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ABSTRACT

We motivate Energy-Based Models (EBMs) as a promising model class for con-
tinual learning problems. Instead of tackling continual learning via the use of
external memory, growing models, or regularization, EBMs have a natural way to
support a dynamically-growing number of tasks and classes and less interference
with old tasks. We show that EBMs are adaptable to a more general continual
learning setting where the data distribution changes without the notion of explic-
itly delineated tasks. We also find that EBMs outperform the baseline methods
by a large margin on several continual learning benchmarks. These observations
point towards EBMs as a class of models naturally inclined towards the continual
learning regime.

1 INTRODUCTION

Humans are able to rapidly learn new skills and continuously integrate them with prior knowledge.
The field of Continual Learning (CL) seeks to build artificial agents with the same capabilities
(Parisi et al., 2019). In recent years, CL has seen increased attention, particularly in the context
of classification problems. A crucial characteristic of continual learning is the ability to learn new
data without forgetting prior data. Models must also be able to incrementally learn new skills,
without necessarily having a notion of an explicit task identity. However, standard neural networks
(He et al., 2016; Simonyan & Zisserman, 2014; Szegedy et al., 2015) experience the catastrophic
forgetting problem and perform poorly in this setting. Different approaches have been proposed
to mitigate catastrophic forgetting, but many rely on the usage of external memory (Lopez-Paz &
Ranzato, 2017; Li & Hoiem, 2017), additional models (Shin et al., 2017), or auxiliary objectives
and regularization (Kirkpatrick et al., 2017; Schwarz et al., 2018; Zenke et al., 2017; Maltoni &
Lomonaco, 2019), which can constrain the wide applicability of these methods.

In this work, we focus on classification tasks. These tasks are usually tackled by utilizing normalized
probability distribution (i.e., softmax output layer) and trained with a cross-entropy objective. In this
paper, we argue that by viewing classification from the lens of training an un-normalized probability
distribution, we can significantly improve continual learning performance in classification problems.
In particular, we interpret classification as learning an Energy-Based Model (EBM) across seperate
classes (Grathwohl et al., 2019). Training becomes a wake-sleep process, where the energy of an
input data and its ground truth label is decreased while the energy of the input and another selected
class is increased. This offers freedom to choose what classes to update in the CL process. By
contrast, the cross entropy objective reduces the likelihood of all negative classes when given a new
input, creating updates that lead to forgetting.

The energy function, which maps a data and class pair to a scalar energy, also provides a way for the
model to select and filter portions of the input that are relevant towards the classification on hand.
We show that this enables EBMs training updates for new data to interfere less with previous data.
In particular, our formulation of the energy function allows us to compute the energy of a data by
learning a conditional gain based on the input label which serves as an attention filter to select the
most relevant information. In the event of a new class, a new conditional gain can be learned.

These unique benefits are applicable across a range of continual learning tasks. Most existing works
(Kirkpatrick et al., 2017; Zhao et al., 2020) toward continual learning typically learn a sequence
of distinct tasks with clear task boundaries (Boundary-Aware). Many of these methods depend on
knowing the task boundaries that can provide proper moments to consolidate knowledge. However,
this scenario is not very common in the real world, and a more natural scenario is the Boundary-
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Agnostic setting (Zeno et al., 2018; Rajasegaran et al., 2020), in which data gradually changes with-
out a clear notion of task boundaries. This setting has also been used as a standard evaluation in the
continual reinforcement learning (Al-Shedivat et al., 2017; Nagabandi et al., 2018). Many common
CL methods are not applicable to the Boundary-Agnostic scenario as the task boundaries are un-
known or undefined. In contrast, EBMs are readily applied to this setting without any modification
and are able to support both Boundary-Aware and Boundary-Agnostic settings.

There are four primary contributions of our work. First, we introduce energy-based models for clas-
sification CL problems in both boundary-aware and boundary-agnostic regimes. Secondly, we use
the standard contrastive divergence training procedure and show that it significantly reduces catas-
trophic forgetting. Thirdly, we propose to learn new conditional gains during the training process
which makes EBMs parameter updates cause less interference with old data. Lastly, we show that
in practice EBMs bring a significant improvement on four standard CL benchmarks, split MNIST,
permuted MNIST, CIFAR-10, and CIFAR-100. These observations towards EBMs as a class of
models naturally inclined towards the CL regime.

2 RELATED WORK

2.1 CONTINUAL LEARNING SETTINGS

Boundary-aware versus boundary-agnostic. In most existing continual learning studies, models
are trained in a “boundary-aware” setting, in which a sequence of distinct tasks with clear task
boundaries is given (e.g., Kirkpatrick et al., 2017; Zenke et al., 2017; Shin et al., 2017). Typically
there are no overlapping classes between any two tasks; for example task 1 has data with ground truth
class labels “1,2” and task 2 has data with ground truth class labels “3,4”. In this setting, models are
first trained on the entire first task and then move to the second one. Moreover, models are typically
told when there is a transition from one task to the next. However, it could be argued that it is more
realistic for tasks to change gradually and for models to not be explicitly informed about the task
boundaries. Such a boundary-agnostic setting has been explored in (Zeno et al., 2018; Rajasegaran
et al., 2020; Aljundi et al., 2019). In this setting, models learn in a streaming fashion and the data
distributions gradually change over time. For example, the percentage of “1s” presented to the
model might gradually decrease while the percentage of “2s” increases. Importantly, most existing
continual learning approaches are not applicable to the boundary-agnostic setting as they require the
task boundaries to decide when to consolidate the knowledge (Zeno et al., 2018). In this paper, we
will show that our proposed approach can also be applied to the boundary-agnostic setting.

Task-incremental versus class-incremental learning. Another important distinction in continual
learning is between task-incremental learning and class-incremental learning (van de Ven & Tolias,
2019; Prabhu et al., 2020). In task-incremental learning, also referred to as the multi-head setting
(Farquhar & Gal, 2018), models have to predict the label of an input data by choosing only from the
labels in the task where the data come from. On the other hand, in class-incremental learning, also
referred to as the single-head setting, models have to chose between the classes from all tasks so far
when asked to predict the label of an input data. Class-incremental learning is substantially more
challenging than task-incremental learning, as it requires models to select the correct labels from the
mixture of new and old classes. So far, only methods that store data or use replay have been shown
to perform well in the class-incremental learning scenario (Rebuffi et al., 2017; Rajasegaran et al.,
2019). In this paper, we try to tackle class-incremental learning without storing data and replay.
2.2 CONTINUAL LEARNING APPROACHES

In recent years, numerous methods have been proposed for CL. Here we broadly partition these
methods into three categories: task-specific, regularization, and replay-based approaches.

Task-specific methods. One way to reduce interference between tasks is by using different parts
of a neural network for different problems. For a fixed-size network, such specialization could be
achieved by learning a separate mask for each task (Fernando et al., 2017; Serra et al., 2018), by a
priori defining a different, random mask for every task to be learned (Masse et al., 2018) or by using
a different set of parameters for each task (Zeng et al., 2019; Hu et al., 2019). Other methods let a
neural network grow or recruit new resources when it encounters new tasks, examples of which are
progressive neural networks (Rusu et al., 2016) and dynamically expandable networks (Yoon et al.,
2017). Although these task-specific approaches are generally successful in reducing catastrophic
forgetting, an important disadvantage is that they require knowledge of the task identity at both
training and test time. These methods are therefore not suitable for class-incremental learning.
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Regularization-based methods. Regularization is used in continual learning to encourage stability
of those aspects of the network that are important for previously learned tasks. A popular strat-
egy is to add a regularization loss to penalise changes to model parameters that are important for
previous tasks. EWC (Kirkpatrick et al., 2017)) and online EWC (Schwarz et al., 2018) evaluate
the importance of each parameter using the diagonal elements in the fisher information matrices,
while SI (Zenke et al., 2017) tracks the past and current parameters and estimates their importance
online. An alternative strategy is to regularize the network at the functional level. Learning without
Forgetting (Li & Hoiem, 2017) uses knowledge distillation to encourage stability of the network’s
learned input-output mapping. However, these regularization-based approaches gradually reduce
the model’s capacity for learning new tasks and they have been shown to consistently fail in the
class-incremental learning (Farquhar & Gal, 2018; van de Ven & Tolias, 2019).

Replay methods. To preserve knowledge, replay methods periodically rehearse previously acquired
information during training (Robins, 1995). One way to do this, referred to as exact or experience
replay, is to store data from previous tasks and revisit them when training on a new task. Although
this might seem straightforward, critical non-trivial questions are how to select the data to be stored
as well as exactly how to use them (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Rajasegaran
et al., 2019; Hou et al., 2019; Wu et al., 2019; Mundt et al., 2020). An alternative to storing data is
to generate the data to be replayed. In such generative replay (Shin et al., 2017), a generative model
is sequentially trained to generate input samples representative of those from previously seen tasks.
While both types of replay can prevent catastrophic forgetting in both task- and class-incremental
learning settings, an important disadvantage is that these methods are computationally relatively
expensive as each replay event requires at least one forward and one backward pass through the
model. In addition, storing data might not always be possible while incrementally training a gener-
ative model is a challenging problem in itself (Lesort et al., 2019; van de Ven et al., 2020).

In contrast, our EBMs reduce catastrophic forgetting without requiring knowledge of task-identity,
without gradually restricting the model’s learning capabilities and without using stored data.

3 BACKGROUND

In this section, we will introduce traditional continual learning methods, which are typically modi-
fied based on the feed-forward classifier. We will show the limitation of using such structures and
how EBMs can be applied to these problems in the next section.

3.1 CONTINUAL LEARNING WITH FEED-FORWARD CLASSIFIER

Define T as a classification task with inputs x and associated discrete classification labels y ∈ Y ,
where Y = {1, . . . , N} contains N classes. Traditional classifier approaches to continual learning
typically predict the probabilities of all the N classes using a feed-forward network

pθ(y|x) =
exp([f(x)]y)∑
exp([f(x)]yi

)
, yi ∈ Y (1)

The input is a data x ∈ RD and the output is probabilities of all classes pθ ∈ RN . f(x) : RD → RN
is the feed-forward function that maps data x into a N -dimensional vector. The final layer in such
classifier networks is predefined to predict up to N different classes.

Existing continual learning methods (Kirkpatrick et al., 2017; Masse et al., 2018) tackle the continual
learning problem typically using a feed-forward classifier. However, such classifier architectures do
not perform well in the Class-IL setting, where models have to predict the label of a given data from
all classes (Tao et al., 2020a; He et al., 2018). The standard feed-forward classifier computes the
Softmax and cross-entropy loss over all seen classes. When training on a new task, they improve
the likelihood of ground truth classes but suppress the likelihood of old classes since they are all
negative classes for data in the current task. This operation introduces competitive, winner-take-all
dynamics that impact the strength of old classes and thus make the classifier forget past tasks.

3.2 ENERGY-BASED MODELS

Energy based models (LeCun et al., 2006) are a class of maximum likelihood models that define the
likelihood of a data point x ∈ RD using the Boltzmann distribution

pθ(x) =
exp(−Eθ(x))

Z(x)
, Z(x) =

∫
x

exp(−Eθ(x)) (2)
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where Eθ(x) : RD → R, known as the energy function, maps each input data to a scalar, and Z(x)
is the partition function over all data points.

EBMs are powerful generative models that have been applied to different tasks, such as structured
prediction (Belanger & McCallum, 2016; Gygli et al., 2017; Rooshenas et al., 2019; Tu & Gim-
pel, 2019), machine translation (Tu et al., 2020), and image generation (Xie et al., 2016; 2018;
Grathwohl et al., 2019). (Belanger & McCallum, 2016) introduce energy networks for structured
prediction. They propose energy networks can be naturally posed as structured prediction, since
the labels exhibit rich interaction structure. Tu & Gimpel (2019) propose a structured energy func-
tion for sequence labeling tasks. Rooshenas et al. (2019) introduce a search-guided approach to
obtain training pairs using a combination of the energy function and reward function that allows the
lightly-supervised training of structured prediction energy networks. Tu et al. (2020) treat the non-
autoregressive translation system as an inference network that finds the translation by minimizing
the energy of a pretrained autoregressive model. Xie et al. (2016) is the first paper to use ConvNet-
parameterized EBMs with Langevin dynamics for image generation. They show that a generative
random field model can be derived from the commonly used discriminative ConvNet. (Xie et al.,
2018) cooperatively train the descriptor and generator using MCMC sampling.

4 CONTINUAL LEARNING WITH ENERGY-BASED MODELS

In this section, we describe how EBMs can be used for classification and we discuss how they can
overcome the above mentioned problems in the continual learning setting. Note our analysis is
based on the Class-IL setting which is one of the most natural and also the hardest settings used in
CL (van de Ven & Tolias, 2019; He et al., 2018; Tao et al., 2020b).

4.1 ENERGY-BASED MODELS FOR CLASSIFICATION

Different from existing works using EBM for structured prediction (Belanger & McCallum, 2016;
Gygli et al., 2017; Rooshenas et al., 2019), such as multi-label classification tasks, CL does not
access previous data while training on new data and thus the biggest challenge is to prevent catas-
trophic forgetting. The main focus of this paper is to mitigate the catastrophic forgetting in CL
without using replay buffers to store past data or models.

To make the EBM suitable for classification, we use the Boltzmann distribution to define the likeli-
hood of y conditioned on x:

pθ(y|x) =
exp(−Eθ(x,y))

Z(y|x)
, Z(y|x) =

∑
yi

exp(−Eθ(x,yi)) (3)

where Eθ(x,y) : (RD,N) → R is the energy function that maps x and y to a scalar energy value,
and Z(y|x) is the partition function that ensures

∑
y pθ(y|x) = 1 for any given x.

To minimize the negative log likelihood of the ground truth label y+, inspired by the contrastive
divergence proposed by (Hinton, 2002), we minimize the energy of x at the ground truth label y+

while increasing the energy of x at other labels. We use the following loss and its corresponding
gradient (see Appendix B for the derivation):

LML(θ) = Ex∼T [Eθ(x,y
+) + log

∑
yi∈{N ,y+}

exp(−Eθ(x,yi))]. (4)

∂LML

∂θ
= Ex∼T

(
∂Eθ(x,y

+)

∂θ
− Eyi∼{N ,y+}

[
∂Eθ(x,yi)

∂θ

])
. (5)

whereby N is the set of ‘negative classes’. Following common practice in contrastive divergence,
we sample the set of negative classes N from the set of class labels in the current batch YB , using
only a single negative class per training sample. We note however that it is possible to use different
strategies for choosing the negative classes, and in the experiments reported in the top half of Table 2
we explore alternative strategies. If there are batches that contain only a single class label, sampling
a negative class from the current batch does not work, but one could instead select whichever other
class was seen most recently as a negative class, or one could sample from all other classes seen so
far. Another solution might be to always use a fake label representing “not exist” as negative sample.

As opposed to the classifier architectures that output a fixed N -dimensional probability vector of
all classes, this formulation thus provides freedom in the choice of which class labels to train on.
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This is important because an important issue with standard classifier models is that they suppress
the strength of old classes and thus make the classifier forget past tasks as mentioned in Section 3.1.
In contrast, EBMs define the probability without normalizing over all classes but instead sample a
limited number of negative classes. This operation cause less interference with old classes without
using any extra information which contributes to why EBMs suffer less from catastrophic forgetting.
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Figure 1: Model architecture
used in EBM. EBM takes a data
x and a class y as input and out-
puts their energy value.

Another advantage of our EBMs is that the choice of model archi-
tectures also becomes more flexible. The traditional classification
models can only feed in x as input and the classification results only
depend on the neural network trained on the current data x. Thus
the models usually fail on the old data after updating network pa-
rameters trained on the new data. In contrast, EBMs have many
different ways to combine x and y in the energy function Eθ(x,y)
with the only requirement that Eθ(x,y) : (RD,N)→ R. In EBMs,
we can treat y as an attention filter or gate to select the most relevant
information between x and y as described in Section 4.2.

Since the negative sample can be sampled from the current batch,
EBMs do not require knowledge of the task on hand, allowing ap-
plications across different continual learning scenarios, including
those when the underlying task is unclear. More broadly speaking,
EBMs can go out of the scope of classification problems, and sim-
ilar ideas can be applied to regression (Gustafsson et al., 2020), generation (Xie et al., 2016; Du
et al., 2020), and reinforcement learning tasks (Parshakova et al., 2019), although we do not explore
them in this work.

4.2 ENERGY NETWORK.

To compute the energy of any data x and class label y pair, we use y to influence a conditional gain
on x, which serves as an attention filter (Xu et al., 2015) to select the most relevant information
between x and y. In Figure 1, we first send x into a small network to generate the feature f(x). The
label y is mapped into a same dimension feature space g(y) using a FC layer or a random projection.
We use the Softmax function over each channel of g(y) and combine it with x:

mc(x,y) = fc(x) ·
exp(gc(y))∑
j exp(gj(y))

, (6)

where fc and gc are the cth channel of f(x) and g(y) respectively. The output is finally sent to a fully
connected layer to generate the energy value Eθ(x,y). For more details on our model architectures,
see Appendix C.

Our EBMs allow any number of classes in new batches by simply training or defining a new con-
ditional gain g(y) for the new classes and generating its energy value with data point x. This
formulation gives us freedom to learn new classes without pre-defining their number in advance.
We note that also in a standard classifier new classes can be dynamically added, but there new class
heads need to be added to the softmax output layer.
Class inference. During inference, the model must predict a class label from all classes seen so
far. let xk be one data point from a batch Bk with an associated discrete label y ∈ Yk, where Yk
contains classes in Bk. There are Y =

⋃K
k=1 Yk different classes in total after seeing all the batches.

The MAP estimate is
ŷ = argmin

y
EθK (xk,y), y ∈

⋃
Yk, (7)

where EθK (xk,y) is the energy function with parameters θK resulting from training on the batches
{B1, · · · , BK}. The energy function can compute an energy for any discrete class input, including
unseen classes. This avoids needing to predefine the number of classes in advance, as is necessary
with traditional CL models.

5 EXPERIMENTS

In this section, we want to investigate several questions, including how does the proposed EBMs per-
form on different CL settings? Can we qualitatively understand the differences between EBMs and
baselines? Is the proposed EBM training objective better than other objectives? Can we apply the
EBM training objective to other baseline methods? And finally what is the the best architecture for
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Table 1: Evaluation of the Class-IL performance on the Boundary-
Aware setting compared to different baselines. The test accuracy on
four datasets are reported. Each experiment is performed 20 times
with different random seeds, the results are reported as the mean ±
SEM over these runs. Note both EBMs and baselines do not use extra
memory to store data or models for fair comparison.

Method splitMNIST permMNIST Cifar10 Cifar100

CLS 19.91 ± 0.01 16.95 ± 0.31 19.06 ± 0.01 8.18 ± 0.10
EWC 20.03 ± 0.09 25.14 ± 0.71 18.99 ± 0.01 8.20 ± 0.09
Online 19.89 ± 0.02 33.20 ± 0.74 19.07 ± 0.01 8.38 ± 0.15
SI 19.98 ± 0.03 29.35 ± 0.90 19.14 ± 0.02 9.24 ± 0.22
LwF 20.53 ± 0.11 43.88 ± 0.88 19.20 ± 0.30 10.71 ± 0.11
MAS 19.50 ± 0.30 - 20.25 ± 1.54 8.44 ± 0.27
BGD 19.64 ± 0.03 84.78 ± 1.30 - -

EBM 53.12 ± 0.04 87.78 ± 0.01 40.19 ± 0.01 30.28 ± 0.28
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Figure 2: Energy landmaps of CLS
and EBMs after training on task T9 and
T10 on permuted MNIST. The darker
the diagonal is, the better the model is
in preventing forgetting previous tasks.

label conditioning that causes the minimum interference with old data? To answer these questions,
we first introduce experiments on the Boundary-Aware setting which typically learn a sequence of
distinct tasks with clear task boundaries in Section 5.1. We then show that EBMs can be naturally
applied to the Boundary-Agnostic setting where the data gradually changing in a steaming fashion
without the notion of task boundaries in Section 5.2.

5.1 EXPERIMENTS ON BOUNDARY-AWARE SETTING

5.1.1 DATASETS AND EVALUTION PROTOCOLS

Datasets. We evaluate the proposed EBMs on the split MNIST (Zenke et al., 2017), permuted
MNIST (Kirkpatrick et al., 2017), CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-100 (Krizhevsky
et al., 2009) datasets. We follow existing approaches and separate the datasets into several splits.
The split MNIST dataset is obtained by splitting the original MNIST dataset (LeCun et al., 1998)
into 5 tasks with each task has 2 classes. It has 60,000 training images and 10,000 test images. The
permuted MNIST has 10 tasks, each task with 10 classes. For each task, the original images pixels
are randomly permuted to generate 32 × 32 images. We separate CIFAR-10 into 5 tasks, each task
with 2 classes. There are 50,000 training images and 10,000 test images. Similarly, CIFAR-100 is
split into ten tasks with each task has 10 classes.
Evaluation protocols. Task-incremental Learning (Task-IL), Domain-incremental Learning
(Domain-IL), and Class-incremental Learning (Class-IL) are three common evaluation metrics used
by existing works (van de Ven & Tolias, 2019; Prabhu et al., 2020). Most approaches perform fairly
good on the first two simpler settings, but fail on the Class-IL setting, which is considered as the
most natural and also the hardest setting for continual learning (Tao et al., 2020a; He et al., 2018;
Tao et al., 2020b). Class-IL predicts the label of a given data from all seen classes. In this paper, we
consider Class-IL as our evaluation metric.

5.1.2 COMPARISONS WITH EXISTING METHODS

Due to the difficulty on the class incremental setting, most approaches rely an external quota of
memory. Such replay based methods (Shin et al., 2017; Rebuffi et al., 2017) use extra memory,
larger or extra models, and are computationally relatively expensive. In this paper, we focus on
continual learning without using replay and without storing data.

We compare the proposed method with available baseline models that do not use replay or stored
data, including a standard classification model (CLS), EWC (Kirkpatrick et al., 2017), Online EWC
(Schwarz et al., 2018), SI (Zenke et al., 2017), LwF (Li & Hoiem, 2017), MAS (Aljundi et al.,
2019), and BGD (Zeno et al., 2018). The continual learning results on four datasets are shown in
Table 1. All the baselines and EBMs are based on the same model architecture. For split MNIST
and permuted MNIST, we use several fully-connected layers as in (van de Ven & Tolias, 2019).
For CIFAR-10 and CIFAR-100, we use the convolutional network (see Appendix C). For all the
baselines and EBMs on CIFAR-100, we pre-train the convolutional layers on CIFAR-10 and only
fine-tune the fully-connected layers.
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Similar training regimes are used for the EBMs and baselines. On the split MNIST, permuted
MNIST, and CIFAR-10 datasets, we train for 2000 iterations per task. On the CIFAR-100 dataset
we train for 5000 iterations per task. For all experiments, we use the adam optimizer with learning
rate 1e−4. Each experiment in Table 1 is run 20 times with different random seeds, with results
reported as the mean ± SEM. EBMs have a significant improvement on all the datasets, showing
that EBMs forget less when updating models for new tasks.

5.1.3 QUALITATIVE ANALYSIS

Energy landscape. To better understand why EBMs suffer less from catastrophically forgetting,
we qualitatively compare the change in energy landscapes of EBMs and baseline methods as the
learning progresses. We show the energy landscapes after training on task 9 and task 10 on the
permuted MNIST dataset in Figure 2. For the classifier, we show its negative probabilities on all
classes. Each datapoint has 100 energy values (EBM) or probabilities (CLS) corresponding to the
100 labels in the dataset and the values are normalized over 100 classes for each datapoint. The
dark diagonal elements indicate the model predictions are correct for both old and new data. After
training on task T9, CLS assigns high probabilities to classes from task T9 (80-90) for almost all the
data from task T1 to T9. However, the highest probabilities shift to classes from task T10 (90-100)
after learning task T10. This means classifier tends to assign high probabilities to new classes for
both old and new data, indicating forgetting. EBM on the other hand, tends to have low energies
across the diagonal, which means that after training on new tasks, EBM still assigns low energies
to true labels of previous data. This indicates that EBM is better at learning new tasks without
catastrophically forgetting of old tasks.
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Figure 3: Predicted label distribution af-
ter learning each task on the split MNIST
dataset. CLS only predicts classes from the
current task while EBMs can predict classes
for all seen classes.

Predicted class distribution. In Figure 3, we plot the
proportional distribution of all seen classes so far on the
splitMNIST dataset. Taking the second figure in the first
row as an example, it shows the distribution of predicted
labels after training on the second task which means there
are four seen classes {1, 2, 3, 4}. For each image from the
first and second task, we compute its top-1 class predic-
tion and accumulate the prediction on each class to obtain
the proportional distribution graph over all seen classes.
Since the number of images in each class are almost the
same, the ground truth proportional distribution should be
uniform over all the classes. CLS can predict the first two classes uniformly after training on task 1
(first column). However, after learning new tasks, classes from the new task have larger proportions
than old classes which means the model tends to predict new classes and forget the old classes.
The last figure in row one gives very high proportions for classes from the last task but very low
proportions for previously classes. CLS almost forgets all previous tasks and only predict classes
from the last task even the input images are from old tasks. EBM covers all seen classes, indicating
memorizing the old task and preventing forgetting.

We provide more analysis about EBMs and baselines from different perspectives in the Appendix,
including the confusion matrix in Appendix A.2, the model capacity in Appendix A.3, and parameter
importance in Appendix A.4.

5.1.4 IS THE STRONG PERFORMANCE OF EBMS DUE TO THE ENERGY TRAINING
OBJECTIVE OR DUE TO THE LABEL CONDITIONING?

Effect of energy training objective. We conduct an experiment on the CIFAR-100 dataset to inves-
tigate how different training objectives influence the CL results. In Equation 4, the negative labels yi
ares sampled from YB . We test three different sampling strategies in Table 2. The first one uses all
seen classes so far as negative labels which is similar to the traditional feed-forward classifiers (All
Neg Seen (V4)). The second one takes all the classes in the current batch as negative labels (All Neg
Batch (V4)). The last one randomly selects one class from the current batch as the negative as we
reported in Section 4.1 (1 Neg Batch (V4)). Note that the negative labels do not include the ground
truth class in all these three strategies. We found using only one negative sample generates the best
result and using negatives sampled from classes in the current batch is better than from all seen
classes. This conclusion is consistent with our analysis in Section 4.1. Since the loss in Equation 4
aims at improving the energy of negative samples while decreasing the energy of positive ones,
sampling negatives from the current batch has less interference with previous classes than sampling
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from all seen classes. Using a single negative causes the minimum suppression on negative samples
and thus has the best result. Overall, our results indicate that surprisingly, and counterintuitively,
directly optimizing the cross-entropy loss used by existing approaches may not be the best way for
continual learning.

Effect of label conditioning. Next, we test whether the label conditioning in our EBMs is important
for their performance. We test this by modifying the training objective of a standard classifier to
that of our proposed energy objective, which is the same as running our EBMs without the label
conditioning. The results of this comparison are listed in Table 3. The new training objective
does not suppress the probability of old classes when improving the probability of new classes and
thus achieves better results. However, EBMs still outperform the baselines, implying that the label
conditioning architecture also contributes to why EBMs suffer less from catastrophic forgetting. We
also show the testing accuracy curve in Appendix A.1.

To summarize, we showed that the strong performance of our EBMs is due to both the energy
training objective and the label conditioning.

5.1.5 COMPARISON OF DIFFERENT ENERGY NETWORK ARCHITECTURES

Table 2: Different EBM training objec-
tives and label conditioning architectures.

Dataset Cifar100

All Neg Seen (V4) 8.07 ± 0.10
All Neg Batch (V4) 29.03 ± 0.53
1 Neg Batch (V4) 30.28 ± 0.28

Dataset Cifar10

Beginning (V1) 13.69 ± 0.02
Middle(V2) 20.16 ± 0.02
Middle(V3) 18.36 ± 0.02
End Fix (V4) 34.30 ± 0.03
End Fix Norm2 (V4) 33.91 ± 0.02
End Fix Softmax (V4) 35.97 ± 0.01
End (V4) 38.13 ± 0.01
End Norm2 (V4) 37.23 ± 0.02
End Softmax (V4) 40.19 ± 0.01

EBMs allow flexibility in integrating data information and
label information in the energy function. To investigate
where and how to combine the information from x and
y, we conduct a series of experiments on the CIFAR-10
dataset. Table 2 shows four model architectures (V1-V4)
that combine x and y in the early, middle, and late stages,
respectively (see Appendix C for the architecture details).
We find combining x and y in the late stage (V4) performs
the best. We note that instead of learning a feature embed-
ding of label y, we can use a fixed projection matrix which
is randomly sampled from the uniform distribution U(0, 1).
Even using this fixed random projection can already gen-
erates better results than most baselines in Table 1. Note
further that the number of trainable parameters in the “Fix”
setting is much lower than that of the baselines. Using a
learned feature embedding of y can further improve the
performance. We may also apply different normalization
methods over the feature channel of y. We find that Softmax (End Softmax (V4)) is better than the
L2 normalization (End Norm2 (V4)) and no normalization (End (V4)).

5.1.6 INTERFERENCE WITH PAST DATA

Here we test the effects of label conditioning and the energy training objective in a different way,
by evaluating their ability to prevent interference with past data when learning classification on new
classes. Formally, let xi and xj be two data points and θi be the model parameters after training on
xi. The model parameters change4θ(xj) after learning new data xj . We test the difference between
the losses LML(xi | θi) and LML(xi | θi +4θ(xj)). Ideally, we expect LML(xi | θi +4θ(xj)) ≤
LML(xi | θi) for xi 6= xj , which means the update on new data has no influence or positive
influence on the old data. The first-order expansion gives LML(xi | θi + 4θ(xj) ) ≈ LML(xi |
θi ) + ∇θiLML(xi | θi )T4θ(xj). To make our desired equality hold, the gradient at xi should
be ∇θiLML(xi | θi )T4θ(xj) ≤ 0. φ = ∇θiLML(xi | θi )T4θ(xj) can be used to measure the
influence of updating models on new data on the performance of old data. The smaller the value is,
the less negative influence on old data, and thus the better the model is in preventing forgetting.

We compare EBMs with the standard classifier (CLS) and CLS using our EBM training objective
(CLS*) (see Appendix A.5 for the implementation details). For results on split MNIST, the average
value of φ over all tasks of CLS, CLS*, and EBMs are φCLS = 0.168, φCLS* = 0.004, and φEBM =
−3.743e−5, respectively. For CIFAR-10, the results are φCLS = 1.104, φCLS* = 0.043, and φEBM =
4.414e−5, respectively. We found EBMs have smaller φ than CLS and CLS*, which is consistent
with our analysis that the conditional gain g(y) serves as an attention filter that could select the
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Table 3: Results of baselines using our
training objective and their original one.

split MNIST Ori Ours

CLS 19.90 ± 0.02 44.98 ± 0.05
EWC 20.01 ± 0.06 50.68 ± 0.04
Online 19.96 ± 0.07 50.99 ± 0.03
SI 19.99 ± 0.06 49.44 ± 0.03
EBM - 53.12 ± 0.04
CIFAR-10 Ori Ours

CLS 19.06 ± 0.01 19.22 ± 0.02
EWC 18.99 ± 0.01 36.51 ± 0.03
Online 19.07 ± 0.01 36.16 ± 0.02
SI 19.14 ± 0.02 35.12 ± 0.02
EBM - 40.19 ± 0.01

Table 4: Evaluation of the Class-IL performance on the
Boundary-Agnostic setting compared to different baselines. The
test accuracy on four datasets are reported. Each experiment is
performed 5 times with different random seeds, the results are re-
ported as the mean ± SEM over these runs. Note both EBMs and
baselines do not use extra memory to store data or models for fair
comparison.

Method splitMNIST permMNIST Cifar10 Cifar100

CLS 24.03 ± 0.01 21.42 ± 0.01 23.30 ± 0.01 9.85 ± 0.02
Online 39.62 ± 0.04 41.37 ± 0.04 22.53 ± 0.01 9.57 ± 0.02
SI 28.79 ± 0.01 35.71 ± 0.01 26.26 ± 0.01 10.42 ± 0.01
BGD 21.65 ± 0.02 26.15 ± 0.02 17.03 ± 0.01 8.50 ± 0.02

EBM 81.78 ± 0.06 92.35 ± 0.01 49.47 ± 0.03 34.39 ± 0.24

relevant information between x and y and make parameter updates cause less interference with old
data, which contributes to why EBMs suffer less from catastrophic forgetting.

5.2 EXPERIMENTS ON BOUNDARY-AGNOSTIC SETTING

When applying continual learning in real life, boundaries are not usually well defined between
different tasks. Most existing continual learning methods are often tailored to the problem setup
where a fixed boundary between tasks is defined, and must be informed when the tasks are switched
during training. We show that EBMs are able to flexibly perform continual learning across different
problem setups, and perform well on the Boundary-Agnostic setting as well.

5.2.1 DATASETS AND EVALUTION PROTOCOLS

We evaluate our proposed continual learning method on the Boundary-Agnostic setting on four
datasets, including split MNIST, permuted MNIST, CIFAR-10, and CIFAR-100. We use the code of
“continuous task-agnostic learning” proposed by (Zeno et al., 2018) to generate the training/testing
data. The transition between tasks goes slowly over time using a sampling function based on the
probability of each task. There is a mixture of data from two different tasks during the transition
and the proportion of new data gradually increases. Similar to the Boundary-Aware setting, We use
Class-IL as our evaluation metric for the Boundary-Agnostic continual learning.

5.2.2 COMPARISON WITH EXISTING METHODS

We focus on the investigation on the performance of different model architectures with similar model
size and memory footprint. We do not directly compare with replay-based methods as they use extra
memory, larger or extra models. Since there is no knowledge on the number of tasks, previous
methods of continual learning that rely on task boundaries are generally inapplicable. One trivial
adaptation is to take the core action after every batch step instead of every task. However, doing
such adaptation is impractical for most algorithms, such as EWC, because of the large computational
complexity. We successfully get the result of CLS, Online EWC, SI, and BGD baselines. Overall
classification results on four datasets are shown in Table 4.

All the baselines and EBM are based on the same model architecture as in the Boundary-Aware
setting. Each experiment was performed 5 times with different random seeds, the results are re-
ported as the mean ± SEM over these runs. We observe that EBMs have a significant improvement
on all the datasets. EBMs can be naturally applied to both the Boundary-Aware and Boundary-
Agnostic settings without any modification, as EBMs have a very flexible training objective. The
experiments demonstrate EBMs have good generalization ability for different continual learning
problems. EBMs can naturally handle different number of new classes, new tasks, data streams with
and without clear task boundaries.

6 CONCLUSION

In this paper, we found that energy-based models are a promising class of models towards a va-
riety of different continual learning settings. We demonstrated that EBMs exhibit many desirable
characteristics to prevent catastrophic forgetting in CL, and we experimentally showed that EBMs
obtain the state-of-the-art performance on the Class-IL and Boundary-Agnostic settings on multiple
benchmarks.
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A ADDITIONAL ANALYSES

Extending the results presented in Section 5.1, here we further compare EBMs with the baseline
models by providing additional quantitative analyses of their performance. We show testing accu-
racy curves in Section A.1, confusion matrices between the ground truth labels and model predic-
tions in Section A.2, model capacity comparisons in Section A.3, and parameter importance mea-
surement in Section A.4. In Section A.5, we provide more details of the label conditioning analysis
mentioned in Section 5.1.5. Finally, in Section A.6 we perform the split CIFAR-100 protocol with
several different number of tasks to test the generality of the proposed EBMs.

A.1 TESTING ACCURACY CURVE

In Section 5.1.4, we show that the proposed EBM training objective is also applicable to baseline
approaches and improves their performance significantly on the Class-IL setting. Figure 4 shows
the testing accuracy of each task as the training progresses. We compare the standard classifier
(CLS), classifier using our training objective (CLS*), and our EBMs. The left figures show results
on the split MNIST dataset while the right figures show results on the permuted MNIST dataset.
We observe that the accuracy of old tasks in CLS drop sharply when learning new tasks, while the
EBM training objective can mitigate the forgetting problem. The curve on EBMs drops even slower
than CLS and CLS*, implying the proposed energy objective can mitigate the catastrophic forgetting
problem.

.

.
.

.
. .

CLS CLS* EBMCLS CLS* EBM

Figure 4: Class-IL testing accuracy of the standard classifier (CLS), classifier using our training objective
(CLS*), and EBMs on each task on the split MNIST dataset (left) and permuted MNIST dataset (right).

A.2 CLASS CONFUSION MATRIX AT THE END OF LEARNING

In Section 5.1.3, we show the qualitative analysis of EBMs and baselines. Except the energy land-
scape and predicted class distribution, we also generate the confusion matrices of EBMs and baseline
approaches. Confusion matrix shows the relationship between ground truth labels and predicted la-
bels. In Figure 5, we draw the confusion matrices after training on all the tasks on the split MNIST
dataset and permuted MNIST dataset. The classifier tends to predict the classes from the last task
(class 8, 9 for split MNIST and 90-100 for permuted MNIST). EBMs have high values along the
diagonal that means the predicted results matching the ground truth labels for all the sequentially
learned tasks. This demonstrates that EBMs are better at learning new tasks without catastrophically
forgetting of old tasks.

CLS (split MNIST) EBM (split MNIST) CLS (permuted MNIST) EBM (permuted MNIST) 

Figure 5: Confusion matrices between ground truth labels and predicted labels at the end of learning on split
MNIST (left) and permuted MNIST (right). The lighter the diagonal is, the more accurate the predictions are.
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A.3 MODEL CAPACITY

Another hypothesized reason for why EBMs suffer less from catastrophic forgetting than standard
classifiers is potentially their larger effective capacity. To analyze effective capacity of our models,
we test the model capacity of the standard classifier and EBMs on both the generated images and
natural images.

Model capacity on generated images. We generate a large randomized dataset of 32× 32 images
with each pixel value uniformly sampled from -1 to 1. Each image is then assigned a random class
label between 0 and 10. We measure the model capacity by evaluating to what extent the model can
fit a such dataset. For both the standard classifier and the EBM, we evaluate three different sizes of
models (small, medium, and large). For a fair comparison, we control the EBM and classifier have
similar number of parameters. The Small EBM and CLS have 2, 348, 545 and 2, 349, 032 parameters
respectively. The medium models have 5, 221, 377 (EBM) and 5, 221, 352 (CLS) parameters while
the large models have 33, 468, 417 (EBM) and 33, 465, 320 (CLS) parameters. We use the model
architectures in Table 5a and Table 5b for EBMs and classifiers.

The resulting training accuracies are shown in Figure 6 with the number of data ranges from one
to five millions. Given any number of datapoints, EBM obtains higher accuracy than the classifier,
demonstrating that indeed EBM has larger capacity to memorize data given a similar number of
parameters. The gap between EBM and CLS increases when the models become larger. The larger
capacity of EBM potentially enables it to memorize more data and mitigate the forgetting problem.

Model capacity on natural images. We also compare classifiers and EBMs on natural images from
CIFAR-10. Each image is assigned a random class label between 0 and 10. We use the same network
architecture as in Table 5a and Table 5b, but with a hidden unit size of h = 256. Since there are only
50, 000 images on CIFAR-10, we use a small classifier and EBM and train them on the full dataset.
After training 100000 iterations, the EBM obtains a top-1 prediction accuracy of 82.81, while the
classifier is 42.19. We obtain the same conclusion that EBM has larger capacity to memorize data
given a similar number of parameters.

Table 5: The model architectures used for the model capacity analysis. h are 512, 1024, and 4096
for the small, medium and large network, respectively.

(a) The architecture of the EBM.

x = FC(784, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * y

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the standard classifier..

x = FC(784, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 10) (x)

A.4 PARAMETER IMPORTANCE

To further understand why EBMs suffer less from catastrophic forgetting, we design an experiment
to test the importance of model parameters on past data. Inspired by the elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017), we estimate the importance of parameters for each tasks using
the diagonal elements of the Fisher information matrix (FIM) F . Let θi be the model parameters
after training on task Ti. Given one of previous tasks Tj , j < i, we evaluate how important each
parameter is for tasks Tj . The kth diagonal of F is defined as the gradient on the EBM loss

Fi,k = Ex∼Tj∇θi,k

Eθi(x,y+) + log
∑
y′

exp(−Eθi(x,y′))

2

, (8)

where x is sampled from tasks Tj and E(x,y+) is the energy value of the input data x and ground
truth label y+. y′ ∈ Yj are classes randomly selected from the current batch. Here we use a single
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Figure 6: Model capacity of classifier and EBM using different model sizes.

negative class. The above equation assigns high values to parameters crucial to task Tj as their
gradients with respect to the loss are larger. Since the diagonal elements of the fisher information
matrix measure the importance of each parameter to a given task, the density of diagonal elements
represents the proportion of important parameters over all parameters. More density means more
parameters are important for the given task and less parameters can be recruited for new tasks.
Ideally, we expect these values to be sparse.

In Figure 7, we show the diagonal elements of the standard classifier (CLS), classifier using our
training objective (CLS*), and our EBMs on the split MNIST dataset. For CLS and CLS*, we
follow (Kirkpatrick et al., 2017) to compute their fisher information matrices. For comparisons
across multiple models, we normalize the FIM diagonal elements of each method to be between
0 and 1 and report the normalized results in Figure 7. For example, “Fisher 5 on data 1” shows
the diagonal elements of the Fisher information matrix obtained by Equation 8 using the model
parameters θ5 (after training on task T5) and data x,y+,y′ from task T1. The distribution of EBMs
is sparser than CLS and CLS* indicating that EBMs have fewer important parameters for previous
data. Updating parameters for the new task will have less negative impact on old tasks. In addition,
more parameters can be used for learning new tasks if the distribution is sparse. This may provide
another explanation for why EBMs can mitigate catastrophic forgetting.

A.5 MORE DETAILS OF THE INTERFERENCE WITH PAST DATA ANALYSIS

In Section 5.1.5, we test the interference of models trained on new data with past data. We compare
the proposed EBMs with a standard classifier (CLS) and CLS using our EBMs training objective
(CLS*). For CLS and CLS*, we use the cross-entropy loss to get their φ, i.e., the cross-entropy
losses on the old data before and after training on a new data.

We obtain θi by training on 200 randomly selected data from task1 and compute its gradient af-
ter training. Then we perform a single step optimization on 200 data that are randomly selected
from task2 and average their parameters to get θj . We compute φ using the inner product of
4θ(xj) = θj−θi and the gradient∇θiLML(xi | θi ). For comparisons among multiple approaches,
we normalize the φ of each method by dividing its maximum element value of θi and scale φ based
on the length of θ, as CLS and EBMs have different number of parameters.

A.6 SPLIT CIFAR-100 WITH DIFFERENT NUMBERS OF TASKS

To test the generality of our proposed EBMs, in Table 6 we repeat the boundary-aware experiments
on spit CIFAR-100 (see Table 1 in the main text) for different number of classes per task. In Table 1
the CIFAR-100 dataset was split up into 10 tasks, resulting in 10 classes per task. Here we addition-
ally perform the split CIFAR-100 protocol with 5 different tasks (i.e., 20 classes per task), with 20
different tasks (i.e., 5 classes per task) and with 50 different tasks (i.e., 2 classes per task). For all
settings, we find that our EBM substantially outperforms the baselines.
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Figure 7: Parameter importance on different tasks. The x-axis represents each different parameter and y-axis is
the FIM value in Equation 8. The sparser the parameters are, the fewer important parameters for previous data,
which may contribute to why EBMs has less influence on previous tasks after training on new data. “Fisher
5 on data 1” means the diagonal elements of the fisher information matrix obtained by Equation 8 using the
model parameters θ5 (after training on task T5) and data from task T1.

Table 6: Comparison of our EBM with baselines on different variants of the split CIFAR-100 protocol. The
CIFAR-100 dataset is split up into 5 tasks (= 20 classes per task), 10 tasks (= 10 classes per task), 20 tasks (= 5
classes per task) or 50 tasks (= 2 classes per task). Shown is the Class-IL performance on the Boundary-Aware
setting after all tasks have been learned. Each experiment is performed 10 times with different random seeds,
the results are reported as the mean ± SEM over these runs.

Method CIFAR-100 split up into:
5 tasks 10 tasks 20 tasks 50 tasks

CLS 14.74 ± 0.20 8.18 ± 0.10 4.46 ± 0.03 1.91 ± 0.02
EWC 14.78 ± 0.21 8.20 ± 0.09 4.46 ± 0.03 1.91 ± 0.02
SI 14.07 ± 0.24 9.24 ± 0.22 4.37 ± 0.04 1.88 ± 0.03
LwF 25.75 ± 0.14 10.71 ± 0.11 12.18 ± 0.16 7.68 ± 0.16

EBM 34.88 ± 0.14 30.28 ± 0.28 25.04 ± 0.33 13.60 ± 0.50
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B DERIVATION OF LOSS GRADIENT

The derivation of the loss gradient in Equation 5 is

∂LML

∂θ
= Ex∼T

∂Eθ(x,y+)

∂θ
+
∂
[
log
∑

yi∈{N ,y+} exp(−Eθ(x,yi))
]

∂θ


= Ex∼T

∂Eθ(x,y+)

∂θ
+

1∑
yi∈{N ,y+} exp(−Eθ(x,yi))

∂
[∑

yi∈{N ,y+} exp(−Eθ(x,yi))
]

∂θ


= Ex∼T

∂Eθ(x,y+)

∂θ
+

1∑
yi∈{N ,y+} exp(−Eθ(x,yi))

∑
yi∈{N ,y+}

∂ [exp(−Eθ(x,yi))]
∂θ


= Ex∼T

∂Eθ(x,y+)

∂θ
− 1∑

yi∈{N ,y+} exp(−Eθ(x,yi))
∑

yi∈{N ,y+}

exp(−Eθ(x,yi))
∂Eθ(x,yi)

∂θ


= Ex∼T

∂Eθ(x,y+)

∂θ
−

∑
yi∈{N ,y+}

1∑
yi∈{N ,y+} exp(−Eθ(x,yi))

exp(−Eθ(x,yi))
∂Eθ(x,yi)

∂θ


 ∑

yi∈{N ,y+}

exp(−Eθ(x,yi)) is a constant and can be moved inside the summation


= Ex∼T

∂Eθ(x,y+)

∂θ
−

∑
yi∈{N ,y+}

exp(−Eθ(x,yi))∑
yi∈{N ,y+} exp(−Eθ(x,yi))

∂Eθ(x,yi)

∂θ


= Ex∼T

∂Eθ(x,y+)

∂θ
−

∑
yi∈{N ,y+}

pθ(yi|x)
∂Eθ(x,yi)

∂θ


= Ex∼T

(
∂Eθ(x,y

+)

∂θ
− Eyi∼{N ,y+}

[
∂Eθ(x,yi)

∂θ

])
.

(9)

C MODEL ARCHITECTURES

Here we provide details of the model architectures used on the different datasets.

Images from the split MNIST and permuted MNIST datasets are grey-scale images. The base-
line models for these datasets, similar as in (van de Ven & Tolias, 2019), consist of several fully-
connected layers. For the EBMs we use similar number of parameters. The model architectures of
EBMs on the split MNIST dataset and permuted MNIST dataset are the same, but have different in-
put and output dimensions and hidden sizes. The model architectures of EBMs and baseline models
on the split MNIST dataset are shown in Table 7a and Table 7b respectively. The model architectures
of EBMs and baseline models on the permuted MNIST dataset are shown in Table 8a and Table 8b.

Images from the CIFAR-10 and CIFAR-100 datasets are RGB images. For CIFAR-10, we use a
small convolutional network for both the baseline models and the EBMs. The model architectures
of EBMs on the CIFAR-10 dataset are shown in Table 9a, Table 9b, Table 9c, Table 9d, and Table 9e.
We investigate different architectures to search for the effective label conditioning on EBMs training
as described in Section 5.1.5. The baseline models on CIFAR-10 are given in Table 9f.

The model architectures used on the CIFAR-100 dataset are detailed in Table 10.
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Table 7: The model architectures used on split MNIST. h = 400.

(a) The architecture of the EBMs.

x = FC(784, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * Norm2 (y) + x

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the baseline models.

x = FC(784, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 10) (x)

Table 8: The model architectures used on permuted MNIST. h = 1000.

(a) The architecture of the EBMs.

x = FC(1024, h) (x)

x = ReLU (x)

y = Embedding (y)

x = x * Norm2 (y) + x

x = ReLU (x)

out = FC(h, 1) (x)

(b) The architecture of the baseline models.

x = FC(1024, h) (x)

x = ReLU (x)

x = FC(h, h) (x)

x = ReLU (x)

out = FC(h, 100) (x)

18



Under review as a conference paper at ICLR 2021

Table 9: The model architectures used on the CIFAR-10 dataset.

(a) EBM: Beginning (V1)

Input: x, y

y = Embedding(N, 3) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(b) EBM: Middle (V2)

Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

y = Embedding(N, 32) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(c) EBM: Middle (V3)

Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

y = Embedding(N, 64) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU(x)

out = FC(1024, 1) (x)

(d) EBM: End Fix Softmax (V4)

Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

y = Random Projection (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

out = FC(1024, 1) (x)

(e) EBM: End Softmax (V4)

Input: x, y

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

y = Embedding(N, 1024) (y)

y = Softmax(dim=-1) (y)

y = y * y.shape[-1]

x = x * y

out = FC(1024, 1) (x)

(f) Baseline models

Input: x

x = Conv2d(3×3, 3, 32) (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 32) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = Conv2d(3×3, 32, 64) (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 64) (x)

x = ReLU (x)

x = Maxpool(2, 2) (x)

x = FC(2304, 1024) (x)

x = ReLU (x)

x = FC(1024, 1024) (x)

x = ReLU (x)

out = FC(1024, 10) (x)
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Table 10: The model architectures used on the CIFAR-100 dataset. Following van de Ven et al. (2020), for
all models the convolutational layers were pre-trained on CIFAR-10. The ‘BinaryMask’-operation fully gates
a randomly selected subset of X% of the nodes, with a different subset for each y. Hyperparameter X was set
using a gridsearch.

(a) The architecture of the EBMs.

Input: x, y

x = Conv2d(3×3, 3, 16) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 16, 32) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 64) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 128) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 128, 256) (x)

x = FC(1024, 2000) (x)

x = ReLU (x)

x = BinaryMask (x, y)

x = FC(2000, 2000) (x)

x = ReLU (x)

x = BinaryMask (x, y)

out = FC(2000, 1) (x)

(b) The architecture of the baseline models.

Input: x

x = Conv2d(3×3, 3, 16) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 16, 32) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 32, 64) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 64, 128) (x)

x = BatchNorm (x)

x = ReLU (x)

x = Conv2d(3×3, 128, 256) (x)

x = FC(1024, 2000) (x)

x = ReLU (x)

x = FC(2000, 2000) (x)

x = ReLU (x)

out = FC(2000, 100) (x)
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