
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ALIGNMENT-AWARE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Alignment of large language models remains a central challenge in natural lan-
guage processing. Preference optimization has emerged as a popular and effective
method for improving alignment, typically through training-time or prompt-based
interventions. In this paper, we introduce alignment-aware decoding (AAD), a
method to enhance model alignment directly at inference. Theoretically, AAD
can be interpreted as implicit reward optimization, yet it requires no specialized
training beyond the standard DPO setup. Empirically, AAD consistently outper-
forms strong baselines across diverse alignment benchmarks and model scales.
Moreover, in data-constrained settings, AAD can produce high-quality synthetic
data to improve alignment under standard decoding, providing a practical solution
when labeled data is limited.

1 INTRODUCTION

Large language models (LLMs) are the backbone of modern natural language processing, powering
applications ranging from open-ended dialogue to complex reasoning tasks. Despite their impressive
capabilities, aligning these models with human preferences remains a central challenge. Misaligned
models can produce harmful, biased, or simply unhelpful outputs, motivating a growing body of
work on alignment, i.e., the process of training models to better reflect human values and preferences
(Ziegler et al., 2019; Ouyang et al., 2022; Amodei et al., 2016).

Alignment is typically performed during training, either through reinforcement learning from human
feedback (RLHF) or more recent variants such as direct preference optimization (DPO) (Rafailov
et al., 2023). While these methods can achieve strong empirical results, they tend to be sensitive
to imperfect preference signals. In RLHF, this arises from errors in the learned reward model that
can be exploited (Amodei et al., 2016), while in DPO it stems from noise in the preference data it-
self (Rafailov et al., 2024a). To prevent over-optimization, the learned policy is typically constrained
to remain close to a fixed reference model. This constrain ensures stability but also causes the opti-
mal policy to inherit the biases of the reference model. This is because under this formulation, the
learned policy is effectively trained as a reward model (Rafailov et al., 2023), and no longer as a
policy that maximizes reward (Rafailov et al., 2024b).

An emerging alternative is inference-time alignment, which steers model outputs at inference, with-
out modifying parameters. Recent work explores emulated fine-tuning (Mitchell et al., 2024; Liu
et al., 2024a; Xu et al., 2025), energy-based decoding (Yuan et al., 2025; Hong et al., 2025), and
value-guided search (Zhou et al., 2024; Liu et al., 2024e), all of which leverage reward signals to
bias generation. These methods offer flexibility when model weights are frozen or proprietary, but
often require auxiliary models, complex search procedures, or carefully tuned hyperparameters to
remain stable.

In this paper, we introduce Alignment-Aware Decoding (AAD), a simple yet effective method to reli-
ably improve alignment directly at inference. Our method leverages two distinct embedded features
of the DPO-aligned model. First, its capacity to identify safe candidate tokens for the next decoding
step via standard token likelihoods, and second, its ability to perform token-level credit assignment
through the log-likelihood ratio with the reference model (Rafailov et al., 2024b). Intuitively, AAD
exploits the alignment signal captured during preference optimization, which is often underutilized
by standard decoding, and leverages the reference model at inference to mitigate biases it may have
imparted to the aligned model, in a manner similar to methods that use a weaker (e.g., smaller)
model to guide the decoding of a stronger model (Li et al., 2023a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Empirically, we demonstrate that AAD consistently improves alignment across diverse benchmarks
and model scales under compute-equivalent conditions. Furthermore, when high-quality preference
data or inference resources are scarce, AAD can generate high-value synthetic completions that can
be fed back into the model through iterative DPO (Pang et al., 2024), enabling stronger alignment
without additional inference overhead.

We summarize our contributions as follows:

• We introduce alignment-aware decoding (AAD), a simple inference-time method that uses
the aligned model as a token reward function. Importantly, AAD requires no additional
training, using only the reference model (before DPO) and the aligned model (after DPO).

• We demonstrate across multiple benchmarks and model scales that AAD consistently and
significantly improves alignment over baselines in compute-equivalent baselines.

• We further demonstrate that AAD can be used to generate high-quality synthetic data to
further improve the alignment of LLMs under standard decoding strategies.

2 RELATED WORK

Recent efforts in aligning large language models (LLMs) with human preferences can be grouped
into two broad categories: training-time alignment and inference-time alignment.

Training-time alignment. These approaches modify the model parameters to internalize the de-
sired behavior directly during training. Reinforcement learning from human feedback (RLHF) is
the standard paradigm for aligning LLMs (Ziegler et al., 2019), where a reward model is trained
from human preferences and used to fine-tune the policy via a reinforcement learning algorithm
such as proximal policy optimization (PPO) (Schulman et al., 2017). Direct preference optimiza-
tion (DPO) (Rafailov et al., 2023) and variants (Hong et al., 2024; Azar et al., 2024; Ethayarajh
et al., 2024; Zhao et al., 2023) eliminate the reinforcement learning stage of RLHF by optimizing a
simple objective that compares preferred and dispreferred outputs. Building on this idea, selective
DPO (Yang et al., 2024) improves sample efficiency by focusing the loss on key tokens with high
preference signal. Weak-to-strong alignment (Zhu et al., 2025) further extends the paradigm by us-
ing a smaller, already aligned reference model to guide the training of a larger base model, thereby
transferring alignment without costly reward modeling. From a theoretical perspective, Rafailov
et al. (2024b) show that DPO training can be interpreted as learning a Q-function, which enables
fine-grained credit assignment and provides a foundation for our method.

Inference-time alignment. Instead of modifying the base model, these methods steer generation
on the fly, offering flexibility when model weights are frozen or inaccessible. One prominent line
of work is emulated fine-tuning (EFT), where a reference–aligned model pair is used to define an
implicit token-level reward function for decoding a third, unaligned base model (Mitchell et al.,
2024), effectively emulating its alignment at inference. Such works include proxy alignment (Liu
et al., 2024a), and GenARM (Xu et al., 2025), which differ mainly in how the token reward signal
is estimated. Energy-based decoding (Yuan et al., 2025; Hong et al., 2025) takes a different angle
by directly biasing generation toward low-energy regions of the reward and model’s logit landscape.
Loosely related, Liu et al. (2024d) introduce decoding-time realignment (DeRa), a decoding strategy
that mimics DPO-trained models at different β values without requiring retraining for each new
value, and PAD (Chen et al., 2025), which integrates verbose preference signals into the reward.
Closer to our work are methods that employ explicit rewards along with with lookahead search,
such as DeAl (Huang et al., 2024), ARGS (Khanov et al., 2024), controlled decoding (Mudgal et al.,
2023), and reward-guided beam search (Deng & Raffel, 2023). By contrast, our method does not rely
on a separate explicit reward function. Tangential to our work are chunk-level value optimization
methods that combine local search algorithm with external (implicit or explicit) value functions to
select completions exhibiting the highest alignment. These include weak-to-strong decoding (Zhou
et al., 2024), which generates candidate chunks with a base model and ranks them using an implicit
value function derived from a reference–aligned model pair; IVG (Liu et al., 2024e), which generates
chunks via EFT and ranks them with a learned value function and PPO-guided Monte Carlo tree
search (Liu et al., 2024c), which reuses the value function obtained during PPO training to guide the
search. These approaches typically

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Prompt: What breed dog is smallest?

Alignment-aware Decoding: The smallest ● 1 recognized breed of dog is the Chihuahua. ● 2
Typically, ● 3 adult Chihuahuas ● 4 range ● 5 in size from 6 to 9 inches (15 to 23
centimeters) in height ● 6 at the shoulder and ● 7 can weigh ● 8 between 2.5 to 6 pounds ●
9 (1.13 to 2.72 ● 10 kg). ● 11 They are known for their ● 12 tiny size and ● 13 distinctive
appearance, with ● 14 a ● 15 sturdy build and ● 16 ● 17 large heads relative to their ● 18
body size.

Greedy Continuations:
● 1 breed of dog is the Chihuahua. They typically weigh between 2 to 6 pounds and stand...
● 2 They typically weigh between 2 to 6 pounds and stand 6 to 9 inches tall at the...
● 3 they weigh between 2 to 6 pounds and stand 6 to 9 inches tall at the shoulder.
● 4 weigh between 2 and 6 pounds (0.9 to 2.7 kg), and they can be as small as 3 inches (
● 5 from 6 to 9 inches (15 to 23 cm) in height and weigh between 2.5 and 6 pounds (1.
● 6 and weigh between 2.5 and 6 pounds (1.1 to 2.7 kilograms). However, there are some...
● 7 weigh between 2.5 and 6 pounds (1.1 to 2.7 kilograms). However, there are some very...
● 8 anywhere from 2 to 6 pounds (0.9 to 2.7 kilograms).
● 9 (1.1 to 2.7 kilograms). However, there are some very small Chihuahuas that can be...
● 10 kilograms). However, there are some very small Chihuahuas that can be even smaller...
● 11 However, there are some very small Chihuahuas that can be even smaller than this.
● 12 small size and big personalities.
● 13 big personalities.
● 14 their long snouts and large, round eyes.
● 15 long snout, large ears, and a distinctive coat.
● 16 a long, pointed snout.
● 17 large, expressive eyes.
● 18 bodies.

Best-of-2: The smallest breed of dog is the Chihuahua. The smallest Chihuahua, a dog that
weighed less than 1 pound, named MiMi, held the title of the world's smallest dog from
October 2, 2010, to November 21, 2012. Since then, she is considered to be the smallest dog
in terms of weight. Some Chihuahuas can weigh up to 6 pounds or more, but MiMi's small size
made her a unique and famous dog.

Figure 1: Qualitative comparison of AAD againgst other decoding strategies. Greedy contin-
uations are generated by feeding the prompt together with the current AAD prefix back into the
model and greedily selecting the next token, revealing where the greedy trajectory diverges from
AAD. AAD identifies the Chihuahua as the smallest recognized breed of dog, making the distinc-
tion that it refers to an officially recognized classification, whereas the other strategies simply state
“breed” without that nuance. AAD is also the only method that directly addresses size (the core of
the prompt) by describing height and body proportions, while greedy and best-of-2 focus mainly on
weight. This highlights AAD’s advantage in preserving relevance to the prompt.

3 BACKGROUND

Auto-regressive language modeling. Let V denote the token vocabulary, and let π denote an auto-
regressive language model (LM) which, given a context x, generates a sequence y with probability
π(y | x) =

∏|y|
t=1 π(yt | x ◦ y1:t−1), where y1:t denotes the prefix of y up to and including posi-

tion t, and ◦ denotes sequence concatenation. Training π typically involves three phases (Ziegler
et al., 2019; Ouyang et al., 2022): (i) pretraining, (ii) supervised fine-tuning (SFT), and (iii) pref-
erence optimization (PO). During pretraining, the model is trained on large-scale unlabeled corpora
to predict the next token given a prefix of text. Then, this model is generally fine-tuned on curated,
task-specific datasets through supervised learning, which improves its ability to follow instructions
and generate useful outputs in more constrained settings (e.g., chatbot dialogue, summarization).
For the remainder of this work, we denote by πSFT the model obtained after SFT. While such models
can follow instructions, they often produce outputs that are suboptimal with respect to human values
and preferences. PO further adapts πSFT to better reflect these preferences.

Preference optimization. The goal of PO is to align the model with a conditional preference
relation ≻x, with y1 ≻x y2 indicating that the completion y1 is preferred over y2 given the prompt x.
In practice, preference relations are typically modeled probabilistically using the Bradley-Terry (BT)
model (Bradley & Terry, 1952), which posits the existence of a scoring function r∗ that quantifies
the quality of a prompt-completion pair (x, y). Specifically, with σ(z) = (1 + e−z)−1 denoting the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 1: Performance of AAD across datasets, with decoding methods as rows and base models
as columns. Each cell reports the average oracle reward (R) and AAD’s win rate (W) against the
corresponding method. Higher values indicate better alignment. AAD consistently achieves the
highest rewards and win rate across all settings, demonstrating its strong alignment capability.

Method Models & Datasets
Llama 3B Llama 8B Qwen 0.6B Qwen 4B

R W R W R W R W

Ultrachat
Greedy SFT 0.58 0.86 0.87 0.85 -0.88 0.80 0.22 0.80
Greedy DPO 0.68 0.86 0.98 0.84 -0.69 0.78 0.29 0.79
Bo2 0.85 0.85 1.06 0.85 -0.62 0.78 0.47 0.77
EFT 1.04 0.83 1.27 0.81 -0.19 0.67 0.58 0.73
AAD (ours) 2.21 - 2.22 - 0.34 - 1.19 -

Agrilla
Greedy SFT 1.59 0.88 1.72 0.89 -0.86 0.89 0.70 0.87
Greedy DPO 2.48 0.86 2.55 0.87 0.12 0.80 1.37 0.82
Bo2 3.02 0.84 3.16 0.86 0.68 0.77 1.94 0.78
EFT 4.54 0.70 4.65 0.72 1.99 0.52 3.28 0.61
AAD (ours) 5.64 - 5.90 - 2.33 - 3.84 -

OpenRLHF Mixture
Greedy SFT 3.59 0.90 3.89 0.93 0.83 0.83 2.63 0.88
Greedy DPO 4.54 0.88 4.93 0.89 1.74 0.76 3.56 0.79
Bo2 5.34 0.83 5.60 0.85 2.42 0.68 4.48 0.69
EFT 6.18 0.72 6.84 0.67 3.08 0.55 5.29 0.54
AAD (ours) 7.28 - 7.60 - 3.42 - 5.45 -

HHRLHF
Greedy SFT -1.89 0.62 -1.13 0.61 -1.36 0.65 -0.53 0.64
Greedy DPO -1.83 0.61 -1.08 0.60 -1.25 0.60 -0.49 0.63
Bo2 -1.65 0.64 -0.91 0.61 -1.06 0.64 -0.22 0.59
EFT -1.74 0.61 -0.98 0.57 -1.12 0.57 -0.47 0.64
AAD (ours) -0.97 - -0.34 - -0.61 - -0.02 -

Skywork
Greedy SFT 7.93 0.74 13.25 0.80 -4.41 0.66 9.34 0.75
Greedy DPO 8.45 0.72 13.64 0.78 -3.73 0.66 9.54 0.74
Bo2 9.04 0.74 14.15 0.76 -5.18 0.73 9.35 0.76
EFT 10.03 0.68 15.57 0.72 -1.88 0.58 10.35 0.71
AAD (ours) 13.71 - 19.27 - -0.01 - 14.44 -

Nectar
Greedy SFT 0.72 0.99 1.17 0.99 -0.77 0.93 0.77 0.94
Greedy DPO 1.45 0.98 2.12 0.99 0.09 0.84 1.45 0.85
Bo2 2.15 0.95 2.64 0.93 1.07 0.70 1.99 0.74
EFT 2.28 0.89 3.30 0.75 1.23 0.58 2.35 0.65
AAD (ours) 3.63 - 3.70 - 1.68 - 2.71 -

sigmoid function, the BT model defines the likelihood of y1 being preferred over y2 given x as

p(y1 ≻x y2) = σ
(
r∗(x, y1)− r∗(x, y2)

)
, (1)

and therefore provides a likelihood-based framework to train the LM on observed preferences. Start-
ing from πSFT and a prompt distribution ρ, the training objective of PO can be formulated as the
KL-constrained optimization problem (Jaques et al., 2017):

π∗ = argmax
π

Ex∼ρ,y∼π(·|x)[r
∗(x, y)]− βDKL

(
π(· | x)∥πSFT(· | x)

)
, (2)

with β > 0 a hyperparameter preventing overoptimization. The classical approach to solving
Eq. (2) is known as reinforcement learning from human feedback (RLHF), and proceeds in two
steps (Ziegler et al., 2019). First, a parametric reward model rθ(x, y) is trained to minimize the
negative log likelihood of observed preferences:

L(rθ;D) = − 1

|D|

|D|∑
i=1

log σ
(
rθ(x

i, yiw)− rθ(x
i, yil)

)
, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where D = {(xi, yiw, y
i
l) | xi ∼ ρ, yiw ≻xi yil} is a static preference dataset. In a second stage,

Eq. (2) is approximately solved using policy gradient methods, such as PPO (Schulman et al., 2017),
on a parametric class of models. Despite their effectiveness, reinforcement learning algorithms
are prone to reward hacking (Amodei et al., 2016) and typically require generating many rollouts
during training, which can be computationally expensive and unstable. To address these challenges,
Rafailov et al. (2023) introduce direct preference optimization (DPO) to directly approximate π∗ via
a supervised objective. Formally, they note that the closed form solution of Eq. (2) can be expressed
in terms of the optimal policy as

π∗(y | x) = 1

Z(x)
πSFT(y | x) exp

(
1

β
r∗(x, y)

)
, (4)

with Z(x; r∗) =
∑

y′ πSFT(y
′ | x) exp(1β r

∗(x, y′)) the partition function. Rearranging the terms,
they find that the r∗ must satisfy

r∗(x, y) = β log
π∗(y | x)

log πSFT(y | x)
+ β logZ(x; r∗). (5)

The key idea of DPO is to eliminate the second stage of RLHF by directly minimizing Eq. (3) within
a restricted reward class rθ(x, y) = β log πθ(y|x)

πSFT(y|x) . This choice ensures that Z(x, rθ) = 1, such that,
as per Eq. (5), rθ(x, y) = r∗(x, y) if and only if πθ(y | x) = π∗(y | x). In other words, the model
obtained after DPO, πDPO ≈ π∗, is simply a byproduct from training the reward model rθ on the
preference dataset D.

4 METHOD

The aligned policy π∗ inherits the biases of πSFT. The main motivation behind PO is that it
increases the likelihood of completions with higher rewards, as shown in Eq. (4). However, counter-
intuitively, even the optimal analytical solution π∗ can sometimes favor a completion with a lower
reward over one with a higher reward. To illustrate this, let x be a prompt and y1, y2 any two
completions satisfying r∗(x, y1) ≥ r∗(x, y2). From Eq. (4), we have

log
π∗(y1 | x)
π∗(y2 | x)

= log
πSFT(y1 | x)
πSFT(y2 | x)︸ ︷︷ ︸
:=∆SFT

+
1

β

(
r∗(x, y1)− r∗(x, y2)

)︸ ︷︷ ︸
:=∆r

. (6)

This implies that if ∆SFT < − 1
β∆r, then π∗(y1 | x) ≤ π∗(y2 | x) although y1 is preferred over y2

given x. In other words, the optimal model π∗ inherits the biases of πSFT. Note that this is not due to
reward hacking as we only consider the exact reward r∗ is our derivation. This is consistent with the
observation of Rafailov et al. (2024b) that PO does not train a policy to directly maximize reward.

Token-level reward. Guided by the above observation, we propose to use πDPO exactly as intended
during training, that is, in combination with πSFT as an approximate token-level reward function. In
this setting, decoding (i.e., the process of generating a completion y given a context x) amounts to
finding the completion that maximize rDPO(x, y) = β πDPO(y|x)

πSFT(y|x) . Since maxy rDPO(x, y) is intractable,
we rely on the standard greedy algorithm to approximate the maximization, but we substitute the
default likelihood score πDPO(yt+1 | x ◦ y1:t) with the token reward obtained by leveraging the
auto-regressive factorization of πDPO and πSFT:

ν(yt+1 | x ◦ y1:t) = log
πDPO(yt+1 | x ◦ y1:t)
πSFT(yt+1 | x ◦ y1:t)

. (7)

We omit β as it does not change the ranking of candidate sequences.

Preventing over-optimization. Maximizing ν without constraints at each decoding step produces
degenerate completions. For instance, tokens that are essential for grammatical and semantic co-
herence might be assigned high probabilities by both πDPO and πSFT, making their ratio too small to
be selected under the proposed decoding algorithm. Moreover, if πsft assigns a small probability to
a given token, even a tiny absolute increase from PO training can produce a large relative change,
leading to spuriously high scores and numerical instabilities. To mitigate these issues, we take in-
spiration from contrastive decoding (Li et al., 2023a), a decoding algorithm that uses a small model
to boost the performance of a larger one, and apply min-α filtering to the DPO probabilities πDPO

(Minh et al., 2025), restricting the alignment-aware decoding to plausible tokens only.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

1 2 3 4 5 10 25 50
Best of N

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
in

 R
at

e
Ou

rs

1 2 3 4 5 10 25 50
Best of N

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sc
or

e

BoN Oracle Argilla
BoN Picker Argilla
BoN Oracle Skywork

BoN Picker Skywork
BoN Random Skywork
BoN Random Argilla

AAD Skywork (Ours)
AAD Agrilla (Ours)

Figure 2: AAD versus BoN . We evaluate AAD against three selection strategies on Argilla and
Skywork datasets for different values of N : (i) BoN using the oracle, (ii) BoN using the picker, and
(iii) random selection among N completions. AAD remains competitive even against BoN -Oracle
reward model, a setting that is by design unfavorable to AAD, since the oracle is used both for BoN
selection and evaluation, whereas AAD only uses a model aligned on 10% of the data. On Skywork,
BoN reaches the performance of AAD for N = 4 but requires roughly twice as much compute.
On Argilla even N = 50 fails to match AAD’s performance. The vertical dashed line indicates the
point at which the computational cost of BoN matches that of our method. For the random selection
baseline, we report only the mean performance across all test runs.

Proposed method: alignment-aware decoding (AAD). Formally, alignment-aware decoding se-
lects the token at position t+ 1 according to

yt+1 = argmax
y′∈Vα(x◦y1:t)

ν(y′|x ◦ y1:t), (8)

where
Vα(x ◦ y1:t) = {y′ ∈ V | πDPO(y

′|x ◦ y1:t) ≥ α max
y′′∈V

πDPO(y
′′|x ◦ y1:t)} ⊆ V (9)

is the set of plausible token over which alignment can safely be optimized.

5 EXPERIMENTAL SETUP

Overview. We conduct a series of experiments to evaluate the effectiveness of our method against
several baselines. Each experiment begins with a preference dataset, which serves as the foundation
for training both reward and aligned models. We split the data into a 90/10 training/evaluation
set. An oracle reward model is trained on the full training split. In parallel, we subsample 10%
of the training split for two purposes: (i) training a picker reward model and (ii) aligning a SFT
model πSFT via DPO to obtain πDPO. This setup allows to simulate two conditions simultaneously:
the availability of a strong oracle reward model for evaluation, and the scarcity of preference data,
which is typically costly and difficult to obtain. The picker reward model is then used to select
the highest-scoring continuation in methods such as best-of-N (BoN) sampling. For evaluation,
we sample a fixed number of prompts from the validation split and generate continuations using
both our method and the baselines. These continuations are scored with the oracle reward model.
Evaluation metrics include (i) the win rate (W) of our method over a baseline, computed via pairwise
continuation comparisons, and (ii) the average oracle reward (R) across all generated outputs. In
addition, we also evaluate our method using the external AlpacaEval framework (Li et al., 2023b).
For reproducibility, we refer the reader to Appendix A.6, which contains the link to our codebase.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: AAD win rate on AlpacaEval (us-
ing default evaluator) across models aligned
on Skywork and Nectar. AAD consistently
matches or outperforms baselines.

Method Llama
3B

Llama
8B

Qwen
0.6B

Qwen
4B

Skywork

Greedy SFT 0.77 0.79 0.74 0.76
Greedy DPO 0.76 0.77 0.73 0.75
Bo2 0.75 0.78 0.73 0.77
EFT 0.73 0.73 0.65 0.73

Nectar

Greedy SFT 0.80 0.82 0.52 0.61
Greedy DPO 0.76 0.76 0.44 0.54
Bo2 0.76 0.72 0.48 0.50
EFT 0.70 0.63 0.44 0.50

1 5 10 25 50 100
Size of dataset (%)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e
O

ur
s

5.0

7.5

10.0

12.5

15.0

Sc
or

e

Win Rate
Best of 2

AAD (Ours)
Score Difference

Figure 3: Performance of AAD across different
training dataset sizes on the Skywork dataset. Re-
sults show that AAD consistently outperforms best-
of-2 at every data scale, providing clear evidence of
its robustness in low-data regimes.

Datasets and reward models. For training and evaluation, we use preference datasets that are
commonly adopted in reward modeling, including Ultrachat (Ultrachat, 2025), Argilla (Cui et al.,
2023), the OpenRLHF Mixture (Dong et al., 2023; Xiong et al., 2024), HHRLHF (Bai et al., 2022),
Nectar (Zhu et al., 2023), and Skywork (Liu et al., 2024b). For the first 4 datasets, we train the
reward models (pickers and oracles) using the training procedure detailed below. For Skywork and
Nectar, we do not train the oracles and instead follow a specialized evaluation protocol: prompts
are drawn from the AlpacaEval dataset (Li et al., 2023b), and scores are assigned using off-the-shelf
oracle reward models trained externally on the respective datasets. Specifically, for Skywork we use
the Skywork reward model, which is based on Llama-3.1-8B, and for Nectar we use the Starling
reward model, which is based on Llama2-7B-Chat. This ensures that the oracle has not been trained
on the prompts used for evaluation. At the time of writing, the oracle reward model for Skywork is
the best-performing reward model in Reward Bench (Malik et al., 2025), a standardized framework
for evaluating reward models.

Training. We train both the pickers (for all datasets) and oracle reward models (except for Sky-
work and Nectar) using full fine-tuning with an additional classification layer, optimized under the
Bradley-Terry loss detailed in Eq. (3). Training is performed for two epochs. For the aligned mod-
els πDPO, we also conduct two epochs of training, employing LoRA adapters (Hu et al., 2021) to
ensure parameter efficiency and regularization. Comprehensive training details are provided in Ap-
pendix A.2. The accuracies of the oracle and picker reward models on the evaluation splits of the
datasets are reported in Appendix A.1.

Baselines. For evaluation, we compare our method against four alternative decoding strategies that
only use πDPO, πSFT, or both: (i) greedy decoding with πSFT, (ii) greedy decoding with πDPO, (iii) best-
of-2 sampling with πDPO, and (iv) a variation of EFT (Mitchell et al., 2024; Liu et al., 2024a; Rafailov
et al., 2024b) using πSFT for both the base and reference model, and setting β = 4, which has been
found to perform the best across multiple settings. For (iii), two candidate responses are generated
with the aligned model via nucleus (top-p) sampling with p = 0.9 (Holtzman et al., 2020), after
which the picker reward model of the corresponding preference dataset selects the higher-scoring
output. Both (iii) and (iv) entail a computational cost comparable to our method, whereas (i) and (ii)
incur roughly half that cost.

Generation. For decoding with the AAD method, we set the token filtering parameter α = 0.1 as
defined in Eq. (9). Across all decoding methods, the <user> token is treated as an end-of-sequence
(EOS) marker, ensuring that outputs terminate properly in user–assistant style interactions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.1 0.25 0.5 0.75 5.0
Beta

0

20

40

60

Re
la

tiv
e

Lo
ss

 (%
)

Greedy
Best of 2

AAD (Ours)

Figure 4: Relative alignment loss of the oracle
score R on the Agrilla dataset as a function of
the DPO regularization parameter β, with base-
line performance established at β = 0.05. As
expected, across all strategies, larger β values re-
duce alignment, but AAD consistently shows the
lowest relative loss, demonstrating greater hy-
perparameter robustness compared to baselines.
This behavior stems from the fact that r∗ is β-
independent, but π∗ is not, as seen in Section 3.

0(10%) 1 1' 2 0(100%)
Iteration

0

5

10

15

20

Sc
or

e

Ba
se

lin
e

65
.5

9%

67
.2

%

68
.2

%

63
.8

5%

Ba
se

lin
e

59
.1

3%

63
.7

3%

60
.7

5%

61
.9

9%Ba
se

lin
e

51
.6

8%

53
.9

1%

43
.2

3% 58
.3

9%

Greedy
Best of 2

Worst of 2
AAD (Ours)

Figure 5: Effect of iterative DPO. Results show
that iterative DPO using AAD-generated data
substantially improves alignment, approaching
full-dataset performance (100%) with only 10%
of the original data. Win rates against the orig-
inal πDPO (baseline), using the same decoding
scheme, are shown above the bars. Iteration i
indicates the average oracle score of a model that
has undergone DPO using AAD-generated data,
initiated from πSFT for i = 1, 2 or πDPO for i = 1′.

6 RESULTS

AAD consistently outperforms baselines. The main results of our experiments are presented
in Table 1. Across both model families, our method consistently outperforms the baselines by a
substantial margin, achieving notably strong win rates with larger models. Remarkably, our method
continues to deliver strong gains even when evaluated with external oracle reward models (Nectar
and Skywork). On the AlpacaEval framework (see Table 2), our method also achieves mostly high
win rates. We provide additional results for AAD using fully finetuned models in Appendix A.3.

Correspondence between BoN and AAD. In BoN sampling, the expected reward of the selected
sequence increases as N grows, since sampling more candidates raises the likelihood of obtaining
a higher-scoring response by chance. Fig. 2 shows that our method remains competitive even when
compared against BoN sampling with the oracle reward model, despite the oracle being trained on
ten times more data than πDPO, and despite the oracle being also used for the evaluation.

AAD performs strongly under data scarcity. To assess our method in different data regimes,
we train a series of picker reward models and aligned models on the Skywork dataset, gradually
increasing the training data up to the full training split. We then evaluate our method against best-
of-2 sampling using the oracle. Results are shown in Fig. 3. Note that the 100 % mark in our plots
does not represent the entire dataset used to train the external Skywork reward model, as we only
trained on the 90% training split and kept 10% for evaluation. Interestingly, AAD’s win rate remains
relatively consistent, suggesting that its performance generalizes across different data regimes.

Effect of DPO regularization parameter β. The β parameter constitutes a critical regularization
hyperparameter in DPO training. To assess its influence on our method, we establish baseline per-
formance at β = 0.05 and evaluate the relative loss of models trained with β values of 0.1, 0.25, 0.5,
0.75, and 5.0. We conduct these experiments on the Agrilla dataset. The evaluation is conducted
under three decoding strategies: best-of-2 sampling, greedy decoding and our method. The corre-
sponding results are presented in Fig. 4. Across all strategies, larger β values are associated with
reduced alignment performance. Nevertheless, our decoding method consistently exhibits the lowest
relative loss, indicating greater robustness and stability compared to the alternative approaches.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

1 2 3 4 5 10
Number of beams

9

10

11

Sc
or

e

No Threshold
 = 0.1

 = 0.25
 = 0.5

Figure 6: Effect of beam size and entropy
threshold on performance for the Skywork
dataset with α = 0.7. Without entropy
thresholding, scores rapidly degrade as the
number of beams increases due to beam
collapse. This mechanism enables larger
beam sizes to yield improved alignment,
while also reducing the computational cost
compared to standard beam search.

Stabilizing beam search via entropy thresholding.
We also investigate if we can use beam search on
the token reward defined in Eq. (7), rather than sim-
ply greedy maximization. Beam search typically suf-
fers from beam collapse, and increasing the num-
ber of beams does not always improve generations,
a phenomenon reminiscent of inference-time over-
optimization. However, we find that (i) increasing α
and (ii) introducing an entropy threshold can make
beam search beneficial in some cases. The key ob-
servation is that certain tokens are highly predictable
and thus are assigned high probability by both πSFT

and πDPO. In such cases, applying our score differ-
ence may incorrectly override an obvious continua-
tion. To prevent this, we only apply our scoring ad-
justment when the aligned model is uncertain, that is,
when the predictive entropy exceeds the threshold τ .
In practice, this is equivalent to setting πSFT(y

′ | x) =
1/|Vα(x)| for every token y′ ∈ Vα(x) when the en-
tropy

∑
y′∈Vα(x) −πSFT(y

′ | x) log πSFT(y
′ | x) ≤ τ .

The results in Fig. 6, obtained on the Skywork dataset
with α = 0.7, show that without entropy threshold-
ing, scores rapidly degrade as the number of beams
increases. By contrast, introducing the threshold stabi-
lizes performance and makes beam search beneficial.

Overcoming data scarcity with iterative DPO. Since AAD appears to generate data with high
alignment, we investigate if this data can be used to further train the aligned model. To this end, we
implement a version of iterative DPO (Pang et al., 2024). We begin with our model πDPO, trained
solely on 10% of the original preference dataset (0th iteration), and using LLaMA3.2-3B-SFT (La-
coste et al., 2019) for πSFT. In the first iteration, we construct a synthetic preference dataset using
the prompts of the subsampled dataset, and by pairing completions as follows: chosen samples are
generated with AAD, while rejected samples are produced via nucleus sampling on πDPO with hyper-
parameter 0.9. We then retrain DPO alignment on this synthetic dataset in two variants: (i) starting
from the base model LLaMA3.2-3B-SFT (1st iteration) and (ii) starting from the model already
aligned on the 10% preference dataset (1’ iteration). We further extend this process with a second
iteration. Here, we retain the rejected samples from the previous step and generate new chosen sam-
ples using our method in combination with the DPO model trained from LLaMA3.2-3B-SFT during
the 1st iteration. This produces a new synthetic dataset, which is again used to retrain DPO align-
ment from the base LLaMA3.2-3B-SFT model (2nd iteration). Results shown in Fig. 5 highlight the
significant benefits of iterative DPO. Remarkably, even with only 10% of the preference data, this
method nearly closes the gap with a model trained on the full dataset.

7 CONCLUSION

We introduce alignment-aware decoding (AAD), a decoding strategy that treats a DPO-trained
model as a token-level reward function. AAD performs on-the-fly implicit reward optimization with-
out additional training or external models. Across multiple datasets and model families, we show
that AAD consistently improves alignment while maintaining efficiency comparable to standard de-
coding. AAD can also generate high-quality synthetic aligned data, enabling iterative preference
optimization under data scarcity. While AAD improves alignment, there are limitations; it requires
two forward passes per token, as well as access to the original SFT model. Future directions in-
clude combining AAD with more sophisticated search strategies, exploring adaptive token filtering
and entropy-based thresholds, and extending to other modalities such as image generation. Overall,
we hope this work motivates further research on inference-time alignment methods that are both
theoretically grounded and practically deployable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback,
2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. PAD: Personalized align-
ment at decoding-time. In The Thirteenth International Conference on Learning Representations,
2025.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text generation
with a unidirectional reward model. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without refer-
ence model. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, 2024.

Yuzhong Hong, Hanshan Zhang, Junwei Bao, Hongfei Jiang, and yang song. Energy-based pref-
erence model offers better offline alignment than the bradley-terry preference model. In Forty-
second International Conference on Machine Learning, 2025.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

James Y Huang, Sailik Sengupta, Daniele Bonadiman, Yi-an Lai, Arshit Gupta, Nikolaos Pappas,
Saab Mansour, Katrin Kirchhoff, and Dan Roth. Deal: Decoding-time alignment for large lan-
guage models. arXiv preprint arXiv:2402.06147, 2024.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E
Turner, and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation mod-
els with kl-control. In International Conference on Machine Learning, 2017.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. ARGS: Alignment as reward-guided search.
In The Twelfth International Conference on Learning Representations, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning, 2019.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori B Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics,
2023a.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023b.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A. Smith. Tuning
language models by proxy. In First Conference on Language Modeling, 2024a.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024b.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In First Conference on Language Modeling, 2024c.

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe
Llinares, Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time
realignment of language models. In Proceedings of the 41st International Conference on Machine
Learning, 2024d.

Zhixuan Liu, Zhanhui Zhou, Yuanfu Wang, Chao Yang, and Yu Qiao. Inference-time language
model alignment via integrated value guidance. In Findings of the Association for Computational
Linguistics: EMNLP 2024, 2024e.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025.

Nguyen Nhat Minh, Andrew Baker, Clement Neo, Allen G Roush, Andreas Kirsch, and Ravid
Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent LLM outputs. In
The Thirteenth International Conference on Learning Representations, 2025.

Eric Mitchell, Rafael Rafailov, Archit Sharma, Chelsea Finn, and Christopher D Manning. An
emulator for fine-tuning large language models using small language models. In The Twelfth
International Conference on Learning Representations, 2024.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. In Forty-first International Conference on Machine Learning, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. Advances in Neural Information Processing
Systems, 37, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36, 2023.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sushil Sikchi, Joey Hejna, Brad Knox,
Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct align-
ment algorithms. Advances in Neural Information Processing Systems, 37, 2024a.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to $qˆ*$: Your language model
is secretly a q-function. In First Conference on Language Modeling, 2024b.

11

https://github.com/tatsu-lab/alpaca_eval

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ultrachat. https://huggingface.co/datasets/trl-lib/ultrafeedback_
binarized, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint, 2024.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
and Sumitra Ganesh. GenARM: Reward guided generation with autoregressive reward model for
test-time alignment. In The Thirteenth International Conference on Learning Representations,
2025.

Kailai Yang, Zhiwei Liu, Qianqian Xie, Jimin Huang, Erxue Min, and Sophia Ananiadou. Se-
lective preference optimization via token-level reward function estimation. arXiv preprint
arXiv:2408.13518, 2024.

Yige Yuan, Teng Xiao, Li Yunfan, Bingbing Xu, Shuchang Tao, Yunqi Qiu, Huawei Shen, and Xueqi
Cheng. Inference-time alignment in continuous space. arXiv preprint arXiv:2505.20081, 2025.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
Sequence likelihood calibration with human feedback. arXiv preprint arXiv:2305.10425, 2023.

Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, and Yu Qiao. Weak-to-strong
search: Align large language models via searching over small language models. Advances in
Neural Information Processing Systems, 37, 2024.

Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I. Jordan,
and Jiantao Jiao. Fine-tuning language models with advantage-induced policy alignment, 2023.

Wenhong Zhu, Zhiwei He, Xiaofeng Wang, Pengfei Liu, and Rui Wang. Weak-to-strong prefer-
ence optimization: Stealing reward from weak aligned model. In The Thirteenth International
Conference on Learning Representations, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized
https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX

A.1 ACCURACIES OF REWARD MODELS

In Table 3, we report the accuracies of the picker and oracle reward models on the evaluation sets
across all datasets.

Table 3: Accuracy of the reward models trained on the different preference datasets. Oracles are
traind on the full training split, and pickers on a 10% subset.

Dataset Accuracy Oracle (%) Accuracy Picker (%)
Ultrachat 76.2 69.5
Argilla 92.3 82.5

OpenRLHF Mixture 85.6 77.9
HHRLHF 70.2 62.4

Nectar external 93.0
Skywork external 78.1

A.2 TRAINING DETAILS

In this section we provide the training configurations and implementation details for the models used
in our experiments.

Reward models. Both the oracle reward models and the picker reward models are trained under
identical hyperparameter settings:

• Optimizer: AdamW
• Batch size: 64
• Learning rate: 5× 10−6

• Training epochs: 2
• Gradient clipping: 1.0
• Precision: mixed-precision (bfloat16)

Aligned Model (DPO). The aligned model |piDPO is obtained by fine-tuning the base SFT model
πSFT using DPO on the 10% subset. The training configuration is as follows:

• Optimizer: AdamW with linear decay and linear warmup
• Batch size: 32
• Learning rate: 1× 10−6

• Warmup ratio: 0.1
• Weight decay: 0.1
• Training epochs: 2
• Gradient clipping: 1.0
• DPO coefficient (β): 0.1 (except for the experiment shown in Fig. 4))
• Precision: mixed-precision (bfloat16)

LoRA Configuration. To enable parameter-efficient fine-tuning, LoRA adapters are integrated
into the DPO training pipeline with the following settings:

• Rank (r): 64
• Alpha: 128
• Dropout: 0.05
• Target modules: attention projections (query, key, value)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.3 ADDITIONAL RESULTS OF THE MAIN EXPERIMENT

In this section, we present an extension of our main results table with two aligned models, trained and
evaluated under the same procedure as in the main results. One model is trained from LLaMA3.2-
1B-SFT (Lacoste et al., 2019), and the other from LLaMA3.2-3B-SFT (Lacoste et al., 2019). The
key difference compared to the main results is that, instead of using a LoRA adapter, we perform
full fine-tuning of the aligned models. The results are shown in Table 4, and similar conclusions can
be drawn about the effectiveness of AAD.

Table 4: Performance across datasets with decoding methods as rows and models as columns. Each
cell shows reward (R) and win rate (W) of AAD against the corresponding method. Aligned models
in this are trained with full finetuning instead of using a LoRA adapter like in the main results shown
in Table 1.

Method Models & Datasets
Llama 1B Llama 3B

R W R W

Ultrachat
Greedy SFT -0.39 0.72 0.58 0.77
Greedy DPO -0.03 0.65 1.04 0.7
Bo2 0.18 0.61 1.22 0.65
EFT 0.3 0.56 0.5 0.83
AAD (ours) 0.51 - 1.59 -

Agrilla
Greedy SFT 0.02 0.85 1.59 0.91
Greedy DPO 1.65 0.75 3.64 0.79
Bo2 2.17 0.72 4.06 0.76
EFT 2.82 0.58 5.01 0.56
AAD (ours) 3.39 - 5.25 -

OpenRLHF Mixture
Greedy SFT 2.06 0.72 3.59 0.82
Greedy DPO 3.15 0.63 4.91 0.73
Bo2 4.07 0.51 5.88 0.57
EFT 3.64 0.57 5.24 0.7
AAD (ours) 4.04 - 6.26 -

HHRLHF
Greedy SFT -1.91 0.76 -1.89 0.76
Greedy DPO -0.63 0.64 0.18 0.54
Bo2 -0.75 0.71 0.09 0.57
EFT 0.26 0.3 0.47 0.35
AAD (ours) -0.06 - 0.29 -

Skywork
Greedy SFT -0.95 0.6 7.93 0.72
Greedy DPO 1.12 0.51 11.5 0.61
Bo2 0.47 0.57 11.71 0.63
EFT 2.00 0.48 12.12 0.56
AAD (ours) 1.55 - 13.4 -

Nectar
Greedy SFT -0.26 0.98 0.72 0.98
Greedy DPO 1.32 0.91 2.46 0.89
Bo2 2.28 0.77 2.9 0.79
EFT 2.68 0.65 3.35 0.58
AAD (ours) 3.05 - 3.45 -

A.4 ITERATIVE DPO

In this section, we highlight an additional property of Iterative DPO discussed in Section 6. Figure 7
presents histograms for the individual iterations, illustrating the score differences between AAD and
best-of-2 sampling.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0

20
Fr

eq
ue

nc
y Win rate: 72.8% 0

0

20

Fr
eq

ue
nc

y Win rate: 62.5% 1

0

20

Fr
eq

ue
nc

y Win rate: 62.4% 1'

30 20 10 0 10 20 30
Score Difference

0

20

Fr
eq

ue
nc

y Win rate: 57.3% 2

x < 0 x 0

Figure 7: Histograms of score differences between AAD and best-of-2 sampling across successive
iterations of iterative DPO. The original model shows a clear advantage for AAD, with a win rate
of 72.8%. As iterations progress, the distributions gradually converge, and the win rate of AAD
decreases. This occurs because AAD provides a more stable decoding method, while best-of-2
sampling benefits substantially from iterative DPO retraining. As a result, the gap between the two
methods narrows with additional iterations.

A.5 ADDITIONAL QUALITATIVE EXAMPLES

In Figs. 8 to 11 we provide additional qualitative examples showing the benefits of AAD decoding.

A.6 CODE AND MODELS

For reproducibility, the source code associated with this study can be accessed at:

https://anonymous.4open.science/r/aad-FDF3/README.md

15

https://anonymous.4open.science/r/aad-FDF3/README.md

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Prompt: Categorize the given product into one of Electronics, Computers, Smart Home, or Arts
& Crafts departments. Google Nest Learning Thermostat

Alignment-aware Decoding: ● 1 The ● 2 product, Google Nest Learning Thermostat, falls under
the Smart Home ● 3 ● 4 category as it is ● 5 an intelligent thermostat ● 6 designed to ● 7
automate ● 8 heating and cooling ● 9 systems, providing energy efficiency and ● 10
convenience in ● 11 home management.

Greedy Continuations:
● 1 Smart Home
● 2 product "Google Nest Learning Thermostat" falls under the Smart Home department.
● 3 department.
● 4 category.
● 5 a smart home device that helps to control and manage the temperature in a home.
● 6 that can be controlled remotely and learns the user's preferences to provide...
● 7 control heating and cooling systems in homes.
● 8 and optimize heating and cooling systems in homes.
● 9 systems in homes, providing energy efficiency and convenience.
● 10 convenience.
● 11 managing home temperature.

Best-of-2: Electronics

Figure 8: Qualitative comparison of decoding strategies. AAD produces an interpretable explana-
tion, correctly assigning the product to Smart Home based on its function as an intelligent thermostat
that automates heating and cooling systems. Greedy Continuations are generated by iteratively feed-
ing the prompt together with the current AAD prefix back into the model and greedily selecting the
next token, revealing where the greedy trajectory diverges from AAD. Unlike AAD, greedy decod-
ing does not provide coherent justifications. When applied to the raw prompt alone, it yields only
short category labels without explanatory reasoning. Best-of-2 decoding misclassifies the product
as Electronics and doesn’t give any explanation. This comparison highlights the advantage of AAD
in helpfullness

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Prompt: Decide whether children can watch the given movie. Mention what makes it
inappropriate if you think they can't. The Dark Knight (2008)

Alignment-aware Decoding: ● 1 Children ● 2 below the age of 13 ● 3 may not be ● 4 suitable
to watch The Dark Knight ● 5 due to its intense violence, graphic ● 6 action sequences, and
● 7 darker ● 8 themes, such as the ● 9 complex ● 10 portrayal of ● 11 villainy and ● 12
moral ● 13 dilemmas. ● 14 These elements may be ● 15 distressing or ● 16 too mature for
younger viewers. However, older ● 17 teenagers and adults ● 18 can ● 19 enjoy the ● 20
movie for its ● 21 exceptional action, ● 22 performance, and ● 23 thought-provoking ● 24
aspects.

Greedy Continuations:
● 1 Yes, children can watch The Dark Knight (2008). However, it is recommended that...
● 2 under the age of 13 should not watch The Dark Knight (2008) due to its intense...
● 3 should not watch The Dark Knight (2008) due to its intense violence, graphic...
● 4 able to watch The Dark Knight (2008) due to its intense violence, graphic content,...
● 5 (2008) due to its intense violence, graphic content, and mature themes. The movie...
● 6 content, and mature themes. The movie features a complex storyline, strong...
● 7 mature themes. The movie is rated PG-13 for sequences of violence and action...
● 8 themes. The movie is rated PG-13 for sequences of violence and action throughout,...
● 9 portrayal of crime, corruption, and the consequences of vigilantism. The movie also...
● 10 character of the Joker and the overall tone of the film. The movie contains scenes...
● 11 the Joker's character and the overall themes of crime, corruption, and revenge. The...
● 12 the consequences of vigilantism. The movie contains scenes of gun violence,...
● 13 ambiguity. The movie contains scenes of gun violence, torture, and a high body...
● 14 The movie contains scenes of gun violence, torture, and a high body count, which...
● 15 too intense for younger viewers and could potentially be disturbing or confusing...
● 16 confusing for younger viewers.
● 17 children and teenagers may find the movie engaging and thought-provoking.
● 18 may find the film engaging and thought-provoking.
● 19 watch this movie without any issues.
● 20 film for its thrilling action, strong performances, and thought-provoking themes.
● 21 thrilling action, strong performances, and thought-provoking themes.
● 22 character development, and storytelling.
● 23 storytelling.
● 24 themes.

Best-of-2: Children below the age of 13 may not be suitable to watch The Dark Knight due to
its intense violence, graphic action sequences, and darker themes, such as the complex
portrayal of villainy and moral dilemmas. These elements may be distressing or too mature
for younger viewers. However, older teenagers and adults can enjoy the movie for its
exceptional action, performance, and thought-provoking aspects.

Figure 9: Qualitative comparison of decoding strategies. Greedy continuations are generated by
iteratively feeding the prompt together with the current AAD prefix back into the model and greedily
selecting the next token, revealing where the greedy trajectory diverges from AAD. AAD provides
a balanced and contextually grounded judgment, explicitly noting that children under 13 may not
be suitable viewers due to intense violence, graphic action sequences, darker themes, and complex
moral dilemmas. Importantly, AAD also contrasts this with how older teenagers and adults may
appreciate the film for its action, performances, and thought-provoking elements. Greedy Contin-
uations, when provided only with the prompt, lead to the misleading conclusion that children can
watch the movie. Best-of-2 yields a fluent output close to AAD, but it does not demonstrate the
same structured reasoning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Prompt: Hello there Obi One Kenobi

Alignment-aware Decoding: ● 1 Greetings, Obi-Wan ● 2 Kenobi. It's an honor to ● 3 virtually
● 4 connect with you. ● 5 May the Force be with ● 6 you, ● 7 as always. How can I assist
you today?

Greedy Continuations:
● 1 Hello! I'm an AI language model and I'm here to help you with any questions or...
● 2 Kenobi! It's an honor to have you here. How can I assist you today?
● 3 meet you. How can I assist you today?
● 4 meet you. How can I assist you today?
● 5 How can I assist you today?
● 6 you always.
● 7 and may your journey be filled with wisdom and strength.

Best-of-2: Greetings, Obi-Wan Kenobi. It's an honor to virtually connect with you. May the
Force be with you, as always. How can I assist you today?

Figure 10: Qualitative comparison of decoding strategies. AAD recognizes the situational context
and produces an appropriate, themed reply that includes the iconic phrase “May the Force be with
you.” Greedy continuations are generated by iteratively feeding the prompt together with the current
AAD prefix back into the model and greedily selecting the next token, revealing where the greedy
trajectory diverges from AAD. These continuations tend to be generic or fragmentary and, from
the raw prompt alone, do not seem to understand the context. Best-of-2 closely mirrors AAD but
without demonstrating the same level of contextual sensitivity. This highlights AAD’s strength in
generating contextually aligned, thematically appropriate continuations.

Prompt: You are given a tweet and you should decide whether it's offensive or not. She has
certainly taken some heat for being such an....well idiot.

Alignment-aware Decoding: The tweet ● 1 appears to be ● 2 offensive, as it ● 3 implies that
● 4 someone is ● 5 being criticized for being ● 6 foolish or lacking intelligence. This ● 7
judgment ● 8 might be subjective, but ● 9 the ● 10 choice of words ● 11 "idiot" ● 12
generally carries a negative connotation and ● 13 can be ● 14 perceived as ● 15 offensive
to some people.

Greedy Continuations:
● 1 is offensive.
● 2 offensive. The use of the word "idiot" is a strong and negative term that could be...
● 3 uses the word "idiot" to describe someone. This word is generally considered to be...
● 4 the person being discussed is an idiot.
● 5 an idiot and has faced negative consequences for their actions or behavior.
● 6 an idiot.
● 7 could be perceived as insulting or demeaning, especially if the person being...
● 8 is based on the use of the word "idiot," which is generally considered a negative...
● 9 it is generally considered offensive to call someone an "idiot."
● 10 overall tone of the tweet seems to be negative and critical.
● 11 and the overall tone of the tweet can be considered offensive.
● 12 can be considered offensive to some people.
● 13 could be perceived as offensive by some people.
● 14 considered offensive.
● 15 offensive.

Best-of-2: No, the tweet is not offensive. It is a simple statement expressing disagreement
with someone's actions or behavior and does not involve any inappropriate language or
content.

Figure 11: Qualitative comparison of decoding strategies. Greedy continuations are generated
by iteratively feeding the prompt together with the current AAD prefix back into the model and
greedily selecting the next token, revealing where the greedy trajectory diverges from AAD. AAD
concludes that the tweet can be perceived as offensive, grounding this in the negative connotation of
the word “idiot” and acknowledging that offensiveness is partly subjective. Greedy Continuations,
when provided solely with the prompt, do not yield any explanation at all and are therefore not
helpful for this task. Best-of-2, in contrast, judges the tweet as not offensive, treating it as simple
disagreement rather than insult. s

18

	Introduction
	Related Work
	Background
	Method
	Experimental setup
	Results
	Conclusion
	Appendix
	Accuracies of reward models
	Training details
	Additional results of the main experiment
	Iterative DPO
	Additional Qualitative Examples
	Code and models

