
UALIGN: Leveraging Uncertainty Estimations for Factuality Alignment on
Large Language Models

Anonymous ACL submission

Abstract

Despite demonstrating impressive capabilities,001
Large Language Models (LLMs) still often002
struggle to accurately express the factual knowl-003
edge they possess, especially in cases where004
the LLMs’ knowledge boundaries are ambigu-005
ous. To improve LLMs’ factual expressions,006
we propose the UALIGN framework, which007
leverages Uncertainty estimations to represent008
knowledge boundaries, and then explicitly in-009
corporates these representations as input fea-010
tures into prompts for LLMs to Align with fac-011
tual knowledge. First, we prepare the dataset012
on knowledge question-answering (QA) sam-013
ples by calculating two uncertainty estimations,014
including confidence score and semantic en-015
tropy, to represent the knowledge boundaries016
for LLMs. Subsequently, using the prepared017
dataset, we train a reward model that incor-018
porates uncertainty estimations and then em-019
ploy the Proximal Policy Optimization (PPO)020
algorithm for factuality alignment on LLMs.021
Experimental results indicate that, by integrat-022
ing uncertainty representations in LLM align-023
ment, the proposed UALIGN can significantly024
enhance the LLMs’ capacities to confidently025
answer known questions and refuse unknown026
questions on both in-domain and out-of-domain027
tasks, showing reliability improvements and028
good generalizability over various prompt- and029
training-based baselines.030

1 Introduction031

Despite the remarkable proficiency of large lan-032

guage models (LLMs) across a diverse range of033

tasks (Touvron et al., 2023; OpenAI, 2023; Chiang034

et al., 2023), they still frequently face challenges in035

accurately expressing factual knowledge that they036

learned from the pre-training stage but are uncer-037

tain about. In such cases, the knowledge bound-038

aries are somewhat ambiguous by LLMs, remain-039

ing a gap between “known” and “expression” (Lin040

et al., 2024; Zhang et al., 2024b; Li et al., 2024),041

which may lead to the hallucination problem and 042

undermine the reliability and applicability to users. 043

LLMs typically generate responses (“expres- 044

sion”) based on knowledge distributions learned 045

during pre-training (“known”). However, much 046

of the knowledge acquired during this phase ex- 047

hibits vague boundaries, comprising numerous 048

learned but uncertain knowledge pieces (weakly 049

known, light green area of spectrum in Fig. 1 (a)) 050

(Gekhman et al., 2024). Hence, LLMs may not 051

confidently convey accurate information in down- 052

stream tasks even though they hold relevant knowl- 053

edge but don’t make sure (Zhang et al., 2024b). 054

Additionally, LLMs may exhibit overconfidence in 055

the knowledge they are unfamiliar with (unknown, 056

the gray area of spectrum in Fig. 1 (a)), leading 057

to fabricated or hallucinatory content (Zhang et al., 058

2024a; Liu et al., 2024). This issue primarily arises 059

from that LLMs don’t properly reconcile the knowl- 060

edge boundaries with factual accuracy during align- 061

ment (Tian et al., 2024). Unlike previous works that 062

focused on reinforcement learning (RL) through 063

knowledge feedback or factuality alignment (Liang 064

et al., 2024; Xu et al., 2024a; Tian et al., 2024; Lin 065

et al., 2024; Zhang et al., 2024b; Yang et al., 2024), 066

our objective is to elicit LLMs’ weakly known facts 067

and extend beyond merely discerning unknown 068

facts by explicitly utilizing knowledge boundaries 069

in alignment. We aim to leverage the knowledge 070

boundary information of LLMs to instruct LLMs 071

to confidently express their known yet uncertain in- 072

formation and firmly refuse questions beyond their 073

knowledge as in Fig. 1 (b). Based on improve- 074

ments of “known”, LLMs’ expressions are more 075

truthful and reliable, thereby minimizing the dis- 076

crepancy between “known” and “expression” (Lin 077

et al., 2024; Zhang et al., 2024b; Li et al., 2024). 078

Inspired by the aforementioned analysis, we pro- 079

pose the UALIGN framework, which strategically 080

models Uncertainty regarding knowledge boundary 081

representations, subsequently Aligning these esti- 082
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Figure 1: Examples of LLMs with (a) ambiguous and
(b) explicit knowledge boundaries to answer questions.

mations with factuality. Therefore, the UALIGN083

framework focuses on two pivotal issues: how to084

capture the knowledge boundary representations085

and how to align with factuality.086

First, we prepare the dataset that incorporates087

knowledge boundary information for alignment in088

the UALIGN framework. Knowledge boundaries089

always indicate the known level of factual knowl-090

edge, generally implemented using uncertainty es-091

timation methods on LLMs (Ren et al., 2023). To092

precisely capture the intrinsic perception of knowl-093

edge boundary representations given the knowl-094

edge QA datasets, we adopt two uncertainty estima-095

tions of accuracy-based confidence score (Xiong096

et al., 2024) and semantic entropy (Kuhn et al.,097

2023) respectively. We sample multiple responses098

to a question using varied prompting and temper-099

ature sampling to approximate actual knowledge100

boundaries by calculating the confidence and en-101

tropy of each question. The two measures (Kuhn102

et al., 2023; Xiong et al., 2024), as complementary,103

can reflect the convince and dispersion of generated104

responses to a question based on LLMs’ internal105

knowledge. Questions with at least one correct sam-106

pled answer are regarded as “known”, and those107

with all incorrect sampled responses are considered108

“unknown”. We revise ground-truth answers to un-109

known questions to refusal responses to delineate110

known and unknown facts (Zhang et al., 2024a).111

Second, following Ouyang et al. (2022), we ex-112

plicitly leverage the uncertainty estimations to align113

with factuality on the prepared dataset using both114

supervised fine-tuning (SFT) and reinforcement115

learning (RL). We employ SFT to train two uncer-116

tainty estimation models to predict confidence and 117

entropy, and then train a reward model to evaluate 118

the correctness of the generated answer conditioned 119

on the input comprising the question, the gener- 120

ated response, and two uncertainty estimations re- 121

garding the knowledge boundary. With the reward 122

model, we further adopt the Proximal Policy Opti- 123

mization (PPO) (Schulman et al., 2017) algorithm 124

for LLM alignment by feeding both questions and 125

two measures as prompts to elicit the policy LLM’s 126

factual expressions to improve the reliability. 127

Experiments are conducted to evaluate in- 128

domain and out-of-domain performance on a range 129

of knowledge QA datasets. The results demonstrate 130

our proposed UALIGN method significantly en- 131

hances the reliability and generalization for LLMs 132

over several baseline methods to accurately express 133

known factual knowledge and refuse unknown 134

questions, suggesting that leveraging the two em- 135

ployed uncertainty estimations in alignment can 136

notably improve LLMs’ factuality. 137

In summary, our contributions are as follows. 138

1) To the best of our knowledge, UALIGN is 139

the first to explicitly leverage the uncertainty es- 140

timations representing knowledge boundaries for 141

LLM alignment, heralding a promising direction 142

for future research of LLM training 1. 143

2) We demonstrate that jointly incorporating con- 144

fidence and semantic entropy into prompts can pro- 145

vide precise knowledge boundary information to 146

elicit LLMs’ factual expressions. 147

3) We conduct main experiments by comparing 148

our UALIGN with various baselines as well as abla- 149

tion studies, validating the reliability improvements 150

and robust generalization of the UALIGN method. 151

2 Methodology 152

The proposed UALIGN framework is introduced in 153

this section with two parts: The Sec. 2.1 involves 154

the UALIGN dataset preparation process, includ- 155

ing strategies to collect multiple responses, as well 156

as uncertainty measures to capture intrinsic repre- 157

sentations of knowledge boundary on knowledge- 158

based QA pairs as illustrated in Fig. 2. The Sec. 2.2 159

utilizes the obtained UALIGN dataset to train the 160

uncertainty estimation models, and further explic- 161

itly incorporate the estimations as input features 162

to elicit LLMs to generate factual responses using 163

SFT- and PPO-based alignment methods as shown 164

in Fig. 3 and Algorithm 1. 165

1The codes will be released on GitHub.
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Figure 2: Illustration of UALIGN dataset preparation process.

2.1 Dataset Preparation166

2.1.1 Responses Sampling Strategy167

As in Fig. 2, to explore the knowledge boundary168

of the LLM given a question, we sample multiple169

responses by repeating the generation procedure170

several times. In this phase, the preparation process171

can be represented in a tuple (Q,P,A). Q contains172

a batch of N QA pairs {(xi, ŷi)}
N
i=1 where xi and173

ŷi denote the i-th question and ground-truth an-174

swer respectively. To mitigate context sensitivity,175

we utilize different few-shot prompts in P with176

temperature T = 0.2 to make a trade-off between177

the accuracy and diversity to represent knowledge178

boundaries (Gekhman et al., 2024). The few-shot179

prompt set P consists of K different 1-shot exem-180

plars in this work which is enough for LLMs to181

generate answers in the correct format. We present182

the few-shot prompts for sampling on TriviaQA183

and SciQ datasets as exemplified in Appendix J.184

In the k-th sampling process for the i-th question185

xi, we employ each few-shot exemplar pk ∈ P186

with the question xi to the LLM to generate the187

k-th response yi
(k). By taking K times of the188

sampling process, we can obtain an answer set189

Y i =
{
yi

(k)
}K
k=1

to xi. We set the labels Zi =190 {
zi

(k)
}K
k=1

by comparing each generated answer191

yi
(k) with the ground-truth ŷi to indicate the cor-192

rectness (zi(k) ∈ {0, 1}, 1 for True and 0 for False).193

We collect and format the data in (xi,Y i,Zi, ŷi)194

in an extended dataset and calculate the uncertainty195

measures subsequently. Note that since fine-tuning196

LLMs on unknown knowledge will encourage hal-197

lucinations (Zhang et al., 2024a; Gekhman et al.,198

2024), we revise the ground-truth answer to the199

question with zi
(k) = 0, ∀zi(k) ∈ Zi to “Sorry, I200

don’t know.” to teach LLMs to refuse the questions201

beyond their knowledge (Zhang et al., 2024a).202

2.1.2 Uncertainty Measures203

In order to quantify the knowledge boundaries, we204

can leverage some uncertainty estimation methods.205

The knowledge boundary of LLMs in this work is206

defined in two aspects. The first involves the prior 207

judgment to a question xi regardless of the answers 208

(Ren et al., 2023) which indicates the certainty level 209

of xi. The second entails the dispersion measure 210

to the distribution of the generated responses in Y i 211

to xi. Accordingly, we adopt accuracy-based con- 212

fidence (Xiong et al., 2024) and semantic entropy 213

(Kuhn et al., 2023) to jointly determine and repre- 214

sent the actual knowledge boundary information. 215

Accuracy-based Confidence A natural idea of 216

aggregating varied responses is to measure the 217

accuracy among the candidate outputs to denote 218

confidence scores (Manakul et al., 2023; Xiong 219

et al., 2024). Given a question xi, the accuracy of 220

candidate responses in Y i by comparing with the 221

ground-truth answer ŷi serves as the confidence 222

score ci, computed as follows. 223

ci = Conf(xi) =
1

K

K∑
k=1

1
(
ỹi = yi

(k)
)

(1) 224

Semantic Entropy Due to the variable length 225

and semantically equivalent generated sequences 226

in sentence-level output spaces, Kuhn et al. (2023) 227

proposes semantic entropy to capture uncertainty 228

on the semantic level to quantify the degree of 229

dispersion of sentence meanings. The semantic 230

entropy ei given xi and Y i is calculated as 231

p(s|xi) =
1

K

K∑
k=1

1
[
yi

(k) ∈ s
]

(2) 232

ei = SE(xi) = −
∑
s

p(s|xi) log p(s|xi) (3) 233

where s denotes a set of sentences in semantic 234

equivalent space. As illustrated in Fig. 1, seman- 235

tic entropy is calculated by clustering semantically 236

equivalent responses, as a measure to quantify the 237

dispersion of generations to confirm the correct an- 238

swer despite the low confidence, which will be fur- 239

ther analyzed with the experimental results in Sec. 240

4.2. We calculate the confidence score and seman- 241

tic entropy for both known and unknown questions. 242
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Figure 3: Illustration of (a) SFT and (b) PPO alignment
processes of UALIGN framework. Note that for simplic-
ity, we only present one estimation model in the figure
but there are actually two.

Algorithm 1 UALIGN Training Algorithm

1: Input: UALIGN dataset D, uncertainty models
τ µ, reward model θ, initial policy πo.

2: Output: Optimized policy πθ.
3: Stage 1: UALIGN SFT
4: Train uncertainty models τ µ on D to predict

ci, ei by feeding xi using Eq. 4 and 5.
5: Train reward model θ on D to predict zi by

feeding xi, ci, ei,yi
(k) using Eq. 6.

6: Stage 2: UALIGN PPO
7: Collect reward r including the reward signal

r1 by θ and KL-penalty r2 between policy πθ
and initial policy πo as Eq. 7.

8: Update policy πθ using the collected reward r.

Then we update a UALIGN dataset D by formatting243

the i-th sample in (xi,Y i,Zi, ŷi, ci, ei).244

2.2 UALIGN Training Process245

2.2.1 UALIGN SFT: Uncertainty Estimation246

and Reward Models Training247

As presented in Fig. 3 (a) and Algorithm 1, given248

dataset D, UALIGN SFT is to train uncertainty249

estimation models to explicitly learn the two esti-250

mations given specific questions. Uncertainty es-251

timation models of τ and µ are utilized to predict252

the confidence score and semantic entropy respec-253

tively, which are continuously used to train a re-254

ward model. When training τ and µ, we only feed255

a question xi to the models to generate two uncer-256

tainty estimations. The training objectives are to 257

minimize the cross-entropy losses Lτ and Lµ as 258

argmin
τ

Lτ , argmin
µ

Lµ, 259

Lτ = −E(xi,ci)∼D [log pτ (ci|xi)] (4) 260

Lµ = −E(xi,ei)∼D [log pµ(ei|xi)] (5) 261

where the models can explicitly learn and express 262

the uncertainty estimations which represent more 263

accurate knowledge boundary information. 264

Subsequently, the reward model is introduced 265

as a binary evaluator to determine if a generated 266

answer yi
(k) ∈ Y i is correctly conditioned on the 267

question xi, confidence ci, and entropy ei. Both 268

ci and ei are explicitly used as additional auxil- 269

iary features to improve the accuracy of the reward 270

model. The binary cross-entropy loss Lθ for the 271

reward model θ is minimized as follows. 272

argmin
θ

Lθ,Lθ = −E(xi,yi
(k),zi(k),ci,ei)∼D[Lθ

(i)] 273

Lθ
(i) = −zi

(k) log pθ(zi
(k)|xi, ci, ei,yi

(k)) 274

−(1− zi
(k)) log(1− pθ(zi

(k)|xi, ci, ei,yi
(k)))

(6)
275

2.2.2 UALIGN PPO: Policy Model Training 276

The UALIGN PPO is to elicit the LLM’s factual 277

expressions to a question with the uncertainty mea- 278

sures using obtained models. Inspired by the 279

progress of reinforcement learning from human 280

feedback (RLHF) technique (Ouyang et al., 2022; 281

Ziegler et al., 2019), we employ proximal policy 282

optimization (PPO) (Schulman et al., 2017) for 283

LLM optimization with the reward model θ. As 284

illustrated in Fig. 3 (b), the LLM to be optimized 285

is used as the policy πθ. During this phase, we 286

iteratively feed the question x, and the predicted 287

confidence c and entropy e to both the policy πθ 288

and the reference πo, and the reward function r 289

will facilitate reliable expressions of y of the pol- 290

icy model πθ. Model update details are further 291

specified in Appendix B.1. The training objective 292

is to maximize the following reward function r as 293

argmax
πθ

Ex∼D,c∼τ(x),e∼µ(x),y∼πθ(x,c,e) [r] 294

r = θ(x,y, c, e)︸ ︷︷ ︸
r1

−βKL[πθ(x, c, e)||πo(x)]︸ ︷︷ ︸
r2

(7) 295

where the reward function r contains a reward sig- 296

nal r1 from θ and a KL-penalty r2 to make sure 297

the generated answers y by policy πθ don’t diverge 298

too much from the original policy πo. The hyper- 299

parameter β is the coefficient of KL-penalty. 300
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3 Experimental Setting301

3.1 Datasets302

The UALIGN training set is comprised of three303

widely used knowledge-intensive QA datasets:304

TriviaQA (TVQA) (Joshi et al., 2017) which con-305

tains closed-book trivia QA pairs to gauge models’306

factual knowledge, SciQ (Johannes Welbl, 2017)307

requiring scientific professional knowledge, and308

NQ-Open (Kwiatkowski et al., 2019) which is con-309

structed by Google Search queries along with an-310

notated short answers or documents.311

For testing, we evaluate the in-domain (ID) per-312

formance on the corresponding validation/test sets313

and generalization on an out-of-domain (OOD) test314

set LSQA (Xue et al., 2024) which contains multi-315

lingual language-specific QA pairs. More dataset316

details and statistics are presented in Appendix C.317

3.2 Evaluation Metrics318

To evaluate LLMs’ reliability, we employ two met-319

rics: Precision (Prec.) and Truthfulness (Truth.).320

Precision is defined as the proportion of correctly321

answered questions among all the known ques-322

tions, representing LLMs’ ability to accurately ex-323

press their known factual knowledge. Truthfulness324

represents the proportion of the sum of correctly325

answered known and refused unknown questions326

among all questions, indicating LLMs’ honesty327

level. Details can be referred to Appendix D.1.328

To ascertain the correctness of the LLM-329

generated answer y with the ground truth ŷ, we330

employ a string-matching approach. Exact match-331

ing (EM) of y ≡ ŷ always misjudges some correct332

answers with slight distinctions on such closed-333

book QA tasks. Therefore, we replace EM with a334

variant of y ∈ ŷ ∨ ŷ ∈ y to evaluate the accuracy.335

The specific illustrations of evaluation formulas336

and comparisons of several EM variants we tested337

with human evaluations are in Appendix D.2.338

3.3 Baselines339

We present several baselines in four categories be-340

low. To clearly delineate the differences between341

our proposed method and other baselines, we have342

illustrated all methods in Fig. 7 in Appendix E.343

Prompt-based We present two prompt-based344

baselines namely In-Context Learning (ICL), In-345

Context Learning with Refusal Examples (ICL-346

IDK), and In-Context Learning Chain-of-Thought347

(ICL-CoT) (Wei et al., 2022). The few-shot348

prompt templates are presented in Appendix F.349

SFT-based We employ standard Supervised Fine- 350

Tuning (SFT) by training an LLM to generate 351

answers for all questions. We also introduce R- 352

Tuning (Zhang et al., 2024a) which teaches LLM 353

to refuse their unknown questions. 354

RL-based Following RLHF technique (Ouyang 355

et al., 2022), we first train a reward model to deter- 356

mine correctness by SFT. Then we employ PPO to 357

optimize the policy model with the reward model 358

(RL-PPO). We also introduce an advanced vari- 359

ant called reinforcement learning from knowledge 360

feedback (RLKF) (Liang et al., 2024) which lever- 361

ages knowledge probing and consistency checking 362

to train the reward model. Following Zhang et al. 363

(2024b); Tian et al. (2024); Lin et al. (2024), we 364

also construct the factuality preference dataset to 365

conduct direct preference optimization (RL-DPO) 366

to enhance the factuality of LLMs. 367

Inference-based Another branch of work fo- 368

cuses on shifting the output distribution to improve 369

factuality during inference. Li et al. (2023) (ITI) 370

intervenes in the activations in attention heads to 371

the “truthfulness” direction. 372

3.4 Implementation Details 373

Experiments are conducted on two LLMs: Llama- 374

3-8B (Llama-3) 2 (AI@Meta, 2024) and Mistral- 375

7B (Mistral) 3 (Jiang et al., 2023). When preparing 376

the UALIGN dataset, we sample 10 responses for 377

each question on K = 10 different 1-shot prompts. 378

The sampling temperature T is set to 0.2 to achieve 379

a trade-off between the diversity and factuality of 380

the answer set. During training, all the LLMs are 381

trained using LoRA (Hu et al., 2022) with rank 382

r = 16. Both the uncertainty estimation models 383

and the reward model utilize the vanilla LLM as 384

their bases and are trained using LoRA with rank 385

r = 4. ADAM parameter update is used in a mini- 386

batch mode. Uncertainty estimation models and 387

the reward model are trained using SFT on the 388

UALIGN dataset. The UALIGN PPO algorithm and 389

all the RL-based baselines are implemented by trl 390
4. All training hyper-parameters are presented in 391

Appendix G. When decoding, the temperature is 392

also set to 0.2 to be consistent with the sampling 393

setting. All the experiments are conducted on 4 × 394

NVIDIA A100-40GB GPUs. 395

2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://github.com/huggingface/trl

5

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://github.com/huggingface/trl


Method TVQA (ID) SciQ (ID) NQ-Open (ID) Avg. (ID) LSQA (OOD)
Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑

Llama-3-8B
ICL 76.15 56.55 70.43 44.30 50.28 20.11 65.62 40.32 77.35 52.98
ICL-IDK 69.17 54.10 68.36 43.00 45.43 20.72 60.98 39.27 66.67 50.24
ICL-CoT 66.68 53.37 72.34 45.90 57.34 23.60 65.45 40.95 73.96 49.37
SFT 70.80 52.57 72.18 45.40 41.41 16.57 61.46 38.18 68.09 46.63
R-Tuning 72.93 55.44 71.38 44.90 47.81 18.12 64.04 39.48 71.54 52.15
RL-PPO 76.32 55.19 75.70 45.80 54.07 24.19 68.03 41.72 72.18 48.43
RL-DPO 72.08 53.96 71.23 44.20 49.65 19.18 64.32 39.11 71.09 48.88
RLKF 77.12 56.07 72.36 44.90 54.86 22.15 68.11 41.04 74.95 52.46
ITI 71.09 53.97 72.35 43.80 43.20 17.13 62.21 38.30 68.52 46.99
UALIGN 79.14 57.04 76.44 48.00 56.60 26.09 70.72 43.71 79.56 55.88

(w/o Conf.) 74.13 54.45 74.05 45.00 54.19 23.60 67.45 41.01 74.25 52.06
(w/o Entro.) 78.43 57.69 75.39 47.50 56.68 27.56 70.16 44.25 76.14 54.43

Mistral-7B
ICL 77.92 55.14 68.62 42.20 52.09 17.95 66.21 38.43 74.09 47.71
ICL-IDK 72.59 51.37 63.74 39.20 51.13 17.67 62.48 36.20 72.27 47.32
ICL-CoT 76.73 54.78 71.87 44.20 54.47 18.22 67.69 39.06 79.24 52.59
SFT 74.57 54.77 65.85 42.50 50.82 14.42 63.74 37.08 68.33 44.00
R-Tuning 67.70 52.25 64.44 40.10 46.33 15.52 59.49 36.29 64.67 44.05
RL-PPO 79.23 55.08 71.35 44.10 53.76 19.19 68.11 39.45 74.49 49.67
RL-DPO 72.20 52.98 66.44 41.80 50.95 16.42 63.19 37.06 67.82 43.77
RLKF 80.43 56.92 70.66 43.90 52.09 18.24 67.72 39.68 74.19 49.23
ITI 74.65 55.16 66.90 44.90 51.12 16.68 64.22 38.91 67.73 46.20
UALIGN 82.10 59.05 73.21 46.70 54.17 19.64 70.82 41.79 76.29 52.89

(w/o Conf.) 76.44 55.13 69.84 43.50 50.30 17.88 65.52 38.83 73.15 47.06
(w/o Entro.) 80.18 57.64 72.90 45.60 52.21 18.44 68.43 40.56 75.34 50.15

Table 1: Experiments of Precision (Prec.) and Truthfulness (Truth.) on four datasets on Llama-3 and Mistral.

4 Results and Analysis396

4.1 Main Experimental Results397

We present the results of UALIGN and several base-398

lines on three ID and one OOD test sets as shown399

in Table 1. Several findings are listed below.400

Reliability Significant improvements are con-401

sistently achieved on diverse datasets using the402

proposed UALIGN framework over other baseline403

methods on both Llama-3 and Mistral. We high-404

light the supreme Precision and Truthfulness per-405

formance using grey highlights among the all base-406

lines of each column in Table 1. The core idea of407

our UALIGN framework is the utilization of un-408

certainty estimation models. Compared with the409

most relevant baselines of RL-PPO and RLKF, both410

the reward model and policy model in UALIGN411

generate predictions and responses conditioned on412

uncertainty estimations regarding the knowledge413

boundaries to questions, thereby yielding better re-414

liability performance. It can be attributed that by415

explicitly appending uncertainty measures follow-416

ing the question, LLMs can assist LLMs in eliciting417

more accurate responses based on intrinsic knowl-418

edge boundary representations.419

Generalization We also introduced an OOD test420

set to assess the generalization capability of the421

Conf. Entro. ID OOD
TVQA SciQ NQ-Open LSQA

Llama-3-8B
✗ ✗ 82.31 79.00 67.45 70.12
✓ ✗ 85.41 84.30 70.37 75.09
✗ ✓ 82.05 77.90 67.85 70.40
✓ ✓ 86.73 86.40 72.00 74.59

Mistral-7B
✗ ✗ 84.53 77.30 65.24 68.31
✓ ✗ 86.80 79.50 72.10 72.95
✗ ✓ 85.24 74.60 66.64 71.22
✓ ✓ 88.06 79.80 75.14 73.61

Table 2: Accuracy of reward model varying different
uses of uncertainty measures Conf. and Entro. in
UALIGN dataset on Llama-3 and Mistral.

UALIGN method. The results in Table 1 indicate 422

that most training-based baselines (SFT, RL, In- 423

ference) are unstable and result in performance 424

decreasing compared with prompt-based baselines 425

when generalizing on the OOD test set. However, 426

comparable reliability performances are obtained 427

on two LLMs using the proposed UALIGN in com- 428

parison with prompt-based methods, demonstrating 429

strong generalization capability. 430

4.2 Effects of Uncertainty Estimation Models 431

Setting To investigate the effects of introducing 432

uncertainty estimations as input features to reward 433

models, we report the accuracy of reward models 434

that vary in different uses of two measures on ID 435
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Figure 4: Illustration of the effects of different uses
of uncertainty estimations under varying knowledge
boundaries perceived by LLMs.

and OOD tasks. The reward models are trained on436

the UALIGN dataset on both Llama-3 and Mistral.437

Results As in Table 2, we present the results of438

the accuracy of reward models. Significant accu-439

racy improvements of reward models are obtained440

that predominantly benefit from the use of confi-441

dence scores across both ID and OOD test sets442

on two LLMs, validating the effectiveness of our443

proposed UALIGN framework. The isolated use444

of semantic entropy does not guarantee a stable445

improvement but may even lead to a performance446

decrease on some test sets. However, when se-447

mantic entropy is employed in combination with448

confidence measures, it can facilitate further en-449

hancements, achieving optimal results across most450

test sets as highlighted grey cells for two LLMs.451

Analysis In the UALIGN framework, both confi-452

dence score and semantic entropy are introduced453

to quantify the intrinsic knowledge boundary of454

LLMs to questions. The explicit introduction of the455

knowledge boundary representations in prompts456

can be regarded as the added thinking step like CoT.457

The combined use of confidence and semantic en-458

tropy can achieve supreme prediction performance459

in Table 2. We illustrate the mechanism as follows.460

As demonstrated in Fig. 4 (a), by sampling mul-461

tiple responses to a question, we can approximate462

LLM’s intrinsic knowledge boundary, where the463

certainty level of the answer “The U.S.” is 40%.464

In previous work (Zhang et al., 2024a) which only465

considers the confidence level, the correct answer466

that the LLM knows but is not sure will be dis-467

carded and the LLM will refuse to answer. How-468

ever, as in Fig. 4 (b), the LLM can perceive that469

even though its certainty level to the correct answer470

is low, other answers are more uncertain and the 471

dispersion level of answers is relatively high which 472

is quantified by semantic entropy. After UALIGN 473

PPO training, the ability to generate correct an- 474

swers conditioned on questions and estimations is 475

well enhanced. As a result, the correct but unsure 476

knowledge will be elicited in the responses. 477

Figure 5: Results of AUORC↑ of several uncertainty es-
timation methods on TVQA using Llama-3 and Mistral.

4.3 Reliability of Uncertainty Estimations 478

Setting Evaluating the performance of confi- 479

dence score and semantic entropy is essential to 480

the UALIGN method. We present the AUROC (De- 481

tailed in Appendix D) results of two estimations 482

in comparison with three confidence/uncertainty 483

estimation methods (one probability-based method 484

(Prob.), two prompt-based methods including 485

p(True) and verbalized (Verb.) as illustrated in 486

Fig. 8) on TriviaQA on two LLMs. Results on 487

other datasets are remained in Appendix I. Details 488

of baseline estimation baselines are presented in 489

Sec. 5, Appendix H, and Fig. 8. 490

Results In Fig. 5, both the confidence and en- 491

tropy prediction consistently outperform other base- 492

line uncertainty estimation methods. Optimal AU- 493

ROC performances are obtained using confidence 494

on both Llama-3 (80.45) and Mistral (82.19). 495

Analysis After UALIGN SFT stage, the uncer- 496

tainty estimation models are converged on the 497

UALIGN dataset to predict both confidence and en- 498

tropy, indicating the models possess the ability to 499

predict the two measures. Practically, our utilized 500

confidence and semantic entropy incorporate the 501

advantages of both sampling- and training-based 502

uncertainty estimations. Multiple sampling can bet- 503

ter approximate the actual knowledge boundaries 504

of LLMs, while the training-based approach en- 505

ables the LLMs to learn to perceive their intrinsic 506

knowledge boundaries. Compared to other base- 507

lines that suffer from overconfidence issues with 508
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low AUROC scores, our utilized methods yield509

more reliable estimates, thereby ensuring improved510

performance for both the reward model and the511

policy model in the following stages.512

Figure 6: Experiments of Prec., Truth. (left), and time
costs (right) of various sampling number K of 1, 4, 7,
and 10 on TVQA on both Llama-3 and Mistral.

4.4 Effects of Sampling Number and Cost513

Setting The sampling number K is a crucial514

hyper-parameter in the UALIGN method. Different515

values of K can significantly affect the precision of516

the knowledge boundary measurements. To eval-517

uate the effects, we compare performances using518

various K of 1, 4, 7, and 10. Experimental results519

on TVQA are presented in Fig. 6 and Appendix I.520

Findings Results in Fig. 6 indicate that when521

using small sampling numbers, increasing K leads522

to significant improvements in both Prec. and523

Truth.. However, as K increases, the reliability524

improvement tends to plateau, exhibiting conver-525

gence. Therefore, we opt K = 10 as the optimal526

setting and don’t experiment using larger K.527

We also report the sampling time costs to con-528

struct the training set in Fig. 6, and further specify529

cost analysis of UALIGN construction and infer-530

ence in Appendix B.2 and B.3 respectively. We531

showcase that with various acceleration and quan-532

tization methods, time costs of UALIGN can be533

significantly reduced when scaling to larger models534

or datasets, exhibiting both efficiency and efficacy.535

Analysis The results in Fig. 6 demonstrate that536

while the sampling number K increases linearly,537

the performance improvements are non-linear. This538

may be attributed to utilizing non-linear metrics, or539

it could suggest that K = 10 can approximate the540

actual knowledge boundaries, resulting in a gradual541

slowdown in performance gains. Consequently, set-542

ting K to 10 in this work makes a trade-off between543

performance gains and computation expense.544

5 Related Works 545

Knowledge Boundary Previous works investi- 546

gate the knowledge boundary (Yin et al., 2024) to 547

identify the known level of a knowledge piece of 548

LLMs by quantifying uncertainty estimations like 549

output consistency (Cheng et al., 2024), prompting 550

methods (Ren et al., 2023) or knowledge probing 551

(Ji et al., 2024). Generally, knowledge boundary 552

measures derive from uncertainty estimations. 553

Uncertainty Estimation for LLMs We catego- 554

rize uncertainty estimation methods on LLMs into 555

four classes as illustrated in Figure 8. ➀ Likelihood- 556

based methods Vazhentsev et al. (2023) directly 557

quantify sentence uncertainty over token probabil- 558

ities; ➁ Prompting-based methods instruct LLMs 559

to express uncertainty in words (Lin et al., 2022a; 560

Xiong et al., 2024) or to self-evaluate its correctness 561

on p(True) (Kadavath et al., 2022); ➂ Sampling- 562

based methods aggregate sampled responses to cal- 563

culate consistency (Xiong et al., 2024) or seman- 564

tic entropy (Kuhn et al., 2023); ➃ Training-based 565

methods (Lin et al., 2022a) propose to train LLMs 566

to improve linguistic uncertainty expressions. 567

Factuality Alignment LLM alignment is to 568

guide human preference through Reinforcement 569

Learning from Human Feedback (RLHF) (Ouyang 570

et al., 2022; Bai et al., 2022a). Distinct from recent 571

studies that apply RL to improve LLMs’ factuality 572

(Zhang et al., 2024b; Lin et al., 2024; Liang et al., 573

2024; Xu et al., 2024a), this work improves LLMs’ 574

reliability by explicitly leveraging the uncertainty 575

estimations for LLM alignment. 576

Due to the space limitation, detailed investiga- 577

tions of related works are shown in Appendix H. 578

6 Conclusion 579

In this paper, we present a UALIGN framework to 580

explicitly leverage uncertainty estimations to elicit 581

LLMs to accurately express factual knowledge that 582

LLMs cannot constantly answer correctly due to 583

ambiguous knowledge boundaries. We introduce 584

the dataset preparation process and UALIGN train- 585

ing strategies of factuality alignment by incorporat- 586

ing uncertainty estimations of the confidence score 587

and semantic entropy as input features into prompts. 588

Experiments on several knowledge QA tasks affirm 589

the efficacy of UALIGN to enhance the LLMs’ reli- 590

ability and generalizability, demonstrating signifi- 591

cant improvements over various baselines. 592
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Limitations593

The limitations and future work of this study are594

listed as follows:595

Task Expansion: The dataset used in this pa-596

per is solely based on factual knowledge QA597

tasks, with a simple and fixed template and re-598

sponse format. However, the UALIGN methodol-599

ogy has not been further validated on other fac-600

tual knowledge-based tasks such as open-form601

instruction-following tasks, long-form generation602

like biography, or even knowledge reasoning tasks,603

where the uncertainty estimations remain chal-604

lenging. In future works, we plan to extend the605

UALIGN framework to open-ended generation606

tasks to enhance the LLMs’ factual expressions.607

Computational Cost: The current method for608

constructing the UALIGN dataset relies on multiple609

samplings, requiring additional computational cost610

that linearly increases with the number of sampling611

instances K and a higher number of samplings612

is preferable to accurately approximate the knowl-613

edge boundaries. As we have adopted a range of ac-614

celeration and quantization methods to reduce the615

time cost during both constructing the dataset and616

inference as presented in Appendix B.2 and B.3,617

there remains potential for exploration to further618

alleviate computational resources requirements.619

Ethical Statement620

In this paper, three evaluators are employed to an-621

notate the correctness of four EM variants on se-622

lected samples, which aims to select the optimal623

EM variant to evaluate the correctness of the gener-624

ated answer and the ground-truth label as presented625

in Appendix D.2. All the evaluators are M.Phil.626

or Ph.D. students possessing sufficient expertise to627

carry out the evaluation. We meticulously adhered628

to legal and ethical standards throughout the human629

evaluation process, prioritizing privacy and obtain-630

ing informed consent. Evaluators were furnished631

with comprehensive details regarding the study’s632

objectives, data collection methodologies, and as-633

sociated risks or benefits. They were afforded the634

opportunity to seek clarifications and voluntarily635

provide consent before their involvement. All the636

human evaluation results were exclusively utilized637

for research purposes.638

Acknowledgments 639

References 640

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana 641
Rezazadegan, Li Liu, Mohammad Ghavamzadeh, 642
Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Ra- 643
jendra Acharya, et al. 2021. A review of uncertainty 644
quantification in deep learning: Techniques, appli- 645
cations and challenges. Information fusion, 76:243– 646
297. 647

AI@Meta. 2024. Llama 3 model card. AI@Meta. 648

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 649
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 650
Stanislav Fort, Deep Ganguli, Tom Henighan, 651
Nicholas Joseph, Saurav Kadavath, Jackson Kernion, 652
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac 653
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 654
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 655
Nanda, Catherine Olsson, Dario Amodei, Tom 656
Brown, Jack Clark, Sam McCandlish, Chris Olah, 657
Ben Mann, and Jared Kaplan. 2022a. Training 658
a helpful and harmless assistant with reinforce- 659
ment learning from human feedback. Preprint, 660
arXiv:2204.05862. 661

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, 662
Amanda Askell, Jackson Kernion, Andy Jones, 663
Anna Chen, Anna Goldie, Azalia Mirhoseini, 664
Cameron McKinnon, et al. 2022b. Constitutional 665
ai: Harmlessness from ai feedback. arXiv preprint 666
arXiv:2212.08073. 667

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 668
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 669
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 670
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 671
Gretchen Krueger, Tom Henighan, Rewon Child, 672
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 673
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 674
teusz Litwin, Scott Gray, Benjamin Chess, Jack 675
Clark, Christopher Berner, Sam McCandlish, Alec 676
Radford, Ilya Sutskever, and Dario Amodei. 2020. 677
Language models are few-shot learners. In Ad- 678
vances in Neural Information Processing Systems, 679
volume 33, pages 1877–1901. Curran Associates, 680
Inc. 681

Jiuhai Chen and Jonas Mueller. 2023. Quantifying un- 682
certainty in answers from any language model via 683
intrinsic and extrinsic confidence assessment. arXiv 684
preprint arXiv:2308.16175. 685

Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wen- 686
wei Zhang, Zhangyue Yin, Shimin Li, Linyang Li, 687
Zhengfu He, Kai Chen, and Xipeng Qiu. 2024. Can 688
ai assistants know what they don’t know? Preprint, 689
arXiv:2401.13275. 690

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 691
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 692
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 693

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2401.13275
https://arxiv.org/abs/2401.13275
https://arxiv.org/abs/2401.13275


Stoica, and Eric P. Xing. 2023. Vicuna: An open-694
source chatbot impressing gpt-4 with 90%* chatgpt695
quality.696

Angelos Filos, Sebastian Farquhar, Aidan N Gomez,697
Tim GJ Rudner, Zachary Kenton, Lewis Smith, Mi-698
lad Alizadeh, Arnoud de Kroon, and Yarin Gal.699
2019. Benchmarking bayesian deep learning with di-700
abetic retinopathy diagnosis. Preprint at https://arxiv.701
org/abs/1912.10481.702

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as703
a bayesian approximation: Representing model un-704
certainty in deep learning. In Proceedings of The705
33rd International Conference on Machine Learn-706
ing, volume 48 of Proceedings of Machine Learning707
Research, pages 1050–1059, New York, New York,708
USA. PMLR.709

Yarin Gal et al. 2016. Uncertainty in deep learning.710
Ph.D. Thesis.711

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal,712
Amir Feder, Roi Reichart, and Jonathan Herzig. 2024.713
Does fine-tuning LLMs on new knowledge encour-714
age hallucinations? In Proceedings of the 2024 Con-715
ference on Empirical Methods in Natural Language716
Processing, pages 7765–7784, Miami, Florida, USA.717
Association for Computational Linguistics.718

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl,719
Preslav Nakov, and Iryna Gurevych. 2023. A sur-720
vey of language model confidence estimation and721
calibration. Preprint, arXiv:2311.08298.722

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-723
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek724
Sharma, Aditya Siddhant, Alex Ahern, Miaosen725
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud726
Doucet, Orhan Firat, and Nando de Freitas. 2023.727
Reinforced self-training (rest) for language modeling.728
Preprint, arXiv:2308.08998.729

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-730
berger. 2017. On calibration of modern neural net-731
works. Preprint, arXiv:1706.04599.732

Haixia Han, Tingyun Li, Shisong Chen, Jie Shi,733
Chengyu Du, Yanghua Xiao, Jiaqing Liang, and Xin734
Lin. 2024. Enhancing confidence expression in large735
language models through learning from past experi-736
ence. Preprint, arXiv:2404.10315.737

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-738
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu739
Chen. 2022. LoRA: Low-rank adaptation of large740
language models. In International Conference on741
Learning Representations.742

Ziwei Ji, Delong Chen, Etsuko Ishii, Samuel Cahyaw-743
ijaya, Yejin Bang, Bryan Wilie, and Pascale Fung.744
2024. LLM internal states reveal hallucination risk745
faced with a query. In Proceedings of the 7th Black-746
boxNLP Workshop: Analyzing and Interpreting Neu-747
ral Networks for NLP, pages 88–104, Miami, Florida,748
US. Association for Computational Linguistics.749

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 750
sch, Chris Bamford, Devendra Singh Chaplot, Diego 751
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 752
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 753
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 754
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 755
and William El Sayed. 2023. Mistral 7b. Preprint, 756
arXiv:2310.06825. 757

Matt Gardner Johannes Welbl, Nelson F. Liu. 2017. 758
Crowdsourcing multiple choice science questions. In 759
arXiv. 760

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke 761
Zettlemoyer. 2017. TriviaQA: A large scale distantly 762
supervised challenge dataset for reading comprehen- 763
sion. In Proceedings of the 55th Annual Meeting of 764
the Association for Computational Linguistics (Vol- 765
ume 1: Long Papers), pages 1601–1611, Vancouver, 766
Canada. Association for Computational Linguistics. 767

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 768
Henighan, Dawn Drain, Ethan Perez, Nicholas 769
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 770
Tran-Johnson, et al. 2022. Language models 771
(mostly) know what they know. arXiv preprint 772
arXiv:2207.05221. 773

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. 774
Semantic uncertainty: Linguistic invariances for un- 775
certainty estimation in natural language generation. 776
In The Eleventh International Conference on Learn- 777
ing Representations. 778

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 779
field, Michael Collins, Ankur Parikh, Chris Alberti, 780
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 781
ton Lee, Kristina Toutanova, Llion Jones, Matthew 782
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob 783
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 784
ral questions: A benchmark for question answering 785
research. Transactions of the Association for Compu- 786
tational Linguistics, 7:452–466. 787

Balaji Lakshminarayanan, Alexander Pritzel, and 788
Charles Blundell. 2017. Simple and scalable pre- 789
dictive uncertainty estimation using deep ensembles. 790
In Advances in Neural Information Processing Sys- 791
tems, volume 30. Curran Associates, Inc. 792

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 793
2018. A simple unified framework for detecting out- 794
of-distribution samples and adversarial attacks. In 795
Advances in Neural Information Processing Systems, 796
volume 31. Curran Associates, Inc. 797

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter 798
Pfister, and Martin Wattenberg. 2023. Inference- 799
time intervention: Eliciting truthful answers from 800
a language model. In Thirty-seventh Conference on 801
Neural Information Processing Systems. 802

Siheng Li, Cheng Yang, Taiqiang Wu, Chufan Shi, Yuji 803
Zhang, Xinyu Zhu, Zesen Cheng, Deng Cai, Mo Yu, 804
Lemao Liu, Jie Zhou, Yujiu Yang, Ngai Wong, Xixin 805
Wu, and Wai Lam. 2024. A survey on the honesty of 806
large language models. Preprint, arXiv:2409.18786. 807

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://aclanthology.org/2024.emnlp-main.444
https://aclanthology.org/2024.emnlp-main.444
https://aclanthology.org/2024.emnlp-main.444
https://arxiv.org/abs/2311.08298
https://arxiv.org/abs/2311.08298
https://arxiv.org/abs/2311.08298
https://arxiv.org/abs/2311.08298
https://arxiv.org/abs/2311.08298
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2404.10315
https://arxiv.org/abs/2404.10315
https://arxiv.org/abs/2404.10315
https://arxiv.org/abs/2404.10315
https://arxiv.org/abs/2404.10315
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2024.blackboxnlp-1.6
https://aclanthology.org/2024.blackboxnlp-1.6
https://aclanthology.org/2024.blackboxnlp-1.6
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://arxiv.org/abs/2409.18786
https://arxiv.org/abs/2409.18786
https://arxiv.org/abs/2409.18786


Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiax-808
ing Zhang. 2024. Learning to trust your feelings:809
Leveraging self-awareness in LLMs for hallucina-810
tion mitigation. In Proceedings of the 3rd Workshop811
on Knowledge Augmented Methods for NLP, pages812
44–58, Bangkok, Thailand. Association for Compu-813
tational Linguistics.814

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan815
Xiong, Jimmy Lin, Wen tau Yih, and Xilun Chen.816
2024. Flame: Factuality-aware alignment for large817
language models. Preprint, arXiv:2405.01525.818

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022a.819
Teaching models to express their uncertainty in820
words. Transactions on Machine Learning Research.821

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022b.822
TruthfulQA: Measuring how models mimic human823
falsehoods. In Proceedings of the 60th Annual Meet-824
ing of the Association for Computational Linguistics825
(Volume 1: Long Papers), pages 3214–3252, Dublin,826
Ireland. Association for Computational Linguistics.827

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023.828
Generating with confidence: Uncertainty quantifi-829
cation for black-box large language models. arXiv830
preprint arXiv:2305.19187.831

Genglin Liu, Xingyao Wang, Lifan Yuan, Yangyi Chen,832
and Hao Peng. 2024. Examining llms’ uncertainty ex-833
pression towards questions outside parametric knowl-834
edge. Preprint, arXiv:2311.09731.835

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao,836
Jianbo Dai, Yingjia Wan, and Zhijiang Guo. 2024.837
Autopsv: Automated process-supervised verifier.838
Preprint, arXiv:2405.16802.839

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya,840
Li Zhang, Yanai Elazar, Niket Tandon, Marianna841
Apidianaki, Mrinmaya Sachan, and Chris Callison-842
Burch. 2024. Calibrating large language models with843
sample consistency. Preprint, arXiv:2402.13904.844

Andrey Malinin and Mark Gales. 2021. Uncertainty845
estimation in autoregressive structured prediction. In846
International Conference on Learning Representa-847
tions.848

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.849
SelfCheckGPT: Zero-resource black-box hallucina-850
tion detection for generative large language models.851
In Proceedings of the 2023 Conference on Empiri-852
cal Methods in Natural Language Processing, pages853
9004–9017, Singapore. Association for Computa-854
tional Linguistics.855

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and Y-856
Lan Boureau. 2022. Reducing conversational agents’857
overconfidence through linguistic calibration. Trans-858
actions of the Association for Computational Linguis-859
tics, 10:857–872.860

Kenton Murray and David Chiang. 2018. Correcting 861
length bias in neural machine translation. In Proceed- 862
ings of the Third Conference on Machine Translation: 863
Research Papers, pages 212–223, Brussels, Belgium. 864
Association for Computational Linguistics. 865

Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka 866
Marttinen. 2024. Kernel language entropy: Fine- 867
grained uncertainty quantification for llms from se- 868
mantic similarities. Preprint, arXiv:2405.20003. 869

OpenAI. 2023. Gpt-4 technical report. Preprint, 870
arXiv:2303.08774. 871

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 872
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 873
Sandhini Agarwal, Katarina Slama, Alex Ray, John 874
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 875
Maddie Simens, Amanda Askell, Peter Welinder, 876
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 877
Training language models to follow instructions with 878
human feedback. In Advances in Neural Information 879
Processing Systems, volume 35, pages 27730–27744. 880
Curran Associates, Inc. 881

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 882
Ermon, Christopher D. Manning, and Chelsea Finn. 883
2023. Direct preference optimization: Your lan- 884
guage model is secretly a reward model. Preprint, 885
arXiv:2305.18290. 886

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin 887
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen, 888
and Haifeng Wang. 2023. Investigating the factual 889
knowledge boundary of large language models with 890
retrieval augmentation. Preprint, arXiv:2307.11019. 891

John Schulman, Filip Wolski, Prafulla Dhariwal, 892
Alec Radford, and Oleg Klimov. 2017. Proxi- 893
mal policy optimization algorithms. arXiv preprint 894
arXiv:1707.06347. 895

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg 896
Durrett. 2023. A long way to go: Investigating length 897
correlations in rlhf. Preprint, arXiv:2310.03716. 898

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 899
mar. 2024. Scaling llm test-time compute optimally 900
can be more effective than scaling model parameters. 901
Preprint, arXiv:2408.03314. 902

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo- 903
pher D Manning, and Chelsea Finn. 2024. Fine- 904
tuning language models for factuality. In The Twelfth 905
International Conference on Learning Representa- 906
tions. 907

Katherine Tian, Eric Mitchell, Allan Zhou, Archit 908
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn, 909
and Christopher Manning. 2023a. Just ask for cali- 910
bration: Strategies for eliciting calibrated confidence 911
scores from language models fine-tuned with human 912
feedback. In Proceedings of the 2023 Conference 913
on Empirical Methods in Natural Language Process- 914
ing, pages 5433–5442, Singapore. Association for 915
Computational Linguistics. 916

11

https://doi.org/10.18653/v1/2024.knowledgenlp-1.4
https://doi.org/10.18653/v1/2024.knowledgenlp-1.4
https://doi.org/10.18653/v1/2024.knowledgenlp-1.4
https://doi.org/10.18653/v1/2024.knowledgenlp-1.4
https://doi.org/10.18653/v1/2024.knowledgenlp-1.4
https://arxiv.org/abs/2405.01525
https://arxiv.org/abs/2405.01525
https://arxiv.org/abs/2405.01525
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://openreview.net/forum?id=8s8K2UZGTZ
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://arxiv.org/abs/2311.09731
https://arxiv.org/abs/2311.09731
https://arxiv.org/abs/2311.09731
https://arxiv.org/abs/2311.09731
https://arxiv.org/abs/2311.09731
https://arxiv.org/abs/2405.16802
https://arxiv.org/abs/2402.13904
https://arxiv.org/abs/2402.13904
https://arxiv.org/abs/2402.13904
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.1162/tacl_a_00494
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://arxiv.org/abs/2405.20003
https://arxiv.org/abs/2405.20003
https://arxiv.org/abs/2405.20003
https://arxiv.org/abs/2405.20003
https://arxiv.org/abs/2405.20003
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2307.11019
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://openreview.net/forum?id=WPZ2yPag4K
https://openreview.net/forum?id=WPZ2yPag4K
https://openreview.net/forum?id=WPZ2yPag4K
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330


Katherine Tian, Eric Mitchell, Allan Zhou, Archit917
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,918
and Christopher D Manning. 2023b. Just ask for cali-919
bration: Strategies for eliciting calibrated confidence920
scores from language models fine-tuned with human921
feedback. arXiv preprint arXiv:2305.14975.922

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier923
Martinet, Marie-Anne Lachaux, Timothée Lacroix,924
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal925
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard926
Grave, and Guillaume Lample. 2023. Llama: Open927
and efficient foundation language models. Preprint,928
arXiv:2302.13971.929

Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jian-930
shu Chen, and Dong Yu. 2023. A stitch in time saves931
nine: Detecting and mitigating hallucinations of932
llms by validating low-confidence generation. arXiv933
preprint arXiv:2307.03987.934

Artem Vazhentsev, Akim Tsvigun, Roman Vashurin,935
Sergey Petrakov, Daniil Vasilev, Maxim Panov,936
Alexander Panchenko, and Artem Shelmanov. 2023.937
Efficient out-of-domain detection for sequence to se-938
quence models. In Findings of the Association for939
Computational Linguistics: ACL 2023, pages 1430–940
1454, Toronto, Canada. Association for Computa-941
tional Linguistics.942

Hao Wang and Dit-Yan Yeung. 2020. A survey on943
bayesian deep learning. ACM Comput. Surv., 53(5).944

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua945
Zhang, Cunxiang Wang, Guanhua Chen, Huimin946
Wang, and Kam fai Wong. 2024. Self-dc: When to re-947
trieve and when to generate? self divide-and-conquer948
for compositional unknown questions. Preprint,949
arXiv:2402.13514.950

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten951
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,952
and Denny Zhou. 2022. Chain of thought prompt-953
ing elicits reasoning in large language models. In954
Advances in Neural Information Processing Systems.955

Yuxin Xiao, Paul Pu Liang, Umang Bhatt, Willie956
Neiswanger, Ruslan Salakhutdinov, and Louis-957
Philippe Morency. 2022. Uncertainty quantification958
with pre-trained language models: A large-scale em-959
pirical analysis. In Findings of the Association for960
Computational Linguistics: EMNLP 2022, pages961
7273–7284, Abu Dhabi, United Arab Emirates. As-962
sociation for Computational Linguistics.963

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie964
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs965
express their uncertainty? an empirical evaluation of966
confidence elicitation in LLMs. In The Twelfth Inter-967
national Conference on Learning Representations.968

Hongshen Xu, Zichen Zhu, Situo Zhang, Da Ma, Shuai969
Fan, Lu Chen, and Kai Yu. 2024a. Rejection im-970
proves reliability: Training LLMs to refuse unknown971
questions using RL from knowledge feedback. In972
First Conference on Language Modeling.973

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, 974
Hongru Wang, Yue Zhang, and Wei Xu. 2024b. 975
Knowledge conflicts for LLMs: A survey. In Pro- 976
ceedings of the 2024 Conference on Empirical Meth- 977
ods in Natural Language Processing, pages 8541– 978
8565, Miami, Florida, USA. Association for Compu- 979
tational Linguistics. 980

Boyang Xue, Shoukang Hu, Junhao Xu, Mengzhe Geng, 981
Xunying Liu, and Helen Meng. 2022. Bayesian neu- 982
ral network language modeling for speech recogni- 983
tion. IEEE/ACM Transactions on Audio, Speech, and 984
Language Processing, 30:2900–2917. 985

Boyang Xue, Hongru Wang, Rui Wang, Sheng Wang, 986
Zezhong Wang, Yiming Du, Bin Liang, and Kam-Fai 987
Wong. 2024. A comprehensive study of multilin- 988
gual confidence estimation on large language models. 989
Preprint, arXiv:2402.13606. 990

Boyang Xue, Weichao Wang, Hongru Wang, Fei Mi, 991
Rui Wang, Yasheng Wang, Lifeng Shang, Xin Jiang, 992
Qun Liu, and Kam-Fai Wong. 2023. Improving fac- 993
tual consistency for knowledge-grounded dialogue 994
systems via knowledge enhancement and alignment. 995
In Findings of the Association for Computational Lin- 996
guistics: EMNLP 2023, pages 7829–7844, Singapore. 997
Association for Computational Linguistics. 998

Yuchen Yang, Houqiang Li, Yanfeng Wang, and 999
Yu Wang. 2023. Improving the reliability of large 1000
language models by leveraging uncertainty-aware in- 1001
context learning. Preprint, arXiv:2310.04782. 1002

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neu- 1003
big, and Pengfei Liu. 2024. Alignment for honesty. 1004
Preprint, arXiv:2312.07000. 1005

Xunjian Yin, Xu Zhang, Jie Ruan, and Xiaojun Wan. 1006
2024. Benchmarking knowledge boundary for large 1007
language model: A different perspective on model 1008
evaluation. arXiv preprint arXiv:2402.11493. 1009

Hanning Zhang, Shizhe Diao, Yong Lin, Yi R. Fung, 1010
Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji, 1011
and Tong Zhang. 2024a. R-tuning: Instructing large 1012
language models to say ‘i don’t know’. Preprint, 1013
arXiv:2311.09677. 1014

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, 1015
Lifeng Jin, Linfeng Song, Haitao Mi, and Helen 1016
Meng. 2024b. Self-alignment for factuality: Mit- 1017
igating hallucinations in llms via self-evaluation. 1018
Preprint, arXiv:2402.09267. 1019

Kaitlyn Zhou, Dan Jurafsky, and Tatsunori Hashimoto. 1020
2023. Navigating the grey area: How expressions 1021
of uncertainty and overconfidence affect language 1022
models. In Proceedings of the 2023 Conference on 1023
Empirical Methods in Natural Language Processing, 1024
pages 5506–5524, Singapore. Association for Com- 1025
putational Linguistics. 1026

12

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2023.findings-acl.93
https://doi.org/10.18653/v1/2023.findings-acl.93
https://doi.org/10.18653/v1/2023.findings-acl.93
https://doi.org/10.1145/3409383
https://doi.org/10.1145/3409383
https://doi.org/10.1145/3409383
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2402.13514
https://arxiv.org/abs/2402.13514
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://doi.org/10.18653/v1/2022.findings-emnlp.538
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=gjeQKFxFpZ
https://openreview.net/forum?id=lJMioZBoR8
https://openreview.net/forum?id=lJMioZBoR8
https://openreview.net/forum?id=lJMioZBoR8
https://openreview.net/forum?id=lJMioZBoR8
https://openreview.net/forum?id=lJMioZBoR8
https://aclanthology.org/2024.emnlp-main.486
https://doi.org/10.1109/TASLP.2022.3203891
https://doi.org/10.1109/TASLP.2022.3203891
https://doi.org/10.1109/TASLP.2022.3203891
https://doi.org/10.1109/TASLP.2022.3203891
https://doi.org/10.1109/TASLP.2022.3203891
https://arxiv.org/abs/2402.13606
https://arxiv.org/abs/2402.13606
https://arxiv.org/abs/2402.13606
https://doi.org/10.18653/v1/2023.findings-emnlp.525
https://doi.org/10.18653/v1/2023.findings-emnlp.525
https://doi.org/10.18653/v1/2023.findings-emnlp.525
https://doi.org/10.18653/v1/2023.findings-emnlp.525
https://doi.org/10.18653/v1/2023.findings-emnlp.525
https://arxiv.org/abs/2310.04782
https://arxiv.org/abs/2310.04782
https://arxiv.org/abs/2310.04782
https://arxiv.org/abs/2310.04782
https://arxiv.org/abs/2310.04782
https://arxiv.org/abs/2312.07000
https://arxiv.org/abs/2311.09677
https://arxiv.org/abs/2311.09677
https://arxiv.org/abs/2311.09677
https://arxiv.org/abs/2402.09267
https://arxiv.org/abs/2402.09267
https://arxiv.org/abs/2402.09267
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335
https://doi.org/10.18653/v1/2023.emnlp-main.335


Notation Description
Q Dataset containing n Question-Answering pairs. (|Q| = n)
P Set of few-shot exemplars.
xi The i-th question sample in Q.
ŷi The i-th ground-truth answer in Q.

yi
(k) The k-th sampled response to the i-th question in Q.
pk k-th few-shot exemplar to sample yi

(k).
Y i Answering set containing K sampled response

{
yi

(k)
}

for the i-th question xi.

zi
(k) The label of yi

(k) (zi(k) ∈ {0, 1}, 1 for True and 0 for False).
Zi Label set corresponding to Y i.
ci The confidence score for the i-th question xi.
ei The semantic entropy for the i-th question xi.
D Constructed UALIGN training set containing N tuple samples (xi,Y i,Zi, ŷi, ci, ei).
τ Uncertainty estimation model trained to calculate confidence score by feeding x.
µ Uncertainty estimation model trained to calculate semantic entropy by feeding x.
θ Binary classifier by feeding (x, c, e,y) as the reward model.

LM Training loss functions for three models respectively where M ∈ {τ, µ, θ}.
r Final reward signal consisted of reward score r1 and KL-penalty r2.
β Coefficient for the KL-penalty r2.
πθ Policy model to be optimized using r by PPO.
πo Reference model initialized by the original policy.
T Sampling temperatue.
K Number of sampled responses.
N Number of QA pairs.

Table 3: Summarized notations in this work.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B1027
Brown, Alec Radford, Dario Amodei, Paul Chris-1028
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-1029
guage models from human preferences. arXiv1030
preprint arXiv:1909.08593.1031

A Protocols1032

A.1 Definition of Notations1033

The definitions of the notations in this work are1034

summarized in Table 3.1035

A.2 Terminology Use1036

• In this work, “UALIGN” in small caps font1037

specifically indicates the proposed framework,1038

which indicates methodology like UALIGN1039

dataset, UALIGN SFT and UALIGN PPO.1040

B Method Specification and Supplement1041

B.1 Model Update during PPO1042

During the PPO process, only the policy model πθ1043

is optimized while the uncertainty models µ, τ do1044

not need to be updated because the reward model1045

θ updates are offline. As discussed and demon-1046

strated in Sec. 4.2 and Table 2, uncertainty models1047

are directly associated with and benefit the reward1048

model. In our UAlign PPO algorithm, by incorpo-1049

rating the two uncertainty estimations, the reward1050

model θ can provide more precise reward scores,1051

thereby guiding LLMs π to generate more factual1052

responses. Since the reward model is offline during1053

PPO, the uncertainty models also do not require 1054

online updates. 1055

In addition, due to the KL-divergence constraint, 1056

the knowledge distribution of policy LLMs may not 1057

diverge too much from the initial policy. Both un- 1058

certainty models and reward models are trained on 1059

data generated by sampling from the vanilla LLMs, 1060

and their combined effect is to elicit the LLMs’ 1061

capacity for factual expression, evolving towards 1062

improved reliability. During the PPO process, with 1063

the KL-divergence constraint in Equation 7, the 1064

knowledge distribution of policy LLMs may not 1065

shift too much from the initial policy. We demon- 1066

strate the accuracy-based confidence distribution 1067

of Llama-3 before and after UALIGN training on 1068

TriviaQA validation sets as follows. 1069

Conf. Range Before UAlign After UAlign
[0, 0.25) 2404 2116
[0.25, 0.5) 1786 1628
[0.5, 0.75) 1509 1747
[0.75, 1.0] 4261 4469

Table 4: Accuracy-based confidence distribution of
Llama-3 before and after UALIGN training on Trivi-
aQA validation sets.

Since the knowledge distribution does not shift 1070

too much from the initial policy, we can still 1071

achieve good performance without updating the un- 1072

certainty model for simplicity. Compared to tradi- 1073

tional RLHF that solely utilize reward models, our 1074
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proposed UALIGN introduces uncertainty models1075

that leverage knowledge boundary representations1076

to benefit reward model and finally enhance LLMs,1077

leading to signification improvements in reliability1078

and generalization of knowledge QA tasks.1079

B.2 Computation Cost of Constructing1080

UAlign Dataset1081

As mentioned in Sec. 4.4, we test the time costs1082

to construct the UAlign dataset D in different sam-1083

pling numbers. We present different sampling time1084

costs on 10000 QA samples on Llama-3-8B and1085

Llama-3-70B (AI@Meta, 2024) 5 on 4×40G A1001086

GPUs loaded in fp16. We have tried to address1087

the computation cost problem by introducing many1088

effective acceleration or quantization packages like1089

vllm 6, bitsandbytes 7, etc that are widely used to1090

drive test time scaling law (Snell et al., 2024). As1091

presented in Table 5, the results demonstrate the1092

efficiency of our proposed UALIGN method even1093

though scaling on larger models.1094

Model Sampling Number Time Cost

Llama-3-8B

1 18 min
4 22 min
7 24min

10 25min

Llama-3-70B

1 1h 18min
4 1h 33min
7 1h 40min

10 2h 12min

Table 5: Time cost in different sampling numbers of
UALIGN on Llama-3-8B and Llama-3-70B.

In addition, the relatively low computation costs1095

when sampling can be attributed that experiments1096

are conducted on knowledge QA datasets. The an-1097

swer spans are entity-level and each answer only1098

needs to generate a few tokens. Since the output1099

form is relatively simple, sampling ten times is suf-1100

ficient and cost-saving to accurately fit the knowl-1101

edge boundaries as presented in Sec. 4.4.1102

Furthermore, Test Time Scaling Law (Snell et al.,1103

2024) has attracted much attention recently which1104

proposed to consider allocating more computation1105

resources in inference to generate high-quality re-1106

sponses. These LLMs’ self-generated data can1107

be further used for LLM training to self-improve1108

LLMs (Gulcehre et al., 2023). Many works validate1109

that incorporating data multiply sampled on LLMs1110

5https://huggingface.co/meta-llama/Meta-Llama-3-70B
6https://github.com/vllm-project/vllm
7https://github.com/bitsandbytes-foundation/bitsandbytes

in inference can benefit LLMs for further improve- 1111

ments, which is a new trend for LLM training. In 1112

this way, our proposed UALIGN provides a novel 1113

insight of the test time scaling law to represent 1114

knowledge boundaries by calculating uncertainty 1115

estimations on the sampled responses, and further 1116

explicitly leverages the uncertainty estimations for 1117

factuality alignment, heralding a promising view of 1118

test time scaling law. Although few additional com- 1119

putation costs are required, our proposed UALIGN 1120

is still efficient to be utilized practically with sig- 1121

nificant reliability improvements. 1122

B.3 Computation Cost of Inference of UAlign 1123

Following B.2, we subsequently analyze the com- 1124

putation cost during inference of UALIGN. Our 1125

proposed UALIGN barely increases additional in- 1126

ference memory and time budget as follows. 1127

First, uncertainty models also share the base 1128

LLMs with their respective plug-in LoRA modules 1129

with rank r=4. Additional parameters introduced 1130

only account for less than 1% of the base model 1131

parameters. 1132

Second, uncertainty models only predict two to- 1133

kens of uncertainty estimations in inference. We 1134

report the inference time cost on four test sets of 1135

vanilla Llama-3 which only generates the answer to 1136

the question and UALIGN trained Llama-3 which 1137

predicts uncertainty estimations and then generates 1138

the answers on a single A100 GPU Card. 1139

Dataset Time Cost
Vanilla ICL UAlign

TVQA 58 min 1h 6min
NQ-Open 28 min 32m in

SciQ 6 min 7 min
LSQA 5 min 6 min

Table 6: Inference time cost on four test sets of Llama-3
using vanilla ICL prompt-based and UALIGN methods.
Note the inference time costs on all the baseline methods
in Sec. 3.3 are comparable to the vanilla ICL prompt-
based baseline method.

Therefore, with the slight increase in additional 1140

memory and time cost in inference, UALIGN 1141

significantly outperforms other baseline methods, 1142

demonstrating the reliability and efficiency on such 1143

tasks. 1144
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C Dataset Details1145

TriviaQA The TriviaQA dataset (Joshi et al.,1146

2017) 8 is a comprehensive reading comprehension1147

dataset of QA resource consisting of approximately1148

650,000 question-answer-evidence triples sourced1149

from 95,000 documents on Wikipedia and various1150

other websites. This dataset is distinguished by its1151

complexity and serves as an effective benchmark1152

for evaluating machine comprehension and open-1153

domain QA systems. Unlike standard QA bench-1154

mark datasets, where answers are directly retriev-1155

able, TriviaQA presents a more rigorous challenge1156

as it requires deeper inference to derive answers.1157

When constructing the UALIGN dataset, we pre-1158

process and extract 76,523 QA samples from the1159

TriviaQA training set and 9,960 from the devel-1160

opment set to contribute to the UALIGN training1161

and in-domain test set respectively. Since approx-1162

imating the knowledge distribution of a question1163

requires multiple sampling where the computation1164

cost is linearly increasing with the sampling time1165

K, to simplify the setup and conserve computation1166

resources, we conducted experiments using half of1167

the training data points from the original dataset.1168

SciQ The SciQ dataset (Johannes Welbl, 2017) 91169

contains 13,679 crowd-sourced science exam ques-1170

tions about physics, chemistry and biology, among1171

others. The original dataset was divided, with1172

11,679 samples allocated as the training set and1173

an additional 1,000 samples designated as the vali-1174

dation set. These were subsequently incorporated1175

into our UALIGN training set and in-domain test1176

set, respectively.1177

NQ-Open The NQ-Open dataset is derived from1178

Natural Question (Kwiatkowski et al., 2019) 10,1179

which is a QA dataset consisting of real queries1180

issued to the Google search engine. We employ1181

the training and development set of NQ-Open,1182

which contains 87,925 and 3,610 samples respec-1183

tively, to further enhance the UALIGN training1184

and in-doamin test set. Since data construction1185

is highly expensive, we also randomly sample half1186

of the QA pairs from the source training data. We1187

mix the selected training samples to construct the1188

UALIGN dataset, which is further used for U2Align1189

SFT+PPO training.1190

8https://huggingface.co/datasets/mandarjoshi/trivia_qa
9https://huggingface.co/datasets/allenai/sciq
10https://huggingface.co/datasets/google-research-

datasets/nq_open

LSQA The LSQA dataset is a multilingual 1191

knowledge-intensive QA dataset pertaining to 1192

language-dominant knowledge covering specific 1193

social, geographical, and cultural language con- 1194

texts for the UK & US, France, China, Japan, and 1195

Thailand respectively. In this study, we only input 1196

the QA pairs in English from each LSQA subset 1197

which includes 1,025 samples as the out-of-domain 1198

test set. 1199

D Evaluation Details 1200

D.1 Precision and Truthfulness 1201

Notation Indication
KC Known and answered correctly
KI Known but answered incorrectly
KR Known but refused to answer
UC Unknown but answered correctly
UI Unknown but answered correctly
UR Unknown and refused to answer

Table 7: Denotation of different answer types.

Explanations and Equations As defined in Ta- 1202

ble 7, "Truthfulness" is the proportion of questions 1203

the LLM either the known answered correctly or 1204

the unknown refused to answer, which measures 1205

the honesty of LLMs. Some unknown but correctly 1206

guessed answers will not be included. The equation 1207

of Truthfulness is as follows. 1208

Truthfulness = 1209

UR+KC

KC+KI + KR+UC+UI + UR
(8) 1210

Precision is defined as the proportion of correctly 1211

answered questions among all the known questions, 1212

representing LLMs’ ability to accurately express 1213

their known factual knowledge. The equation of 1214

Precision is as follows. 1215

Precision =
KC

KI + KC+KR
(9) 1216

Clarifications of Use of Truthfulness To avoid 1217

the over-conservative problem incurred by using 1218

precision only, we employ "truthfulness" as com- 1219

plementary to measure the proportion of questions 1220

the model either known answered correctly or un- 1221

known refused to answer, which reflects the hon- 1222

esty of the model. Therefore, as demonstrated in 1223
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Sec. 4 and Table 1, the previous methods like R-1224

Tuning which may lead models to be overly conser-1225

vative perform well in precision but poor in truth-1226

fulness. The employed two metrics of precision1227

and truthfulness can comprehensively measure the1228

reliability of different methods, thereby comprehen-1229

sively demonstrating the superiority of our method1230

over other baselines from these two perspectives.1231

D.2 Accuracy1232

For closed-book QA evaluation, we observe that1233

simply applying EM may misjudge the correct an-1234

swers. We compare several variants of EM as in1235

Table 8 and report their successful judgments on re-1236

sponses of 20 selected samples that are misjudged1237

using EM, where PEM, RRM, and PREM indicate1238

Positive-EM, Recall-EM, and Positive-Recall-EM1239

and the mathematical explanations are presented1240

in Table 8. Upon human discrimination, EMPR1241

exhibits the lowest failure rate and is therefore se-1242

lected as the evaluation metric for this work.1243

Variant Explanation # Fail
EM y ≡ ŷ 20

PEM y ∈ ŷ 16
REM ŷ ∈ y. 6

PREM y ∈ ŷ ∨ ŷ ∈ y. 2

Table 8: Number of failed judgments by human check
for different EM variants.

D.3 AUROC1244

Area Under the Receiver Operator Characteristic1245

Curve (AUROC) assesses the effectiveness of confi-1246

dence estimation (Filos et al., 2019) by quantifying1247

how likely a randomly chosen correct answer pos-1248

sesses a higher confidence score than an incorrect1249

one, yielding a score within the range of [0, 1],1250

implemented by sklearn toolkit 11. A higher AU-1251

ROC score implying higher reliability is preferred.1252

E Baseline Details1253

Prompt-based For all in-context learning meth-1254

ods, we extract the examples from the respective1255

training set to mitigate the knowledge distribution1256

shift between different datasets. For example, the1257

demonstrated examples in Appendix J are derived1258

from the TriviaQA training set and are specifically1259

used when inferring on the TriviaQA validation set.1260

For LSQA without the training set, we use the same1261

11https://github.com/scikit-learn/scikit-
learn/blob/main/sklearn/metrics/_ranking.py

examples as TriviaQA as their knowledge domains 1262

largely overlap. 1263

• ICL: Few-shot prompts containing m exam- 1264

ples are utilized for answer generation with 1265

temperature T = 0.2 where m is set to 2 as 1266

presented in the Template F. 1267

• ICL-IDK: Two examples are included in the 1268

few-shot prompt while one is selected from 1269

the ICL-used example, and another is an un- 1270

known question whose answer is revised to 1271

“Sorry, I don’t know.” as presented in the Tem- 1272

plate F. 1273

• ICL-CoT: We also employ the Chain-of- 1274

Thought in few-shot examples by recalling 1275

the relevant knowledge piece of LLMs and 1276

incorporating it into thinking steps before an- 1277

swering the question as presented in the Tem- 1278

plate F. 1279

• SFT: The standard supervised fine-tuning 1280

(SFT) is implemented by minimizing the neg- 1281

ative log-likelihood of the ground-truth ŷ con- 1282

ditioned on input question x on model π. 1283

argmin
π

LSFT = −E(xi,ŷi)∼D [log pπ(ŷ|x)]
(10)

1284

• R-Tuning: R-Tuning (Zhang et al., 2024a) is 1285

implemented in the same way as SFT which 1286

only revises the ground-truth label of un- 1287

known questions to the refusal answers. The 1288

unknown questions are determined if all the 1289

sampled responses in the UALIGN dataset are 1290

incorrect. 1291

• RL-PPO: Following (Ouyang et al., 2022), 1292

we develop the RL-PPO by training a reward 1293

model using the LLM-generated incorrect re- 1294

sponses as negative samples. Then we con- 1295

duct the PPO (Schulman et al., 2017) algo- 1296

rithm with the obtained reward model. In 1297

other word, the RL-PPO baseline is a variant 1298

of UALIGN which discards the uncertainty 1299

estimations. 1300

• RLKF: Following (Liang et al., 2024), we em- 1301

ploy the RLKF baseline by training the reward 1302

model on the LLMs’ internal states with the 1303

knowledge probes and further conduct PPO 1304
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using the reward model. The knowledge prob-1305

ing setting and implementations are referred1306

to as Liang et al. (2024).1307

• RL-DPO: All Tian et al. (2024); Lin et al.1308

(2024); Zhang et al. (2024b) focus on long-1309

context generation like biography. We still uti-1310

lize the LLMs’ generated incorrect responses1311

as negative samples to construct the prefer-1312

ence data to conduct the DPO (Rafailov et al.,1313

2023) algorithm.1314

• ITI: We replicate (Li et al., 2023) by training1315

a head probe in the attention layer to inter-1316

vene in the activations to the “truthfulness”1317

direction. To be consistent with the original1318

work, we also train the head on TruthfulQA1319

(Lin et al., 2022b) with our prepared UALIGN1320

dataset to decode in the “truthfulness” direc-1321

tion. Then we further train the LLM using1322

LoRA by SFT to adapt QA tasks. Therefore,1323

the replicated ITI can be regarded as conduct-1324

ing SFT on LLMs with an additional “truth-1325

fulness” head.1326

F Prompt Template1327

ICL Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

1328

ICL-IDK Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {refusal}

### Question ###: {input_question}
### Answer ###:

1329

ICL-CoT Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Recall ###: {knowledge_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Recall ###: {knowledge_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

1330

G Training Setting Details 1331

To conserve memory overhead and accelerate 1332

computation, all the models are quantified using 1333

float16 (fp16) to load and save parameters dur- 1334

ing both the training and inference phases. During 1335

the training stage, the batch sizes for the LLM, un- 1336

certainty estimation models, and reward models are 1337

set at 4, 16, and 16, respectively. The initial learn- 1338

ing rate of 1e-4 is utilized with the 0.05 warm-up 1339

ratio and 0.01 weight decay of the ADAM opti- 1340

mizer. We set the training epoch to 2 and ensure 1341

that all the models can be trained to convergence 1342

by increasing additional training steps if necessary. 1343

The dropout rate is set at 0.05 during all model 1344

updates to reduce overfitting. In the RL phase, all 1345

the hyper-parameters related to PPO algorithm are 1346

default values by the trl PPOConfig recipe 12 ex- 1347

cept the epoch, learning rate, and batch size which 1348

are set at 2, 1e-5, and 2, respectively. 1349

H Detailed Related Works 1350

H.1 Knowledge Boundary 1351

Previous works investigate the knowledge bound- 1352

ary to identify the known level of a knowledge 1353

piece of LLMs by quantifying the confidence or 1354

uncertainty estimations like output consistency 1355

(Cheng et al., 2024), prompting methods (Ren et al., 1356

2023) or knowledge probing (Ji et al., 2024). Re- 1357

searchers are examining the limits of parametric 1358

knowledge in LLMs with the objective of delineat- 1359

ing the extent of the LLMs’ knowledge and iden- 1360

tifying their capability boundaries. Present stud- 1361

ies on the knowledge boundary primarily focus on 1362

12https://github.com/huggingface/trl/blob/main/trl/trainer/
ppo_config.py
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Figure 7: Illustration of several baselines as in Sec. 3.3.

measuring the knowledge boundaries using con-1363

fidence or uncertainty estimations on specialized1364

tasks. The ambiguity of knowledge boundaries can1365

be attributed to the knowledge distribution learned1366

from the pre-training stage or the influence of exter-1367

nal knowledge leading to knowledge conflict (Xu1368

et al., 2024b) and inconsistency (Xue et al., 2023). 1369

H.2 Uncertainty Estimation of LLMs 1370

To alleviate over-confidence and enhance the relia- 1371

bility of LLMs, reliable uncertainty estimation is 1372

essential to determine whether a question is known 1373

18



Figure 8: Several uncertainty estimation methods for Generative LLMs.

or not to the LLM (Geng et al., 2023). Both Un-1374

certainty and Confidence estimations can indicate1375

the reliability degree of the responses generated1376

by LLMs, and are generally used interchangeably1377

(Xiao et al., 2022; Chen and Mueller, 2023; Geng1378

et al., 2023; Lu et al., 2024). In this part, we in-1379

vestigate several commonly used confidence & un-1380

certainty estimation methods for generative LLMs1381

as mentioned in Sec. 5. Specifically, we denote1382

Conf(x,y) as the confidence score associated with1383

the output sequence y = [y1, y2, . . . , yN ] given the1384

input context x = [x1, x2, . . . , xM ]. We also illus-1385

trate the summarized estimation methods as well1386

as their disadvantages in Fig. 8.1387

Likelihood-based Methods: Following model 1388

calibration on classification tasks (Guo et al., 2017), 1389

Vazhentsev et al. (2023); Xue et al. (2024); Varsh- 1390

ney et al. (2023); Wang et al. (2024) intermediately 1391

quantify sentence uncertainty over token probabil- 1392

ities. In traditional discriminative models, except 1393

likelihood-based methods, confidence estimations 1394

also include ensemble-based and Bayesian methods 1395

(Lakshminarayanan et al., 2017; Gal and Ghahra- 1396

mani, 2016; Xue et al., 2022; Wang and Yeung, 1397

2020; Gal et al., 2016; Abdar et al., 2021), and 1398

density-based methods (Lee et al., 2018). How- 1399

ever, this likelihood-based method requires access 1400

to token probabilities and thus being limited to 1401
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white-box LLMs. The likelihood-based confidence1402

is estimated by calculating the joint token-level1403

probabilities over y conditioned on x. As longer se-1404

quences are supposed to have lower joint likelihood1405

probabilities that shrink exponentially with length,1406

the product of conditional token probabilities of1407

the output should be normalized by calculating the1408

geometric mean by the sequence length (Murray1409

and Chiang, 2018; Malinin and Gales, 2021), and1410

the confidence score can be represented as:1411

Conf(x,y) =

(
N∏
i

p(yi|y<i,x)

) 1
N

(11)1412

Similarly, the arithmetical average of the token1413

probabilities is adopted in Varshney et al. (2023):1414

Conf(x,y) =
1

N

N∑
i

p(yi|y<i,x) (12)1415

Furthermore, a low probability associated with1416

even one generated token may provide more in-1417

formative evidence of uncertainty (Varshney et al.,1418

2023). Hence, the minimum of token probabilities1419

is also employed.1420

Conf(x,y) = min {p(y1|x), . . . , p(yN |y<N ,x)}
(13)

1421

1422

Prompting-based Methods: Recently, LLMs’1423

remarkable instruction-following ability (Brown1424

et al., 2020) provides a view of instructing LLMs1425

to self-estimate their confidence level to previous1426

inputs and outputs including expressing uncertainty1427

in words (Lin et al., 2022a; Zhou et al., 2023; Tian1428

et al., 2023a; Xiong et al., 2024), or instructing the1429

LLM to self-evaluate its correctness on p(True)1430

(Kadavath et al., 2022). The P (True) confidence1431

score is implemented by simply asking the model1432

itself if its first proposed answer y to the question1433

x is true (Kadavath et al., 2022), and then obtain-1434

ing the probability p(True) assigned by the model,1435

which can implicitly reflect self-reflected certainty1436

as follows.1437

Conf(x,y) = p(True) = p(y is True?|x) (14)1438

Another method is to prompt LLMs to linguisti-1439

cally express tokens of confidence scores in verbal-1440

ized numbers or words (Lin et al., 2022a; Mielke1441

et al., 2022; Zhou et al., 2023; Tian et al., 2023b; 1442

Xiong et al., 2024). 1443

The sampling-based method refers to randomly 1444

sampling multiple responses given a fixed input x 1445

using beam search or temperature sampling strate- 1446

gies (Manakul et al., 2023; Xiong et al., 2024; Lyu 1447

et al., 2024). Various aggregation methods are 1448

adopted on sampled responses to calculate the con- 1449

sistency level as the confidence score. Moreover, 1450

some uncertainty quantification methods are used 1451

to calculate the entropy indicating the dispersion 1452

level of multiple outputs (Kuhn et al., 2023; Lin 1453

et al., 2023; Nikitin et al., 2024). 1454

Training-based Methods: For training methods, 1455

an external evaluator trained on specific datasets 1456

is introduced to output a confidence score given 1457

an input and an output. The evaluator can be a 1458

pre-trained NLI model (Mielke et al., 2022), or a 1459

value head connected to the LLM output layer (Lin 1460

et al., 2022a; Kadavath et al., 2022), or the LLM 1461

itself (Han et al., 2024). 1462

However, both self-verbalized and sampling 1463

methods for uncertainty estimations using extrinsic 1464

prompting or aggregation strategies with additional 1465

time costs fail to improve LLMs’ intrinsic capabil- 1466

ity of uncertainty estimation. Recent works investi- 1467

gate confidence learning methods to enhance the re- 1468

liability of LLMs (Han et al., 2024). Li et al. (2023) 1469

introduces Inference-Time Intervention (ITI) to en- 1470

hance the truthfulness of LLMs by shifting model 1471

activations during inference. Yang et al. (2023) 1472

proposes an uncertainty-aware in-context learning 1473

method leveraging uncertainty information to re- 1474

fine the responses but cannot improve uncertainty 1475

estimation. (Zhang et al., 2024a) proposes R-tuning 1476

to instruct LLMs to refuse unknown questions con- 1477

sidering uncertainty estimations as binary indica- 1478

tors. In contrast, our proposed UALIGN framework 1479

not only obtains more reliable uncertainty estima- 1480

tions regarding knowledge boundary information 1481

but also elicits accurate responses of LLMs. 1482

H.3 Factuality Alignment of LLMs 1483

Alignment is a standard procedure to improve 1484

LLMs’ helpfulness and factuality (Bai et al., 1485

2022a). The main goal of LLM alignment is to 1486

guide human preference through Supervised Fine- 1487

Tuning (SFT), Reinforcement Learning from Hu- 1488

man Feedback (RLHF) (Ouyang et al., 2022; Bai 1489

et al., 2022a) or AI feedback (Bai et al., 2022b), 1490

which may also guide LLMs to output detailed 1491
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and lengthy responses (Singhal et al., 2023) but in-1492

evitably encourage hallucination. Therefore, many1493

works explore to apply RL to improve LLMs’ factu-1494

ality through Proximal Policy Optimization (PPO)1495

(Schulman et al., 2017) with the trained reward1496

model (Liang et al., 2024; Xu et al., 2024a) or1497

Direct Preference Optimization (DPO) Rafailov1498

et al. (2023) with the constructed preference dataset1499

(Zhang et al., 2024b; Lin et al., 2024) to align with1500

factuality preferences annotated by human beings.1501

Xu et al. (2024a) encourage LLM to reject un-1502

known questions using the constructed preference1503

data by leveraging knowledge boundary feedback.1504

I Experiments1505

I.1 Experiments of Reliability of Uncertainty1506

Estimations1507

Due to the page limitation in the main part, we1508

present the AUROC performance results of the1509

used confidence and entropy compared with other1510

baseline uncertainty estimations on SciQ, NQ-1511

Open, and LSQA as in Fig. 9, 10, and 11.1512

Figure 9: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on SciQ on
Llama-3 and Mistral.

Figure 10: Results of AUORC↑ across several confi-
dence/uncertainty estimation methods on NQ-Open on
Llama-3 and Mistral.

Figure 11: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on LSQA on
Llama-3 and Mistral.

J Few-shot Prompt Examples 1513

10 different few-shot prompts for sampling on Triv- 1514

iaQA are demonstrated in Table 9. 1515
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Examplar ID Examples
1 Q: Which William wrote the novel Lord Of The Flies? A: Golding.
2 Q: Where in England was Dame Judi Dench born? A: York, UK.
3 Q: Neil Armstrong was a pilot in which war? A: Korean.
4 Q: How many home runs did baseball great Ty Cobb hit in the three world series in

which he played? A: None.
5 Q: Who had a big 60s No 1 with Tossin’ and Turnin’? A: Bobby Lewis.
6 Q: Which Disney film had the theme tune A Whole New World? A: ’Ala’ ad Din.
7 Q: In basketball where do the Celtics come from? A: City of Boston.
8 Q: Which element along with polonium did the Curies discover? A: Radium.
9 Q: Who was the Egyptian king whose tomb an treasures were discovered in the Valley

of the Kings in 1922? A: Tutanhamon.
10 Q: Where were the 2004 Summer Olympic Games held? A: Atina, Greece.

Table 9: Demonstrations of 1-shot examples for TriviaQA sampling to construct UALIGN dataset.

Examplar ID Examples
1 Q: What type of organism is commonly used in preparation of foods such as cheese

and yogurt? A: mesophilic organisms.
2 Q: What phenomenon makes global winds blow northeast to southwest or the reverse

in the northern hemisphere and northwest to southeast or the reverse in the southern
hemisphere? A: coriolis effect.

3 Q: Changes from a less-ordered state to a more-ordered state (such as a liquid to a
solid) are always what? A: exothermic.

4 Q: What is the least dangerous radioactive decay? A: alpha decay.
5 Q: Kilauea in hawaii is the world’s most continuously active volcano. very active

volcanoes characteristically eject red-hot rocks and lava rather than this? A: smoke
and ash.

6 Q: When a meteoroid reaches earth, what is the remaining object called? A: meteorite.
7 Q: What kind of a reaction occurs when a substance reacts quickly with oxygen? A:

combustion reaction.
8 Q: Organisms categorized by what species descriptor demonstrate a version of al-

lopatric speciation and have limited regions of overlap with one another, but where
they overlap they interbreed successfully? A: ring species.

9 Q: Alpha emission is a type of what? A: radioactivity.
10 Q: What is the stored food in a seed called? A: endosperm.

Table 10: Demonstrations of 1-shot examples for SciQ sampling to construct UALIGN dataset.
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