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Abstract

We propose a two-stage memory retrieval dynam-
ics for modern Hopfield models, termed U-Hop,
with enhanced memory capacity. Our key contri-
bution is a learnable feature map Φ which trans-
forms the Hopfield energy function into kernel
space. This transformation ensures convergence
between the local minima of energy and the fixed
points of retrieval dynamics within the kernel
space. Consequently, the kernel norm induced by
Φ serves as a novel similarity measure. It utilizes
the stored memory patterns as learning data to
enhance memory capacity across all modern Hop-
field models. Specifically, we accomplish this by
constructing a separation loss LΦ that separates
the local minima of kernelized energy by sepa-
rating stored memory patterns in kernel space.
Methodologically, U-Hop memory retrieval pro-
cess consists of: (Stage I) minimizing separation
loss for a more uniformed memory (local mini-
mum) distribution, followed by (Stage II) stan-
dard Hopfield energy minimization for memory
retrieval. This results in a significant reduction of
possible metastable states in the Hopfield energy
function, thus enhancing memory capacity by pre-
venting memory confusion. Empirically, with
real-world datasets, we demonstrate that U-Hop
outperforms all existing modern Hopfield models
and SOTA similarity measures, achieving substan-
tial improvements in both associative memory re-
trieval and deep learning tasks. Code is available
at GitHub; future updates are on arXiv.
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Figure 1. Separation Loss over Memory Set v.s. Retrieval Error.
We perform 200 runs of memory retrieval with U-Hop on MNIST.
The result shows a strong correlation between low separation loss
and low retrieval error.

1. Introduction
We address the memory confusion problem in the modern
Hopfield models by proposing a two-stage optimization for-
mulation, termed U-Hop, for the memory retrieval dynamics
of modern Hopfield models. We construct the similarity
measure of modern Hopfield models with a learnable kernel.
The feature map of the kernel is trained by maximizing the
separation among the entire stored memory set (Figure 2).
This allows Hopfield models under U-Hop to distinguish
different memory patterns with larger separation and hence
achieve larger memory capacity.

Let x ∈ Rd be the input query pattern, Ξ :=
[ξ1, · · · , ξM ] ∈ Rd×M be the memory patterns, and
⟨a,b⟩ := aTb be the inner product for vectors a,b ∈ Rd.
Hopfield models are energy-based associative memory mod-
els. They store memory patterns on the local minima of
their energy landscapes. For any input query x, they retrieve
its closest memory pattern through some energy minimiza-
tion algorithms initialized at x. These algorithms are also
known as memory retrieval dynamics. See Figure 2 for
a visualization. Ramsauer et al. (2020) proposed a large
foundation model compatible variant, the Modern Hopfield
Model (MHM). This model has a specific set of energy
function and retrieval dynamics, such that it subsumes trans-
former attention as its special case (see Appendix C) and
enjoys superior theoretical properties (see (Hu et al., 2023;
Wu et al., 2024; Ramsauer et al., 2020)). Specifically, they
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Figure 2. Visualization of U-Hop: Separation Maximization First, then Memory Retrieval Dynamics. The LHS represents the energy
landscape in original state space, where the memories stay close to each other. With separation loss minimization, we obtain a Φ
parameterized by W⋆, that is able to relocate memory patterns in the kernel space to more uniform locations, and thus results in the
separation between local minima of EK.

introduce the energy function:

EMHM(x) = − lse(β,ΞTx) +
1

2
⟨x,x⟩, (1.1)

and the retrieval dynamics

xnew = TMHM(x) = Ξ · Softmax(βΞTx), (1.2)

where lse (β, z) := log
(∑M

µ=1 e
βzµ

)
/β is the log-sum-

exponential function for any given vector z ∈ RM and
β > 0. The dot-product ΞTx in the lse function is known as
the overlap construction and serves as the similarity measure
between the input query x and memory set Ξ.

One highlighted property of modern Hopfield models is
their memory capacity, which is exponential in pattern di-
mension (Ramsauer et al., 2020; Hu et al., 2023; Wu et al.,
2024). However, their memory capacity and retrieval error
are dependent on the quality of memory distribution. To be
concrete, we define the memory storage and retrieval as1

Definition 1.1 (Stored and Retrieved). For all µ ∈ [M ],
let R := 1

2 minµ,ν∈[M ];µ̸=ν ∥ξµ − ξν∥ be the finite radius
of each sphere Sµ centered at memory pattern ξµ. We say
ξµ is stored if all x ∈ Sµ are generalized fixed points of
T , x⋆

µ ∈ Sµ, and Sµ ∩ Sν = ∅ for µ ̸= ν. We say ξµ is
ϵ-retrieved by T with x for an error ϵ, if ∥T (x)− ξµ∥ ≤ ϵ.

Let ∆µ := ⟨ξµ, ξµ⟩−maxν∈[M ],ν ̸=µ ⟨ξν , ξµ⟩ be the separa-
tion between a memory pattern ξµ from all other memories
in Ξ, and m be the largest norm among memory patterns.
Ramsauer et al. (2020) gives the retrieval error bound:

∥TMHM(x)− ξµ∥ ≤ 2m(M − 1)e−β(∆µ−2mR), (1.3)

for any x ∈ Sµ. This bound is crucial not only for charac-
terizing retrieval quality but also, in capacity analysis, as a

1Recall that, Given a function T : Rd → Rd. A generalized
fixed point of T is a point x ∈ Rd for which x ∈ T (x).

necessary condition for pattern ξµ to be stored in the model
(Hu et al., 2023, Theorem 3.1). Yet, it depends on Ξ.

∆µ measures the distance from a given ξµ to the nearest
memory pattern in Ξ. R measures the minimal separation
among all stored memories Ξ. Hence, they are both Ξ-
dependent. This Ξ-dependence in (1.3) results in potential
fuzzy retrievals, namely metastable states caused by multiple
nearby local minima in the energy landscape, especially
when ∆µ − 2mR is small. When this occurs, these fuzzy
retrievals deviate the retrieval process from the ground truth,
thereby hampering performance.

This fuzzy memory (memory confusion) issue is well-
known in literature. The dense associative memory model
(Krotov and Hopfield, 2016) tries to solve this issue by using
polynomial energy fucntion. The modern Hopfield models
(Demircigil et al., 2017; Ramsauer et al., 2020; Hu et al.,
2023; Wu et al., 2024; Hu et al., 2024b) try to solve this
issue by using exponential energy functions. However, all
these attempts still rely on the quality of Ξ. In this work,
we rethink the use of inner-product similarity measure (i.e.
ΞTx in (1.2)), and consider it as primary source of the fuzzy
memory problem. Specifically, due to its Euclidean nature,
inner-product assigns equal importance to all dimensions of
patterns and yields small ∆µ − 2mR if they (ξµ and some
ξν) share similar direction. This motivate us to replace the
overlap (inner product) construction of the energy function
with a similarity measure utilizing this Ξ-dependence.

To this end, we propose a kernalized similarity measure for
all modern Hopfield models, named U-Hop. This measure is
learnable. We propose to learn it by minimizing the average
separation among all possible stored memory pairs in set
Ξ. Namely, it is Ξ-sensitive. Physically, it converts the
original energy landscape into a kernalized landscape with
(on average) equally separated minima. While it does not
provably guarantee enlarging R (the minimal separation

2



Uniform Memory Retrieval with Larger Capacity for Modern Hopfield Models

among {ξµ}µ∈[M ]) in the kernel space, U-Hop addresses
the root cause of the fuzzy memory problem with strong
empirical evidence. It delivers a larger memory capacity and
a tighter retrieval error bound for modern Hopfield models,
surpassing all existing modern Hopfield models (Hu et al.,
2023; Wu et al., 2024; Ramsauer et al., 2020; Krotov and
Hopfield, 2016) and SOTA similarity measures, i.e. ℓ2-
distance and Manhattan distance proposed by Millidge et al.
(2022).

Contributions. Our contributions are as follows:

• We introduce a learnable feature map Φ that maps energy
E to a kernel space with kernel K(·, ·) := ⟨Φ(·),Φ(·)⟩.
The resulting kernelized energy EK , and its correspond-
ing retrieval dynamics TK satisfy the defining properties
of modern Hopfield models: convergence between local
minima of E and fixed points of retrieval dynamics T .
This allows us to construct a separation loss LΦ that dis-
tinguishes the local minima of EK by separating stored
memory patterns in kernel space.

• Methodologically, we introduce Uniform Hopfield Mem-
ory Retrieval (U-Hop). It is a two-stage optimization for-
mulation. The first stage is separation loss LΦ minimiza-
tion, distancing stored memory patterns in kernel space.
The second stage performs energy minimization with the
kernel-induced TK. The first stage enhanced EK, making
it able to relocate its local minima to a more separated
coordinate. As a result, modern Hopfield models under
U-Hop is able to obtain improved memory capacity.

• Empirically, U-Hop improves memory retrieval outcomes
by a large margin comparing to other baselines. When
applied to deep learning scenarios, U-Hop significantly
improves model’s memorization capacity, generalization
and convergence speed. We show that U-Hop improves
memory retrieval tasks by an average 30% margin even
under a single iteration of separation minimization, and
learning tasks by an average 3% margin.

Organization. Section 2 presents U-Hop. Section 3 con-
nects U-Hop to deep learning. Section 4 conducts extensive
numerical experiments to support U-Hop. Appendix includes
proofs, experimental details, and additional experimental
studies.

Notations. Bold lower case letters denote vectors and bold
upper case letters denote matrices. We write ⟨a,b⟩ := aTb
as the inner product for vectors a,b ∈ Rd. The index
set {1, ..., I} is denoted by [I], where I ∈ N+. The spec-
tral norm is denoted by ∥·∥2 which is equivalent to the
ℓ2-norm when applied to a vector. Throughout this pa-
per, we denote the memory patterns (keys) by ξ ∈ Rd

and the state/configuration/query pattern by x ∈ Rd, and
Ξ := (ξ1, ..., ξM ) ∈ Rd×M as shorthand for stored mem-
ory (key) patterns {ξµ}µ∈[M ]. We set norm n := ∥x∥ to be

the norm of the query pattern, and m := maxµ∈[M ] ∥ξµ∥
be the largest norm of memory patterns. We also provide a
nomenclature table (Appendix A) in the appendix.

2. U-Hop: Retrieval as Two-Stage Optimization
In this section, Section 2.1 introduces a learnable feature
map that maps patterns and the energy function into a kernel
space, and demonstrate the fixed-point convergence property
of kernelized modern Hopfield models. Section 2.2 presents
U-Hop (Algorithm 1), a two-stage algorithm for the kernel
learning with optimal theoretical guarantees. It maximizes
pattern separation by minimizing a novel Separation Loss.

2.1. Kernelized Memory Hopfield Energy

In this section, we first parameterize the similarity mea-
sure(s) in modern Hopfield model(s) with a learnable kernel
(via feature map (2.1)), and then show the induced mod-
els (with energy (2.2)) satisfying the defining properties of
modern Hopfield models (Theorem 2.1, Lemma 2.1).

Let K(·, ·) := ⟨Φ(·),Φ(·)⟩ : Rd × Rd → R+ be the kernel
for the given feature mapping Φ : Rd → RDΦ with DΦ ≫
d. In this work, we consider the linear affine feature map:
for any u,v ∈ Rd,

Φ(u) := Wu, with W ∈ RDΦ×d, (2.1)

such that K(u,v) = uTWTWv. Moreover, we shorthand
{K(ξµ,x)}Mµ=1 ∈ RM with K(Ξ,x) ∈ RM . With (2.1),
we introduce the Kernelized Memory Hopfield Energy

EK(x) = K(x,x)/2−Ψ⋆
α

(
β,K(ΞTx)

)
, (2.2)

where Ψ⋆
α is the convex conjugate of the Tsallis entropic

regularizer introduced in (Wu et al., 2024; Hu et al., 2023):
for any z = K(ΞTx) ∈ RM ,

Ψ⋆
α=1 (β, z) = lse (β, z) ,

Ψ⋆
α=2 (β, z) =

1
2∥βz∥

2 − 1
2∥z

⋆ − βz∥2 + 1
2 ,

Ψ⋆
α∈[1,2] (β, z) =

∫
dz α-EntMax (βz) ,

(2.3)

with z⋆ = Sparsemax (β, z). Appendix D.1 includes the
definitions of α-EntMax and Sparsemax.

Assumption 2.1. W ∈ RDΦ×d with DΦ ≫ d is full-rank.

Remark 2.1. This assumption is practical and implies that
A = WTW ∈ Rd×d is non-singular. In practice, initializ-
ing the weights randomly and independently with a continu-
ous distribution (e.g., Gaussian) makes it almost impossible
for W to be non-full rank, especially if DΦ ≫ d.

Theorem 2.1 (Retrieval Dynamics). With Assumption 2.1,
the energy function E(x) was monotonically decreased by
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the following retrieval dynamics:

TK (x) = Ξ · Sepα (β,K (Ξ,x)) , (2.4)

where Sepα=1 (·) = Softmax (·), Sepα=2 (·) =
Sparsemax (·) and Sepα∈[1,2] (·) = α-EntMax (·).

Proof Sketch. By Assumption 2.1 and the convexity of K,
there exists an inverse map that transforms the CCCP results
in kernel space back to the state space, where x and ξµ are
located. We then complete the proof using the Concave-
Convex Procedure (CCCP) and the convex conjugate con-
struction following (Hu et al., 2023; Wu et al., 2024). See
Appendix E.2 for a detailed proof.

The introduction of K releases similarity measure from Eu-
clidean inner-product to a learnable form via the weight
W of the features map Φ. Moreover, the new Hopfield
model ((2.2) and (2.4)) includes all deep learning compati-
ble existing modern Hopfield models (Hu et al., 2023; Wu
et al., 2024; Ramsauer et al., 2020). If we replace the kernel
K(·, ·) with inner-product ⟨·, ·⟩, then (2.2) reduces back to
the general sparse model Hopfield model (Wu et al., 2024)2.

While Theorem 2.1 guarantees the monotonic minimization
of energy using T , the fixed point of T might not be the local
minima of E(x) according to Sriperumbudur and Lanckriet
(2009). Therefore, we provide the next lemma to ensure
their alignment, following (Hu et al., 2023; Wu et al., 2024;
Ramsauer et al., 2020; Sriperumbudur and Lanckriet, 2009).

Lemma 2.1 (Convergence on retrieval dynamics TK). Given
the energy function E(x) Equation (2.2) and retrieval dy-
namics TK(x) Equation (2.4), respectively. For any se-
quence {xt}∞t=0 generated by the iteration xt′+1 = TK(xt′),
all limit points of this sequence are stationary points of E.

Proof Sketch. By the monotonic energy minimization prop-
erty of T (Theorem 2.1) along with (Hu et al., 2023,
Lemma 2.2), we prove this through Zangwill’s global con-
vergence theory (Zangwill, 1969; Sriperumbudur and Lanck-
riet, 2009). See Appendix E.1 for a detailed proof.

In summary, with Φ, the parameterized similarity measure
K introduces an additional degree of freedom for us to
relocate the minima of energy landscape EK. We show that
the Uniform Memory Hopfield Energy (2.2) and its induced
retrieval dynamics (2.4) satisfies the defining properties of
modern Hopfield models (Theorem 2.1 and Lemma 2.1).
Importantly, Lemma 2.1 states that minimizing the energy
E with T also leads to convergence to the fixed point of T .

2Recall that the general sparse Hopfield model encompasses
both dense (Ramsauer et al., 2020) and sparse (Hu et al., 2023)
models as its special cases.

Algorithm 1 U-Hop: Two-Stage Memory Retrieval
Input: Separation (Stage I) iterations N , Energy (Stage
II) iteration T , feature map Φ(x) := Wx, memory set Ξ,
query x, retrieval dynamics T , learning rate γ ≤ 1/G where
G is the Lipschitz constant of LΦ(Ξ)
Output: x

1: for i = 1, ...N do
2: W←W − γ · ∇WLΦ(Ξ). // Stage I
3: end for
4: Normalize the rows of W
5: x0 ← x
6: for t = 1, ...T do
7: x← TK (x) using Theorem 2.1 // Stage II
8: end for
9: return x

This is pivotal in motivating our next step: constructing a
separation loss LΦ. This loss distinguishes the local minima
of EK by separating stored memory patterns in the kernel
space. With LΦ, we then formulate the memory retrieval dy-
namics of the modern Hopfield associative memory model
as a two-stage optimization, termed U-Hop. This includes
an additional stage of separation maximization (by learning
the kernel), significantly enhancing memory capacity.

We first extend the standard notion of storage and retrieval
(Definition 1.1) literature using kernelized features (Φ(x) ∈
RDΦ ) to replace states of the model (x ∈ Rd.)

Definition 2.1 (Pattern Stored and Retrieved). For all µ ∈
[M ], let RΦ := 1

2 minν ̸=µ;ν,µ∈[M ] ∥Φ(ξµ)− Φ(ξν)∥ be the
finite radius of each (kernelized) sphere SΦ,µ centered at
(kernelized) memory pattern Φ(ξµ). We say ξµ is stored
if there exists a generalized fixed point of TK, such that
Φ(x⋆

µ) ∈ SΦ,µ, to which all limit points Φ(x) ∈ SΦ,µ

converge to, and SΦ,µ ∩ SΦ,ν = ∅ for ν ̸= µ. We say ξµ is
ϵ-retrieved by TK with x for an error ϵ.

2.2. Separation Loss and U-Hop

In this section, we first introduce a separation loss LΦ (Defi-
nition 2.2) over the stored memory set Ξ. MinimizingLΦ re-
sults in the separation of stored patterns within any given Ξ.
Consequently, we incorporate this separation-maximization
step into the standard memory retrieval process ((2.4)), lead-
ing to a novel two-stage formulation/algorithm, U-Hop, for
memory retrieval (Algorithm 1).

For any Φ(u),Φ(v) ∈ RDΦ and some t > 0, let

Gt(Φ(u),Φ(v)) := exp
{
−t∥Φ(u)− Φ(v)∥22

}
,

be the Radial Basis Function (Φ-RBF) kernel Gt : RDΦ ×
RDΦ → R+. We introduce the objective for learning the
feature map Φ : Rd → RDΦ (defined in (2.1)) over the
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memory set Ξ = {ξµ}µ∈[M ].

Definition 2.2 (Average Separation Loss). Given a stored
memory set Ξ, and a feature map Φ : Rd → RDΦ , the
separation loss of the function Φ is

LΦ (Ξ; t) := log E
u,v∼Ξ

[Gt (Φ(u),Φ(v))] , t > 0.

LΦ indicates the logarithm of average Gaussian separation
of Φ vector pairs over Ξ. Naturally, minimization of LΦ

leads to an on-average dissimilarity among kernelized mem-
ory patterns, i.e., {Φ(ξµ)}µ∈[M ]. Notably, LΦ is convex by
design and hence exists an optimizer W⋆ the maximizes the
average distance between all possible memory pattern pairs.

For later convenience, we also denote the logarithm of Φ-
RBF distance of two vectors u,v ∈ Rd as

ℓΦ(u,v) = log Gt (Φ(u),Φ(v)) , t > 0. (2.5)

It has a naive upper bound: ℓΦ (u,v) ≤ 0. The upper bound
0 happens only when u = v or Φ outputs a fixed feature
vector.

Now we introduce Algorithm 1, the Uniform Memory Re-
trieval U-Hop, for learning a suitable kernel and then retriev-
ing stored memory from the learned kernel space.

Algorithm 1 is a 2-stage optimization process. For the first
stage, we run N iterations of kernel learning to minimize
the separation loss, thus resulting in larger ∆µ for µ ∈ [M ].
Next, we rescale each row of the affine matrix W to ensure
the magnitude remains the same for memory patterns. For
the second stage, we run T update steps for the retrieval
dynamics, thus resulting in Hopfield energy minimization.
Note that the learned kernel results in a new energy land-
scape of E, and is expected to encode memory patterns into
local minima that separates from all other memory patterns.

2.3. Exact Memory Retrieval

Let x⋆ be fixed points of T . By Definition 2.1 and Hu et al.
(2023, Definition 2.2), the retrieval error exhibits a naive
bound

∥TK(x)− ξµ∥ ≤ max{∥x− ξµ∥, ∥x⋆ − ξµ∥}.

The ∥x⋆ − ξµ∥ term forbids the exact memory retrieval. Ex-
plicitly, exact memory retrieval requires the memory pattern
to be the fixed point of T , namely ∥x⋆ − ξµ∥ = 0. With
this observation, we deduce the condition of exact retrieval

Sep (β,K (Ξ, ξµ)) = eµ, (2.6)

where eµ is the one-hot vector with the µ-th element as
1. By plugging ξµ into T (·), we see it is a fixed point
T (ξµ) = ξµ and retrieves the target memory ξµ only when
(2.6) holds. In the standard modern Hopfield model (uti-
lizing the Softmax Sep function), the inability of Softmax

to satisfy (2.6) results in a lack of exact retrieval (Martins
et al., 2023), thereby preventing the modern Hopfield net-
work from converging to a single memory pattern.

To combat this, we show U-Hop achieves exact memory
retrieval when α > 1, based on the sparse extensions of
modern Hopfield model (Wu et al., 2024; Hu et al., 2023;
Martins et al., 2023). Specifically, we study the application
of U-Hop with α-EntMax as separation when α > 1.

Theorem 2.2. Let Tsparse be TK from Theorem 2.1 with
α > 1. Let Tsparse a real-valued kernel K with feature map
Φ. Let t > 0, β > 0. Supposed the query x ∈ SΦ,µ,
Φ (ξµ) is the fixed point of Tsparse if the following condition
is satisfied:

ℓΦ (ξµ, ξµ)− max
ν,ν ̸=µ

ℓΦ (ξν , ξµ) ≤ −
2t

β(α− 1)
. (2.7)

Proof. See Appendix E.3 for a detailed proof.

From (2.7), minimizing the separation loss gives the benefit
of having the memory pattern to be the fixed point of Tsparse.
As a result, Sparse and Generalized Sparse Hopfield models
(Hu et al., 2023; Martins et al., 2023; Wu et al., 2024) under
U-Hop further improves the retrieval accuracy. The next
corollary is an extension of the above theorem where we
observe the condition with respect to the lipschitzness of Φ.

Corollary 2.2.1. Let L > 0 be the Lipschitz constant of Φ.
Following Theorem 2.2, TK achieves exact memory retrieval
if

min
ν∈[M ],ν ̸=µ

∥ξµ − ξν∥ ≥

√
2

L2β(α− 1)
.

Proof. See Appendix E.3 for a detailed proof. Note that
with Φ defined in (2.1), Φ is always L-Lipschitz.

3. Connecting to Modern Deep Learning
To incorporate U-Hop into deep learning, we first introduce a
kernelized Hopfield layer. Here we propose a deep learning
compatible layer based on U-Hop as

U-Hop(Ξ,X) = Sep (βWKΦ(Ξ)WQΦ(x))WV WKΞ.

Note that this is a kernelized version of Hopfield (Ram-
sauer et al., 2020), SparseHopfield (Hu et al., 2023) and
GSH (Wu et al., 2024) layers, which serve as an alternative
to attention mechanism variants.

Next, we introduce the average separation loss for deep
learning compatible U-Hop.
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Figure 3. Memory Retrieval Error Comparison (Section 4.1: Memory Capacity & Noise Robustness). We conduct memory retrieval
experiments on the MNIST and CIFAR10 datasets. For the “Memory Set Size v.s. Error” plots, we vary the memory set size for retrieval.
For the “Noise Level v.s. Error” plots, we randomly sample Gaussian noise and rescale the norm of the noise w.r.t. different noise levels.
All four plots show U-Hop retrieved patterns with significantly less error compared to all existing Hopfield models across all sizes of
memory and noise levels.

Definition 3.1 (Separation Loss for DL). Given a stored
memory set Ξ, and a feature map Φ : Rd → RDΦ , the
deep learning compatible separation loss of the function Φ
is defined as

LΦ (Ξ; t) := log E
u,v∼Ξ

[
exp

{
2t

[
K(u,v)2 − 1

]}]
t > 0.

Let the pairwise distance of LΦ for any given u,v ∈ Rd be

ℓΦ(u,v) = 2t
[
KΦ(u,v)− 1

]
, t > 0,

with K(·, ·) :=
〈
Φ(·),Φ(·)

〉
for some Φ : Rd → RDΦ . We

present next the theorem for the expressiveness of U-Hop.

Theorem 3.1 (Kernelized Representation Theorem). Let
Φ be a feature map such that Φ := Rd → RDΦ , and K be
Φ-induced kernel. Assuming K satisfies: ℓΦ(u,v) = −2t
for any given u,v ∈ Ξ. With β > 0, input X ∈ Rd×M ,
M ≤ d, an arbitrary positive column stochastic matrix
P ∈ RM×M , there always exists matrices WQ,WK such
that

Softmax
(
β (WKΦ(X))⊤WQΦ(X)

)
= P.

Specifically, K is the loss minimizer of LΦ (Ξ; t).

Proof. See Appendix E.4 for a detailed proof.

The empirical validation is in Appendix G. This theorem
shows that with a suitable kernel, the expressiveness of
Hopfield layers under U-Hop reaches its full potential. The
main difference between this new loss function and the
separation loss is the square on K(u,v). Note that this
theorem requires K(u,v) = 0 for any given u,v ∈ Ξ,
u ̸= v, which implies it is only possible when d ≥ M .
In the context of deep learning, the patch size must not be
larger than the hidden dimension to realize this result. This
theorem extends the representation theorem in (Bhojanapalli
et al., 2020) to a practical setting, showing thatK overcomes
the low-rank bottleneck of the attention mechanism and
Hopfield layer as well.

The next algorithm is the realization of searching for K
under supervised learning schema. Consider a supervised
learning problem with input data X = {X1, ...,Xn}, label
Y = {Y1, ...,Yn}, model F := X → Y , where F consists
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of one layer of “U-Hop + Hopfield layer”. The stage-I of
U-Hop is parameterized by θ, and F is parameterized be θF .

Algorithm 2 U-Hop for Learning
Input: Data D = (X ,Y), Iteration number Ni, No,
model: F : X → Y , step sizes (γ, α), training objective
L, Stage I SGD batch size B1, Stage II SGD batch size
B2

1: for i = 1 to No do
2: for j = 1 to Ni do
3: Sample mini-batch X ∼ X
4: θi = θi−1 − γ∇̂LΦ(x). // SGD with B1

5: end for
6: Sample mini-batch X,Y ∼ X ,Y
7: θjF = θj−1

F − α∇̂L(x, y) // SGD with B2

8: end for
9: return F

4. Experimental Studies
To validate the efficacy of U-Hop, we test it on both associa-
tive memory retrieval task and deep learning task (image
classification) with multiple real world datasets.

4.1. Memory Retrieval

Memory Capacity. The memory retrieval task involves
retrieving a memory pattern from a stored memory set. In
particular, this experiment aim to reconstruct memories
based on a query. The query is generated by randomly
masking 50% of pixels in the target image. We compare our
method against several modern Hopfield models (Hu et al.,
2023; Ramsauer et al., 2020; Krotov and Hopfield, 2016).
We also vary the iteration number N for the first stage in
Algorithm 1. We use MNIST, CIFAR10 datasets for this
task. Please see Appendix F for experimental details.

Noise Robustness. This experiment follows the same proce-
dure as the memory capacity tasks, but with multiple levels
of injected noise on the target image instead of masking out
pixels to generate queries. We use Gaussian noise to con-
taminate the queries and vary the noise level by altering the
mean of the Gaussian vectors. As the noise level increases,
it becomes more difficult to retrieve the memory with low
error. A higher noise level results in greater difficulty in
achieving low-error retrieval. We use MNIST, CIFAR10 for
this task. Please see Appendix G for experimental details.

Baselines. We compare our method with Modern Hop-
field Model (Ramsauer et al., 2020), Sparse Modern Hop-
field network (Hu et al., 2023), Dense Associative Memory
(Polynomial Hopfield) (Krotov and Hopfield, 2016) (using
10-th order polynomial energy function). We also compare
U-Hop with existing similarity measures: L2 distance (ℓ2
MHM) and Manhattan distance (Man. MHM) (Millidge

et al., 2022).

Setting and Metrics. We set β = 1, t = 2 across all the
memory retrieval experiments. For the evaluation metric,
we follow (Hu et al., 2023; Millidge et al., 2022) to use the
Sum-of-Square pixel differences between the ground truth
image and the retrieved image.

Results. See Figure 3 for results of memory capacity and
noise robustness, Figure 5 for results of “Stage I iteration im-
prove retrieval error” and Appendix G.1 for the relationship
between separation loss and retrieval error.

• For memory capacity, U-Hop outperforms all other base-
lines by a large margin. This result shows the retrieval
dynamics under U-Hop is near optimal across all memory
set sizes. Next, we vary the iteration N to observe how
fast the retrieval error decreases as the N goes up. In
Figure 5, we show a strong correlation between N and
retrieval error.

• For noise robustness, U-Hop shows strong performance
against all baselines as well as showed in Figure 3.

4.2. Supervised Learning Tasks

Image Classification. For classification tasks, we com-
pare our method against Hopfield (Ramsauer et al., 2020)
and SparseHopfield (Hu et al., 2023). We test two set-
tings:

• U-Hop + Dense Modern Hopfield Model (Ramsauer et al.,
2020), and

• U-Hop + Sparse Modern Hopfield Model (Hu et al., 2023).

We vary the training sample size and observe model per-
formance. We focus on (i) convergence speed (speed of
loss decay), (ii) generalization power (test accuracy). We
use CIFAR10, CIFAR100 and TinyImageNet for this task.
Please see Appendix F for more experimental details.

We use the following Hopfield layer (Ramsauer et al.,
2020) to replace the self-attention mechanism in Vision
Transformer:

Hopfield (X)

=WV WK · Softmax (βWKΦ(X)WQΦ(X)) ,

where WK ,WQ are the same as in self-attention, and
WV ∈ Rh×h, where h is the hidden dimension.

Expressiveness. To verify Theorem 3.1, we evaluate how
many samples a model can memorize in supervised learn-
ing task. We follow the image classification settings, and
see how Hopfield models with and without U-Hop react to
sample size growth.

7
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Table 1. Model maximal training accuracy and test accuracy with and without U-Hop on CIFAR10, CIFAR100 and Tiny ImageNet
(Section 4.2: Supervised Learning Tasks). MHM denotes Modern Hopfield Model (Ramsauer et al., 2020). We omit variance as all
variance are ≤ 0.03%. The result demonstrates with U-Hop, models are able to consistently memorize more samples in the training data,
and further obtain generalization improvement. Note that the improvement on Max. Training accuracy is a validation of Theorem 3.1. In
Appendix G, we also show U-Hop allows modern Hopfield models to converge faster.

Models CIFAR10 CIFAR100 Tiny ImageNet

Max Train Acc. Test Acc. Max Train Acc. Test Acc. Max Train Acc. Test Acc.
MHM 56.0% 52.2% 32.3% 26.3% 48.9% 12.2%
MHM + U-Hop 64.6% 55.2% 44.1% 28.7% 61.4% 12.7%
Sparse MHM 55.9% 52.0% 49.6% 26.0% 17.2% 12.3%
Sparse MHM + U-Hop 66.4% 55.4% 45.4% 29.0% 60.6% 12.5%

Figure 4. Model Convergence Comparison with and without U-Hop on CIFAR100 (Section 4.2: Image Classification Task). Left to
right: Training Accuracy, Test Accuracy, Training Loss and Test Loss. Yellow and green curves represent modern Hopfield + U-Hop and
Sparse modern Hopfield + U-Hop. Blue and red curves represent modern Hopfield and Sparse modern Hopfield. The result demonstrates
without U-Hop, Hopfield layers fall into the low-rank bottleneck (Bhojanapalli et al., 2020) despite of high embedding dimension. On the
other hand, U-Hop successfully avoid such issue and thus have better training accuracy. For generalization power and convergence speed,
U-Hop also outperforms other baselines by a large margin. For other datasets and sample size, we leave the results in Appendix G.

Figure 5. Retrieval Error v.s. Separation-Maximization (Stage I of Algorithm 1) Iteration N (Section 4.1). We vary the iteration
number N and perform memory retrieval on U-Hop with modern Hopfield. We set β = 1, t = 2 and report the sum-of-square pixel
differences. The result shows the retrieval error decays fast with respect to the increase of N .

Time Series Prediction. We also use the STanHop-Net
(Wu et al., 2024) as our test-bed and observe the perfor-
mance change with and without U-Hop. For this task, we use
ETTh1, ETTm1 and WTH datasets. We use the prediction
horizon of {96, 192, 336, 720} for all datasets. Please see
Appendix F for experimental and hyperparameter details.

Baselines, Setting and Metrics. We compare the perfor-
mance of Modern Hopfield and Sparse Hopfield with and
without U-Hop. For image classification, we use Vision

Transformer (Dosovitskiy et al., 2020) as test-bed and re-
place the attention mechanism with Hopfield (Ramsauer
et al., 2020) and SparseHopfield layer (Hu et al., 2023).
For time series prediction, we compare the performance of
STanHop-Net (Hu et al., 2023) with and without U-Hop.

Results. See Table 1 for convergence results of image
classification task, Figure 6 for expressiveness results (The-
orem 3.1) and Table 8 for time series prediction.

• For image classification, we observe that modern Hop-
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Figure 6. Maximum Training Accuracy v.s. Training Sample
Size (Section 4.2: Expressiveness). Here we report the train
accuracy comparison between modern Hopfield models with and
without U-Hop. The maximum training accuracy represents how
many percentages of samples a model memorizes, which is highly
related to model expressiveness and complexity. Note that using
U-Hop does not increase model complexity, which shows U-Hop
improves model expressiveness by a large margin.

field models under U-Hop consistently outperform other
baselines, and the performance gap increases with the
sample size growth. Additionally, U-Hop models shows
superior convergence speed comparing to other baselines
on both training and test set. For model generalization,
see Table 1, for convergence results, see Appendix G.5.

• For model expressiveness, we observe that when the
dataset size is small, U-Hop has similar memorization
capability as Hopfield. However, as the dataset size
increases, Hopfield without U-Hop shows a sharp degen-
eration on training accuracy and struggles to converge
well, as evidenced in Figure 6. For more detailed results,
see Appendix G.4.

• For time series prediction, our results (in Appendix G.6)
demonstrate that even on SOTA Hopfield-based time se-
ries model, U-Hop delivers performance improvement
across different datasets and prediction horizons.

4.3. More Discussions on Experimental Results

For memory retrieval tasks, U-Hop delivers significant im-
provements on retrieval error by lowering separation loss
over the memory set. For the epochs N required for kernel
learning, we demonstrate that low retrieval error has strong
correlation with large size of N . This is expected as our
separation loss is convex and guaranteed to obtain global
optima with a rate of O(1/N). As showed in Figure 5,
separation loss consistently decreased as N goes up.

For classification tasks, U-Hop delivers significant improve-
ments in predictive power of the underlying models. Com-
paring to contrastive self-supervised learning (Wang and
Isola, 2020; Chen et al., 2020), where they maximize pair-
wise distance between samples, U-Hop maximizes the pair-
wise distance between patches. As Saunshi et al. (2022)
show maximizing the distance over samples improves class
generalization and is beneficial to downstream tasks.

Our experiment results indicate 2 new insights that the sepa-
ration on the patch/token level also leads to better generaliza-
tion. Firstly, we hypothesize that the Stage I of U-Hop serves
as a pre-training step for a better representation with more
separated data geometry. Namely, tokens/patches projected
to kernel space have higher quality of representation as
U-Hop’s first iteration leads to better patch separation. Sec-
ondly, though “ Hopfield layers with and without U-Hop”
and “expressiveness” experiments (Table 1 and Figure 6),
we observe that solely increasing embedding dimension do
not guarantee to escape from the low-rank bottleneck in
attention- and Hopfield-based models (Bhojanapalli et al.,
2020). We conclude that this is because these models do
not utilize their full expressive power (as in Theorem 3.1),
despite of high embedding dimension. This observation
supplements the existing “high-dimensional embedding im-
proves low-rank bottleneck” conjecture (Bhojanapalli et al.,
2020) with an intuitive yet effective learning scheme.

5. Concluding Remarks
We present a two-stage formulation for memory retrieval of
modern Hopfield models, U-Hop. Our key contribution is
a learnable similarity measure utilizing the stored memory
patterns as learning data. Through our analyses, U-Hop is
theoretically grounded and empirically strong. Experimen-
tally, it improves memory retrieval tasks by an average 30%
margin even with only a single separation-maximization
iteration and learning tasks by an average 3% margin. These
results are benchmarked against STOA similarity measures
(ℓ2- and Manhattan- distance (Millidge et al., 2022)) and
existing modern Hopfield models (Wu et al., 2024; Hu et al.,
2023; Ramsauer et al., 2020; Krotov and Hopfield, 2016).

Complexity Analysis. Algorithm 1 has a time complex-
ity of O(N + T ). Algorithm 2 has a time complexity of
O(NoNi). Although this increases the standard supervised
learning training time by a factor of Ni, our experimental
results demonstrate that models under U-Hop mitigate this is-
sue with a faster convergence speed, requiring fewer epochs
to converge. See Appendix G.5 for related empirical results.

Limitation and Future. One notable limitation is that the
optimality of separation loss (Definition 2.2) does not guar-
antee maximal separation for R := 1

2 minµ,ν ̸=µ∈[M ] ∥ξµ −
ξν∥ for any given Ξ. This problem (maximizing R) is
inherently a max-min (non-convex) problem and is less
straightforward to analyze (Comparison between max and
avg. loss is in Appendix G.2). To achieve provably optimal
memory capacity, we plan to explore different loss functions
or learning schemes in the future.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Andre Martins and Ramon Astudillo. From softmax to
sparsemax: A sparse model of attention and multi-label
classification. In Thirty-third International conference
on machine learning (ICML), pages 1614–1623. PMLR,
2016. URL https://arxiv.org/abs/1602.02068.

Andre Martins, Vlad Niculae, and Daniel C McNamee.
Sparse modern hopfield networks. In Associative Mem-
ory & Hopfield Networks in 2023, 2023. URL https:
//openreview.net/forum?id=zwqlV7HoaT.

Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas
Lukasiewicz, and Rafal Bogacz. Universal hopfield net-
works: A general framework for single-shot associative
memory models. In Thirty-ninth International Confer-
ence on Machine Learning (ICML), pages 15561–15583.
PMLR, 2022. URL https://arxiv.org/abs/2202.04557.

Matteo Negri, Clarissa Lauditi, Gabriele Perugini, Carlo
Lucibello, and Enrico Malatesta. Storage and learning
phase transitions in the random-features hopfield model.
Physical Review Letters, 131(25):257301, 2023. URL
https://arxiv.org/abs/2303.16880.

Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu.
Conv-coa: Improving open-domain question answering
in large language models via conversational chain-of-
action. arXiv preprint arXiv:2405.17822, 2024. URL
https://arxiv.org/abs/2405.17822.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner,
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Supplementary Material

• Section A. Table of Notations

• Section B. Related Work

• Section C. Connection to Attention

• Section D. Supplementary Theoretical Backgrounds

• Section E. Proofs of Main Text

• Section F. Implementation Details

• Section G. Additional Experiments

A. Table of Notations

Table 2. Mathematical Notations and Symbols

Symbol Description

a[i] The i-th component of vector a
⟨a,b⟩ Inner product for vectors a,b ∈ Rd

[I] Index set {1, · · · , I}, where I ∈ N+

∥·∥ Spectral norm, equivalent to the l2-norm when applied to a vector

d Dimension of patterns
M Number of stored memory patterns
β Scaling factor of the energy function controlling the learning dynamics. We set β = 1/

√
d in practice

x State/configuration/query pattern in Rd

x⋆ Stationary points of the Hopfield energy function
ξ Memory patterns (keys) in Rd

δ Noises in memory patterns in Rd

Ξ Shorthand for M stored memory (key) patterns {ξµ}µ∈[M ] in Rd×M

ΞTx M -dimensional overlap vector (⟨ξ1,x⟩ , · · · , ⟨ξµ,x⟩ , · · · , ⟨ξM ,x⟩) in RM

Φ(·) Kernelized feature mapping Φ(·) : Rd → DΦ

DΦ Dimension of the kernel space, i.e., dimension of output of Φ(·)
W Weighted matrix of the linear affine feature map defined in (2.1) in Rd×Df

K(·, ·) Kernel function takes the inner product form K(·, ·) = ⟨Φ(·),Φ(·)⟩: Rd × Rd → R+

M Reduced support set for TSVR M := {M(1), . . . ,M(k)} ⊆ {1, . . . ,M}
1M(µ) Indicator function corresponding toM, where 1M(µ) = 1 for µ ∈M and 1M(µ) = 0 for µ ̸∈ M

k Size of the support setM, defined as k := |M|
n Norm of x, denoted as n := ∥x∥
m Largest norm of memory patterns, denoted as m := maxµ∈[M ] ∥ξµ∥
R Minimal Euclidean distance across all possible pairs of memory patterns, denoted as R := 1

2 minµ,ν∈[M ] ∥ξµ − ξν∥
Sµ Sphere centered at memory pattern ξµ with finite radius R
x⋆
µ Fixed point of T covered by Sµ, i.e., x⋆

µ ∈ Sµ
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Table 3. Comparison between uniform memory Hopfield and other existing works.

Model Overlap Construction Separation Adaptivity

Dense Associative Memory (Krotov and Hopfield, 2016) Dot Product Polynomial No
Modern Hopfield Nework (Ramsauer et al., 2020) Dot Product Softmax No
Sparse Modern Hopfield Network (Hu et al., 2023) Dot Product Sparsemax No
U-Hop + (Wu et al., 2024; Hu et al., 2023; Ramsauer et al., 2020) Kernel Function Not Restricted Yes

B. Related Work
Hopfield Networks. Associative memory models (Willshaw et al., 1969; Kanerva, 1988) have been widely discussed in
both the neuroscience and machine learning fields. The main goal of these models are to store a set of memory patterns where
those patterns can be retrieved with respect to a given query. Hopfield models represent a primary category within the class
of computational associative memory models (Hopfield, 1982). Starting from the classical Hopfield models (Hopfield, 1982;
1984; Krotov and Hopfield, 2021), these models are able to store and retrieve binary patterns with guaranteed memorization
capacity. Their biologically plausible designs provides significant insights to understand both human brains (Yampolskaya
and Mehta, 2023; Krotov and Hopfield, 2021) and modern deep learning paradigms (Burns, 2024; Cabannes et al., 2024b;a;
Kozachkov et al., 2023; Negri et al., 2023; Ramsauer et al., 2020). Recently, these Hopfield models regain interest in
the deep learning field due to its connection to the attention mechanism in transformers. Notably, Ramsauer et al. (2020)
propose the Modern Hopfield models (MHMs) whose single-step update is equivalent to the attention mechanism (Vaswani
et al., 2017). As a result, this connection (starting from the dense associative memory model (Krotov and Hopfield, 2016))
facilitates the integration of associative memory models into modern deep learning (Hofmann et al., 2024; Hu et al., 2024b;
Xu et al., 2024; Wu et al., 2024; Burns and Fukai, 2023; Auer et al., 2024; Widrich et al., 2020) and large foundation models
(Hu et al., 2024a; Pan et al., 2024; Fürst et al., 2022).

Theory of Modern Hopfield Models. Beside empirical success, Modern Hopfield Models (MHM) offer a low-assumption
theoretical framework for analyzing transformer-based deep learning architectures. Toward their fundamental theory, Hu
et al. (2023) and Wu et al. (2024) point out that the energy function of MHM and its sparse variants are actually tied to the
convex conjugates of different entropic regularizers. This has led to the Sparse and Generalized Sparse HMHs, which are
connected to attention mechanisms with various degrees of sparsity (Correia et al., 2019; Vaswani et al., 2017; Martins and
Astudillo, 2016). Extending this foundation, Hu et al. (2024b) further complement this understanding with the principled
construction of possible efficient variants from a nonparametric perspective. Furthermore, Hu et al. (2024c) provide a
detailed theoretical analysis of all possible efficient variants, through the lens of fine-grained complexity theory.

We would like to comment further on the results of (Hu et al., 2024c). First, it observes that the magnitude of the patterns
(i.e., the norms of queries and memories) not only affects retrieval accuracy (as seen in the linear m scaling in (1.3)), but also
determines the efficiency of a variant of the modern Hopfield model. This norm-based efficiency criterion, with precision
guarantees, echoes the outlier effect in the attention heads of transformer models (Hu et al., 2024a). This outlier effect
is well-known in pretraining large transformer-based models for its negative impact on model quantization performance
(Sun et al., 2024; Bondarenko et al., 2023; 2021). To address this, Hu et al. (2024a) interpret the outlier effect as inefficient
rare memory retrieval and propose the outlier-efficient Hopfield layer for transformer-based large models, demonstrating
strong empirical performance and theoretical guarantees. The benefits of removing outliers in the attention heads of
transformer-based large foundation models are also highlighted in (Gu et al., 2024a;b; Alman and Song, 2024a;b; 2023;
Gao et al., 2023) from various theoretical perspectives. In this work, the removal of outliers is achieved by the row-wise
normalization in U-Hop (see line 4 of Algorithm 1).

Learning Associative Memory Models. Another line of research focuses on learning an associative memory model
(Tyulmankov et al., 2021; Salvatori et al., 2021) that has the ability to “read” (retrieve) and “write” (store) memories.
Particularly, this type of method contains a ”readout” network to retrieve/generate memories with a given query. Bartunov
et al. (2019) propose a meta learning framework to learn a generative network that treats the retrieval error as their energy
function. Yoo and Wood (2022) propose a hierarchical associative memory model that relaxes the requirement of meta
learning. Salvatori et al. (2021) propose a hierarchical generative network trained with predictive coding. Instead of deriving
the retrieval dynamics from the energy function, these methods normally use a generative model for memory retrieval.
With the expressiveness of deep neural networks, such method showed great empirical performances. However, since
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the structure of the readout network does not connect or dependent on the energy function, they are not able to preserve
appealing theoretical guarantees like Hopfield models.

Kernel Memory Networks. Iatropoulos et al. (2022) propose a kernelized memory network3. They formulate the modern
Hopfield models with a recurrent SVM model. In particular, their kernel is a single layer feed forward network that is
trained to memorize patterns. However, their framework consists of several high assumptions. In comparison, our proposed
framework has mild assumption on parameters and pattern distributions. In addition, U-Hop has significant practical usage
and was validated through extensive experiments in both memory retrieval and supervised learning tasks.

This work bridges two paradigms of associative memory models via a non-singular kernel, such that the kernelized energy
function (2.2) still satisfies the defining properties of modern Hopfield models, i.e. attention-included retrieval dynamics
(Theorem 2.1). A comparison between Uniform Memory Hopfield and similar models are shown in Table 3.

Kernel Approach in Transformer Attention. The usage of kernels and feature expansions in transformers has been
extensively discussed in previous literature. One primary objective of these studies is to reduce the computational complexity
associated with attention mechanisms. For instance, Chen et al. (2021b); Kitaev et al. (2020); Chen et al. (2021a) demonstrate
empirically and theoretically that these efficient algorithms can effectively approximate SoftMax attention. Song et al.
(2021) provides a generalized framework for attention mechanism by decomposing it into two parts, RBF kernel as similarity
measure and L2 norm weighting on tokens. In our paper, we offer a distinct perspective aimed at enhancing memory
capacity, drawing inspiration from the construction of the modern Hopfield model. Therefore, our approach differs from
attempting to approximate the standard modern Hopfield association. Instead, we focus on relocating memory patterns to
facilitate easier retrieval.

3In a similar vein, Schaeffer et al. (2024) bridge associative memory models and probabilistic modeling.
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C. Connection to Transformer Attentions
Suppose that X and Ξ are embedded from the raw query R and Y memory patterns, respectively, via XT = RWQ := Q,
and ΞT = YWK := K, with some projection matrices WQ and WK . Then, taking the transport of T in (1.2) and
multiplying with WV such that V := KWV , we obtain

Z := QnewWV = Softmax
(
βQKT

)
V.

This result enables that the modern Hopfield models are able to serve as powerful alternatives to the attention mechanism
equipped with additional functionalities.

This connection provides a insightful theoretical foundation for the attention mechanism. Specifically, the update step
in a Transformer’s attention mechanism functions as an inner-loop optimization, minimizing an underlying energy
function defined by the queries, keys, and values. Please see (Ramsauer et al., 2020; Hu et al., 2023; Wu et al., 2024).
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D. Supplementary Theoretical Backgrounds
D.1. Sparsemax and α-EntMax

Here we quote some known results from (Hu et al., 2023; Martins and Astudillo, 2016).

Let z,p ∈ RM , and ∆M := {p ∈ RM
+ |

∑M
µ pµ = 1} be the (M − 1)-dimensional unit simplex. where α-EntMax(·) :

RM → ∆M is a finite-domain distribution map defined as follows.

Definition D.1 (α-EntMax). The variational form of α-EntMax is defined by the optimization problem

α-EntMax(z) := argmax
p∈∆M

[⟨p, z⟩ −Ψα(p)], (D.1)

where Ψα(·) is the Tsallis entropic regularizer given by (D.2).

Ψα(p) :=

{
1

α(α−1)

∑M
µ=1

(
pµ − pαµ

)
, α ̸= 1,

−
∑M

µ=1 pµ ln pµ, α = 1,
, for α ≥ 1, (D.2)

Let z ∈ RM . Denote [a]+ := max{0, a}, z(ν) the ν’th element in a sorted descending z-sequence zsorted := z(1) ≥ z(2) ≥
. . . ≥ z(M), and κ(z) := max

{
k ∈ [M ]

∣∣ 1 + kz(k) >
∑

ν≤k z(ν)
}
. Sparsemax(·) is defined as (Proposition 1 of (Martins

and Astudillo, 2016)) :

Sparsemax(z) = [z− τ(z)1M ]+ , (D.3)

where τ : RM → R is the threshold function τ(z) =
[(∑

ν≤κ(z) z(ν)

)
− 1

]
/κ(z), satisfying

∑M
µ=1 [zµ − τ(z)]+ = 1 for

all z. Notably, κ(z) = |S(z)| where S(z) = {µ ∈ [M ] | Sparsemaxµ(z) > 0} is the support set of Sparsemax(z).

D.2. Separation Loss

With the output vector of Φ is normalized, we have

ℓΦ (u,v) = 2t · ⟨Φ(u),Φ(v)⟩ − 2t

= −t · ∥Φ(u)− Φ(v)∥2. (D.4)

Given the query x = ξµ + r, with r ∈ Rd, the uniformity loss satisfies the following:

ℓΦ (x, ξµ) = ℓΦ (ξν , ξµ) + ℓΦ (r, ξµ) + 2t.

D.3. Convergence Rate of Gradient Descent

Lemma D.1 ([JH: citation]). Suppose a function f := Rd → R is convex and differentiable, and that its gradient is Lipschitz
continuous with constant G > 0, i.e. ∥∇f(x)−∇f(y)∥2 ≤ G∥x− y∥ for any x, y ∈ Rd. Then if we run gradient descent
for k iterations with a fixed step size t ≤ 1/G, it returns a solution which satisfies

f(xk)− f(x⋆) ≤
∥∥x0 − x⋆

∥∥2
2

2tk
,

where f(x⋆) is the optimal value of f . Intuitively, this means that gradient descent is guaranteed to converge and that it
converges with rate O(1/k).
Remark D.1. From Lemma D.1, to achieve a bound of:

f(xk)− f(x⋆) ≤ ϵ,

we must run k = O(1/ϵ) iterations of gradient descent, which gives us a sub-linear
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E. Proofs of Main Text
E.1. Proof of Lemma 2.1

Proof. Here we introduce a helper lemma from (Sriperumbudur and Lanckriet, 2009, Lemma 5).

Lemma E.1 (Lemma 5 of (Sriperumbudur and Lanckriet, 2009)). Following Theorem 2.1, x is called the fixed point of
iteration T w.r.t. E if x = T (x) and is considered as a generalized fixed point of T if x ∈ T (x). If x⋆ is a generalized
fixed point of T , then, x⋆ is a stationary point of the energy minimization problem in Equation (2.2).

Based on Zangwill’s global convergence theory (Zangwill, 1969), a set of limit points of {xt}∞t=0 are all generalized fixed
points if the retrieval dynamics and energy function satisfies the following conditions:

1. For any sequence {xt}∞t=0 with x0 ∈ Sµ as starting point, all points in {xt}∞t=0 are in the compact set Sµ.

2. E(x) is monotonically decreased by T (x), where E(xt+1) ≤ E(xt),∀xt+1 = T (xt).

3. For all t, if E(xt+1) ≤ E(xt), T is closed at xt.

From Definition 2.1, since radius R is bounded and closed, Sµ is a compact set. Thus satisfies the first condition. CCCP
(Yuille and Rangarajan, 2001) studied the monotonic decreasing property. With our definition of Econvex, Econcave, we have
EU (x,y) = Econvex(x) + Econcave(y) + ⟨(x− y),∇xEconcave(y)⟩ is continuous in x,y. As a result, by (Hu et al., 2023,
Lemma E.1), condition (iii) holds due to the non-empty assumption on the point-to-set map T . Thus, by Zangwill’s global
convergence theory, all limit points are also the stationary points of the energy minimization problem in (2.2). By the results
in Lemma E.1, these fixed points are also the stationary points of the minimization problem. Thus, (2.2) is guaranteed to
converge to local minimum.

E.2. Proof of Theorem 2.1

Proof. Since the lse function is non-decreasing and convex, and K is convex, the composited function lse (K(Ξ,x)) is
convex. Thus, the energy function is the sum of a convex function: ⟨Wx,Wx⟩ /2 and a concave function: − lse (K(Ξ,x)).

Therefore, we have E(x) = Econvex(x)+Econcave(x). With the Concave-Convex Procedure (CCCP) (Yuille and Rangarajan,
2001), the energy function E(x) is guaranteed to monotonically decrease the energy E as a function of time with the
following update rule:

∇xEconvex(x
t+1)︸ ︷︷ ︸

=Axt+1

= −∇xEconcave(x
⊤)︸ ︷︷ ︸

=∇x

∫
T (x)dx

,

such that

Axt+1 = A︸︷︷︸
d×d

·Ξ · Sep (K (Ξ,x))︸ ︷︷ ︸
d×1

+c1,

where c1 ∈ Rd is a constant vector.

Since the matrix A is non-singular by Assumption 2.1, the solution of the update rule Axt+1 = AΞ · Sep (K(Ξ,x)) ∈ Rd

is the solution of xt+1 = Ξ · Sep (K(Ξ,x)) ∈ Rd minimizes the energy function E(x). This completes the proof.
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E.3. Proofs of Theorem 2.2 and Corollary 2.2.1

Proof. Here we use the same proof strategy in (Martins et al., 2023, Proposition 2).

The Fenchel-Young loss (Scholkopf and Smola, 2018) indicates that if a vector θ ∈ Rd for any d > 1 satisfies

α-EntMax(θ) = eµ,

then θ must satisfy

θµ −max
ν ̸=µ

θν ≥
1

α− 1
. (E.1)

If we have exact memory retrieval of pattern ξµ, the following equation holds:

eµ = α-EntMax (βK(Ξ, ξµ)) . (E.2)

This is also equivalent to ξµ itself being the fixed point.

By combining (E.1) and (E.2), we have

K(ξµ, ξµ)−max
ν ̸=µ
K(ξν , ξµ) ≥

1

β (α− 1)
.

With K(ξµ,x) = 1
2t · ℓΦ (ξµ,x), we have

ℓΦ (ξµ, ξµ)−max
ν ̸=µ

ℓΦ (ξν , ξµ) ≥
2t

β (α− 1)
.

(
By Theorem 2.2

)
With the assumption of normalized patterns, we are able to reduce the above condition to

max
ν ̸=µ

ℓΦ (ξν , ξµ) ≤
2t

β (α− 1)
. (E.3)

Assuming Φ is L-lipschitz4, we derive another upper bound from (E.3):

max
ν ̸=µ

ℓΦ (ξν , ξµ) = max
ν ̸=µ
− t · ∥Φ(ξν)− Φ(ξµ)∥2

≤ max
ν ̸=µ
− t · L2∥ξν − ξµ∥2. (E.4)

By combining (E.4) and (E.3), we obtain

min
ν ̸=µ
∥ξν − ξµ∥2 ≥

2

β (α− 1) · L2
.

(
By Corollary 2.2.1

)
This completes the proof.

4Φ is always L-lipschitz for some L ∈ N in our construction since a linear affine function always has L-Lipschitzness.
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E.4. Proof of Theorem 3.1

Theorem 3.1 (Kernelized Representation Theorem). Let Φ be a feature map such that Φ := Rd → RDΦ , and K be a
Φ-induced kernel. Assuming K satisfies: ℓΦ(u,v) = −2t for any given u,v ∈ Ξ. With β > 0, input X ∈ Rd×M , M ≤ d,
and an arbitrary positive column stochastic matrix P ∈ RM×M , there always exist matrices WQ,WK such that

Softmax
(
β

(
WKΦ(X)

)T
WQΦ(X)

)
= P.

Proof. Let X′ = Φ(X) ∈ Rd×M .

By construction, any two columns in X′ satisfies: 〈
Φ(u),Φ(v)

〉
= 0,

(
By ℓΦ(u,v) = −2t

)
for all u,v ∈ X′, u ̸= v. Thus, any two columns in X′ are orthogonal to each other, and hence X′ has left inverse
X† ∈ RM×d.

Let WK := W̃KX†, and WQ := W̃QX
† for some W̃K ,W̃Q ∈ Rd×M .

This gives us

(WKX′)
T
WQX

′ =
(
W̃KX†X′

)T

W̃QX
†X′ = W̃T

KW̃Q = W̃KQ.
(
W̃KQ ∈ RM×M

)
With softmax, we have

Softmax
(
β (WKX′)

T
WQX

′
)
= Softmax

(
β W̃KQ

)
= exp

{
βW̃KQ

}
·D−1

W̃KQ
, (E.5)

where D−1

W̃KQ
∈ RM×M is a diagonal matrix which

(
D

W̃KQ

)
ii
=

M∑
j=1

exp

{
β
(
W̃KQ

)
ji

}
=

(
1⊤) M∑

j=1

exp
{
β
(
W̃KQ

)}
. (E.6)

Now with P, we are able to construct W̃KQ by picking an arbitrary positive diagonal matrix such that

W̃KQ = β−1 · log (P ·D0) . (E.7)

By combining (E.6) and (E.7), we have

D
W̃KQ

= Diag
(
1⊤ exp

{
ββ−1 · log (P ·D0)

})
= Diag

(
1⊤P ·D0

)
= D0.

With D
W̃KQ

= D0, and using (E.5), we obtain

Softmax
(
β W̃KQ

)
= exp

{
βW̃KQ

}
·D−1

W̃KQ
= exp

{
log

(
P ·D

W̃KQ

)}
·D−1

W̃KQ
= P.

As a result, to construct WK and WQ such that they satisfy Theorem 3.1, any two matrices must satisfy

WT
KWQ = β−1 · log

(
P ·D

W̃KQ

)
This completes the proof.
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F. Implementation Details
F.1. Data

• MNIST. It is a hand written digits image recognition dataset (LeCun et al., 1998) consists of 60000 training samples
and 10000 test samples. Each image has the size of 28× 28. The label contains digits from 0 to 9.

• CIFAR10. It is an image recognition dataset (Krizhevsky et al., 2009) consists of 50000 training samples and 10000
test samples. Each image has the size of 32× 32. The dataset contains 10 categories with 6000 samples for each.

• CIFAR100. It is an image recognition dataset (Krizhevsky et al., 2009) consists of 50000 training samples and 10000
test samples. Rach image has the size of 32× 32. The dataset contains 100 categories with 600 samples for each.

• TinyImageNet. It is an image recognition dataset (Le and Yang, 2015) contains 100000 images of 200 classes. Each
image is downsized to 64×64 colored images. Each class has 500 training images, 50 validation and test images.

• ETT (Electricity Transformer Temperature). ETT (Zhou et al., 2021) records 2 years of data from two counties
in China. We use two sub-datasets: ETTh1 (hourly) and ETTm1 (every 15 minutes). Each entry includes the “oil
temperature” target and six power load features.

• WTH (Weather). WTH records climatological data from approximately 1,600 U.S. sites between 2010 and 2013,
measured hourly. Entries include the “wet bulb” target and 11 climate features.

F.2. Memory Capacity

For memory capacity experiment, we follow the settings in (Hu et al., 2023; Wu et al., 2024).

We randomly mask 50% of the pixels in the image, using the masked image as a query for a single-step update with various
Hopfield models. In the case of U-Hop, we trained the kernel with different numbers of epochs on the memory set and then
used it for memory retrieval. We reported the sum-of-square pixel difference between the retrieved image and the ground
truth. In each run, we repeated this process for every image in the memory set, conducting the experiment 20 times for each
baseline. The range of kernel learning epochs, memory set size can be found in Table 4. For Figure 26, we use N = 100 for
MNIST and N = 500 for CIFAR10.

Table 4. Hyperparameter used in the Memory Retrieval Task.

parameter values

Kernel optimizer SGD
Kernel learning rate 1
Kernel epoch {1, 10, 20, 50, 100, 200, 500, 1000}
Memory set size {10, 20, 30, 50, 100, 200, 500}
Noise level {0.0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 1.2, 1.4, 2.0}

F.3. Noise Robustness

For noise robustness experiment, we follow the settings in (Hu et al., 2023; Wu et al., 2024).

For the noise robustness experiment, we randomly sampled a Gaussian noise vector for each image, varying the norm of the
sampled noise to adjust the noise level. We then added the noise to the query image and performed a single-step update
with different Hopfield models. For U-Hop, we trained the kernel with N iterations on the memory set and then used it for
memory retrieval. We set N = 100 for MNIST and N = 200 for CIFAR10. We reported the sum-of-square pixel difference
between the retrieved image and the ground truth. In each run, we repeated this process for every image in the memory set,
conducting the experiment 20 times for each baseline.

F.4. Classification

CIFAR10 and CIFAR100. For these two datasets, we consider four different Hopfield layers as encoder:

• Hopfield (Ramsauer et al., 2020)

• SparseHopfield (Hu et al., 2023)
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• Hopfield +U-Hop

• SparseHopfield + U-Hop.

We use a fully connected layer right after the encoder for classification. For each image, we follow the same process as
introduced in (Dosovitskiy et al., 2020). We split an image into patches and add an additional CLS patch for classification.
We send patches into the Hopfield layer with the CLS patch as query and other patches as memory. We then send the output
to a fully connected layer for prediction. We use the CrossEntropy loss and Adam optimizer for training. Hyperparameters
are in Table 5.

Table 5. Hyperparameter used in the classifciation task on CIFAR10 and CIFAR100.

parameter values

learning rate 1e− 3
embedding dimension 512
Epoch 25
Batch size 128
Model optimizer Adam
Kernel optimizer SGD
Kernel learning rate 0.1
Patch size 32

Table 6. Hyperparameter used in the classifciation task on Tiny ImageNet.

parameter values

learning rate 1e− 4
embedding dimension 512
Epoch 25
Batch size 128
Model optimizer Adam
Kernel optimizer SGD
Kernel learning rate 0.1
Patch size 64

Tiny ImageNet. For this dataset, we use a 3 layered Vision Transformer as backbone (Dosovitskiy et al., 2020), and use
Hopfield variations to replace attention mechanism in . Other processes are the same as introduced in the above paragraph.
For kernel learning, we learn all kernels in different layers by passing a full forward pass. We then send the output to a fully
connected layer for prediction. Hyperparameters are in Table 6.

F.5. Hopfield-Based Time Series Prediction with STanHop-Net (Wu et al., 2024) (Table 8)

For this task, we use STanHop-Net (Wu et al., 2024) as backbone, and equip it with U-Hop. In addition, we use Algorithm 2
to minimize both separation loss and the MAE loss. For prediction horizon of 96, 192, we use one layered STanHop-Net,
for 336, 720, we use a two layered STanHop-Net. We use the same settings for with and without U-Hop 5.

5We thank the authors of (Reneau et al., 2023) for their helpful comments on this part.
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Table 7. Hyper-parameter used in the time series prediction.

parameter values

learning rate 1e− 4
embedding dimension 256
Epoch 50
Patience 25
Batch size 16
Model optimizer Adam
Kernel optimizer SGD
Kernel learning rate 0.1
Patch Sequence Length 12
Window Size 2
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G. Additional Numerical Experiments
G.1. Relationship between Separation Loss and Retrieval Error

This section is a visualization of relationship between separation loss and retrieval error on MNIST and CIFAR10. The
result shows that the retrieval error is highly correlated with respect to the value separation loss.

Figure 7. Memory Retrieval Error v.s. Separation Loss: Left: MNIST, Right: CIFAR10. We conduct memory retrieval experiment on
MNIST and CIFAR10 dataset. We use randomly sampled kernel learning rate in N(0, 1), and uniformly random sampled N ∈ [1, 200] to
obtain diverse separation loss.

G.2. Max. Loss v.s. Avg. Loss

In the main paper, we discuss the differences between minimizing the maximum separation loss and the average separation
loss.

Ideally, minimizing the maximum separation loss directly contributes to RΦ. However, as stated in the main text, such a loss
is a max-min problem, which is challenging to optimize. Moreover, it entails an additional quadratic time complexity due
to the max operation. On the other hand, the average loss is more time-efficient. It is also convex, thereby guaranteeing
convergence to the global optimum at a rate of O(1/N) under gradient descent, where N is the number of iterations.
However, the average loss does not guarantee maximizing RΦ, nor does it ensure an optimal ∆Φ,µ for any µ ∈ [M ].
Therefore, its theoretical impact on memory capacity and retrieval error bound is difficult to quantify.

As a result, we conduct an analysis comparing the performance of each loss function. We vary the memory size and the
kernel learning iteration N and perform memory retrieval on MNIST and CIFAR10 datasets.

The results demonstrate that minimizing the average loss yields a lower retrieval error, and this advantage grows with the
size of the memory set. Additionally, the retrieval error decreases more rapidly with respect to N under average loss than
under maximum loss. This outcome is anticipated, as minimizing the maximum loss is a non-convex problem and does not
guarantee reaching global optima. This empirical finding indicates that in practice, minimizing the average loss leads to
better efficiency and retrieval outcomes.

Max. & Avg. Loss Comparison on MNIST. We observe that with the average loss, U-Hop achieves almost perfect
retrieval outcomes with N = 200. However, U-Hop using the maximum loss struggles to reach its global minimum during
optimization, thus hindering its ability to achieve optimal memory capacity. This is observed in Appendix G.2.
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Figure 8. Loss Value v.s. N and Retrieval Error v.s. N .

Figure 9. Max. vs Avg. Loss on MNIST with N = 10.

Figure 10. Max. vs Avg. Loss on MNIST with N = 20.
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Figure 11. Max. vs Avg. Loss on MNIST with N = 30.

Figure 12. Max. vs Avg. Loss on MNIST with N = 50.

Figure 13. Max. vs Avg. Loss on MNIST with N = 100.
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Figure 14. Max. vs Avg. Loss on MNIST with N = 200.

Figure 15. Max. vs Avg. Loss on MNIST with N = 10.

Figure 16. Max. vs Avg. Loss on MNIST with N = 500.
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Max. Avg. Loss Comparison on CIFAR10. With CIFAR10 being more difficult comparing to MNIST, U-Hop under
average loss still outperforms U-Hop under Max. loss.

Figure 17. Loss Value v.s. N and Retrieval Error v.s. N on CIFAR10.

Figure 18. Max. vs Avg. Loss on CIFAR10 with N = 10.
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Figure 19. Max. vs Avg. Loss on CIFAR10 with N = 20.

Figure 20. Max. vs Avg. Loss on CIFAR10 with N = 30.

Figure 21. Max. vs Avg. Loss on CIFAR10 with N = 50.
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Figure 22. Max. vs Avg. Loss on CIFAR10 with N = 100.

Figure 23. Max. vs Avg. Loss on CIFAR10 with N = 200.

Figure 24. Max. vs Avg. Loss on CIFAR10 with N = 250.
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Figure 25. Max. vs Avg. Loss on CIFAR10 with N = 500.
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G.3. Memory Retrieval

Here we again show the memory retrieval results with higher resolution. The result demonstrates with U-Hop, modern
Hopfield models obtain significant improvement on both datasets.

Figure 26. Memory Retrieval Error v.s. Memory Set Size (M ). Left: MNIST, Right: CIFAR10. We conduct memory retrieval
experiment on MNIST and CIFAR10 dataset. We vary the memory size to adjust the difficulty of retrieval process.
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G.4. Model Expressiveness

Here we present the model expressiveness on training data. This is a empirical validation for Theorem 3.1. We observe that
without U-Hop, baseline models suffer from sharp performance drop, which also lead to generalization degradation as show
in Appendix G.5.1. In contrast, with U-Hop, models show better robustness against sample size increase.

Figure 27. Max Training Accuracy with respect to Sample Size Increase on CIFAR10
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Figure 28. Max Training Accuracy with respect to Sample Size Increase on CIFAR100
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Figure 29. Max Training Accuracy with respect to Sample Size Increase on Tiny ImageNet.
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G.5. Classification

Here we conduct empirical analysis on the correlation between dataset size and model convergence. In general, it is
more difficult to memorize all samples for larger dataset. However, learning from more samples might lead to a better
generalization performance, results in higher test accuracy.

G.5.1. CIFAR10

Results. The result demonstrates U-Hop significantly improves model’s performance on 3 aspects:

• (i) Generalization (test accuracy)

• (ii) Convergence Speed

• (iii) Memorization (training accuracy)

The improvement also became more obvious when the dataset size increases. This is reasonable as the standard Hopfield

layer is powerful enough to memorize small sample size with and without U-Hop.

Figure 30. CIFAR10 Convergence Comparison with Dataset Size=1000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 31. CIFAR10 Convergence Comparison with Dataset Size=2000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.
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Figure 32. CIFAR10 Convergence Comparison with Dataset Size=5000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 33. CIFAR10 Convergence Comparison with Dataset Size=10000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 34. CIFAR10 Convergence Comparison with Dataset Size=20000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 35. CIFAR10 Convergence Comparison with Dataset Size=Full Left to right: Training Accuracy, Test Accuracy, Training Loss
and Test Loss.
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G.5.2. CIFAR100

Results. The model behavior was similar comparing to what we observe from CIFAR10. The performance improvement
under U-Hop became stronger with the increase of dataset size. With U-Hop, the model improves on both convergence speed,
memorization capacity (training accuracy) and generalization power (test accuracy).

Figure 36. CIFAR100 Convergence Comparison with Dataset Size=1000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 37. CIFAR100 Convergence Comparison with Dataset Size=2000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 38. CIFAR100 Convergence Comparison with Dataset Size=5000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.
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Figure 39. CIFAR100 Convergence Comparison with Dataset Size=10000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 40. CIFAR100 Convergence Comparison with Dataset Size=20000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 41. CIFAR100 Convergence Comparison with Dataset Size=Full Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.
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G.5.3. TINY IMAGENET

Models under U-Hop continue to show strong performance against baselines on Tiny ImageNet dataset. Notably, we use a 3
layer encoder for this dataset, which provides additional insights ensuring that U-Hop works well under deep neural network
architecture.

Figure 42. Tiny ImageNet Convergence Comparison with Dataset Size=1000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 43. Tiny ImageNet Convergence Comparison with Dataset Size=5000 Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.

Figure 44. Tiny ImageNet Convergence Comparison with Dataset Size=10000 Left to right: Training Accuracy, Test Accuracy,
Training Loss and Test Loss.
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Figure 45. Tiny ImageNet Convergence Comparison with Dataset Size=20000 Left to right: Training Accuracy, Test Accuracy,
Training Loss and Test Loss.

Figure 46. Tiny ImageNet Convergence Comparison with Dataset Size=40000 Left to right: Training Accuracy, Test Accuracy,
Training Loss and Test Loss.

Figure 47. Tiny ImageNet Convergence Comparison with Dataset Size=60000 Left to right: Training Accuracy, Test Accuracy,
Training Loss and Test Loss.

Figure 48. Tiny ImageNet Convergence Comparison with Dataset Size=80000 Left to right: Training Accuracy, Test Accuracy,
Training Loss and Test Loss.
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Figure 49. Tiny ImageNet Convergence Comparison with Dataset Size=Full Left to right: Training Accuracy, Test Accuracy, Training
Loss and Test Loss.
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G.6. Time Series Prediction

Here we report the results of our time series prediction experiment. From Table 8, we observe that U-Hop obtains improvement
in most datasets and prediction horizons.

Table 8. STanHop (Wu et al., 2024): Multivariate Time Series Predictions. We compare STanHop-Net (Wu et al., 2024) with and
without U-Hop. We report the average Mean Square Error (MSE) and Mean Absolute Error (MAE) metrics with variance omitted as
they are all ≤ 2%. We evaluated each dataset with different prediction horizons (shown in the second column). We have the best results
bolded.

Models STanHop-Net STanHop-Net + U-Hop

Metric MSE MAE MSE MAE

E
T

T
h1

96 0.395 0.402 0.392 0.400
192 0.425 0.432 0.420 0.428
336 0.495 0.487 0.470 0.473
720 0.631 0.600 0.572 0.559

E
T

T
m

1

96 0.334 0.366 0.333 0.365
192 0.351 0.380 0.355 0.385
336 0.391 0.393 0.392 0.399
720 0.436 0.431 0.435 0.423

W
T

H

96 0.494 0.505 0.483 0.498
192 0.513 0.526 0.528 0.536
336 0.523 0.539 0.523 0.539
720 0.601 0.609 0.603 0.589
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