.01 50.72

Table 4: Top-1 validation errors on imbalanced IMDB review dataset on Logistic Regression, XGBoost,
Bernoulli Naive Bayes, and K-Nearst Neighboor.

BatchSize Error on positive reviews Error on positive reviews Mean Error
32 3.31 41.47 22.39
64 8.50 30.24 19.37
128 6.52 26.45 16.48

Table 5: Top-1 validation errors on imbalanced IMDB review dataset on Bi-directional LSTM model for
ERM approach with different batch set based on the best model.



A.2 Background

This section includes the algorithms described in [1].

Figure 8: The proposed LDAM-DRM algorithm from Learning Imbalanced Datasets with Label-
Distribution-Aware Margin Loss[1]


