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Abstract

We study the task of gesture recognition from electromyography (EMG), with the goal of
enabling expressive human-computer interaction at high accuracy, while minimizing the
time required for new subjects to provide calibration data. To fulfill these goals, we define
combination gestures consisting of a direction component and a modifier component. New
subjects only demonstrate the single component gestures and we seek to extrapolate from
these to all possible single or combination gestures. We extrapolate to unseen combination
gestures by combining the feature vectors of real single gestures to produce synthetic training
data. This strategy allows us to provide a large and flexible gesture vocabulary, while not
requiring new subjects to demonstrate combinatorially many example gestures. We pre-train
an encoder and a combination operator using self-supervision, so that we can produce useful
synthetic training data for unseen test subjects. To evaluate the proposed method, we collect
and release a real-world EMG dataset, and measure the effect of augmented supervision
against two baselines: a partially-supervised model trained with only single gesture data
from the unseen subject, and a fully-supervised model trained with real single and real
combination gesture data from the unseen subject. We find that the proposed method
provides a dramatic improvement over the partially-supervised model, and achieves a useful
classification accuracy that in some cases approaches the performance of the fully-supervised
model.

1 Introduction

Subject transfer learning describes the technique of using pretrained models on unseen test subjects, sometimes
with adaptation, and is a challenging and active topic of research for EMG and related biosignals (Hoshino
et al., 2022; Bird et al., 2020; Yu et al., 2021). The difficulty of subject transfer arises from numerous sources.
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Noise in EMG data can stem from the stochastic nature of the EMG signals, variability in EMG sensor
placement and skin conductance, and inter-individual differences in anatomy and behaviors such as the
selection, timing, and intensity of actions. Labels for supervised EMG tasks may also be noisy due to variation
in task adherence (Samadani and Kulic, 2014). As a result of the performance gap between train and test
subjects, it is typical in tasks like gesture recognition that unseen test subjects must provide supervised
calibration data for training or fine-tuning models. This produces an undesirable trade-off; increasing the
gesture vocabulary increases the expressiveness of the trained system but also increases subject time spent
during calibration.
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Figure 1: Overview of desired commutativity. A
combination-homomorphic encoder FθF

commutes with
gesture combination: given data from real single
gestures xUp and xPinch and a real gesture combina-
tion xup&pinch, the real combination gesture’s encoding
FθF

(xUp&Pinch) should equal the combined encodings of
the single gestures Combine(FθF

(xUp), FθF
(xPinch)).

In this work, we propose a three-part strategy to
address the trade-off between expressiveness and cal-
ibration time. First, we define a large gesture vocab-
ulary as the product of two smaller, biomechanically
independent subsets. Subjects are given a set of 4
direction gestures (Up, Down, Left, and Right) and
4 modifier gestures (Thumb, Pinch, Fist, and Open),
and may either perform a single gesture chosen from
the 4+4 individual options, or a combination gesture
from the 4 × 4 options consisting of one direction
and one modifier.

Using a gesture vocabulary with this combinatorial
structure makes the system expressive, but tradi-
tional machine learning approaches cannot naively
generalize to unseen combinations, and would there-
fore require a correspondingly large training dataset.
For example, given only examples of single gestures
Up and Pinch, traditional models would not naively
be able to classify examples of the unseen combina-
tion Up&Pinch gestures. Therefore, the second key
component is to define a training scheme using partial supervision with synthetic data augmentation. A new
subject only needs to demonstrate the 4+4 single gesture classes, and a classifier can then be trained using
these real single gesture examples plus synthetic combination gesture examples created by combining gestures
in some feature space.

In order to enact this partially supervised training, we must be able to generate useful synthetic combination
gestures. Thus, the third element of our strategy is to use contrastive learning to pre-train an EMG encoder
and a combination operator, such that we can combine real single gesture examples into realistic synthetic
examples of combination gestures. The goal of this contrastive learning is that the encoder should be
approximately homomorphic to combination of gestures, as shown in Figure 1. In other words, the property
we desire is that combining two gestures in data space (e.g. when a subject perform a simultaneous Up&Pinch
gesture) gives approximately the same features as combining two gestures in feature space (e.g. the features
of an Up gesture combined with the features of a Pinch gesture). Given this property, the synthetic gesture
combinations we produce can serve as useful training data.

We evaluate our method by collecting a supervised dataset containing single and combination gestures,
and performing computational experiments to understand the effect of various model design choices and
hyperparameters. Note that our approach to extrapolating from partial supervision can be applied to any
task in which data have multiple independent labels, but where the combination classes are not easily
predicted from the single classes. Classical machine-learning methods for biosignals modeling tasks often use
hand-selected features; by learning our feature space entirely from data, we remove this reliance on domain
expertise. In general, hand-selected features can be a useful way to enforce strong prior assumptions about a
particular domain, and may be useful in the case of limited data, whereas a data-driven approach may be
beneficial as the amount of available data increases or in cases when domain assumptions may be violated.

The main contributions of our work are as follows:
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• We propose a two-stage classification approach that allows us to recognize a large combinatorial set
of gestures from sEMG after only collecting examples of the single component gestures. Our method
uses a contrastive pre-training stage, followed by a new-subject training stage with partial-supervision
and synthetic data.

• We collect and release a public dataset of real-world single and combination gestures to assess our
proposed method on this novel generalization task1.

• We conduct thorough post-hoc computational experiments to demonstrate the benefit of using
synthetic supervision during the calibration stage, and to explore the sensitivity of our method to
many design choices and hyperparameters2.

2 Related Work

Applications of EMG. The broad task of gesture recognition from EMG has been well studied. Research
varies widely in terms of the specific application, and thus the exact sensing modality, the set of gestures used,
and the classification techniques applied. Typical applications include augmented reality and human-computer
interface, as well as prosthetic control and motor rehabilitation research (Wang et al., 2017; Sarasola-Sanz
et al., 2017; Pilkar et al., 2014; Bicer et al., 2023). EMG data has also been used extensively for regression
tasks beyond prosthetic applications, such as hand pose estimation (Yoshikawa et al., 2007; Quivira et al.,
2018; Liu et al., 2021). These applications are well-reviewed elsewhere (Geethanjali, 2016; Yasen and Jusoh,
2019; Jaramillo-Yánez et al., 2020; Li et al., 2021).

Feature Extraction. One area of focus has been the effect of feature extraction on classifier performance.
Most traditional approaches to EMG gesture recognition transform raw EMG signals into low-dimensional
feature vectors before classification (Nazmi et al., 2016; Phinyomark et al., 2012; 2018). Feature extraction
methods can be broadly characterized into those using time-domain features, frequency-domain features
and time-frequency-domain features based on the method of extraction (Nazmi et al., 2016). Numerous
investigations have evaluated the best set of features to maximize classifier performance, but the hardware,
tasks, and findings vary between different studies, highlighting the potential issues of using hand-engineered
features (Nazmi et al., 2016). Our approach differs in that we use contrastive learning to learn a feature
space with the correct structure for our classification task. This approach can be re-used more easily across
different experimental setups and tasks.

Recognizing Combination Gestures. Previous work on gesture combinations is relatively limited. Some
work has shown high accuracy in classifying movement along multiple axes with application to prosthetic
control, though this was performed using fully-supervised data (Young et al., 2012). This application has
been extended by using simultaneous linear regression models for controlling prostheses along multiple
degrees of freedom, again using fully-supervised training data (Hahne et al., 2018). Other research has
provided models for classifying single gestures from a mixed vocabulary containing both static and dynamic
gestures (Stoica et al., 2012), and models to simultaneously classify a gesture and estimate force vectors (Leone
et al., 2019); by contrast, we focus only on classifying static gestures. To our knowledge, only one previous
article has attempted to classify combinations of discrete gestures from training data that contains only single
gestures (Smedemark-Margulies et al., 2023).

Semi-Supervised, Contrastive, and Few-Shot Learning. We propose a novel approach to simultane-
ously resolve issues with the classification of combination gestures and provide a means for subject transfer
learning. We formulate the task of calibrating models for an unseen test subject as a semi-supervised learning
problem, and use a contrastive loss function to ensure that items with matching labels have similar feature
vectors.

Briefly, semi-supervised learning describes the setting in which labels are available for only a subset of training
examples. Models are trained with a supervised loss function for labeled examples, and an unsupervised loss
function on the unlabeled examples. A wide variety of unsupervised loss functions have been studied, such as

1Dataset can be downloaded at https://zenodo.org/doi/10.5281/zenodo.10291624
2Code to reproduce all experiments can be found at https://github.com/nik-sm/com-hom-emg
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entropy minimization (encouraging the model to make confident predictions) (Grandvalet and Bengio, 2004;
Lee et al., 2013), and consistency regularization (where the model must make consistent predictions despite
small perturbations on the input data) (Sohn et al., 2020). These and other techniques are well-reviewed
elsewhere (Weng, 2019; Ouali et al., 2020).

Contrastive learning describes techniques for learning useful representations by mapping similar items to
similar feature vectors. This can be applied in tasks with full or partial labels, or even unsupervised contexts.
Items may be identified as similar based on their label (Schroff et al., 2015; Khosla et al., 2020), or by applying
small perturbations to input data that are known to leave the class label unchanged (Chen et al., 2020; Grill
et al., 2020). This area is also well-reviewed elsewhere (Weng, 2021; Jaiswal et al., 2020).

Our approach uses a combination of ideas from the literature on semi-supervised and contrastive learning.
The key step that reduces subject calibration time is to collect only partial labels, thereby defining a semi-
supervised learning problem. In order to allow models to successfully extrapolate from this partial supervision,
we pretrain our models using a classic contrastive learning method called the triplet loss (Schroff et al., 2015).

Our problem statement is similar to the problem statement of a standard few-shot learning setting (see
Wang et al. (2020) for review), but has several additional properties. First, in few-shot learning, models are
evaluated on different “tasks,” where the relationship between different tasks can be quite loose (such as
image classification research in which the original dataset, and even the number and identity of class labels
can vary between tasks). We are interested in the variation of behavior between subjects, so each “task” in
our work represents applying a pretrained model on a certain unseen test subject. This leads to a particular
relationship between different “tasks”; all the same classes are present when comparing two tasks, but data
is obtained from a different subject. Second, in typical few-shot learning, the labeled items available are
typically randomly sampled from the full set of possible classes. By contrast, we consider a problem with
two-part labels, and consider that our partial supervision consists of only single gestures (items that use only
one label component) and does not contain any combination gestures.

Subject Transfer Learning. Note that there are a variety of other approaches to the subject transfer
learning problem, such as techniques for regularized pre-training (Smedemark-Margulies et al., 2022), domain
adaptation techniques based on Riemannian geometry (Rodrigues et al., 2018), and weighted model ensembling
using unsupervised similarity (Guney and Ozkan, 2023). Techniques for subject transfer in EMG and related
data types such as electroencephalography (EEG) are well-reviewed elsewhere (Wan et al., 2021; Wu et al.,
2023).

3 Methods

In Section 3.1, we define the subject transfer learning problem and provide notation including model
components. In Section 3.2, we describe how feature vectors from single gestures will be combined to create
synthetic features for combination gestures. In Section 3.3, we describe the first stage of our proposed method
in which we pretrain an encoder and a combination operator. In Section 3.4, we describe the second stage of
our method, in which we collect calibration data from an unseen subject, then use the pretrained encoder and
combination operator to generate synthetic combination gesture examples and train a personalized classifier
for that subject.

3.1 Problem Statement and Notation

In a standard classification task, we seek to learn a function that predicts the correct label y for a given data
example x, based on labeled examples provided during training. Recall that the motivation for our work is to
design a model that makes use of population information collected from a set of pre-training subjects, and
can be quickly calibrated on new subjects. To that end, we modify this problem formulation as follows.

Consider a dataset D = {(x, y, s)} consisting of triples of data x ∈ RD, two-part gesture labels y = (ydir, ymod),
and subject identifiers s ∈ {1, . . . , S}. The components of the gesture label y take values as follows: ydir is
in {Up, Down, Left, Right, NoDir}, where NoDir indicates that no direction was performed, and ymod is in
{Thumb, Pinch, Fist, Open, NoMod}, where NoMod indicates that no modifier was performed.
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We partition the subject ID values into disjoint sets SP re and SEval. Using these sets, we divide the overall
dataset into three segments:

• A pre-training segment DP re, where s ∈ SP re. This is used to learn a population model.

• A calibration segment DCalib, where s ∈ SEval, and containing only single gestures (y has the form
(i, NoMod) or (NoDir, j)). This represents the small amount of single-gesture calibration data we can
obtain for a new unseen subject and is used for further model training.

• A test segment DT est, where s ∈ SEval, and containing all classes y. This is used to measure final
model performance.

We define a two-stage architecture, consisting of an encoder FθF
(·) : RD → RK producing K-dimensional

feature vectors z, and a classifier GθG
(·) : RK → ∆(5) × ∆(5) mapping feature vectors to pairs of 5-

dimensional probability vectors. This classifier consists of two independent components, one that predicts
the distribution over direction gestures, and one that predicts the distribution over modifier gestures. This
“parallel” classification strategy is adopted as the simplest way of producing a two-part label prediction,
though in principle one could seek to capture correlations between the two label components. Note that there
will be one classifier GP re

θG
used during pretraining (which provides an auxiliary loss term), and it will be

replaced by a fresh classifier GT est
θG

trained from scratch for the unseen test subject.

For convenience, we define several subscripts to refer to data from single gestures or combination gestures.
Let Xdir, Ydir, Zdir represent data, labels, and features, respectively, from a set of single gestures with only a
direction component. Such a gesture has a label of the form (i, NoMod). Likewise define Xmod, Ymod, Zmod for
a set of modifier gestures, which have labels of the form (NoDir, j). More generally, let xsing represent data
from a single gesture (either a direction-only gesture, or a modifier-only). Finally, define Xcomb, Ycomb, Zcomb

for a set of combination gestures with labels of the form (i, j) where i ̸= NoDir, j ̸= NoMod, and let xcomb

represent data from one such combination gesture.

3.2 Homomorphisms and Combining Feature Vectors

Given two algebraic structures G and H, and a binary operator ◦ defined on both sets, a homomorphism is a
map f : G → H satisfying

f(g1 ◦ g2) = f(g1) ◦ f(g2), ∀g1, g2 ∈ G. (1)

This property can also be described by noting that the map f commutes with the operator ◦ (Bronshtein and
Semendyayev, 2013). As mentioned previously, we design a partially-supervised calibration in which a new
subject will only provide single gesture examples and we will seek to extrapolate to the unseen combination
gestures. To facilitate this extrapolation, we seek to learn an encoder and a combination operator to achieve
this commutativity, as shown in Figure 1. Note that there are two types of combination to consider; a
physiological process that allows subjects to plan and perform a simultaneous combination of gestures, and
an explicit parametric function that we will use to combine the feature vectors of two single gestures. The
first type of combination (which occurs in a subject’s brain and musculature) is quite complex, and for the
purposes of this work is inaccessible.

Define a combination operator (z̃comb, ỹcomb) = CθC

(
(zdir, ydir), (zmod, ymod)

)
that takes as input the features

and label of a real direction gesture, and the features and label of a real modifier gesture, and produces as
output a synthetic feature vector and a label. The output feature vector represents an estimate of what
the corresponding simultaneous gesture combination should look like. Note that all feature vectors (from
single gestures, real combination gestures, or synthetic combination gestures) have the same dimension K.
Furthermore, note that the input label ydir has the form (i, NoMod), and ymod has the form (NoDir, j); the
output label simply uses the active component from the two inputs: ỹcomb = (i, j).

Figure 1 describes the desired relationship between the features of real and synthetic combination gestures.
If we achieve the desired homomorphism property, a synthetic feature vector created by this combination
operator should be a good approximation for the features from a corresponding real, simultaneous gesture.
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Figure 2: Fully-supervised pretraining for combination-homomorphic model. Encoder parameters θF and
combination operator parameters θC are optimized using a sum of three loss terms. The classifier GP re

θG
is only

used for auxiliary losses, and its parameters are discarded after pretraining. Colored boxes are models; white
boxes are variables; orange boxes are loss terms; inactive components are faded out. (a): The contrastive loss
term Ltriplet compares features of real and synthetic gesture combinations. Single gestures xsing are encoded
to features zsing and combined into synthetic features z̃comb. Real combination gestures xcomb are encoded
to features zcomb. (b): Classifier GP re

θG
is applied to synthetic features z̃comb to compute L̃ce. (c): Classifier

GP re
θG

is applied to real features zsing and zcomb to compute Lce.

For example, given features from a single gestures z1 with label y1 = (Up, NoMod) and another single
gesture z2 with label y2 = (NoDir, Pinch), the combination operator outputs a synthetic feature vector
z̃comb, (Up, Pinch) = CθC

(
(z1, y1), (z2, y2)

)
. In the successful case, this synthetic feature vector z̃comb should

resemble a feature vector from a real Up&Pinch gesture.

Note that the combination operator C corresponds to the operator ◦ mentioned above for a general homomor-
phism. We consider two functional forms for C. In one case, we consider learning a feature space in which
combination can be performed trivially. Here, C has zero learnable parameters (|θC | = 0) and computes the
average of the two input feature vectors z̃comb = (zdir + zmod)/2, which we refer to as Cavg. This approach
requires the encoder to learn a feature space in which combination occurs homogeneously for all pairs of
input classes. In the other case, the combination operator C produces synthetic feature output using a
class-conditioned multi-layer perceptron (MLP) z̃comb = MLP(zdir, i, zmod, j). This allows the possibility that
a flexible combination operator may still be required, and that the process of combining gestures may depend
on the particular input classes.

For convenience, define another function (Z̃comb, Ỹcomb) = CombineAllPairs
(
(Zdir, Ydir), (Zmod, Ymod)

)
that accepts two sets of feature vectors with labels, and applies CθC

(. . .) to all pairs of 1 direction and 1
modifier gesture, producing a set of synthetic feature vectors with labels.
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3.3 Pretraining the Encoder and the Combination Operator

Figure 2 describes our pretraining procedure. The goal of pretraining is to learn an encoder and feature
combination operator that allows us to extrapolate from the features of two single gestures to the estimated
features of their combination, as shown in Figure 1. We use contrastive learning to approximately achieve
this homomorphism property. Let d(·, ·) represent a notion of distance in feature space. Consider the feature
vector of a real combination gesture, such as zcomb = FθF

(xup&pinch), and the feature vector of a synthetic
combination gesture z̃comb = CθC

(FθF
(xup), FθF

(xpinch)). We seek parameters that minimize the distance
between these matching items: arg minθF ,θC

d(zcomb, z̃comb). However, note that this does not yet provide a
well-posed optimization task, since a degenerate encoder may minimize this objective by mapping all input
feature vectors to a single fixed point. Thus, we must simultaneously ensure that the distance between
non-matching pairs of items remains large; for example, the feature vector of a real combination gesture
zcomb = FθF

(xup&pinch) and the feature vector of a synthetic combination z̃comb = CθC
(FθF

(xup), FθF
(xthumb)).

We use a triplet loss function to achieve this property. Given a batch of labeled data Xdir ∪ Xmod ∪
Xcomb and Ydir ∪ Ymod ∪ Ycomb, we use the encoder FθF

to obtain features Zdir ∪ Zmod ∪ Zcomb.
We can then create feature vectors and labels for synthetic combination gestures (Z̃comb, Ỹcomb) =
CombineAllPairs

(
(Zdir, Ydir), (Zmod, Ymod)

)
. Finally, we can use a triplet loss to compare the distance

between matching and non-matching combination gestures.

Consider a real combination gesture zcomb ∈ Zcomb and its label ycomb = (yi, yj); this item is the “anchor.” A
“positive” item is a synthetic gesture z̃+

comb whose label completely matches ỹ+
comb = (yi, yj). A “negative”

item is a synthetic gesture z̃−
comb whose label differs on at least one component: ỹ−

comb = (y′
i, y′

j) with either
y′

i ̸= yi, or y′
j ̸= yj or both. We also consider synthetic anchor items z̃comb ∈ Z̃comb; then, positive items are

real combination gestures with a matching label, and negative items are real combination gestures with a
non-matching label.

Given an anchor item a, positive item p, and negative item n selected as described above, and for some choice
of margin parameter γ, we compute a triplet loss using

Ltriplet = max (d(a, p) − d(a, n) + γ, 0) . (2)

Intuitively, we want the negative item to be at least γ units farther away from the anchor than the positive
item.

We consider several slight variations on the standard triplet loss. In the basic version, for each possible
anchor item in a batch (i.e. each real and each synthetic combination gesture), we select N random pairs of
positive and negative item, without replacement. In the hard version, for each possible anchor item, we form
a single triplet using the farthest positive item and the closest negative item. This approach is often referred
to as “hard-example mining” (Schroff et al., 2015), since these are the items whose encodings must be moved
the most to achieve zero loss. In the centroids version, for each possible anchor item, we form a single
triplet by comparing to the centroid of the positive class and the centroid of a randomly chosen negative
class. At iteration t, given data Xt from one class and a momentum parameter M ∈ [0, 1], the centroid C

(t)
X

is computed using an exponential moving average as C
(t)
X = MC

(t−1)
X + (1 − M)E[Xt].

Note that for a fixed-sized training dataset and a sufficiently flexible encoder, there may still exist degenerate
solutions in which real combinations and synthetic combinations are mapped to the same locations, but these
locations are not separated in a way that permits learning a classifier with smooth decision boundaries, or
does not generalize well to new subjects. Therefore, along with the encoder, we simultaneously train a small
classifier network GP re

θG
. Using this classifier, we compute two additional loss terms; a cross-entropy on real

feature vectors Lce, and a cross entropy on synthetic feature combinations L̃ce. As mentioned above, this
classifier network has two independent and identical components; one is used to classify the direction part of
the label, while the other classifies the modifier part. After the pretraining stage is finished, we discard the
classifier; as described in the next section, we will train a fresh classifier GT est

θG
from scratch for the unseen

subject.
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Figure 3: Partially-Supervised Calibration for Unseen Subjects. We exploit combination-homomorphism
to train a fresh classifier calibration on unseen test subjects using only single gesture data xsing (neither
real combination gestures xcomb nor their features zcomb are available). Data xsing are encoded to features
zsing and combined into synthetic features z̃comb. These real and synthetic gestures are pooled, and a freshly
initialized classifier GT est

θG
is trained on these items using Lce.

Our overall training objective L is a mixture of the triplet loss and these two cross-entropy terms:

L = Ltriplet + Lce + L̃ce. (3)

3.4 Training Classifiers with Augmented Supervision

In Figure 3, we describe our proposed method of training a fresh classifier on an unseen test subject using
synthetic data augmentation. For this new test subject, we collect real labeled single-gesture data (Xdir, Ydir)
and (Xmod, Ymod). We encode these items to obtain real feature vectors Zdir and Zmod. We then obtain
synthetic features and labels (Z̃comb, Ỹcomb) = CombineAllPairs

(
(Zdir, Ydir), (Zmod, Ymod)

)
. Finally, we

merge the real single gesture features and synthetic combination gesture features Zdir ∪ Zmod ∪ Z̃comb, along
with their labels Ydir ∪ Ymod ∪ Ỹcomb into a single dataset to train a randomly initialized classifier GT est

θG
for

this subject. As in the pretraining stage, this classifier consists of two separate, independent copies of the
same model architecture in order to classify the direction and modifier parts of the label.

4 Experimental Design

In this section and Section 5, we focus measuring the effect of using synthetic combination gestures during
the calibration stage of our method (Figure 3). In the Appendix, we include other experiments on the
effect of hyperparameters and model design choices (Section A.2) and the effect of various model ablations
(Section A.3).

4.1 Evaluation and Baselines

For each choice of model hyperparameters, we repeat model pretraining and evaluation 50 times; this includes
10-fold cross-validation and 5 random seeds. During the calibration and test phase, the encoder is frozen, as
shown in Figure 3.

As described in Section 3.1, we consider three segments of our dataset; DP re, DCalib, and DT est. Here, we
explain how the full dataset is divided into these segments. In each cross-validation fold, the pretraining
dataset DP re contains data from 9 subjects; 1 of these 9 is used for early stopping based on validation
performance. Data from a 10th subject is divided in a stratified 80/20 split to form the calibration and test
datasets DCalib and DT est. Specifically, this 80/20 split is stratified as follows. We use the encoder to obtain
real feature vectors from all of the test subject’s data Zdir ∪ Zmod ∪ Zcomb, and divide each of these portions
of data to obtain a calibration dataset and a test dataset. The calibration dataset contains features and
labels from direction gestures (ZCalib

dir , YCalib
dir ), from modifier gestures (ZCalib

mod , YCalib
mod ), and from combination

gestures (ZCalib
comb , YCalib

comb ). The test dataset also contains features and labels from direction gestures (ZT est
dir ,

YT est
dir ), from modifier gestures (ZT est

mod , YT est
mod ), and from combination gestures (ZT est

comb. YT est
comb).

Given this split of data, we can perform our augmented training scheme as described in Sec 3.4. Augmentation
is performed using CombineAllPairs with all real single features ZCalib

dir ∪ZCalib
mod and their labels YCalib

dir ∪YCalib
mod .

In summary, this model is trained using real single gesture items (ZCalib
dir , YCalib

dir ) and (ZCalib
mod , YCalib

mod ), as
well as synthetic combination gesture items (Z̃Calib

comb , ỸCalib
comb ). We refer to this model as the “augmented

supervision” model. Note that this model does not use real combination gestures (ZCalib
comb , YCalib

comb ).
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To measure the effect of adding the synthetic gestures created using the combination operator, we compare
this augmented supervision model against two baselines with different calibration data setups:

1. A “partial supervision” model, in which the calibration set only includes single-gesture items
(ZCalib

dir , YCalib
dir ) and (ZCalib

mod , YCalib
mod ).

2. A “full supervision” model, in which the calibration set includes single-gesture items (ZCalib
dir ,

YCalib
dir ) and (ZCalib

mod , YCalib
mod ), as well as real combination items (ZCalib

comb , YCalib
comb ).

To ensure that our experiments can clearly show the effect of adding synthetic gesture combinations to the
model calibration data, the test data is the same for all three models.

Note that these baselines are designed to measure the effect of synthetic data on model calibration. The
partially-supervised baseline shows what performance we can expect if the subject demonstrates only single
gestures and we naively train a classifier. It is conceivable that extrapolation from single gestures to
combinations could be trivial, especially since our models contain one classifier for the direction component
and one for the modifier component. In that case, the partially-supervised baseline would perform well on
combination gestures, despite not having examples of them in its calibration set.

The full supervision model shows how well the classifier would have performed if we required the subject to
exhaustively demonstrate all possible gesture classes (despite the burden this places on the subject). The full
supervision model also demonstrates the cumulative effect of other sources of error in our experiments, such
as label noise in our dataset and differences in the signal characteristics between subjects that may limit
unseen subject generalization.

Note that all three models (augmented supervision, partial supervision, and full supervision) use the encoder
FθF

at test time to obtain features from the unseen test subject. The baseline models do not directly use
the combination operator during this calibration stage; however, the combination operator’s presence during
pretraining still affects the encoder’s parameters, and thus indirectly affects these baselines as well.

4.2 Metrics: Balanced Accuracy and Feature-Space Similarity

Model performance is measured using two metrics. First, we measure the performance of the final test
classifier using balanced accuracy, which is the arithmetic mean of accuracy on each class. Balanced
accuracy is used to ensure that overall performance is not affected by any issues of class imbalance. We
compute balanced accuracy on the subset of 8 single gesture classes (Accsingle), the subset of 16 combination
gesture classes (Acccomb), and the full set of 24 gesture classes (Accall).

Second, we characterize the feature-space similarity between real and synthetic gesture combinations.
Recall that we pretrain the encoder FθF

and feature combination CθC
with a contrastive loss function as

shown in Figure 2 in order to achieve the commutativity property shown in Figure 1. To evaluate the quality
of the learned feature space, we encode all data from the unseen test subject and use a similarity metric to
check whether matching classes end up being more similar to each other than non-matching classes. We use
a similarity measure based on the radial basis function (RBF) kernel.

Given a pair of feature vectors z1, z2 and a lengthscale δ, the RBF kernel (also called Gaussian kernel)
similarity is defined as

KRBF (z1, z2) = exp(−δ∥z1 − z2∥2). (4)

The lengthscale hyperparameter δ strongly affects the ability to detect structure using the RBF similarity
metric. Using an adaptive length scale such as the median heuristic (Garreau et al., 2017) can help reveal
structure within each run, but prevents the comparison of similarity values across runs (analogous to
comparing pixel brightness values between photographs taken with different contrast levels). Therefore, we
use a fixed value of δ = 1/128 for all experiments. This corresponds to the expected squared L2 distance
between vectors drawn from a standard Gaussian in 64 dimensions (the latent dimension of our models),
which may be reasonable as a highly-simplified approximation for the typical distribution of feature vectors.
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To describe the similarity between two sets of items, such as items from two classes, we compute the average
RBF kernel similarity for all pairs of points. Given sets of items Z1, Z2, we define the set similarity metric
SetSim(Z1, Z2) as

SetSim(Z1, Z2) = 1
|Z1|

1
|Z2|

∑
z1∼Z1

∑
z2∼Z2

KRBF (z1, z2). (5)

This definition allows us to compare two different sets of items when Z1 ̸= Z2. To compute similarity of items
in the same set when Z1 = Z2, we use the additional constraint that the sampled items are distinct z1 ̸= z2.
Note that the RBF kernel similarity takes values between 0 (for items very far apart in feature space) and 1
(for items with identical feature vectors); the set similarity SetSim takes values in the same range.

If the encoder and combination operator provide synthetic features that are a close approximation for real
features, the similarity between two matching classes, such as real ZUp&Pinch and synthetic Z̃Up&Pinch, should
be high. Likewise, if the triplet loss successfully separates non-matching classes, then the similarity between
non-matching classes, such as real ZUp&Pinch and synthetic Z̃Up&Thumb, should be low.

To describe the structure of classes in feature space, we use SetSim to compute the entries of a symmetric
32 × 32 matrix MSim, whose i, j entry is the similarity between classes SetSim(Zi, Zj). The first 16 classes
are the real combination gestures, while the next 16 classes are the synthetic combination gestures. We
also summarize several key regions of MSim. The average of the first 16 diagonal elements represents the
similarity between matching real items, i.e. the compactness of these real classes. Likewise, the average of
the next 16 diagonal elements represents the compactness of the synthetic classes. The average of the 16th

sub-diagonal represents the similarity between real and synthetic items that were considered matching in the
contrastive learning objective (such as real Up&Pinch and synthetic Up&Pinch). Finally, the average of all
other below-diagonal elements represent the similarity between non-matching items.

4.3 Hyperparameters and Experiment Details

Encoder Architecture. The encoder model FθF
is implemented in PyTorch (Paszke et al., 2019). The

model architecture is a 1D convolutional network with residual connections and has 105K trainable parameters.
The encoder is pre-trained for 300 epochs of gradient descent using the AdamW optimizer (Loshchilov and
Hutter, 2017) with default values of β1 = 0.9 and β2 = 0.999 and a fixed learning rate of 0.0003. The
encoder’s output feature dimension K is set to 64.

Combination Operator. As mentioned in Section 3.2, we consider two functional forms for the feature
combination operator CθC

. In one form, two input feature vectors are simply averaged, and there are no
parameters in θC . In the other, C is an MLP with 17K trainable parameters.

Classifier Architecture and Algorithms. We consider two options for the classifier model GP re
θG

that is
used during the pretraining stage. In the “small” case, G has a single linear layer to classify direction and a
single linear layer to classifier modifier, totaling 650 trainable parameters. In the “large” case, each of these
components has multiple layers, totaling 34K trainable parameters.

When training a fresh classifier GT est
θG

for the unseen test subject, we use Random Forest implemented in
Scikit-Learn (Pedregosa et al., 2011), since this is a very simple parametric model that also trains very fast.
For comparison, we also show the performance of several other simple classification strategies for a subset
of encoder hyperparameter settings: k-nearest neighbors (kNN), decision trees (DT), linear discriminant
analysis (LDA), and logistic regression (LogR).

Hyperparameters. When performing augmented training, we first create all possible synthetic items
using CombineAllPairs, and then we select a random N = 500 items for each of the 16 combination gesture
classes. The same subset procedure is used when computing feature-space similarities.

In all experiments, we set the triplet margin parameter γ = 1.0. For our main experiments, we include all
three loss terms. For ablation experiments, described below, we consider all subsets of loss terms.
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We consider three variations of a triplet loss as described in Section 3.3. When using the “basic” triplet loss
strategy, we sample N = 3 random triplets without replacement for each item. When using the “centroids”
triplet loss strategy, we use a momentum value of M = 0.9 to update the centroids.

Ablation Experiments and Varying Hyperparameters. The results of our experiments with varying
model hyperparameters are shown in Appendix A.2. The results of our experiments with ablated models are
shown in Appendix A.3.

4.4 Gesture Combinations Dataset

EMG data during gesture formation were collected from 10 subjects (6 female, 4 male, mean age 22.6 ± 3.5
years). All protocols were conducted in conformance with the Declaration of Helsinki and were approved by
the Institutional Review Board of Northeastern University (IRB number 15-10-22). All subjects provided
informed written consent before participating.

Briefly, subjects were seated comfortably in front of a computer screen with arms supported on arm rest, and
the right forearm resting in an arm trough. Surface electromyography (sEMG, Trigno, Delsys Inc., 99.99% Ag
electrodes, 1926 Hz sampling frequency, common mode rejection ratio: > 80 dB, built-in 20–450 Hz bandpass
filter) was recorded from 8 electrodes attached to the right forearm with adhesive tape. The eight electrodes
were positioned with equidistant spacing around the circumference of the forearm at a four-finger-width
distance (using the subject’s left hand) from the ulnar styloid. The first electrode was placed mid-line on the
dorsal aspect of the forearm mid-line between the ulnar and radial styloid.

Custom software for data acquisition was developed using the LabGraph (Feng et al., 2021) Python package.
A custom user interface instructed participants in how to perform each of 4 direction gestures and 4 modifier
gestures. Subjects were then prompted with timing cues on a computer screen, instructing them to perform
multiple repetitions for each of the 4+4 single gestures, and multiple repetitions of the 4 × 4 combination
gestures (each combination gesture consists of one direction and one modifier simultaneously). From each
gesture trial, non-overlapping windows of data were extracted to form supervised examples in the dataset;
one window contains 500ms of raw sensor data at a sampling frequency of 1926Hz. After windowing trials,
each subject provided a total of 584 single gesture examples (73 examples of each class) and 640 combination
gesture examples (40 examples of each class). See Appendix A.1 for additional information on the dataset
and collection procedure.

To help prevent overfitting, we add noise to the data during training. In each training batch, we consider
each class of data present, and add freshly sampled white Gaussian noise such that the signal-to-noise (SNR)
ratio of the data is roughly 20 decibels. Given the raw data items from a single class X̂ with dimension D,
we produce noisy data X with SNR of B decibels as follows:

X = X̂ + σBε, σB = σX

(10B/20) , σX =
√
E[(X̂ − E[X̂])2], ε ∼ N (0, ID) (6)

No other filtering or pre-processing steps are performed. Pre-processing may provide additional benefit to the
absolute performance of a gesture recognition model, though this is orthogonal to the focus of the proposed
work.

5 Results

In our experiments, we focus on examining the effect of adding augmented supervision during the calibration
stage (See Figure 3). As described previously, we compare a model that receives augmented supervision,
with a baseline model that receives only partial supervision (i.e. single gesture examples only) and another
baseline that receives full supervision (i.e. real single and real combination gestures).

5.1 Balanced Accuracy and Confusion Matrices

Balanced Accuracy. In Table 1, we compare the balanced accuracy of the proposed augmented training
scheme to the partially-supervised and fully-supervised baseline methods. This table shows results for a single

11



Published in Transactions on Machine Learning Research (04/2024)

Table 1: Balanced accuracy, for the 8 single gesture classes (Accsingle), the 16 combination gesture classes
(Acccomb), and all 24 classes (Accall). Entries show mean and standard deviation across 50 trials (10 data
splits and 5 random seeds). The proposed augmented training scheme greatly increases overall model accuracy
by trading a modest reduction in performance on single gestures for a large increase in performance on
combination gestures. See Section 4.1 for baseline model details.

Model Accsingle Acccomb Accall

Partial Supervision 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02
Full Supervision 0.80 ± 0.07 0.58 ± 0.09 0.65 ± 0.07

Augmented Supervision 0.77 ± 0.11 0.32 ± 0.08 0.47 ± 0.06

choice of hyperparameters that gave the highest overall accuracy and a good balance between performance
on single gestures and combination gestures. For data shown here, the auxiliary classifier during pretraining
was the “small” single-layer architecture; the combination operator was an MLP, and the “basic” triplet loss
was used; results from all hyperparameters are shown in the Appendix in Table 3. The encoder FθF

and
combination operator CθC

were pretrained as described in Section 3.3, and then a fresh classifier GT est
θG

was
trained using different forms of supervision on the unseen test subject. In the augmented supervision case
(bold row), the classifier was trained as in Section 3.4; the partially-supervised and fully-supervised baselines
were trained as in Section 4.1.

Comparing the performance of the partially-supervised baseline to the augmented supervision model, we
observe that adding synthetic combination gestures leads to a large improvement of about +16% overall
classification performance on the unseen test subject. The overall gain is achieved by trading a small decrease
in performance on the single gesture classes (−13%) for a relatively larger increase in performance on the
combination gesture classes (+31%). The resulting model achieves performance much better than random
chance on all classes, whereas the partial supervision model achieves essentially zero percent accuracy on its
unseen combination gesture classes. Recall that all three models (augmented supervision, partial supervision,
and full supervision) use the same parallel approach to classification; for a given gesture, one model classifies
the direction component, and another independent model classifies the modifier component. If extrapolating
to gesture combinations was trivial, then the partial supervision model would have enough information to
predict combination gestures, since it has already seen all the individual gesture components. The fact that
this partial supervision is not enough demonstrates that gestures compose in a highly non-trivial manner.
The fact that gestures compose in a non-trivial manner is not surprising from a biological perspective (Scott
and Kalaska, 1997; Liu et al., 2014); for example, the set of muscle activations required to form a Pinch
gesture are different in a neutral wrist angle, than while simultaneously performing an Up or Down gesture.

Trade-off of Single and Combination Performance The trade-off in performance between single and
combination gestures is noteworthy, and is a fundamental element of the problem setting and our approach.
As mentioned in Section 3.1, all models consist of two independent classifier copies, with one responsible for
predicting direction and one for predicting modifier. Consider the direction classifier as an example.

In the partially-supervised case, the direction classifier is trained to predict one of 5 labels, and its training
data came from 5 relatively compact classes: data that should be classified as Up came from gestures whose
full label was (Up,NoMod); data that should be classified as Down came from (Down, NoMod) gestures, etc. As
a result, this classifier learns specialized decision boundaries that perform well for this particular subset of
the data distribution (i.e. single gesture data).

In the fully-supervised or synthetic supervision case, the direction classifier is still trained to predict one of 5
labels, but its training data come from 5 heterogeneous classes: training data for the Up label came from the
classes (Up,Pinch), (Up,Thumb), . . . , (Up,NoMod), and likewise for other direction labels. In this case, the
classifier is forced to learn decision boundaries for a broader and more heterogeneous data distribution. The
decision boundaries that capture this greater variability are worse when focusing on only the single gesture
portion of the data distribution, but better when considering the full data distribution.
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To explore this phenomenon, we use the performance of a small classifier as an empirical measurement of
separation between different groups of items, since groups of data that are well-separated can be classified
with high accuracy. For each subject, we consider three scenarios, and train a Random Forest classifier using
an 80 : 20 train:test split. First, we compare single and combination data by splitting each subject’s data into
two classes: those with labels (D, NoMod) and NoDir, M, and those with labels (D, M). Next, we compare the
variation of direction data by splitting each subject’s data into four classes: (Up, M), (Down, M), (Left, M),
and (Right, M). Lastly, we compare the variation of modifier data by splitting each subject’s data into four
classes: (D, Pinch), (D, Thumb), (D, Fist), and (D, Open). Table 2 shows the results of this experiment,
where balanced accuracy is computed within each subject, and then averaged across subjects. We see that it
is roughly as easy to distinguish single data from combination data (73.2%), as it is to distinguish between
the four active direction gestures (74.7%), or to distinguish between the four active modifier gestures (66.7%).
This leads to the phenomenon described above.

Table 2: Within-subject performance of Random Forest classifier on raw sEMG data for various classification
tasks. Mean and standard deviation of balanced test accuracies averaged across 10 subjects and 5 random
data splits. The similar classification accuracy indicates that separation of single vs combination data is
roughly similar to the separation of direction or modifier classes themselves. Due to this separation, the
Partial Supervision model, which is trained with only single-gesture data, becomes overly-specialized for that
subset of the data distribution, and performs better on that subset of items but worse overall (See Table 1).

Task Balanced Test Acc (mean ± std)
Single vs Comb. 0.732 ± 0.060
Which Direction 0.747 ± 0.069
Which Modifier 0.667 ± 0.090

Confusion Matrices. Figure 4 presents the performance of the same three models in the form of confusion
matrices. Here, the striking gain of performance on the combination gesture classes can be seen more clearly,
as well several noteworthy patterns of errors. The dotted lines show the boundary between the single gesture
classes, the combination gesture classes, and a (NoDir, NoMod) class. Items in the bottom-left region of a plot
are combination gestures that were incorrectly classified as single gestures.

Figure 4(a) shows the performance of the partial supervision model. This model performs well on the 8
single gesture classes on the diagonal; however, almost none of the combination gesture classes are correctly
classified. Instead, one of the two components is often classified as NoDir/NoMod resulting in an entry
in the lower-left region of the matrix, or both components are classified as NoDir/NoMod, resulting in a
prediction in the right-most column. As an example, this shows that seeing single gesture training data for
(Down, NoMod) does not prepare the model to understand the direction component of a (Down, Pinch) gesture.
This partially-supervised model often correctly identifies the direction component, but predicts that the
modifier component is unlike its training data and belongs in the NoMod class.

Figure 4(b) shows the performance of the full supervision model, which achieves strong performance on all
classes. Even in this fully supervised case, the strongest pattern of errors appears when the model sees a real
combination gesture, and successfully identifies the direction component, but fails to identify the modifier
component.

Finally, Figure 4(c) shows the performance of our proposed model trained with augmented supervision. There
is a striking gain of performance on the combination gesture classes, with individual classes gaining between
9% and 55% balanced accuracy. This improvement is visible as the appearance of a strong diagonal line in
the lower right region on the confusion matrix.

5.2 Latent Feature-Space Similarity

The core idea behind our approach is that we can extrapolate to unseen gesture combinations by using a
contrastive objective to ensure that synthetic combination gestures are placed appropriately in feature space
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(a) Partial Supervision Model (b) Full Supervision Model

(c) Augmented Supervision Model

Figure 4: Confusion matrices corresponding to Table 1. The entry at row i column j shows the fraction of
items known to belong to class i that were predicted to belong to class j. (a) Model calibration performed
using partial supervision (only single gesture examples). (b) Model calibration performed using full supervision
(real single and combination gesture examples). (c) Model calibration performed using proposed method
of augmented supervision. Dotted lines show the boundary between the 8 single gesture classes, the 16
combination gesture classes, and the 1 class for outliers. Whereas the partial supervision model achieves
nearly zero performance on combination gestures, the augmented supervision model shows strong performance
improvement for combination gestures.

during training. In Section 5.1, we examined how using these synthetic combination gestures as training data
during the calibration stage affects the performance of a classifier. Here, we directly examine whether the
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Figure 5: Feature-space similarity between real and synthetic (“fake”) combination gestures. We show the
lower-triangular portion of the symmetric matrix MSim as described in Section 4.2. The entry at row i
column j shows average RBF kernel similarity between items of class i and class j (with values ranging
in (0, 1]. Dotted lines separate the real and synthetic classes. Similarity matrix was averaged across 50
independent runs. The main diagonal and 16th subdiagonal are clearly visible, indicating that items with
matching label are more similar than items with non-matching label.

contrastive learning procedure results in synthetic items being similar to matching real items and dissimilar
from non-matching items.

Figure 5 shows the similarity matrix MSim as defined in Section 4.2. Using the same model whose results are
shown in Table 1 and Figure 4, we extract the features of all items from the unseen test subject, and construct
500 synthetic combination gestures per class. We compare each pair of classes using the set similarity metric
SetSim, and fill in the entries of the similarity matrix MSim as described in Section 4.2. Finally, this matrix
is averaged across 50 independent re-runs of the training procedure (comprising 10 data splits and 5 random
seeds).

In the upper-left triangle, we see the similarity between pairs of real gesture classes. The strongest entries
are on the diagonal, indicating that items are more similar to other items of the same class than to items
from non-matching classes. The entries in the 1st, 2nd, and 3rd sub-diagonal show that items with the same
direction component but different modifier component are also sometimes similar.

In the lower-right triangle, we see the similarity between pairs of synthetic gesture classes. The diagonal
elements are again the strongest, showing that classes are relatively compact and well-separated. The range
of values in the lower-right region (both diagonal and off-diagonal) is higher than values in the upper-left
region; this may indicate that the synthetic combination items are more compact overall (increasing all
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similarity values). Since the combination operator here was an MLP, it is not necessary for synthetic items to
be closer to each other than real items; however, it is possible that this structure arose during pretraining. In
particular, it is possible that the combination operator learns to place synthetic gestures close to the mean of
the corresponding class, since this would lead to a better triplet loss on average.

In the bottom-left square region, we see the comparison between real and synthetic items. The diagonal is
clearly visible, indicating that items with exactly matching label are most similar to each other, as desired.
There is also a noteworthy block-diagonal pattern, indicating of similarity between items whose direction
label matches, but whose modifier label does not match. For items whose label is totally non-matching, we
see very low similarity values.

6 Discussion

6.1 Summary and Key Takeaways

We study the problem of gesture recognition from EMG, with the goal of maximizing expressiveness while
minimizing the calibration time required for an unseen test subject. Typical approaches to modeling biosignals
require new subjects to perform burdensome calibration sessions and exhaustively demonstrate all regions
of input space, due to the large differences in signal characteristics between individuals. This exhaustive
calibration scales with the number of classes and results in a large up-front time cost.

We construct a large gesture vocabulary as the product of two smaller sets; subjects may perform a single
gesture or a combination gesture. We propose a two-stage method for performing classification while keeping
calibration short. During fully-supervised contrastive pre-training, we train an encoder and combination
function to produce useful synthetic gesture combinations from real single gesture examples. Then for an
unseen test subject, we collect only single gesture examples and extrapolate to their synthetic combinations.
This proposed method simultaneously keeps calibration brief, since subjects only demonstrate a linearly-sized
set of single classes, while also keeping model expressiveness high, since subjects can use a quadratically-sized
set of combination classes.

To evaluate the proposed method, we collect a real-world dataset of gesture combinations. Subjects follow
visual prompts to perform repetitions of 4 direction and 4 modifier gestures, as well as the full set of 16
combinations; disjoint 500ms windows of 8-channel sEMG are recorded during gesture production. Our main
experiments are designed to measure the effect of the proposed synthetic supervision at calibration time. We
therefore compare the proposed method against two baselines: a partial supervision case in which the unseen
subject’s model is trained using real single gestures with no augmentation, and a full supervision case in
which the unseen subject’s model is provided real supervision for both single and combination gesture classes.
The partial supervision model demonstrates the performance decrease we would naively suffer by collecting
only single gesture examples from the unseen subject. The full supervision model demonstrates the maximal
performance that we could achieve on a particular unseen test subject using a particular encoder if we did not
attempt to reduce time spent collecting calibration data, considering factors such as classifier algorithm and
various sources of noise in the dataset. We measure model performance using balanced accuracy on single
gestures, combination gestures, and all gestures together. To evaluate the structure of the learned feature
space, we also use a set-similarity metric based on an RBF kernel to measure the similarity between matching
and non-matching items. We repeat all experiments across multiple random seeds and data splits.

In our main experiments, presented in Section 5.1 and 5.2, we find that the proposed synthetic supervision
greatly improves classification of unseen gesture combinations (+31%) at a cost of performance on single
gesture classes (−13%), with an overall improvement across all classes (+16%). We explore this trade-off
between single and combination performance further. We also find a clear pattern of feature-space similarity
indicating that the pre-trained encoder and combination function are able to produce synthetic data that are
well-clustered by class, well-separated, and highly similar to the corresponding real classes.

In supplementary experiments, presented in Appendices A.2 and A.3, we measure the effect of: different
versions of a contrastive triplet loss, auxiliary loss terms used in pre-training, the architecture of an auxiliary
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classifier used during pre-training, the classifier algorithm used during calibration, the form of the learned
composition function, and the amount of noise added for regularization during training.

6.2 Future Directions

There are several sources of error that limit the generalization performance of our method in the current
study. As mentioned, an unseen test subject may differ from training subjects due to measurement noise,
differences in signal characteristics, or differences in motor behavior. The dataset also contains label noise,
since labels are applied based on a visual task instruction, but subjects may perform the wrong gesture or
with inaccurate timing. Furthermore, the proposed contrastive learning approach forces the model to adjust
the structure of its feature space; it is conceivable that this could impede the ability to train a classifier on
the unseen subject (or that the effect of the auxiliary cross-entropy loss terms during pretraining was not
sufficiently strong). There are other types of modeling changes that could help increase absolute performance
for the full supervision, such as feature engineering and neural architecture search; these techniques are
orthogonal to the proposed strategy for augmented supervision. Future experiments using ground-truth labels
of hand position may further improve the absolute performance of our method by reducing label noise.

We briefly discuss the model accuracies achieved in our experiments from the perspective of a real-world
user-facing application. Note that the final balanced accuracy of our proposed model is 77% for single
gestures and 32% for combination gestures (47% over all classes). For a user-facing application where
very high accuracy is required, a number of standard techniques can be applied on top of such a model to
achieve higher final accuracies. For example, Xu et al. (2022) develop a model for gesture recognition using
inertial measurement unit signals measured at the wrist. They develop a model whose accuracy on 4 active
gesture classes ranges from 62% to 74% when classifying individual data windows (“window-level,” Fig 3
(a) of Xu et al. (2022)). The same model achieves an accuracy between 93% and 97% when aggregating
predictions over 3 to 4 consecutive windows (“gesture-level,” Fig 3 (b) of Xu et al. (2022)). Other techniques
include aggregating predictions across an ensemble of independent model copies (e.g. see Du et al. (2022)
for discussion of the mixture-of-experts technique), or incorporating contextual information in the form of a
Bayesian prior, though this requires application-specific modeling (e.g. see Speier et al. (2016) and Orhan
et al. (2012) for applications to assistive typing via electroencephalography).

One of the key design considerations of our method is the structure of the combination operator. In our main
experiments, we considered a class-conditioned MLP. Providing additional information to the combination
operator may be an avenue for future innovation, such as summary statistics that describe the feature-space
structure of the test subject’s gestures.

For the purpose of clearly measuring the effect of the proposed method, we used a simple downstream
classification strategy. The relative changes in accuracy that we observe in our experiments clearly demonstrate
the benefit of the proposed method. Further performance gains could be achieved by using more sophisticated
downstream classification methods and other transfer learning techniques such as model ensembling or
regularized pre-training. The time required for demonstrating examples could also be further reduced by using
active or continual learning techniques to reduce the number of examples provided for each gesture class. We
study an extreme point on the spectrum of supervision, with zero real combination gesture examples during
calibration; our method could be supplemented with a few real combination examples (e.g. a linearly-sized
subset of combinations) to obtain a different trade-off between performance and calibration time.

While generalizing to unseen combinations is a topic of broad interest in machine learning (e.g. Nikolaus et al.
(2019); Madan et al. (2020); Wiedemer et al. (2024)), we emphasize an important aspect of our application
that differs from the standard setting. In typical multi-label settings where we may study combinatorial
generalization, data examples often have a structured multi-part label. Depending on the representation of
input data, it is possible for one label to be unobserved and thus absent from our dataset, but that label still
exists in the underlying physical model. For example, consider recognizing objects with multiple attributes
such as shape and color from a text description. For some inputs, we may be missing information about
shape, but that object’s shape still exists. In our setting, a single gesture has a partial label, not because of
missing information, but because the other label component is truly inactive.
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Future experiments may also consider an expanded dataset from a similar setting. One of the simplest ways
to expand the current work would be to increase the number of items in each of our single gesture sets. In
our experiments, the gain for combination gesture accuracy (+31%) was much larger than the loss for single
gestures (−13%), and thus we observed an overall benefit (+16%). If this approach gave similar increases
and decreases on a dataset with more single gestures, the net improvement in performance across all classes
would grow, since a larger fraction of the total labels would be combinations (for N direction and M modifier
gestures, combination gestures constitute NM

N+M+NM fraction of all classes).

Our proposed method may be modified for other applications. One area is tasks with multiple rare
labels, such as classifying biomedical signals where rare disease states can co-occur. For example, consider
electrocardiogram (ECG) measurement and multiple abnormal cardiac states that may be visible in ECG
(e.g. see Houssein et al. (2017) for review). We may want to classify ECG signals as containing either
one or multiple disease signatures, but there may be insufficient real combination training data due to the
rarity of each single disease state. This application may require adjusting our approach, since we used a
fully-supervised pre-training stage with real combination data.

Another area of possible application is tasks with many-part labels where exploring all combinations is not
feasible, such as robotic learning and world modeling (e.g. see Muratore et al. (2022) for review). In such
applications, the space of possible combinations is too large to feasibly collect real training data from all
combinations. Thus, our proposed method of using synthetic supervision from unseen combinations may be
useful to supplement real training data.

Broader Impact Statement

Gesture recognition from EMG may increase the ability to interact expressively with computer systems, but
the failure modes of these models may not be well-defined. Thus, gesture recognition systems should be used
with care in sensitive production environments.

Some research has been done in the area of biometrics and de-anonymizing EMG and related biosignals.
Extracting a subject’s identity from anonymized recordings of biosignals is only possible if a reference dataset
is available from that individual. If a reference signal for a certain person is available, and if they use a
gesture recognition system with an expectation of anonymity, then the possibility that they may be identified
from their anonymized data may lead to a violation of privacy.
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A Appendix

In Section A.1, we give additional details on the paradigm used when collecting our dataset. In Section A.2,
we conduct hyperparameter search experiments in which we vary model architecture, try a learned and a
fixed feature combination operator, and vary the contrastive loss function. These experiments show that the
proposed method is robust to these choices. The primary effect of varying these hyperparameters is to change
the trade-off between performance on single and combination gestures; however the proposed augmented
supervision method yields a large overall benefit in all cases. In Section A.3, we conduct ablation experiments
to check the importance of each term in our pre-training objective, as well as the effect of adding noise to the
raw input data during pre-training. We find that all three terms in our loss function are necessary to achieve
maximal performance, and that the chosen level of input noise yields the best performance.

A.1 Dataset Details

Our supervised dataset of single and combination gestures was obtained by recording surface EMG while
subjects performed gestures according to visual cues. EMG was recorded from 8 electrodes (Trigno, Delsys
Inc., 99.99% Ag electrodes, 1926 Hz sampling frequency, common mode rejection ratio: > 80 dB, built-in
20 − 450 Hz bandpass filter), spaced uniformly around the mid forearm as shown in Figure 6.

Figure 6: Surface EMG Recording setup. Electrodes were placed on the mid-forearm of the subject starting
from mid-line on the dorsal aspect and continuing towards the thumb.

Subjects followed visual prompts to perform each gesture, as shown in Figure 7. The experimental paradigm
consisted of 6 blocks.

In the first block, subjects were shown the UI in Figure 7a and performed single gesture trials. Each single
gesture trial consisted of 3s of preparation time (indicated by a yellow screen border), followed by 2s of active
time holding the gesture (green screen border), and finally 3s of rest time (red screen border). From each
single gesture trial, we extracted a single 500ms window of data centered within the active period.

In the next five blocks, subjects were shown the UI in Figure 7b and performed combination gesture trials.
Each combination gesture trial consisted of 2s of preparation time (yellow screen border), followed by 8s of
active time (green screen border), and 2s of rest time (red screen border). The structure of each combination
gesture trial was defined by two horizontal line segments. One segment (the “held” gesture) spanned the
full 8s of active time, while the other (the “pulsed” gesture) was present for 4 intervals (alternating between
a 1s interval, and a 0.5s interval). The vertical gray cursor gradually moved from left-to-right during the
trial; subjects were instructed to follow the cursor and perform gestures as the cursor intersected with the
horizontal line segments. In some trials, one of the horizontal lines was omitted; in this case, a single gesture
was held for 8s, or a single gesture was pulsed 4 times.

From each combination gesture trial, we extracted 500ms windows of data as follows. Consider the arrangement
of the line segments as shown in Figure 7b; there are 9 intervals of interest during the active period (5
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(a) Example Single Gesture Trial (b) Example Combination Gesture Trial

Figure 7: User interface (UI) shown to subjects during supervised data collection. (a): UI during a single
gesture trial. The screen border was yellow for 3s of preparation, then green for 2s of active time, then red
for 3s of rest time. (b): UI during a combination gesture trial. The gray vertical cursor scrolled from left to
right; when it intersected a horizontal line segment, the subject performed that gesture. The screen border
color also indicated when the subject should be active (yellow for 2s of preparation, then green for 8s of
activity during the trial, then red for 2 of rest).

intervals when only the held gesture is active, and 4 intervals when both gestures are active). We extracted a
window of data centered in each interval, with labels decided as follows:

• In trials that contained a held gesture and a pulsed gesture (the majority of trials), we extracted 4
combination gesture windows.

• In trials that contained only a held gesture, we extracted 9 single gesture windows.

• In trials that contained only a pulsed gesture, we extracted 4 single gesture windows.

Single gesture data from all blocks was pooled, giving a total of 584 single gesture example per subject (73
examples for each of the 8 single gesture classes). Likewise, combination gesture from all blocks was pooled,
giving a total of 640 combination gesture examples per subject (40 examples for each of the 16 combination
gesture classes). When constructing data splits during model training and evaluation, we used a stratified
split as described in Section 4.1.
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A.2 Varying Hyperparameters

A.2.1 Effect on balanced accuracy

Table 3: Effect of varying model hyperparameters on balanced accuracy, for the 8 single gesture classes
(Accsingle), the 16 combination gesture classes (Acccomb), and all 24 classes (Accall). Augmented supervision;
classifier for unseen subject trained according to Section 3.4. Partial Supervision and Full Supervision;
baseline models described in Section 4.1. GP re

θG
type; structure of auxiliary classifier used during pretraining.

CθC
type; structure of combination operator. Triplet type; loss function for pretraining. See Section 4.3 for

details on hyperparameter values. All models used random forest algorithm for unseen test subject. Entries
show the mean and standard deviation across 50 independent trials. Bold row represents model shown in
Table 1 and Figure 4.

Hyperparameters Augmented Supervision Partial Supervision Full Supervision
GP re

θG
type CθC

type Triplet type Accsingle Acccomb Accall Accsingle Acccomb Accall Accsingle Acccomb Accall

large avg basic 0.69 ± 0.15 0.30 ± 0.06 0.43 ± 0.06 0.89 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.79 ± 0.08 0.57 ± 0.10 0.65 ± 0.09
large avg centroids 0.68 ± 0.13 0.30 ± 0.05 0.43 ± 0.05 0.89 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.77 ± 0.08 0.56 ± 0.08 0.63 ± 0.08
large avg hard 0.68 ± 0.14 0.31 ± 0.07 0.44 ± 0.06 0.89 ± 0.06 0.00 ± 0.01 0.30 ± 0.02 0.77 ± 0.07 0.56 ± 0.10 0.63 ± 0.08
large mlp basic 0.85 ± 0.08 0.22 ± 0.06 0.43 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.79 ± 0.07 0.58 ± 0.10 0.65 ± 0.08
large mlp centroids 0.71 ± 0.13 0.28 ± 0.06 0.42 ± 0.04 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.79 ± 0.07 0.56 ± 0.08 0.64 ± 0.07
large mlp hard 0.84 ± 0.06 0.21 ± 0.06 0.42 ± 0.04 0.88 ± 0.04 0.01 ± 0.01 0.30 ± 0.02 0.77 ± 0.06 0.54 ± 0.08 0.62 ± 0.07
small avg basic 0.67 ± 0.14 0.38 ± 0.07 0.47 ± 0.05 0.90 ± 0.04 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.06 0.59 ± 0.09 0.66 ± 0.08
small avg centroids 0.65 ± 0.13 0.35 ± 0.05 0.45 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.30 ± 0.02 0.79 ± 0.06 0.55 ± 0.10 0.63 ± 0.08
small avg hard 0.68 ± 0.15 0.33 ± 0.07 0.45 ± 0.07 0.89 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.79 ± 0.07 0.57 ± 0.09 0.65 ± 0.07
small mlp basic 0.77 ± 0.11 0.32 ± 0.08 0.47 ± 0.06 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.07 0.58 ± 0.09 0.65 ± 0.07
small mlp centroids 0.71 ± 0.13 0.33 ± 0.06 0.46 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.06 0.54 ± 0.09 0.63 ± 0.08
small mlp hard 0.84 ± 0.08 0.25 ± 0.07 0.44 ± 0.05 0.90 ± 0.06 0.01 ± 0.01 0.31 ± 0.02 0.79 ± 0.08 0.58 ± 0.09 0.65 ± 0.07

In the previous sections, we showed results using a particular model setup. However, as described in
Section 4.3, we also experimented with varying several hyperparameters in our model. Table 3 shows the
effect of varying model hyperparameters on the performance of the proposed augmented training scheme as
well as the partially- and fully-supervised baseline models. The bold row indicates the model hyperparameters
used in Table 1 and Figure 4.

The performance of the baseline models is relatively constant across these hyperparameters. Although the
baseline models do not make use of the combination operator directly when during the calibration stage
with the unseen test subject, the hyperparameters included here influence how the encoder FθF

is trained,
and therefore may have an effect on the baselines. The partially-supervised model’s constant performance
indicates that, despite changes in the pretraining procedure, extrapolating from single gestures to combination
gestures remains challenging. The fully-supervised model’s constant performance indicates that the feature
space continues to be amenable to training a fresh classifier for the unseen subject.

Examining the performance of the model with augmented supervision, there is a clear trade-off between
performance on single gestures and performance on combination gestures. The choice of architecture for the
auxiliary classifier GP re

θG
and the choice of feature combination operator CθC

affect this trade-off strongly,
while the loss function type has relatively less effect on performance. In all cases, however, the overall accuracy
of the augmented model is much greater than the partial supervision model.

A.2.2 Effect on Feature-Space Similarity

In Table 4, we show how changing model hyperparameters affects the structure of the learned feature space,
as measured using the similarity matrix MSim. As described in Section 4.2, we perform pretraining, then
extract features of real and synthetic gesture combinations for an unseen test subject, analyze their structure
by constructing MSim.

In order to show key information from this large matrix for many scenarios, we summarize MSim with four
key values of interest:

• within-class similarity for real combination gestures (SetSim(Zcomb, Zcomb)),

• within-class similarity for synthetic combination gestures (SetSim(Z̃comb, Z̃comb)),
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Table 4: Effect of varying model hyperparameters on feature-space similarity of combination gestures. See
Section 4.2 for description of similarity metrics. GP re

θG
type; structure of auxiliary classifier used during

pretraining. CθC
type; structure of combination operator. Triplet type; loss function for pretraining.

SetSim(Zcomb, Zcomb); average similarity between real items of same class (first 16 diagonal elements of
MSim). SetSim(Z̃comb, Z̃comb); average similarity between synthetic items of same class (last 16 diagonal
elements of MSim). SetSim(Zcomb, Z̃comb); average similarity between real and synthetic items of matching
label (16th sub-diagonal elements of MSim). SetSim(Zcomb, Z ′

comb); average similarity between items of
non-matching label (all other below-diagonal elements of MSim; note this includes real and synthetic items).
Entries show the mean and standard deviation across 50 independent trials. Bold row represents model
shown in Table 1 and Figure 4.

GP re
θG

type CθC
type Triplet type SetSim(Zcomb, Zcomb) SetSim(Z̃comb, Z̃comb) SetSim(Zcomb, Z̃comb) SetSim(Zcomb, Z ′

comb)
large avg basic 0.88 ± 0.03 0.95 ± 0.01 0.86 ± 0.02 0.71 ± 0.02
large avg centroids 0.12 ± 0.17 0.20 ± 0.23 0.06 ± 0.14 0.02 ± 0.06
large avg hard 0.92 ± 0.06 0.96 ± 0.03 0.91 ± 0.06 0.82 ± 0.13
large mlp basic 0.71 ± 0.08 0.82 ± 0.05 0.62 ± 0.08 0.38 ± 0.09
large mlp centroids 0.10 ± 0.12 0.17 ± 0.16 0.03 ± 0.10 0.01 ± 0.05
large mlp hard 0.83 ± 0.07 0.89 ± 0.04 0.77 ± 0.07 0.59 ± 0.13
small avg basic 0.36 ± 0.14 0.56 ± 0.13 0.27 ± 0.12 0.10 ± 0.07
small avg centroids 0.19 ± 0.15 0.35 ± 0.21 0.13 ± 0.14 0.04 ± 0.06
small avg hard 0.64 ± 0.13 0.79 ± 0.10 0.58 ± 0.15 0.34 ± 0.15
small mlp basic 0.33 ± 0.14 0.51 ± 0.14 0.22 ± 0.12 0.07 ± 0.07
small mlp centroids 0.17 ± 0.15 0.31 ± 0.19 0.10 ± 0.11 0.03 ± 0.05
small mlp hard 0.60 ± 0.15 0.74 ± 0.10 0.49 ± 0.16 0.28 ± 0.18

• similarity between matching real and synthetic combinations (SetSim(Zcomb, Z̃comb)), and

• similarity between combinations with non-matching labels (SetSim(Zcomb, Z ′
comb)).

The row in bold represents the model hyperparameters used in the main experiments (Section 5).

Note that these feature similarity values are difficult to interpret and compare. The key information comes
from comparing the magnitude of similarities for “matching” items against the magnitude of similarities for
“non-matching” items; a model whose feature space brings matching items closer together than non-matching
items may allow a downstream classifier to more easily learn decision boundaries. A well-structured feature
space should have relatively larger values in the first three values (similarity of matching real items, matching
synthetic items, and pairs of matching real/synthetic items), and a relatively smaller value in the final column
(similarity between non-matching items). However, the absolute magnitude of similarity values on their
own is not meaningful, since this only reflects the relative scale of distances in feature space to the kernel
lengthscale δ used in Equation 4. For example, keeping δ fixed while isotropically shrinking all feature vectors
(multiplying all feature vectors by a matrix of the form αI, α << 1) would drive all similarity values very
close to 1.

Generally, we see that the similarity of non-matching items is lower than for matching items; for most models
the non-matching similarity values are many times smaller than the matching similarity values. This is
unsurprising, given that we were able to train a downstream classifier successfully for all models. It also gives
some circumstantial evidence for the hypothesis that the contrastive learning objective used in pretraining
is effective at structuring the feature space, and that this structure correlates with downstream classifier
performance.

A.2.3 Choice of Classifier Algorithm

In Table 5, we show how the balanced accuracy of the unseen subject’s final classifier model is affected by
the choice of classifier algorithm. In this comparison, all other model hyperparameters were kept constant.
We report the mean and standard deviation of balanced accuracy on single gestures, combination gestures,
or all gestures, for the model with augmented supervision, the partial supervision baseline, and the full
supervision baseline. The first 3 algorithms shown in the table learn a non-linear decision boundary, while
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Table 5: Effect of classifier algorithm on balanced accuracy, for the 8 single gesture classes (Accsingle), the
16 combination gesture classes (Acccomb), and all 24 classes (Accall). Augmented supervision; classifier for
unseen subject trained according to Section 3.4. Partial Supervision and Full Supervision; baseline models
described in Section 4.1. GT est

θG
Alg; classifier algorithm used for unseen test subject’s model. RF; random

forest. kNN; k-Nearest Neighbors. LDA; Linear Discriminant Analysis. DT; Decision Tree. LogR; Logistic
Regression. All classifiers implemented in Scikit-Learn using default hyperparameters. All models used “small”
auxiliary classifier during pretraining, MLP combination operator, and “basic” triplet loss. Entries show the
mean and standard deviation across 50 independent trials. Bold row represents model shown in Table 1 and
Figure 4.

Augmented Supervision Partial Supervised Full Supervision
GT est

θG
Alg Accsingle Acccomb Accall Accsingle Acccomb Accall Accsingle Acccomb Accall

RF 0.77 ± 0.11 0.32 ± 0.08 0.47 ± 0.06 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.07 0.58 ± 0.09 0.65 ± 0.07
kNN 0.74 ± 0.12 0.33 ± 0.08 0.47 ± 0.06 0.91 ± 0.05 0.00 ± 0.00 0.30 ± 0.02 0.76 ± 0.07 0.57 ± 0.09 0.64 ± 0.08
DT 0.66 ± 0.10 0.23 ± 0.06 0.38 ± 0.06 0.83 ± 0.08 0.04 ± 0.03 0.31 ± 0.03 0.64 ± 0.09 0.48 ± 0.07 0.53 ± 0.07

LDA 0.87 ± 0.07 0.08 ± 0.05 0.35 ± 0.04 0.94 ± 0.04 0.05 ± 0.03 0.35 ± 0.02 0.82 ± 0.06 0.57 ± 0.09 0.66 ± 0.07
LogR 0.88 ± 0.07 0.13 ± 0.06 0.38 ± 0.06 0.91 ± 0.05 0.10 ± 0.04 0.37 ± 0.03 0.77 ± 0.07 0.61 ± 0.08 0.66 ± 0.07

the the final 2 algorithms can only learn linear decision boundaries. Two main patterns stand out from these
results. First, most classification algorithms show the same trend, where the augmented training results in a
small decrease in accuracy on single gesture classification, and a large increase in accuracy on combination
gesture classification, resulting in a net benefit overall as compared to the partial supervision model. Second,
it appears that classification algorithms with a non-linear decision boundary benefit much more from the
augmented training, and achieve higher overall accuracy as a result.

A.3 Ablation Experiments

We conduct ablation experiments on several elements of our pretraining procedure. Specifically, we train
models in which one more of the three loss terms in Equation 3 are removed. We also vary the amount
of noise added to the raw input data, as described in Equation 6. In these experiments, we use the same
model hyperparameters as in Table 1 and Figure 4; specifically, the auxiliary classifier GP re

θG
used during

pretraining is the “small” architecture, the combination operator CθC
is the MLP architecture, and the triplet

loss function used is the “basic” version.

A.3.1 Effect on balanced accuracy

Table 6: Effect of ablations on balanced accuracy, for the 8 single gesture classes (Accsingle), the 16 combination
gesture classes (Acccomb), and all 24 classes (Accall). Augmented supervision; classifier for unseen subject
trained according to Section 3.4. Partial Supervised and Full Supervision; baseline models described in
Section 4.1. Ltriplet, Lce, L̃ce; loss terms in Equation 3. SNR; signal-to-noise ratio (dB) after adding noise
to raw input data. All models used random forest algorithm for unseen test subject, “small” architecture for
auxiliary classifier GP re

θG
, MLP combination operator CθC

, and “basic” triplet loss. Entries show the mean
and standard deviation across 50 independent trials. Bold row represents non-ablated model used in Table 1
and Figure 4.

Hyperparameters Augmented Supervision Partial Supervision Full Supervision
Ltriplet Lce L̃ce SNR Accsingle Acccomb Accall Accsingle Acccomb Accall Accsingle Acccomb Accall

- - ✓ 20.0 0.71 ± 0.11 0.19 ± 0.04 0.36 ± 0.04 0.86 ± 0.06 0.00 ± 0.00 0.29 ± 0.02 0.71 ± 0.08 0.45 ± 0.08 0.54 ± 0.06
- ✓ - 20.0 0.69 ± 0.14 0.32 ± 0.06 0.44 ± 0.05 0.89 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.78 ± 0.08 0.58 ± 0.09 0.65 ± 0.08
- ✓ ✓ 20.0 0.69 ± 0.13 0.33 ± 0.06 0.45 ± 0.05 0.88 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.78 ± 0.07 0.54 ± 0.10 0.62 ± 0.08
✓ - - 20.0 0.85 ± 0.06 0.16 ± 0.06 0.39 ± 0.05 0.87 ± 0.06 0.00 ± 0.01 0.29 ± 0.02 0.76 ± 0.07 0.56 ± 0.09 0.63 ± 0.08
✓ - ✓ 20.0 0.86 ± 0.06 0.23 ± 0.07 0.44 ± 0.05 0.91 ± 0.04 0.01 ± 0.02 0.31 ± 0.02 0.80 ± 0.06 0.62 ± 0.09 0.68 ± 0.07
✓ ✓ - 20.0 0.76 ± 0.11 0.30 ± 0.07 0.45 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.30 ± 0.02 0.80 ± 0.07 0.59 ± 0.10 0.66 ± 0.08
✓ ✓ ✓ 10.0 0.81 ± 0.08 0.30 ± 0.06 0.47 ± 0.05 0.91 ± 0.06 0.01 ± 0.01 0.31 ± 0.02 0.81 ± 0.07 0.61 ± 0.08 0.67 ± 0.07
✓ ✓ ✓ 30.0 0.75 ± 0.11 0.33 ± 0.07 0.47 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.79 ± 0.06 0.56 ± 0.08 0.64 ± 0.07
✓ ✓ ✓ ∞ 0.74 ± 0.12 0.34 ± 0.06 0.47 ± 0.05 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.07 0.57 ± 0.09 0.65 ± 0.07
✓ ✓ ✓ 20.0 0.77 ± 0.11 0.32 ± 0.08 0.47 ± 0.06 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.07 0.58 ± 0.09 0.65 ± 0.07
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In Table 6, we show the balanced accuracy of various ablated models. We find that the original, non-ablated
model (shown in bold) performs best. Of the three loss terms, the best single term to include is the real
cross-entropy Lce; surprisingly, including only the triplet loss Ltriplet results in a model that performs better
on single gestures than on combination gestures.

A.3.2 Effect on Feature-Space Similarity

Table 7: Effect of model ablations on feature-space similarity of combination gestures. See Section 4.2 for
description of similarity metrics. Ltriplet, Lce, L̃ce; loss terms in Equation 3. SNR; signal-to-noise ratio
(dB) after adding noise to raw input data. SetSim(Zcomb, Zcomb); average similarity between real items of
same class (first 16 diagonal elements of MSim). SetSim(Z̃comb, Z̃comb); average similarity between synthetic
items of same class (last 16 diagonal elements of MSim). SetSim(Zcomb, Z̃comb); average similarity between
real and synthetic items of matching label (16th sub-diagonal elements of MSim). SetSim(Zcomb, Z ′

comb);
average similarity between items of non-matching label (all other below-diagonal elements of MSim; note this
includes real and synthetic items). Entries show the mean and standard deviation across 50 independent
trials. Bold row represents model shown in Table 1 and Figure 4.

Hyperparameters
Ltriplet Lce L̃ce SNR SetSim(Zcomb, Zcomb) SetSim(Z̃comb, Z̃comb) SetSim(Zcomb, Z̃comb) SetSim(Zcomb, Z ′

comb)
- - ✓ 20.0 0.28 ± 0.11 0.41 ± 0.13 0.15 ± 0.08 0.05 ± 0.04
- ✓ - 20.0 0.21 ± 0.18 0.39 ± 0.20 0.12 ± 0.12 0.06 ± 0.07
- ✓ ✓ 20.0 0.19 ± 0.19 0.36 ± 0.21 0.13 ± 0.15 0.06 ± 0.09
✓ - - 20.0 0.92 ± 0.03 0.94 ± 0.01 0.85 ± 0.03 0.72 ± 0.07
✓ - ✓ 20.0 0.65 ± 0.09 0.78 ± 0.05 0.53 ± 0.08 0.26 ± 0.08
✓ ✓ - 20.0 0.36 ± 0.14 0.52 ± 0.13 0.23 ± 0.11 0.09 ± 0.06
✓ ✓ ✓ 10.0 0.42 ± 0.09 0.60 ± 0.08 0.28 ± 0.08 0.11 ± 0.05
✓ ✓ ✓ 30.0 0.31 ± 0.18 0.48 ± 0.17 0.21 ± 0.16 0.08 ± 0.09
✓ ✓ ✓ ∞ 0.30 ± 0.16 0.47 ± 0.16 0.20 ± 0.13 0.07 ± 0.06
✓ ✓ ✓ 20 0.33 ± 0.14 0.51 ± 0.14 0.22 ± 0.12 0.07 ± 0.07

As mentioned previously, we used a fixed kernel lengthscale δ for all experiments. When interpreting
similarity values, the key outcome we desire is that matching classes should have higher similarity values
than non-matching classes. In general, we observe that this remains true across all model ablations, though
the degree of contrast varies. Note that due to the dynamics of gradient descent during the pretraining stage,
it is possible that some model’s feature spaces have a generally shorter or longer lengthscale, and this may
affect the apparent contrast in similarity values.

A.3.3 Relative Loss Scaling

In Equation 3, we define a multi-objective optimization. The magnitudes of the triplet loss and cross-entropy
losses may not be on the same scale, since the triplet loss depends on a margin parameter, and on the scaling
of the feature space. Thus, we consider a modified objective with an additional coefficient to scale the relative
size of these two types of losses:

L = Ltriplet + α(Lce + L̃ce). (7)

We vary the coefficient α and measure the resulting balanced accuracy of the model as before. We find that
varying the relative magnitude of triplet and cross-entropy losses slightly changes the trade-off between single
and combination gesture performance. Specifically, we observe that increasing α in Eq. (7) causes a decrease
in Accsingle and an increase in Acccomb. However, this change in the trade-off does not provide an increase
in Accall, indicating other techniques may be required to achieve better performance on both single and
combination classes simultaneously.
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Table 8: Effect of varying relative loss scaling on balanced accuracy for the 8 single gesture classes (Accsingle),
the 16 combination gesture classes (Acccomb), and all 24 classes (Accall). Augmented supervision; classifier
for unseen subject trained according to Section 3.4. Partial Supervised and Full Supervision; baseline models
described in Section 4.1. A single coefficient α scales the relative magnitude of triplet and cross-entropy
losses in Eq. (7). Changing α changes the trade-off in performance on single and combination gestures, but
does not affect overall accuracy across all classes. Entries show the mean and standard deviation across 50
independent trials. Bold row represents the model shown in Table 1 and Figure 4.

Hyperparameter Augmented Supervision Partial Supervision Full Supervision
α in Eq. (7) Accsingle Acccomb Accall Accsingle Acccomb Accall Accsingle Acccomb Accall

0.1 0.86 ± 0.08 0.25 ± 0.07 0.45 ± 0.05 0.91 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.81 ± 0.07 0.64 ± 0.09 0.69 ± 0.08
0.5 0.80 ± 0.10 0.31 ± 0.06 0.47 ± 0.05 0.90 ± 0.06 0.01 ± 0.01 0.30 ± 0.02 0.80 ± 0.07 0.61 ± 0.08 0.67 ± 0.06
1.0 0.77 ± 0.11 0.32 ± 0.08 0.47 ± 0.06 0.90 ± 0.05 0.01 ± 0.01 0.31 ± 0.02 0.80 ± 0.07 0.58 ± 0.09 0.65 ± 0.07
2.0 0.73 ± 0.12 0.34 ± 0.07 0.47 ± 0.06 0.89 ± 0.05 0.01 ± 0.01 0.30 ± 0.02 0.79 ± 0.07 0.57 ± 0.10 0.64 ± 0.08
10.0 0.71 ± 0.13 0.36 ± 0.06 0.47 ± 0.05 0.89 ± 0.05 0.01 ± 0.01 0.30 ± 0.02 0.79 ± 0.07 0.57 ± 0.10 0.64 ± 0.09
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