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Abstract

We explore the use of natural language for specifying rewards in Reinforcement1

Learning with Human Feedback (RLHF). Human language provides rich and2

nuanced information, yet most existing approaches rely on simplistic preference3

data or constrain the text structure. In contrast, we harness the power of Large4

Language Models (LLMs) to fully leverage natural text to efficiently train a reward5

model. Our empirical studies with human participants highlight the remarkable6

benefits of this strategy. Even with minimal human interaction, our method of7

integrating text feedback with LLMs accurately approximates the reward function8

and leads to significant performance gains.9

1 Introduction10

Reinforcement Learning (RL) [1] is a powerful framework for solving complex decision-making11

problems by training agents to maximize cumulative rewards through interactions with an environment.12

Central to the RL paradigm is the concept of a reward function, which provides the agent with feedback13

on its actions and guides its learning process. However, defining an appropriate reward function in14

real-world applications is a significant challenge [2]. This limitation hinders the deployment of RL in15

many practical scenarios where the specification of a reward function is ambiguous or subjective. To16

address these challenges, Reinforcement Learning from Human Feedback (RLHF) [3] has emerged17

as a promising approach. Rather than relying on predefined reward functions, RLHF derives a18

reward signal directly from human input, ensuring it better reflects human values and intentions. This19

strategy has been especially effective in domains where human judgment is crucial for determining20

task success.21

While most RLHF approaches rely on comparing or ranking trajectories, humans naturally com-22

municate intent through more nuanced textual descriptions [4]. Shifting from comparison-based23

feedback to textual input would allow for a richer expression of underlying goals [5]. However, for24

such text-based feedback to be useful in RL, it must be effectively translated into a suitable reward25

model for planning. In this paper, we introduce a novel approach for learning reward models from26

natural language feedback. We bridge this gap by employing Large Language Models (LLM) to map27

expressive human text into structured representations which we use to update a reward model. This28

allows the reward model to capture the context and subtleties of human preferences more effectively,29

leading to more robust and adaptable RL agents. Our contributions are as follows:30

• We propose an in-context learning approach using LLMs to seamlessly and robustly map human31

textual feedback into state-level rewards for reward model training.32

• We incorporate our reward modeling approach into a RLHF framework and systematically validate33

its performance in a gridworld environment through experiments with 26 human participants.34

• We investigate how human feedback, compared to ground-truth environment feedback, proactively35

guides agents towards unexplored high-reward states, boosting performance in cases with low36

interaction budget.37
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Figure 1: Traditional RLHF relies on binary preferences between trajectories, providing at most
one bit of information per query. We propose using natural language feedback, which is both human-
interpretable and significantly more informative, enabling reward learning with less interactions.

• We extend our framework to continuous environments, demonstrating task success with as few as38

10 human text feedback instances while avoiding common reward modeling challenges.39

2 Related Work40

Preference Based Reinforcement Learning Traditional RL relies on explicit reward functions to41

drive the learning process. When the reward function is not known or difficult to construct, one may42

collect human feedback to model the reward. In Preference Based Reinforcement Learning (PbRL)43

[6, 3], human oracles provide their preferences between pairs of trajectories. These preferences are44

used to train a reward model, enabling the deployment of standard RL algorithms to find the optimal45

policy. Unfortunately, as depicted in Figure 1, relying solely on comparisons misses out on valuable46

information about finer details of the reward [7, 8]. We propose using natural language feedback to47

overcome this limitation.48

Learning from Natural Human Feedback A natural way for humans to interact and express their49

intentions is through text. Consequently, there is much interest in leveraging natural language in RL.50

One common strategy is to map natural language instructions to trajectories or features. To achieve51

this mapping, previous works limit the instructions to a finite set [9–12], or force a specific sentence52

structure, e.g., “Go to X” [13]. These restrictions simplify the mapping process, but, unlike our53

algorithm, they also limit the flexibility of the language used. Another approach relies on pre-trained54

valence analyzers [14], which translate text feedback into a sentiment score. At each iteration, the55

sentiment score of the whole text drives the Bayesian update of the reward model [15]. A single56

sentiment score may not capture all nuances in human text, e.g., “the start is good, but the end is bad.”57

Language Models in Reinforcement Learning LLMs have recently emerged as powerful tools for58

natural language processing, providing novel approaches in the field of RL. One direction treats59

pretrained LLMs as proxies for reward signals, directly querying whether an outcome satisfies a60

language description of an objective [16]. While promising, this binary feedback is limited in61

expressivity, an inherent information bottleneck that our method aims to overcome. Another approach62

harnesses LLMs’ general knowledge to provide common sense priors [17, 18, 8] that bias agent63

actions, for example, identifying hazardous states from metadata [19]. These methods complement64

our approach, which aims to learn subjective human intentions that are unknown to LLMs. A third65

line of work employs LLMs to translate human text inputs into reward functions in the form of code.66

However, these algorithms generally rely on the existence of reward evaluation functions [20, 21] or67

human binary preference feedback [22] to judge the performance of the generated reward functions.68

They also depend on LLM-generated code snippets which may be incorrect [23] and unreliable [24].69

Our approach takes a different route: we use LLMs to convert free-form human text feedback, which70

provides more nuanced evaluations than preference feedback, into training data for reward modeling.71

While [21] includes one experiment in which the author provides text feedback, our work expands72

on this direction, collecting data from independent human participants. Additionally, instead of73

relying on LLM-generated diversity to avoid local maxima, our method uses text feedback to guide74

exploration towards relevant states.75

3 Problem Setting76

In this paper, we consider an agent who interacts with an environment aiming to maximize an expected77

reward. We describe the interactions between the agent and the environment as an episodic Markov78
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Figure 2: Block diagram of Reinforcement Learning
from Human Text Feedback (RLHTF). The algo-
rithm consists of two iterative phases: (1) learning
a reward model (dashed lines) from state-level re-
wards derived by an LLM from human evaluations
in natural language, and (2) policy learning (solid
lines), where an agent is trained using standard RL
algorithms that query the learned reward model.

Algorithm 1 RLHTF

1: Inputs: number of interactions N , land-
marks, fLLM

2: Initialize Policy π0 and reward model r̂0
3: for i = 0 to N − 1 do
4: Record trajectory following policy:

ti ← πi

5: Query human for feedback: fi ← ti
6: Encode context:

ui ← (fi, ti, landmarks)
7: Translate to state-reward pairs:

{so, R} ← fLLM(ui)
8: Update reward model:

r̂i+1 ← rew_update(r̂i, {so, R})
9: πi+1 ← policy_update(πi, r̂i+1)

10: end for

Decision Process without reward function (MDP\R) [25]. Formally, an episodic MDP\R is a tuple79

M := (S,A,P, T ), where S is the state space,A is the set of actions that the agent can perform in the80

environment, P : S ×A → ∆(S) captures the transition probabilities, mapping state-action pairs to a81

probability distribution of the next state over S , where ∆(S) denotes the probability simplex over S ,82

and T is the time horizon. The reward function, which maps action pairs to a reward r : S×A → R, is83

unknown to the agent. Instead, the agent learns a reward model r̂ : S → R based on human feedback.84

At each step, the agent performs an action according to a policy π : S → A. The goal is to learn the85

policy π∗ that maximizes the expected return from the current state s,86

V t
r (s) = max

a∈A
r(s,a) +

∑
s′∈S

P(s′|s,a)V t−1
r (s′), (1)

where V 1
r (s) = maxa∈A r(s,a), and t ∈ [1;T ] represents the number of timesteps left. We denote87

the state-action pairs visited when following π∗ as the optimal trajectory {s∗t ,a∗t }Tt=1.88

We propose an algorithm, Reinforcement Learning from Human Text Feedback (RLHTF), shown in89

Figure 2. Analogously to other RLHF algorithms, RLHTF consists of two phases that are executed90

iteratively: reward model learning and policy learning. Section 4 describes how the reward model91

r̂ is learned from human text feedback. Since the agent does not have direct access to the true92

reward function r, the agent instead learns the policy π̂ that maximizes the value function Vr̂ derived93

from the estimated reward model r̂. The agent directly queries the reward model, instead of the94

human evaluators, significantly reducing time, energy, and monetary costs during policy learning95

[3]. We employ standard RL methods. The implementation of policy learning is described further in96

Appendix C. The algorithm is outlined in Algorithm 1 and publicly available1.97

Our primary goal is to minimize the performance gap between this learned policy π̂ and optimal98

policy π∗, which we denote as value gap and formally define as99

E

[
T∑

t=1

r (s∗t ,a
∗
t )− r (ŝt, ât)

]
,

where {ŝt, ât}Tt=1 represents the trajectory when following π̂.100

4 Learning a Reward Model from Human Text Feedback with LLMs101

We break up the process of learning a reward model from human feedback into three steps: (1)102

Context encoding, which gathers human feedback with environment information; (2) Translation103

function, which transforms the encoded context into structured signal; (3) Reward model update104

mechanism to incorporate these signals. This decomposition has been shown to be effective in prior105

work [5]. Here, we show how these steps can be implemented with text feedback.106

1https://anonymous.4open.science/r/WordsToRewards-2846/README.md
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4.1 Context Encoding107

To encode raw data from the environment and interactions with evaluators into a format suitable108

for an LLM, we must construct a structured user prompt. At each interaction, the agent follows the109

policy π̂, generating a trajectory {ŝt}Tt=0. A human evaluator observes the trajectory and provides110

text feedback f . These evaluations are flexible; for example, they may include criticisms of specific111

states (“the last step is horrible”), or suggestions for alternative, unexplored states (“go to the door”).112

All this information is gathered in a user prompt u to provide full context:113

u = {feedback: f , trajectory: {ŝt}Tt=0, landmarks: [(name1, location1) , ..., (nameN , locationN )]}.

As shown in Figure 5, the user prompt may include information about landmarks in the environment114

that help ground human feedback, providing reference points known by the user and the LLM.115

4.2 Translation function116

We use LLMs’ language processing capabilities to transform the information in the user prompt into117

labeled states, which are then used to train a reward model. We design a system prompt to guide the118

LLM in its role as a translation function. Efficient system prompts must describe the LLM’s role119

and the items in the user prompt [26]. As this context is environment dependent, the system prompt120

differs from environment to environment, but it remains consistent across all user interactions.121

There are three key components that make our system prompts efficient. First, to enhance reasoning,122

we employ chain of thought (CoT) prompting [27], asking the model to classify the feedback intent123

(e.g. evaluation vs. correction) before identifying the relevant states. Feedback is inherently intent-124

dependent [5]; for example, “to the left of the lamp is good” could either be an evaluation validating125

a past action or an instruction suggesting a future correction. This intermediate classification step126

helps the translation function better interpret and adapt to human intent. Second, we use few shot127

prompting [28] and provide demonstrations to steer the model to better performance. By exposing the128

model to relevant cases, we reduce ambiguity and improve accuracy. Third, to ensure that the output129

of the LLM is reliably interpretable in downstream tasks, we enforce a structured format. Rather130

than relying on free-form text generation, which can be inconsistent, we employ function calling to131

guarantee a well-defined output, making it easier to identify relevant states and rewards.132

Given the appropriate system prompt, the LLM translates the user prompt u(f , {ŝt}Tt=0, landmarks)133

into a labeled dataset of states {so, R} = fLLM(u), where each output state so ∈ S has a correspond-134

ing reward R ∈ R. This dataset is used to train the reward model. Appendix E includes exact prompts135

and further prompt design details.136

4.3 Reward Model Update137

The goal is to learn a model of the reward conditioned on the state-reward pairs {so, R} output by138

the LLM. In simple tabular settings, the agent may track the reward probability distribution for every139

state and update it using Bayesian inference as the state-reward pairs are observed. In more complex140

or continuous environments, we may approximate the reward function with a Neural Networks (NN).141

At each iteration, we expand the training dataset with the state-reward pairs generated by the LLM,142

and finetune the NN using supervised learning.143

5 Experiments with Human Evaluators144

We recruited 26 human participants to evaluate our approach. In particular, we apply RLHTF to the145

Gridworld environment shown in Figure 3. An agent aims to follow a target path known to human146

evaluators but unknown to the agent. We compare RLHTF against the following baselines:147

• True trajectory-level feedback: The agent receives a single ground truth accumulated reward for148

the entire trajectory, based on the number of steps that match the target path. This accumulated149

reward is uniformly applied to all states in the trajectory.150

• True state-level feedback: The agent receives a ground truth reward for each state in the trajectory,151

indicating whether the state is on the target path.152
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Enter critique of the trajectory:

Answer 1: “Steps 1 and 2 are correct. Go above
the clock and then through the toilet.” (Describes
specific states.) — RLHTF
Answer 3: “It is terrible.” (Describes whole tra-
jectory) — Sentiment Feedback

Figure 3: Gridworld environment. The aim of the agent is to follow a target path (in grey) from the
start (yellow circle) to the end (yellow star). The agent’s trajectory (in blue) currently deviates from
this path. On the right, we show the critique input box presented to human participants, along with
example responses from different feedback conditions.

• Sentiment feedback: Evaluators convey their judgment implicitly through the sentiment of their153

text feedback, e.g., “Very bad” or “Amazing”. The agent measures and uniformly applies the154

sentiment score as a reward across all states in the trajectory [15].155

• PbRL: Human evaluators observe two candidate trajectories and select the one they judge to be156

closer to the target [3].157

We ran approximately 50 experiments for each feedback type. All experiments start with the same158

reward model prior and consist of 4 interactions, during which the agent executes the current optimal159

trajectory and receives the corresponding feedback to update the reward model. The implementation160

of these algorithms is further detailed in Appendix B.1.161

Since a state is either on the target path or not, in the RLHTF setting we prompt the LLM to output162

binary rewards R′ ∈ {0, 1}. Additionally, to contextualize feedback, the environment includes163

randomly placed landmarks, such as a chair or a clock. These landmarks serve as reference points,164

enabling the LLM to translate natural language feedback such as “Go above the clock” in Figure 3165

into a positive reward at position ‘b3’.166

Once feedback is collected, the agent updates the reward model accordingly. The agent tracks the167

reward probability distribution for every state, which we model as a beta distribution, and performs168

the trajectory that maximizes the current reward model. As the time horizon is finite (T = 10), we169

solve for the optimal trajectory with dynamic programming. The agent receives feedback based on170

the executed trajectory. For analytical tractability, we model the distribution of the observed rewards171

R′ with the conjugate prior, i.e., as Bernoulli distributions.172

5.1 Performance Comparison173

Figure 4 shows the evolution of agent error across successive interactions with evaluators. Here,174

error is defined as the number of steps in which the agent deviates from the target path. Statistical175

significance after four interactions was assessed using Welch’s t-test, as detailed in Appendix B.1. All176

feedback methods lead to performance improvements, but the resolution at which feedback is provided177

(trajectory vs. state), plays a decisive role in learning efficiency. Both the true trajectory-level reward178

and sentiment feedback operate at the trajectory level, offering a single evaluation for an entire179

trajectory. This coarse granularity limits the agent’s ability to discern which specific states contributed180

to success or failure, thereby slowing learning. In contrast, true state-level reward and RLHTF operate181

at state level, providing more precise guidance during training. The impact of these granularity182

differences is particularly evident when comparing the first two bars in Figure 4: after four iterations,183

true state-level feedback yields less than half the error of true trajectory-level feedback, reinforcing184

the advantage of detailed information about each state’s contribution to accelerate learning.185

In our initial evaluation of RLHTF, we found that without instructions on how to construct the text186

feedback, participants often included information that the LLM could not interpret. For example,187

one participant wrote: “follow the gray path until you reach the star.” However, the LLM has no188

knowledge of the gray path or the star, in fact, this is precisely what the agent is attempting to learn.189

To address this issue, we showed the evaluators a list of five instructions, outlined in Figure 8, on190
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Figure 4: Performance comparison of algorithms in the Grid-
world. When participants receive instructions on how to
phrase their feedback, RLHTF outperforms other human
feedback based methods and even surpasses true environ-
ment feedback in early iterations.

Algorithm Success Rate
True trajectory level 0%

True state level 25.0%

Sentiment 0%

PbRL 0%

RLHTF (ours) 25.5%

Table 1: Percentage of learned poli-
cies that perfectly follow the target
path after four rounds of feedback.
RLHTF with instructions matches the
performance of true state-level feed-
back, while all other methods fail to
achieve any success.

how to provide effective feedback. Remarkably, providing participants with just two paragraphs191

of instructions increases the comprehensibility of the feedback to the LLM, leading to improved192

learning. After a single instance of feedback, RLHTF with instructions reduces the error by 42%,193

even outperforming ground-truth state-level feedback. This improvement occurs because RLHTF194

proactively guides exploration towards the high-reward regions mentioned by the human feedback,195

which might not be covered by the current trajectory. In contrast, true environment feedback is196

purely reactive, offering evaluations only for the states visited. Although ground-truth state feedback197

eventually surpasses RLHTF, our method outperforms other RL algorithms without explicit rewards.198

A key advantage of RLHTF is its use of LLMs to perform reward attribution. Unlike previous199

approaches, which update all states in a trajectory (sentiment) or all differing states between two200

trajectories (PbRL) with a single reward, RLHTF distributes rewards more precisely. This precision201

allows RLHTF to reduce error more quickly and substantially, significantly outperforming Sentiment202

[15] and PbRL [3] algorithms. After just 4 instances of human feedback, RLHTF reduces the error203

to approximately one-third of its original value. Table 1 shows the success rate, defined as the204

percentage of experiments in which the learned reward model, after four pieces of feedback, leads205

to a policy that exactly follows the target path. Strikingly, RLHTF matches the success rate of true206

state-level feedback, achieving a 25.5% success rate. In contrast, baseline methods fail to produce207

a single perfect path. This result demonstrates that guided human feedback, when processed by208

RLHTF, can rival access to privileged ground-truth state rewards.209

Moreover, RLHTF will continue to benefit from future advances in LLM capabilities. As shown in210

Appendix B.1.2, upgrading from GPT-4o (used in our main experiments) to the newer o3-mini model211

further reduces the error by 17%. This result suggests that212

6 RLHTF in Continuous Environments213

To test generalization beyond tabular settings, we apply RLHTF in a continuous environment of the214

physics simulator MuJoCo [29]: the two-jointed robot arm Reacher. The aim is to apply appropriate215

torques to the hinges so that the robot’s fingertip reaches a target. The human evaluators watch216

and critique a video of the robot arm moving under the current policy. We incorporate a timestamp217

and some visual landmarks (colored circles) into the environment, allowing the human evaluator218

to refer to specific moments or locations (“Go to the left of the blue circle.”). Figure 5 shows219

the modified reacher environment. We emphasize that our method does not require the human to220

explicitly understand or annotate states such as joint angles or torques.221

The LLM processes three inputs: human feedback, landmark locations and the sequence of filtered222

states (where information about the target is removed), making up the video. The LLM’s task is to223

interpret these inputs to deduce what states are described as positive or negative. Figure 5 shows224

how the state-reward pairs are generated. We approximate the reward function as a fully connected225

NN, which takes a state vector as input and outputs a scalar corresponding to the predicted reward.226
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Figure 5: Generation of state-reward pairs from human feedback and observations using an LLM
(Step 7 in Algorithm 1) in modified reacher environment.

At each iteration, we expand the training dataset with the state-reward pairs output by the LLM and227

fine-tune the NN. Appendix B.2 details the process.228

We compare the agent’s performance, in terms of average distance to the target, when there is a budget229

of 10 human interactions. Figure 6a shows how the reward evolves as the agent learns. Although230

RLHTF is not as effective as directly observing the true environment feedback, RLHTF performs231

much better in regimes with low feedback than PbRL. In fact, in our experiments RLHTF increases232

the reward by 40% with only 10 human inputs, while PbRL at first repeatedly executes the trajectory233

with the arm fully bent, and it needs many more pairwise comparisons to approach the target.234

We suggest that feedback in natural language is more informative than preferences among two235

trajectories, and thus RLHTF requires fewer interactions with humans to achieve an accurate reward236

model. To verify the hypothesis, we compare the corresponding reward models in Figure 6b. While237

both feedback types improve the reward model, text feedback results in a more precise localization238

of the target. By the tenth interaction, only a small area around the target receives a high reward with239

RLHTF, whereas PbRL results in a reward model more uncertain about the target location, giving240

high reward to large areas of the environment. Figure 6b suggests that natural language feedback241

enables the reward model to identify the target more quickly and precisely.242
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(a) Reward evolution in the Reacher environment with
episodes of the REINFORCE algorithm[30]. We
compare the performance for RLHTF with 10 text
feedback provided at the vertical dashed lines, PbRL
with 10 trajectory comparisons, and true environment.
RLHTF demonstrates strong performance in continu-
ous environments, increasing the reward by 40%.

(i) Initialization (ii) RLHTF
10 queries

(iii) PbRL
10 queries

(b) Reward model visualization. The blue star marks the
target location and darker colors indicate lower predicted
rewards. (i) shows the random initialization. (ii, iii)
show the reward model evolution after 10 pieces of text
feedback and preference feedback, respectively. Notably,
RLHTF quickly converges to a more accurate reward
model than PbRL, as evidenced by the more localized
high-reward region around the target.

Appendix A proves the method’s robustness in a distinct structurally complex environment. We243

manipulate a Rubik’s Cube, where the reward hinges on matching human-specified colour patterns,244

and show how RLHTF overcomes common reward modeling challenges.245

Our work leverages LLMs to extract state-level rewards from natural language feedback, addressing246

the challenge of reward attribution and capturing more nuanced information than simple binary com-247

parisons or a single sentiment score can provide. Moreover, our experiments with real human partic-248

ipants, a contribution not common in this line of research, take a step toward real-world applicability.249
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A Overcoming Reward Modeling Challenges352

To highlight RLHTF’s strengths in environments where reward design is challenging, we evaluate353

RLHTF in the Rubik’s Cube environment [31]. This environment involves a six-sided cube where354

each side has a 3 × 3 grid of squares, each taking one of six colors. The goal of the agent is to355

manipulate the cube so that the front face matches a pattern specified by a human user.356

Consider the task of obtaining an orange ‘X’ pattern on the front face of the Rubik’s cube, where357

both diagonals must consist of orange squares. In RLHTF, the evaluator watches a video of the358

trajectory following the current agent policy, and then provides text feedback. This feedback, along359

with the sequence of nine color grid squares observed on the front face, is input to the LLM. The360

LLM processes this information and outputs sets of 9 color grid squares, each accompanied by a361

label indicating whether the set is positive or negative. The labeled dataset is then used to update the362

reward model. In the case of PbRL, we query the evaluator for their preference between two different363

videos. The candidate videos are chosen by sampling trajectories and identifying the pair with the364

highest variance in preference estimations among the reward models in an ensemble. The true reward365

is computed by assigning a +2 score for each correct orange square in the diagonals and averaging366

this score over the ten timesteps in each trajectory.367

Figure 7 compares the performance of RLHTF, PbRL and true reward. After only ten human368

interactions, RLHTF successfully produces the desired orange ‘X’ pattern on the Rubik’s Cube369

front face. In contrast, PbRL shows no meaningful improvement beyond its baseline performance.370

This limitation arises because preference-based feedback encodes at most one bit of information per371

interaction, requiring many more interactions to achieve the desired performance. Using true rewards,372

the agent gets stuck in a local maximum, where only three out of the five diagonal squares are correctly373

orange. Even after manipulating the learning rate, the agent fails to produce the desired orange ‘X’374

pattern. This shows how reward design in RL problems is challenging and often leads to unwanted375

behavior. In contrast, evaluators in RLHTF naturally adapt their feedback according to the agent376

behavior. For example, an evaluator may write “you are doing it wrong, the top right corner should be377

orange and not red”, thus encouraging exploration when stuck in a local maximum. This adaptability378

bypasses the need for complex reward design and extensive hyperparameter tuning. Human text379

feedback and additional experiments with a different target pattern are provided in Appendix B.3.380
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Figure 7: Reward evolution in the Rubik environment with episodes of the REINFORCE
algorithm[30]. We compare the performance for RLHTF with 10 text feedback provided at the
vertical dashed lines, PbRL with 10 trajectory comparisons, and true environment. The optimal
reward is 7.4. Unlike true reward, which can lead to local maxima, RLHTF leverages dynamic
human feedback that adapts to agent progress, guiding exploration and overcoming reward modeling
challenges.
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B Experiment Details381

B.1 Gridworld382

This section provides detailed information about the experimental setup, data collection process, and383

implementation choices for our experiments with human evaluators. In each trajectory, the agent384

takes 10 steps in the Gridworld environment shown in Figure 3. At each step, the possible actions are385

either to move right or up. The agent movements are restricted to a 5x10 grid. When the agent is at a386

border and performs an action that would take the agent outside of the allowed region, the agent does387

not move.388

We simulate a scenario in which a human wants a robot to navigate their house in a specific manner.389

To make the environment more realistic, we sample four images of furniture or household objects390

(e.g. sofa, chair, toaster and TV) and add them to the environment. These objects serve as landmarks,391

helping evaluators communicate their critiques more effectively by using them as reference points.392

The landmarks are detected with a YOLOv8 model [32] trained on the Microsoft COCO dataset [33],393

and their positions are fed to the LLM for shared context with the evaluators. Namely, we use gpt-4o394

to translate human feedback into state-level rewards.395

We conducted our experiments with the assistance of human evaluators. Following A/B testing396

guidelines, we randomly assigned evaluators to interact with different algorithms. Each evaluator397

provided feedback on two out of the four algorithms: (1) either RLHTF with instructions or RLHTF398

without instructions, and (2) either Sentiment or PbRL. To minimize any potential bias due to399

familiarity with the interface or tasks, we randomized the order of these settings. Each participant400

provided feedback for either 8 different rooms or for a duration of 30 minutes, whichever occurred401

first. Participants were compensated with $10 for their work. The study was categorized as minimal402

risk research qualified for exemption status under 45 CFR 46 104d.2 by the Institutional Review403

Board (IRB). In total, we collected 772 feedback samples from 26 participants. A breakdown of the404

number of experiments for each algorithm using human feedback is summarized in Table 2. The405

experiments with the true environment rewards were simulated 50 times.406

Experiment Type First Second Total
RLHTF with instructions 27 24 51
RLHTF without instructions 23 22 45
PbRL 24 32 56
Sentiment 24 17 41

Table 2: Breakdown of number of experiments for each algorithm type, each experiment was done
for four interactions. Columns First and Second indicate whether the feedback was collected in the
first or second task performed by the evaluator, with totals shown in the last column.

We conduct Welch’s t-test to compare the performance of different algorithms after receiving four407

pieces of feedback. Table 3 reports the resulting p-values. Our results indicate that RLHTF with408

instructions significantly outperforms both PbRL and sentiment feedback, which do not have direct409

access to the ground truth feedback from the environment. It also significantly outperforms the setting410

where true trajectory level feedback is received from the environment. In the case of RLHTF without411

instructions on how to construct the feedback, the performance is statistically indistinguishable from412

PbRL (p = 0.5531). Receiving the ground truth state-level feedback from the environment yields the413

best trajectories after four pieces of feedback, significantly outperforming all other settings, except414

for RLHTF with instructions where the difference is not statistically significant (p = 0.1752).415

Table 1 depicts the performance of the final policy learned from 4 pieces of feedback.Most algorithms416

fail to recover the exact target trajectory, achieving 0% success rate. Notably, both our method417

RLHTF with instructions and ground-truth state-level feedback result in perfect trajectories in 25% of418

experiments. This demonstrates that natural language feedback, when guided with simple prompting419

instructions, achieve results comparable to the often unrealistic assumption of state-level supervision.420

B.1.1 Guidelines for Evaluators421

For both RLHTF setting, we provided participants with the following guidelines:422
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RLHTF without
instructions PbRL Sentiment True

trajectory True state

RLHTF with instr. 0.0009 0.0024 3.4× 10−14 1.9× 10−8 0.1752
RLHTF without instr. - 0.5531 2.1× 10−6 0.0391 6.4× 10−7

PbRL - - 2.7× 10−9 0.0021 4.8× 10−7

Sentiment - - - 4.5× 10−5 2× 10−23

True trajectory - - - - 1.2× 10−16

Table 3: p-values for Welch’s t-tests, showing that RLHTF with instructions and true state-level
rewards significantly outperform other methods with 4 pieces of feedback.

Objective: The purpose of this experiment is to provide instructional feedback to an artificial
agent. The task for the agent is to navigate from a yellow circle to a yellow star along a gray
pathway. The agent will attempt this task by following a trajectory marked in blue. Your role
is to offer written feedback that assists in correcting the agent’s current course.

Task Instructions:
1. Observe the blue trajectory that the agent has taken.
2. Provide your guidance and feedback on the agent’s performance (e.g., “Do not go

below the sofa. The end was very good”).
3. Repeat 4 times.

423

In the setting with instructions, participants also received the additional instructions outlined in Figure424

8.425

Additional Guidelines: The agent has limited capabilities, so for it to understand you
correctly you should restrict your feedback. Namely, the agent does not understand:
• Do not compare trajectories: treat each path individually, without reference to previous

attempts. For example, avoid feedback like: “Now it is worse, go back to the previous
trajectory”.

• Do not refer to the position of the star, yellow circle, or grey road. The agent doesn’t know
their locations; in fact, the agent is trying to learn where these are. For example, avoid
feedback like: “Follow the road until the star”.

• Avoid specific movement descriptions (go up, turn right). For example, avoid feedback
like: “go up, up, right, up” or “turn right later”.

Instead, the agent understands well:
• Description of states: Position in the trajectory. e.g. “At the beginning is wrong”, “step

number 6 is good”, or position with respect to the furniture, e.g. “You should go to the left
of the couch”.

• Sentiment: It works especially well if you explain what states are good or bad. e.g. “The
first half of the trajectory is bad. Above the TV is good.”

Figure 8: Additional instructions presented to the evaluators in RLHTF with instructions. Humans
are capable of adapting their feedback after reading these guidelines, leading to a faster reward model
learning.

For the PbRL the participants were shown the example in Figure 9 and told:426
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Figure 9: Example of human interaction with PbRL in Gridworld.

Objective: The purpose of this experiment is to provide feedback to an artificial agent. The
task for the agent is to navigate from a yellow circle to a yellow star along a grey path. Two
agents will attempt this task by following a trajectory marked in blue and red respectively.
Your role is to select which of the two trajectories is better, so that the agent can learn the
correct path.

Task Instructions:
1. Observe the blue and red trajectories that the agents have taken.
2. Choose the best one (0: blue, 1: red).
3. Repeat 4 times.

427

Lastly, in the sentiment setting participants were told:428

Objective: The purpose of this experiment is to provide feedback to an artificial agent. The
task for the agent is to navigate from a yellow circle to a yellow star along a grey path. The
agent will attempt this task by following a trajectory marked in blue. Your role is to offer
written feedback that assists in correcting the agent’s current course.

Task Instructions:
1. Observe the blue trajectory that the agent has taken.
2. Provide a sentiment rating (how good or how bad) for the trajectory, e.g.: “it is

horrible” or “amazing”.
3. Repeat 4 times.

429

B.1.2 Performance for Different LLMs430

We assess the robustness of reward learning from human feedback by experimenting with alternative431

LLMs. Specifically, we reuse the human feedback collected during the RLHTF experiments with432

GPT-4o outlined in Section 5, and apply the same prompting technique to different base models.433

Figure 10 shows the average error evolution in the setting where human evaluators are not given434

additional instructions, while Figure 11 shows the performance when the feedback was given after435

observing additional instructions.436

We observe a correlation between LLM capability and RLHTF performance. GPT-3.5 Turbo maintains437

the worst average error across interactions in both settings. Interestingly GPT-4.5 performs the best438

in the setting without instructions, showcasing its ability to interpret free form human feedback. GPT439

4.5 achieves an approximate 30% reduction in error when compared to GPT 3.5. In the setting with440

instructions, o3-mini outperforms other models, obtaining approximately 45% more error reduction441

than GPT-3.5. These trends are also reflected in the Gridworld success rates summarized in Table 4,442

where more powerful LLM models achieve the target path approximately 2.5 times more often than443

GPT 3.5 in the case with instructions.444
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Figure 10: Performance for different LLMs with feedback from RLHTF experimetnts without
instructions.

Figure 11: Performance for different LLMs with feedback from RLHTF experimetnts with additional
instruction

The error reduction pattern across interactions follows a consistent trend: rapid improvement from445

interaction 0 to 1, followed by more gradual improvements in subsequent interactions. This pattern is446

maintained across all models, showcasing the robustness of RLHTF, though the rate of improvement447

varies, with newer models generally showing more substantial error reductions per interaction.448

These findings support our conclusion that RLHTF will likely continue to benefit from ongoing449

advancements in LLM technology.450

B.2 Reacher Environment451

Each trajectory in the reacher environment spans T = 50 frames. The standard observation space452

contains information about the goal (target location) and the performance (distance to target). How-453

ever, to proof that the LLM is capable of deducing the performance solely from the human feedback,454

we filter this information from the user prompt. The LLM obtains a filtered state that includes the455

fingertip’s location, arm’s joint angles, and angular velocities. The filtering and preprocessing of the456

observation are detailed in Figure 12.457
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LLM model With Instructions Without Instructions
gpt-3.5-turbo 9.8% 2.2%
gpt-4o 25.5% 0.0%
gpt-4.5 25.2% 8.8%
o1 27.5% 4.4%
o3-mini 25.5% 0.0%

Table 4: Gridworld success rate of different LLM models with and without instructions.

Figure 12: Preprocessing of state observation in reacher environment.

We use the LLM gpt-4o to translate the human feedback to state-reward pairs. The LLM outputs pairs458

of filtered states and binary labels. Each label indicates whether the corresponding state is positive or459

negative. If a filtered state is returned partially, missing elements are filled in by randomly sampling460

from the set of observed trajectory states.461

To conduct a fair comparison with PbRL, we reconstruct the filtered states output by the LLM back462

into the complete original observation space. Using this full observations with their corresponding463

binary labels, we train a reward model in a supervised learning framework. The architecture of this464

reward model is a fully connected NN with one hidden layer consisting of 32 nodes, employing a465

RELU activation function characterized by a leaky parameter α = 0.01. In the case of PbRL, three466

such NNs are initialized at random to create an ensemble. Before asking the human for a preference,467

we sample random trajectories and then choose the pair whose preference has most uncertainty,468

specifically, the pair for which there is the most disagreement among the ensemble’s predictive469

outcomes. During policy training, the agent observes the average reward from the ensemble.470

We perform the experiments four times for every algorithm under consideration. A different target471

location was set for each experiment. The human feedback was provided by one of the authors of this472

paper. The shaded area in Figure 6b shows the standard error between the four experiments. Note473

that the plotted lines have been smoothed using a convolution operation with a window size of 100474

episodes, which helps reduce noise and provide a clearer trend of the data.475

B.3 Rubik’s Cube476

Each trajectory consists of ten steps, during which the agent can perform one of 18 actions: rotating477

any layer clockwise or counterclockwise, or making no movement. The experiment begins with the478

Rubik’s cube in its solved state, where each face consists of squares of a single color. By default,479

evaluators view the cube from the front-facing layer, but they can use keyboard keys to adjust the480

angle and observe other sides of the cube.481

The Gym Rubik environment observation is a 54-element array with values ranging from 0 to 5,482

representing the colors of the entire cube in numerical format. We slice the array to extract the 9483

items corresponding to the front face and we reformat it into a 3x3 grid. We also map the numerical484
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numbers to a letter representing the color; e.g. instead of ’0’ we write a ’W’ to represent white. A list485

of ten 3× 3 arrays, each representing the front face state at one timestep in the trajectory, is added to486

the user prompt, along with the text feedback. We don’t include any landmarks in this environment.487

Although the environment is discrete and countable, the vast number of possible states of a face makes488

tracking the reward distribution for each state impractical. To address this, we model both reward489

and policy functions with NNs. The policy function is parameterized by a two-layer neural network,490

where the first layer maps the observation space to a 128-dimensional latent representation, followed491

by a ReLU activation. The output layer maps this representation to the action space dimensions,492

applying a softmax activation to produce a probability distribution over actions. Similarly, the reward493

function is modeled as a feedforward neural network with a single hidden layer of size 8. The input494

is first transformed through a fully connected layer, followed by a ReLU activation. The output495

layer then produces a scalar reward value. The reward model is trained via supervised learning using496

dataset generated by pre-trained gpt-4o model from the human feedback. We train the agent with the497

REINFORCE algorithm [30].498

(a) RLHTF with
default learning
rate

(b) True reward
with tuned learn-
ing rate

Figure 13: Obtained pattern in the front face when aiming to create an orange X (a) RLHTF achieves
the desired pattern with 10 human feedback and default hyperparameters whereas (b) the true reward
with tuned learning rate converges to a local maxima after 90,000 iterations of REINFORCE.

Figures 13 show the pattern the REINFORCE algorithm converges to for the task of obtaining an499

orange ‘X’. We observe that with true environment reward, the agent gets stuck in a local maxima so500

only 3 of the required squares are orange. However, with RLHTF the agent learns the desired pattern.501

To produce the results in Figures 13a and 7, one of the authors acted as the evaluator and provided502

the following ten pieces of text feedback:503

1. The first 4 states are very bad. The states at time7, 8 and 9 are all wrong. The goal is to have504

an orange X (orange squared in both diagonals) in the front side.505

2. The first 7 moves are wrong. At time 8 if you add three orange squares (two on the left506

corners and one in the middle) it would be good. The goal is to have an orange X by using 5507

orange squares in the diagonals.508

3. Until state 3 and including state 3 it is all wrong. At state 4 we should have three more509

orange squares on the left corners and in the middle. States 5, 6,7 and 8 are very bad. State510

9 with orange squares on the left corners and the middle would be good. The goal is to have511

5 orange squares arranged in the shape of an X.512

4. Until state 5 and including state 5 it is all wrong. At state 6 we should have three more513

orange squares on the left corners and in the middle. States 7 and 8 are very bad. State 9514

with orange squares on the left corners and the middle would be good. The goal is to have 5515

orange squares arranged in the shape of an X.516

5. From 0 to 3 (including both) the states are wrong. The states at time 6 and at time 9 are517

perfect. The states 5, 7 and 8 are not completely correct as they need two extra orange518

squares on the right corners. The goal is to have 5 orange squares in the shape of an X.519

6. From 0 to 3 (including both) the states are wrong. The states 6 and 10 are perfect. The states520

7, 8 and 9 are not completely correct. The goal is to have 5 orange squares in the shape of521

an X.522

7. The states 6 and 10 are perfect. The states 7, 8 and 9 are not completely correct. The goal is523

to have 5 orange squares in the shape of an X.524

8. The states 6 and 10 are perfect. The states 7, 8 and 9 are not completely correct. The goal is525

to have 5 orange squares in the shape of an X.526
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Figure 14: Reward evolution with episodes of the REINFORCE algorithm in the Rubik environment
when aiming to construct an Italian flag. We compare the performance for RLHTF with 5 text
feedback, PbRL with 5 trajectory comparisons, and true environment reward.

9. The state 2 is very very bad. The states 6 and 10 are perfect. The states 7, 8 and 9 are not527

completely correct. The goal is to have 5 orange squares in the shape of an X.528

10. The states 2 and 3 are very very bad. The states 6 and 10 are perfect. The states 7, 8 and529

9 are not completely correct. The goal is to have 5 orange squares in the shape of an X. It530

could be an orange X with all the other squares in red or all the other squares in green.531

We performed a similar experiment aiming to recreate the Italian flag pattern (three vertical stripes:532

red, white and green) on the front side of the Rubik’s cube. The results are shown in Figure 14.533

Remarkably, with only five pieces of human feedback, RLHTF nearly doubles the reward achieved by534

PbRL. However, RLHTF converges to a reward of 6.67, not to the maximum achievable score of 7.88.535

This discrepancy may arise because the performance appears ’good enough’ to the human evaluator,536

in the sense that it already fulfills the task. In contrast, when having access to the true reward, the537

agent may continue learning until it discovers the optimal way to achieve the task. Nevertheless, this538

’good enough’ level is reached faster with just five pieces of human text feedback than when using539

the true environment reward at every REINFORCE step.540

To better interpret performance trends, we smooth the rewards per episode in Figures 7 and 14 by541

doing a convolution with a window size of 30.542

C Policy Learning543

The reward model learns to measure how close the trajectory is to human intentions. Consequently,544

to find the optimal policy, the agent may directly query the reward model, instead of the human545

evaluators. This approach significantly reduces time, energy, and monetary costs during policy546

learning [3]. The interactions are described by the solid arrows in Figure 2.547

The agents follow a greedy policy, they select actions that maximize the expected future rewards548

as in (1). In simple tabular settings, we use dynamic programming to find the optimal solution. In549

more complex or continuous environments, we model the policy with a fully connected NN, which550

takes the observed state as input and outputs an action. We train the network using the REINFORCE551

algorithm [30], where the reward signal is given by the reward model. Following standard practices552

from RLHF, we compute several REINFORCE epochs before querying the human evaluators and553

updating the reward model again.554

We would like to highlight that our contribution lies in efficient reward modeling with fewer but555

richer human interactions. The agent learning phase, which takes most computational burden,556

follows standard RL algorithms, such as REINFORCE, whose computational complexities are well-557

established in prior literature. We run all our experiments on an Intel(R) Core(TM) i7-7800X CPU @558

3.50GHz processor, most learning was done in minutes and no experiment took longer than a couple559

hours.560
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D Limitations561

While our framework introduces a new paradigm for incorporating natural language human feedback562

into reinforcement learning, its current implementation presents several limitations.563

First, our prompts must be adapted to each environment, similar to how traditional RL requires564

handcrafting reward functions. Although we demonstrate some degree of generalizability across565

three distinct environments, fully task-agnostic prompting remains an open challenge. Moreover,566

we would like to extend our approach to more complex tasks, such as LLM finetuning, where an567

evaluator could critique stylistic elements (“too formal”) or specific content (“the third paragraph is568

confusing”), going beyond the binary preferences typically used in existing RLHF pipelines.569

Second, although LLMs can interpret rich feedback, their performance is constrained by the content570

and clarity of the prompt. When critical information is missing or ambiguous, the LLM may571

hallucinate or misinterpret the intent. We find that providing instructions to human evaluators572

significantly reduces these issues, though it does not eliminate them entirely. Similarly, our method573

shows consistent empirical improvements, but we lack formal guarantees of performance.574

Lastly, our experiments focus on state-level feedback. However, our approach naturally extends575

to action-level feedback by appropriately prompting the LLM, e.g., an evaluator on the Gridworld576

environment might say "go up 5 steps." This capability opens the door to broader applications in RL577

settings.578

E Prompt Engineering579

The system prompt design has a strong impact on the algorithm’s performance. Next, we explain580

some of the design choices.581

We define the coordinates in the grid using chess style notation, i.e., as a letter and number pair582

indicating the column and row respectively. This format ensures clear spatial referencing, even with583

older LLM versions like GPT 3.5., which often struggle with traditional Cartesian coordinates, e.g.584

(2, 3), as it can be ambiguous whether the first number refers to the horizontal or vertical coordinate.585

With chess notation, we remove this ambiguity and improve the model’s ability to interpret spatial586

information correctly.587

Additionally, we follow CoT prompting [27] to enhance reasoning when processing human feedback.588

Since feedback is inherently context-dependent, we introduce an intermediate classification step589

where the language model categorizes the feedback into different types, such as goal description,590

imperative instruction or trajectory evaluation. This categorization helps structure the interpretation591

of feedback based on its intent.592

In accordance with few shot prompting [28], we provide demonstrations to steer the model to593

better performance. By exposing the model to relevant cases, we reduce ambiguity and improve594

performance.595

Lastly, we use function calling to force ChatGPT’s output to have a prespecified json format, which596

enables us to seamlessly extract the necessary information in downstream tasks. The desired output597

format for the Gridworld, Reacher and Rubik cube environments are described in Figures 17, 20 and598

23 respectively. While the full system instructions are detailed in Figures 15, 16, 18, 19, 21, and 22.599

19



Figure 15: System prompt for Gridworld.

Figure 16: Parameters for system prompt in Gridworld.
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Figure 17: Function calling to force output format in Gridworld.
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Figure 18: System prompt for Reacher environment Part 1.
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Figure 19: System prompt for Reacher environment Part 2.
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Figure 20: Function calling to force output format in Reacher environment.
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Figure 21: System prompt for Rubik cube environment Part 1.

25



Figure 22: System prompt for Rubik cube environment Part 2.
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Figure 23: Function calling to force output format in Rubik cube environment.
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