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Abstract
Excessive computation and communication de-
mands pose challenges to current FL frame-
works, especially when training large-scale mod-
els. To prevent these issues from hindering
the deployment of FL systems, we propose a
lightweight framework where clients jointly learn
to fuse the representations generated by multi-
ple fixed pre-trained models rather than training
a large-scale model from scratch. To capture
more client-specific and class-relevant informa-
tion from the pre-trained models and jointly im-
prove each client’s ability to exploit those off-the-
shelf models, we design a Federated Prototype-
wise Contrastive Learning (FedPCL) approach
which shares knowledge across clients through
their class prototypes and builds client-specific
representations in a prototype-wise contrastive
manner. We perform a thorough evaluation of the
proposed FedPCL in the lightweight framework,
measuring its ability to fuse various pre-trained
models on popular FL datasets.

1. Introduction
Federated Learning (FL) is a new promising field of machine
learning that allows multiple clients to train together without
sharing their private data (McMahan et al., 2017). Vanilla
FL aims to train a single global model over all participating
clients by periodically synchronizing their model parame-
ters. However, the learned model usually does not perform
well on all clients due to the statistical heterogeneity among
local datasets (Kairouz et al., 2019; Long et al., 2020). Per-
sonalized Federated Learning (PFL) is proposed to solve this
problem by training a personalized model for each client.
Recent studies on PFL leverage various techniques to enable
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more common underlying information shared across differ-
ent clients (Zhang et al., 2021a; Fallah et al., 2020; T Dinh
et al., 2020; Oh et al., 2022; Long et al., 2022). So far, FL
and PFL have been widely used in real-world tasks, includ-
ing computer vision (Park et al., 2021), natural language
processing (Lin et al., 2021), and graph data mining (Xie
et al., 2021; Chen et al., 2022; Liu et al., 2022).

However, the models in real-world applications are usu-
ally large-scale neural networks which incur high compu-
tation costs and require high communication bandwidth
when trained from scratch. This can make it infeasible to
train such models in some practical FL scenarios, e.g., low-
resource device-based federated learning. To alleviate the
above issues, we propose a lightweight FL framework that
uses multiple fixed pre-trained backbones as the encoder,
followed by learnable layers to fuse the representations
generated by the backbones for each client. The proposed
framework is capable of fusing the representations generated
by pre-trained models with various architectures or obtained
from various source data, expanding the scope of feder-
ated learning by integrating off-the-shelf foundation models.
Also, it makes it possible to utilize large-scale pre-trained
models (Liu et al., 2021b), e.g., VisionTransformer (Dosovit-
skiy et al., 2020) and Swin Transformer (Liu et al., 2021c),
in a computation resource-constrained case to enhance the
overall performance. Using the pre-trained foundation mod-
els as the fixed encoder can efficiently reduce costs because
neither complicated backward propagation computation nor
large-scale neural network transmission between the server
and clients is needed during the training stage.

To enable a better personalized representation ability for
each client under this lightweight FL framework, we need to
select an appropriate information carrier to share common
underlying knowledge across clients. Motivated by (Snell
et al., 2017; Luo et al., 2021; Tan et al., 2022), class-wise
prototypes, defined as “a representative embedding” for a
specific class, can be an effective information carrier for
communication between the server and clients. Sharing pro-
totypes allows for better knowledge sharing across various
learning domains, which has been proved in transfer learn-
ing (Quattoni et al., 2008) and multi-task learning (Kang
et al., 2011) scenarios. To efficiently extract the useful
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shared information learned from the pre-trained models
via prototypes, we design an algorithm called Federated
Prototype-wise Contrastive Learning (FedPCL) where both
local prototypes and global prototypes are used for knowl-
edge sharing in a supervised contrastive manner (Khosla
et al., 2020; Liu et al., 2021a). By maximizing the agree-
ment between the fused representation and its corresponding
prototypes with contrastive learning, class-relevant informa-
tion and semantically meaningful knowledge are captured
by each client. Concretely, global prototypes force the fused
representation to be closer to the global class center, while
local prototypes force clients to share more higher-level
feature information in a pairwise way. Using prototypes
to realize inter-client communication allows for knowledge
sharing in a latent space and brings additional benefits. Com-
pared with directly transmitting the representation of a sam-
ple, prototypes can eliminate bias from a single sample and
protect clients’ privacy. Compared with model parameters,
prototypes are much smaller in size, which significantly
reduces communication costs.

We quantitatively evaluate the performance of FedPCL and
state-of-the-art FL algorithms under the lightweight frame-
work based on benchmark foundation models and datasets.
We also perform extensive experiments to validate the ef-
fectiveness of FedPCL in fusing representations output by
different backbones and its capability to integrate knowl-
edge from backbones with different model architectures.
Our main contributions are summarized as follows:

2. Problem Formulation
We formulate our proposed lightweight FL framework
which integrates off-the-shelf pre-trained models as fixed
backbones and learns to fuse them adaptively.

The Proposed Lightweight FL Framework. Similar to
most FL frameworks, there are m clients and a central
server involved in the multiple pre-trained backbone-based
framework. Each client i ∈ [1,m] owns K shared and
fixed backbones and a private dataset Di that cannot be
shared with each other. Each learning model can be seen
as a combination of at least two parts: (i) Feature En-
coder r(·; Φ∗) : Rd → RK×de , comprising K fixed pre-
trained backbones, each of which maps the raw sample x
of size d to a representation vector of size de. K repre-
sentation vectors are concatenated together as the output
r(x; Φ∗), denoted as rx for short. (ii) Projection Network
h (·; θi) : RK×de → Rdh , which fuses the K representation
vectors and maps rx from one latent space to another for
further representation learning. The formal definition is
provided as follows.

Definition 2.1. Let φ∗k, where k ∈ [1,K], denote the opti-
mal parameter of the k-th backbone pre-trained on a specific
dataset, rk be the embedding function of the k-th backbone,
and x denote an instance sampled from a local dataset. We

define the concatenated representation output by the feature
encoder as

r(x; Φ∗) := concat (r1(x;φ∗1), . . . , rK(x;φ∗K)) . (1)

For client i, the projection network h, parameterized by θi,
aims to fuse the representations output by multiple back-
bones into another abstract space. The output of the projec-
tion network is computed as

z(x) = h (rx; θi) . (2)

Based on the above definition, we formulate the global
objective of the lightweight FL framework as

min
{θ1,θ2,...,θm}

m∑
i=1

|Di|
N

E(x,y)∈Di
[Li (θi; z (x) , y)]

s.t. z(x) = h (r(x; Φ∗); θi) where Φ∗ = {φ∗1, φ∗2, · · · , φ∗K}.
(3)

The target of the framework is to learn the personalized
projection network {θi}mi=1 for each client. Given an input
sample x, the representations output by pre-trained back-
bones are concatenated together as r(x; Φ∗). Then, the
projection network h(θi) optimized for each client converts
the concatenated representation to z(x).

3. FedPCL
We elaborate our proposed algorithm Federated Prototype-
wise Contrastive Learning (FedPCL), which is illustrated
in Figure 1. In each client, z(x) is generated by the pro-
jection network which fuses the representations from mul-
tiple backbones. Then, to share the common underlying
knowledge across clients, we employ a prototype-based
communication scheme to transmit and aggregate prototype
sets between the server and clients. With the prototypes
returned from the server, we perform local optimization via
well-crafted prototype-wise contrastive loss function, which
extracts class-relevant information while sharing more inter-
client knowledge in the latent space. We provide detailed
illustration for each procedure in the rest of this section.

Prototype as the Information Carrier. To capture more
class-relevant information and semantically meaningful
knowledge, we propose to transmit prototypes between the
server and clients. Compared with transmitting the learn-
able model parameters, there are several advantages brought
by transmitting class-wise prototypes. Firstly, prototype is
more compact in form, which significantly decreases com-
munication costs required during the training process. Sec-
ondly, non-parametric communication allows each client to
learn a more customized local model without synchronizing
parameters with others. Thirdly, prototypes are high-level
statistic information rather than raw features, which raise
no additional privacy concerns to the system and are robust
to gradient-based attacks.
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Figure 1. An overview of the proposed lightweight federated learning framework. This example assumes that for each client, there are
three pre-trained backbones, with the block in different colors illustrating their backbone-specific representation.

To extract useful class-relevant information from the local
side, we construct a local prototype as the information car-
rier for knowledge uploading. Specifically, it is defined in
the latent space of projection network’s output by the mean
of the fused representations within the same class j,

C
(j)
i :=

1

|Di,j |
∑

(x,y)∈Di,j

z (x) , (4)

where Di,j refers to the subset of Di composed of all in-
stances belonging to class j, and Ci denotes the local pro-
totype set of the i-th client. After the above computation,
the local prototype set of each client is sent to the central
server for knowledge aggregation, which shares the local
class-relevant information extracted on each specific client
based on its local dataset.

Server Aggregation. After receiving local prototype sets
{Ci}mi=1 from all participating clients, the server first com-
putes the global prototype as

C̄(j) :=
1

|Nj |
∑
i∈Nj

|Di,j |
Nj

C
(j)
i , (5)

where Nj denotes the set of clients that own instances of
class j, and Nj denotes the number of instances belonging
to class j over all clients. The global prototype set is denoted
as C = {C̄(1), C̄(2), . . . }. With such an aggregation mech-
anism, the global prototype set summarize coarse-grained
class-relevant knowledge shared by all clients, which pro-
vides a high-level perspective for representation learning.

Local Training. After receiving the prototype sets from
the server, the main target of local training is to efficiently
extract useful knowledge from the local and the global pro-
totypes, respectively, so as to maximally benefit local repre-
sentation learning. To achieve that, we propose a prototype-
wise supervised contrastive loss that consists of two terms,
i.e., global term and local term.

To force the fused representation z(x) generated by the local
projection network to be closer to its corresponding global
class center so as to extract more class-relevant but client-
irrelevant information, we define the global prototype-based
loss term as

Lg =
∑

(x,y)∈Di

− log
exp

(
zx · C̄(y)/τ

)
∑
ya∈A(y) exp

(
zx · C̄(ya)/τ

) . (6)

where zx represents z(x) for short, A(y) := {ya ∈ [1, |C|] :
ya 6= y} is the set of labels distinct from y, τ is the tem-
perature that can adjust the tolerance for feature differ-
ence (Zhang et al., 2021b; Chen et al., 2020; Khosla et al.,
2020). For a specific instance x sampled from Di, we use
an inner dot product to measure the similarity between the
fused representation zx and prototypes.

Apart from the global term, to align z(x) with each client’s
local prototypes by alternate client-wise contrastive learning
in the latent space and enable more inter-client knowledge
sharing, we define the local prototype-based loss term as

Lp =
∑

(x,y)∈Di

− 1

m

m∑
p=1

log
exp

(
zx · C(y)

p /τ
)

∑
ya∈A(y) exp

(
zx · C(ya)

p /τ
) .

(7)
For the i-th client, the local objective function in Eq. (3)
is defined as a combination of Lg and Lp in the following
form,

L
(
θi; z (x) , y,C, {Cp}mp=1

)
= Lg (θi; z (x) , y,C)

+Lp(θi; z (x) , y, {Cp}mp=1).
(8)

4. Experiments
4.1. Experimental Setup
Datasets and Non-IID Settings. We evaluate our pro-
posed framework on the following three benchmark datasets:
Digit-5 (Zhou et al., 2020), Office-10 (Gong et al., 2012),
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Table 1. Test accuracy under the feature shift non-IID setting. In the column labeled BB (short for backbone), s is for a single pre-trained
backbone and m is for multiple pre-trained backbones. # of Comm Params refers to the average number of parameters sent from a client
to the server per round.

BB Method MNIST SVHN USPS Synth MNIST-M Avg # of Comm
Params

s

FedAvg 70.65(1.15) 17.10(0.20) 70.24(1.62) 32.90(0.75) 29.33(1.18) 44.04(0.98) 133,632
pFedMe 71.13(3.63) 13.18(1.78) 69.20(0.30) 36.25(3.35) 25.25(2.25) 43.00(2.26) 133,632
PerFedAvg 52.68(7.03) 16.28(1.23) 53.66(6.58) 29.05(3.45) 24.38(2.38) 35.21(4.13) 133,632
FedRep 64.00(2.20) 17.88(1.08) 70.44(1.27) 36.50(1.55) 31.90(0.05) 44.14(2.03) 131,072
FedProto 80.40(2.75) 17.03(0.38) 88.47(0.91) 40.90(1.10) 32.85(0.75) 51.93(1.18) 2,560
Solo 60.40(2.25) 15.60(0.20) 75.28(4.48) 34.65(0.05) 28.48(0.53) 42.88(1.50) -
Ours 82.75(0.40) 18.12(0.42) 88.82(0.15) 41.40(0.60) 33.05(0.95) 52.83(0.21) 2,560

m

FedAvg 71.68(2.93) 18.45(0.45) 72.95(0.86) 37.35(1.35) 33.70(2.55) 46.83(1.63) 395,776
pFedMe 67.45(2.70) 15.43(0.38) 65.66(7.20) 33.55(4.60) 31.80(0.20) 42.78(3.01) 395,776
PerFedAvg 56.03(2.73) 17.03(0.63) 57.55(0.27) 34.90(2.80) 30.98(1.53) 39.30(1.59) 395,776
FedRep 77.25(1.75) 16.40(0.50) 80.25(0.32) 37.63(2.18) 36.53(0.28) 49.61(1.05) 393,216
FedProto 83.78(0.83) 17.90(0.10) 91.74(0.00) 43.70(2.45) 36.43(1.58) 54.71(0.99) 2,560
Solo 70.43(4.63) 15.00(0.40) 84.90(0.24) 37.18(2.73) 34.35(2.20) 48.37(2.04) -
Ours 84.65(0.15) 19.38(0.63) 90.74(0.53) 44.73(0.37) 37.25(0.28) 55.34(0.34) 2,560

and DomainNet dataset (Peng & Saenko, 2018). To mimic
non-IID scenarios in a more general way, we investigate
three different non-IID settings. Details about the non-IID
settings can be found in Appendix A.1.
Baselines and Implementation. We compare our pro-
posed method with popular FL algorithms including Fe-
dAvg (McMahan et al., 2017), pFedMe (Dinh et al., 2020),
PerFedAvg (Fallah et al., 2020), FedRep (Collins et al.,
2021), FedProto (Tan et al., 2022), and Solo, i.e., training
independently within each client. Details about the model
and each dataset can be found in Appendix A.1.
4.2. Performance Comparison
Table 2. Test accuracy under the feature & label shift non-IID
setting for Office-10, under the label shift non-IID setting for
DomainNet.

Method Office-10 Domainnet

FedAvg 33.84(4.59) 28.09(2.91)
pFedMe 30.00(1.41) 32.65(0.72)
Per-FedAvg 26.04(1.46) 34.64(0.54)
FedRep 37.24(1.54) 48.82(0.55)
FedProto 34.54(2.65) 44.48(0.58)
Solo 36.38(0.54) 46.70(0.75)
Ours 41.40(1.19) 52.92(3.47)

Table 1 and Table 2 report the results of our method and
baselines in mean (std) format over clients with three inde-
pendent runs. The results suggest that: (1) compared with
single backbone cases, multiple pre-trained backbones lead
to higher test accuracy in most cases and about a 1%− 4%
test accuracy improvement for our method; (2) apart from
locally training each client (Solo), our method achieves rela-
tively smaller deviation across different runs compared with
most baselines, which demonstrates that FedPCL is able
to fuse the representations in a more stable way; (3) the
number of communicated parameters in prototype-based
method is much lower than that of the model parameter-
based methods.

Table 3. Integrating backbones with various architectures into the
proposed framework. Experiments are implemented with FedPCL
under feature & label shift non-IID setting.

Backbone-Domain Digit-5 Office-10

[ResNet18-QuickDraw,
ResNet18-Aircraft,
ResNet18-Birds]

42.87(1.47) 41.40(1.19)

[MLP-ImageNet,
AlexNet-ImageNet,
VGG11-ImageNet]

55.80(2.09) 70.11(1.78)

[tiny-ViT-ImageNet,
small-ViT-ImageNet,
base-ViT-ImageNet]

40.96(2.87) 84.63(2.57)

4.3. Integrating Backbones with Various Architectures
In Table 3, we also show that our proposed lightweight
framework is capable of (i) fusing representations generated
by backbones with different architectures, i.e., a two-layer
CNN, AlexNet (Krizhevsky et al., 2012), and VGGNet (Si-
monyan & Zisserman, 2014). (ii) integrating large-scale
pre-trained models, i.e., ViT (Dosovitskiy et al., 2020), to en-
hance the performance without huge computation resources
to train or fine-tune them.

5. Conclusion
To address the problems on excessive computation and com-
munication demands in current FL frameworks, we propose
a lightweight framework that leverages multiple neural net-
works as fixed pre-trained backbones to replace the learnable
feature extractor. To customize the general representations
generated by these backbones for each client, class-wise
prototypes are shared across the clients and the server. To
efficiently extract the shared knowledge from the prototypes,
we develop FedPCL algorithm that uses contrastive learning
at the client-side during the local update. Extensive exper-
iments are conducted to show the superiority of FedPCL
under the proposed lightweight framework.
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A. Experimental Details and Additional Results
A.1. Experimental Details

A.1.1. NON-IID SETTINGS.
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Figure 2. Illustration of three non-IID settings on Digit-5 dataset. Each dot represents a set of samples within a certain class allocated to a
client. The feature shift non-IID is indicated by dot colors while the label shift non-IID (α = 1) is indicated by dot sizes.

To mimic non-IID scenarios in a more general way, we investigate three different non-IID settings as follows and visualize
them in Figure 2.

• Feature shift non-IID: The datasets owned by clients have the same label distribution but different feature distributions.
The number of classes and the number of samples per class are the same across clients.

• Label shift non-IID: The datasets owned by clients have the same feature distribution but different label distributions.
Similar to existing works (Lin et al., 2020; Wang et al., 2020), we use Dirichlet distribution with parameter α to allocate
examples for this kind of non-IID setting.

• Feature & Label shift non-IID: The datasets owned by clients are different in both label distribution and feature
distribution, which is more common but challenging in real-world scenarios.
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(c) DomainNet

Figure 3. Examples of raw instances from three datasets: Digit-5 (left), Office-10 (middle), and DomainNet (right). We present five
classes for each dataset to show the feature shift across their sub-datasets.

A.1.2. VISUALIZATIN OF RAW SAMPLES.

Some examples of raw instances can be found in Figure 3.

A.1.3. MODEL ARCHITECTURE.

For all baseline methods, the backbone module is followed by two fully connected layers, corresponding to projection
network and classifier, respectively, whereas for our method, the backbone module is followed by only one fully connected
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layer as the projection network. The output dimension of each backbone and the projection network are 512 and 256,
respectively. Note that for a fair comparison, all baselines use the same network architecture on top of the frozen backbones
as FedPCL except their essential classifier.

We use a batch size of 32, and an Adam (Kingma & Ba, 2014) optimizer with weight decay 1e−4 and learning rate 0.001.
The default setting for local update epochs is E = 1 and the temperature τ is 0.07. We implement all the methods using
PyTorch and conduct all experiments on one NVIDIA Tesla V100 GPU.

For the single backbone cases, we use ResNet18 pre-trained on Quickdraw as the backbone. For the multiple backbone
cases, we use three pre-trained ResNet18 as the backbones. They are pre-trained on Quick Draw (Jongejan et al., 2016),
Aircraft (Maji et al., 2013), and CU-Birds (Liu et al., 2020) public dataset, respectively. The model architecture following
the backbone module is shown in Table 4.

Table 4. The model architecture with learnable parameters for each client. FC refers to fully connected layer and BN refers to the
BatchNormalization layer. K refers to the number of available pre-trained backbones, which is 3 in our experiments.

Layer Details

1 FC(512×K, 256), ReLU, BN(256)

2 FC(256, 10)

A.1.4. TRAINING DETAILS.

We provide the detailed settings for the experiments conducted in Section 4.2. Table 5, 6, 7 show the data partitioning details
in feature shift non-IID, label shift non-IID, and feature & label shift non-IID, respectively. We run each algorithm till the
convergence of its loss.

Table 5. Detailed statistics for three benchmark datasets in feature shift non-IID, label IID setting (Table 1).

Datasets MNIST SVHN USPS SynthDigits MNIST-M

# of clients 1 1 1 1 1
# of classes per client 10 10 10 10 10
# of samples per class 10 10 10 10 10

Table 6. Detailed statistics for three benchmark datasets in label shift non-IID, feature IID setting (Table 8).

Datasets MNIST-M Caltech Real

# of clients 5 5 5
# of samples per client [152,92,112,72,70] [76,79,111,70,112] [153,95,111,55,84]

Table 7. Detailed statistics for three benchmark datasets in feature & label shift non-IID setting (Table 8).

Datasets Digit-5 Office-10 DomainNet

# of clients 5 4 6
# of samples per client [100,75,112,120,65] [89,108,58,120] [137,230,270,204,175,152]

A.2. Additional Experiments

A.2.1. PERFORMANCE UNDER THREE NON-IID SETTINGS.

Table 8 shows the performance of FedPCL and baseline methods under label shift non-IID scenarios.
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Table 8. Test accuracy under the (1) label shift non-IID setting, (2) feature & label shift non-IID setting. For the former (feature IID, label
non-IID), we use MNIST-M, Caltech, and Real as the datasets of all clients, respectively. For the latter (feature non-IID, label non-IID),
we use Digit-5, Office-10, and DomainNet as the datasets, respectively.

Feature Method Single backbone Multi-backbone

Digit-5 Office-10 Domainnet Digit-5 Office-10 DomainNet

IID

FedAvg 30.42(5.34) 28.84(1.01) 25.78(1.48) 31.97(3.48) 23.60(1.72) 28.09(2.91)
pFedMe 28.14(1.26) 22.53(5.28) 29.43(1.30) 32.82(1.74) 25.73(3.26) 32.65(0.72)

Per-FedAvg 27.22(7.11) 36.74(3.96) 31.37(3.35) 30.95(2.94) 25.10(0.55) 34.64(0.54)
FedRep 34.14(7.37) 36.35(0.53) 41.95(3.35) 39.27(1.35) 37.95(0.91) 48.82(0.55)

FedProto 38.02(3.89) 39.04(0.13) 34.41(0.74) 42.17(3.23) 40.78(0.93) 44.48(0.58)
Solo 36.40(3.71) 37.82(1.79) 39.06(3.27) 41.33(2.22) 39.59(2.49) 46.70(0.75)
Ours 40.88(2.09) 40.76(0.21) 39.63(3.31) 45.35(1.58) 42.13(0.77) 52.92(3.47)

Non-
IID

FedAvg 31.03(4.29) 25.67(1.79) 16.40(1.25) 32.98(3.44) 33.84(4.59) 19.25(2.03)
pFedMe 25.13(8.31) 22.65(1.10) 16.56(2.37) 28.10(8.80) 30.00(1.41) 18.46(2.04)

Per-FedAvg 28.94(0.60) 25.87(0.19) 18.68(1.47) 31.95(1.81) 26.04(1.46) 20.96(1.83)
FedRep 34.16(3.40) 32.50(2.86) 19.64(1.53) 39.28(2.44) 37.24(1.54) 30.28(1.01)

FedProto 41.49(2.75) 37.47(1.27) 19.37(0.14) 43.94(3.02) 34.54(2.65) 29.45(0.39)
Solo 35.56(3.16) 35.54(1.05) 17.84(0.87) 38.35(2.55) 36.38(0.54) 27.15(0.52)
Ours 42.87(1.47) 37.64(1.99) 24.90(1.61) 45.22(3.65) 41.40(1.19) 35.23(0.29)

A.2.2. FAIRNESS ACROSS CLIENTS.

Following the metrics in (Li et al., 2019), we verify the advantage of FedPCL in fairness and report the results over 40 and 80
clients in Table 9 and Table 10, respectively. We list the average, the worst 10%, the worst 20%, the worst 40%, the best 10%
of test accuracy over all clients across three runs in Digit-5 dataset. We also report the variance of the accuracy distribution
across clients (the smaller, the fairer) (Li et al., 2019). The results demonstrate that in such a multi-backbone scenario,
it is easier to obtain a fair solution using prototype-based communication rather than model parameter/gradient-based
communication, because the information conveyed by prototypes is more local data distribution-independent while the
information conveyed by model parameters tends to be affected by local data distribution. Detailed experimental results on
fairness can be found in Table 9 and 10.

Table 9. The average, the worst, the best, and the variance of the test accuracy of 40 clients on Digit-5.

Method Average Worst 10% Worst 20% Worst 40% Best 10% Variance

FedAvg 32.20(2.17) 16.73(1.73) 20.31(2.21) 25.01(0.71) 54.60(3.33) 11.16(0.35)
Ours 48.39(0.25) 35.35(2.63) 37.58(3.07) 40.82(3.16) 62.72(1.33) 8.45(0.06)

Table 10. The average, the worst, the best, and the variance of the test accuracy of 80 clients on Digit-5.

Method Average Worst 10% Worst 20% Worst 40% Best 10% Variance

FedAvg 33.44(3.34) 12.34(2.67) 15.53(2.90) 19.53(2.40) 56.87(2.74) 13.20(1.35)
Ours 49.46(0.34) 30.39(4.57) 34.37(3.40) 39.52(2.66) 66.46(2.38) 10.60(0.25)

A.2.3. ABLATION STUDY

In this section, we present the results for various ablation experiments to test the effect of global/local prototypes and the
contrastive loss. More results can be found in Appendix A.2.3.

Effect of the contrastive loss. We test the performance of the local loss function in different forms: (1) Cross Entropy
loss; (2) Cross Entropy loss + ProtoDist term, which takes the distance between prototype and fused representation as an
additional term to regularize the cross entropy loss; (3) Supervised Contrastive loss that only uses local embedding for
contrastive learning; (4) Our prototype-wise contrastive loss that uses both global and local prototypes for local contrastive
learning. As shown in Table 11, our prototype-wise supervised contrastive loss outperforms others.

Effect of prototypes. To verify the effectiveness of different kinds of prototypes used for local training in our proposed
FedPCL, we compare the following three cases: (i) Only global prototypes computed at the server are used for local training;
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Table 11. Comparison between the cases when different local losses are used for local training. Experiments are conducted on Digit-5
dataset under the feature & label shift non-IID setting where the Dirichlet parameter α is 1, the number of clients is 5, and the number of
pre-trained backbones is 3.

Loss Type Acc

Cross Entropy 32.98(3.44)
Cross Entropy + ProtoDist (Tan et al., 2022) 43.94(3.02)
Supervised Contrastive (Khosla et al., 2020) 42.18(3.25)
Ours 45.22(3.65)

(ii) Only local prototypes aggregated at the server are used for local training; (iii) Both global and local prototypes are used
for local training. All these three cases are implemented under three non-IID settings. As shown in Table 12, without global
or local prototypes being used for local supervised contrastive learning, the performance drops 0.3%-2%, indicating that
the knowledge conveyed by global prototypes and local prototypes can benefit the local learning framework from different
perspectives.

Table 12. Comparison between the cases when only global prototypes are used for local training, only local prototypes from all clients are
used for local training, and both of them are used for local training. Experiments are conducted on Digit-5 dataset under three non-IID
settings where the Dirichlet parameter α is 1, the number of clients is 5, and the number of pre-trained backbones is 3.

Prototypes Feature shift non-IID Label shift non-IID Feature & Label shift non-IID

Global only 54.69(0.14) 44.75(1.77) 43.79(4.09)
Local only 55.01(0.10) 44.52(1.73) 43.08(3.87)

Global and local 55.34(0.34) 45.35(1.58) 45.22(3.65)

Effect of the Number of Backbones. The number of pre-trained backbones can be adjusted for a specific task correspond-
ingly. To study its effect, we compare the performance and parameter size when different numbers of fixed backbones are
used. The results in Table 13 indicate that more pre-trained backbones can lead to better performance but consume more
computing resources and memory space.

Table 13. Effect of the number of pre-trained backbones. Experiments are conducted on Digit-5 dataset under the feature & label shift
non-IID setting where the Dirichlet parameter α is 1, and the number of clients is 5.

# of Backbones # of Training Params. # of Fixed Params. Acc

1 133,632 11M 42.87(1.47)

2 264,704 22M 44.49(1.75)

3 395,776 33M 45.22(3.65)

A.2.4. VISUALIZING THE FUSING RESULTS OF FEDPCL
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Figure 4. Similarity scores generated on two datasets: (a) Digit-5 and (b) Office-10. Rows correspond to the pre-trained backbones rk(x)
and columns correspond to different local datasets with feature shift.

To better understand how FedPCL fuses the representation output by backbones, we visualize the normalized similarity
scores under the feature shift non-IID setting. The heatmap in Figure 4 summarizes the values of the normalized similarity
scores, computed by the inner product between local prototypes in the single backbone case and the multi-backbone case.
For example, in Figure 4(a), the element 0.5 on row 1 and column 2 represents the similarity score between the local
prototype computed when only one backbone pre-trained in Quickdraw is available and the local prototype computed when
three backbones pre-trained in Quickdraw, Aircraft, and Birds are available.
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We find that the backbone pre-trained on Quickdraw contributes more to the fused prototype, while the backbone pre-trained
on Birds contributes the least. Clients who own a specific dataset show different levels of utilization when fusing the
representations from various backbones.

A.2.5. PRIVACY PROTECTION.

We incorporate FedPCL with privacy-preserving techniques to observe its variation in performance. Concretely, we add
random noise of various distributions into the communicated prototypes and the original images, respectively. Table 14
shows that the performance of FedPCL remains high after injecting noise to the prototypes. Figure 5 visualizes an original
image of a bike from Office-10 dataset and what it looks like after the noise injection operation. It is hard to tell the objects
in the right column of Figure 5(c), but the accuracy only drops about 2%, compared to vanilla FedPCL. In conclusion,
FedPCL has the potential to combine with privacy-preserving techniques without an obvious decrease in performance.

Table 14. The performance of FedPCL on Office-10 dataset after incorporating privacy-preserving techniques. Here, we consider using
multiple backbones under the label shift non-IID setting with α = 1 and m = 5. s represents the scale parameter for the noise distribution
generation and p ∈ (0, 1) represents the perturbation coefficient of the noise.

Methods Add Noise to Noise Type Acc(Std)

FedRep / / 37.95(0.91)

FedPCL / / 42.13(0.77)

FedPCL

Prototype

Laplace (s = 0.05, p = 0.1) 39.93(3.48)
Gaussian (s = 0.05, p = 0.1) 40.04(2.09)
Laplace (s = 0.05, p = 0.2) 40.24(3.01)

Gaussian (s = 0.05, p = 0.2) 41.83(3.57)

Image

Laplace (s = 0.2, p = 0.1) 38.29(2.87)
Gaussian (s = 0.2, p = 0.1) 41.10(0.57)
Laplace (s = 0.2, p = 0.2) 36.93(2.33)

Gaussian (s = 0.2, p = 0.2) 40.14(0.78)

(a) Original

Ga
us

sia
n

s=0.10 s=0.15 s=0.20

La
pl

ac
e

(b) p = 0.1

Ga
us

sia
n

s=0.10 s=0.15 s=0.20

La
pl

ac
e

(c) p = 0.2

Figure 5. Visualization of (a) an original image of a bike from Office-10 dataset; (b-c) applying noise injection privacy-preserving
techniques to the original image. Specifically, given an original image x and a perturbation coefficient p ∈ (0, 1), x̃ = (1− p)x+ e is
the image used for training. Here, we provide the results of two kinds of random noise, Gaussian (upper row) and Laplace noise (lower
row). The value of p in Figure 5(b) and Figure 5(c) is 0.1 and 0.2, respectively.


