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Abstract

How does feature learning happen during the training of a neural network? We
developed an accelerated pipeline to synthesize maximally activating images ("pro-
totypes") for hidden units in a parallel fashion. Through this, we were able to
perform feature visualization at scale and to track the emergence and development
of visual features across the training of neural networks. Using this technique, we
studied the “developmental” process of features in a convolutional neural network
trained from scratch using SimCLR with or without color jittering augmentation.
After creating over one million prototypes with our method, tracking and comparing
these visual signatures showed that the training with color-jitter augmentation led
to constantly diversifying high-level features, while no color-jittering led to more
diverse low-level features but less development of high-level features. These results
illustrate how feature visualization can be used to understand hidden learning
dynamics under different training objectives and data distribution.

Figure 1: A. Dual perspectives on neural representation. Left, neural vector space view of repre-
sentation; Right, image space tuning landscape view of representation. B. Visual summary of our
approach.
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1 Introduction

In the biological and artificial neural systems, the neural representation of images is often analyzed in
a multi-dimensional vector space [4, 17, 7, 20], formed by the activation of neurons. For example, in
this vector space, the representations of different object categories form "object manifolds" which
allows classification and few-shot learning [4, 6, 28]. An alternative perspective is to think about
neural representation in their domain i.e. on the image manifold [35, 31]. From this perspective,
the tuning of each neuron is a function (i.e. landscapes) on the manifold, with peaks and troughs.
The peaks of the landscape correspond to images that highly activate these neurons. Note that, the
axes of the neural vector space are the tuning functions of these neurons, thus the highly activating
images could be regarded as the meaning of these axes. Through this paper, we call the activation
maximizing images for each neuron a "prototype" [27]. Thus, obtaining the prototypes for all units in
a neural network could provide a full basis set for understanding the representation of this network.

Feature visualization has been a prominent technique for finding and synthesizing prototypes in deep
artificial neural networks [22, 23, 10], and the biological brain [26, 34, 12]. But normally, these
methods were applied to one unit at a time, hard for application at scale.

In this work, we developed an accelerated pipeline to extract "prototypes" in a parallel fashion.
Through this, we were able to apply feature visualization on a large scale, tracking the emergence
and change of “prototypes” across the whole training process of neural networks – creating a visual
signature for each network checkpoint. We leveraged this method to study the “development” of
features in a convolutional neural network trained from scratch via self-supervised learning. The
preliminary results illustrate how different training objectives and data distribution led to different
“development” dynamics inside a computational visual hierarchy.
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(a) SimCLR with color jittering (clrjit) (b) SimCLR without color jittering (keepclr)

Figure 2: Example prototypes for networks trained with color jittering (clrjit) and without (keepclr)

2 Methods

2.1 Feature Visualization at Scale

Our method is based on [21, 33, 30], where feature visualization is performed within the latent space
of a pretrained generative adversarial network (GAN) [8]. This GAN can be regarded as the natural
image prior or the regularizer for the optimization, which counteracts the adversarial artifacts [22].
For each target unit, we optimize its activation using a hybrid of Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [15] and gradient optimization: we performed 10s of CMA steps to
search for an initialization vector that evoked non-zero activation in the unit, then we performed 100s
of gradient ascent steps to optimize the vector to a peak to visualize the features. We implemented
both CMA and Adam optimization in a more paralleled fashion, which enables feature visualization
for each and every channel in a layer in a single run. This method increased our overall throughput
by 33-fold (details in Sec. 6.2).
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Figure 3: Dynamics of prototypes diversity during training.

2.2 Experiment Setup for Self-Supervised Learning

SimCLR [2] is a popular self-supervised learning algorithm for learning visual representation from a
data distribution. This algorithm trains a neural network to associate different augmented views of
the same image as similar representations, and those of different images as dissimilar ones. One key
component of this method is the augmentation pipeline, which determines what type of transformation
should the neural network be invariant to. It’s well-known that with the same SimCLR objective,
different augmentation pipelines led to dramatically different final performances [2]. The network
mechanism underlying this difference is not well understood. Thus, we treated this as an example
problem and dissected the feature learning dynamics through the lens of the prototype distribution.

Here, we had two training conditions with different augmentation pipelines and tested their effect on
the development process of prototypes. 1) Color jitter (abbreviated as clrjit), the default augmentation
pipeline of SimCLR; 2) Keep Color (keepclr), the same pipeline with color jittering and random
grayscale augmentation disabled, which keeps the original color of the image. As the two conditions
exposed the neural networks to different image statistics and pushed them with different objectives,
we’d like to see if we can understand these differences better through the lens of prototype distribution.

For all our experiments, we used ResNet18 [16] as our neural network architecture and trained it with
SimCLR on STL10 [5] dataset for 100 epochs.

Specifically, we completed three training runs of ResNet18 from scratch with random seeds 1,2,3
with color jittering and keep color augmentations; resulting in 6 training sequences of 101 epochs
neural network checkpoints. For each checkpoint, we performed prototype extraction twice for each
channel of every major layer (details in Sec. 6.1). Thus, all these prototypes can be indexed by
[training condition, run number, evolution repeat, epoch number, layer, channel].

We evaluated the quality of their representations using the linear probe protocol (see Sec.6.1), namely
fitting a linear classifier to see how well it classifies the test set images. The models trained with
color jittering augmentation have far higher classification accuracy (70.0± 0.3%) than the models
without (49.8± 0.3%) (Fig.5). This is consistent with the original observations of the importance of
color augmentation in SimCLR (Fig.5 in [2]). From this perspective, the clrjit models have better
feature representations for object classification. The focus of our analysis is to dissect the difference
in representation quality and link it back to the development of prototypes.

3 Results
3.1 Visual difference of the prototypes between conditions
How do the learned features differ between the two training conditions? We first visually inspected
the distribution of prototypes in each layer for the two conditions (Fig.2).

For the color jittering condition (Fig.2a), in layer 1, the prototypes masked with their respective
receptive fields primarily captured patterns like black stripes on a white background (a1-1,1-32),
and solid colors like Prussian blue (a1-2), white/off-white, black, and partial cyan, red, and green
shades. In the second layer, more square-circle figures like squircles (a2-1,2-3) were observed along
with intricate patterns like thick lines and irregular line figures that somewhat resembled a cracked
earth texture or an abstract glass painting texture (a2-2,2-4). In layer 3, the features became finer, as

21-based row-col index in the grid a of Fig.2, same convention below
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high-frequency textures were observed (a3-1), along with black and white squircles (a3-2), rectangles
(a3-3), and grids (a3-4). In layer 4, high-frequency textures (a4-1) were observed as well as distorted
grid-like structures (a4-2). Few prototypes showed a gradient of colors resembling fur-like (a4-3) and
watercolor textures (a4-4).

In contrast, in the keep color condition (Fig.2 b), in layer 1, a vibrant array of colors were observed
including magenta / pink (b1-1), green (b1-2), red, blues, cyan, and yellow along with colorful stripes
(b1-4). In layer 2, high-frequency textures (b2-4) were present along with colored gemstone-like
shapes embedded in high-frequency textures (b2-1,b2-2,b2-3). In higher layers (layer 3 and layer
4), there were a significant number of high-frequency textures present mainly in the warm hues like
oranges and reds (row3,4). These texture patterns are perceptually more similar to each other than
the ones in color-jittering conditions.

3.2 Developmental process of prototypes during training

(a)

(b)

(c)

(d)

Figure 4: Development of prototypes through training for color jittering (clrjit) condition, layer 3.
Columns denote 0,10,20,... to 90 epoch; Rows denote Units 1, 2, 12, and 98 (0-based index).

So how do the neural networks arrive at these features? We visualized the prototypes of each training
epochs as a row. For instance, for these example units in layer3 of a clrjit network (Fig.4, see Fig.9
for keepclr condition), each of these units goes through an initial stage of rapid erratic change, and
then settles down to a primitive version of the final feature at around epoch 30, then elaborate this
primitive form until the end. The latter half of epochs have more similarities between each other
for each unit than the initial epochs however each of these individual units keeps diversifying with
respect to each other throughout the training process as seen in Fig. 3.

3.3 Distance structure between prototypes
Next, we quantified our perception by computing the distance structure between prototypes to
understand their distribution and dynamics during training. We computed the Mean Squared Error
(MSE) and Cosine distance in both pixel space and the embedding space of some pre-trained networks
(detail in Sec.6.4). Further, we computed the prototype similarity with the images masked by their
functional receptive field mask (Sec.6.3) to focus on the central feature.

We quantified the diversity of prototypes during training: for each epoch, we computed the pairwise
distance matrix between prototypes of all channels, and then computed the mean distance between
prototype pairs (Fig. 3). We found salient differences between the two training conditions (color
jitter, keep color), and consistencies between repeated training runs and prototype evolutions. Here
we showed results with ResNet50 as our embedding model and MSE as the distance metric. For
layer 1, the diversity dropped drastically in the first few epochs, and then grew to a stable level. In
the end, keepclr condition led to more diverse prototypes than clrjit. For layer 2, after the initial
drop of diversity, the prototypes diversify again, and keepclr condition led to slightly higher diversity.
However, for layers 3 and 4, the keepclr condition increased prototype diversity early on and then
they plateaued; in contrast, the clrjit condition led to a constant increase in prototype diversity without
plateau. When the cosine distance is used instead of MSE (Fig.6), a shift is observed in the dynamics,
albeit the diverging trend between conditions remained similar to the MSE result. The consistency of
the color-jittering networks being at the top tends to demonstrate how these networks develop more
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diverse prototypes through their evolutions. Further observations about the rate of change and the
stability of prototype across re-evolution are noted in Sec. 7.2

This observation is intriguing. We interpreted it as follows, the color jittering augmentation constantly
drives the network to find higher-level visual features to solve the instance classification task; while
without color jittering, slightly more diverse lower-level features (layer1,2) suffice to solve the task.
Intuitively, when SimCLR training doesn’t randomly augment the color (keepclr), one simple way to
find views of the same image is to look for similar color palettes. Thus, it’s intuitive that the keepclr
network needs to be more sensitive to image colors (Fig. 2). In comparison, with color jittering, the
network cannot rely on color matching as a reliable strategy, and it needs to discover higher-level
form consistencies, which may drive the diversification and learning of deeper layer features.

4 Related Work
Understanding self-supervised representation Self-supervised learning (SSL) has been a popular
feature learning paradigm in vision. In this paradigm, pre-training uses different objectives to learn
features, which are used in the downstream tasks, with minor fine-tunings. But what is a good feature
representation? Usually, these features were evaluated based on the performance of the downstream
task. One open question is to understand and evaluate representations by themselves without using a
downstream task. Many works analyzed the representation similarity of SSL networks and supervised
networks [14]. [32] understand the success of contrastive learning through the alignment of positive
pairs and the uniformity of representation on the hypersphere. More recently, [19] and [13] found
certain intrinsic measures of representation e.g. effective dimensionality, intrinsic dimensionality,
and cluster learnability, predict the in-distribution task performance well. On the other front, [1] used
generative models to understand the "interpretation" of the same image by pre-trained networks to
show their different biases, creating a more visual and intuitive explanation.

5 Discussion
It has been noticed that the randomly initialized neural networks have lower dimensional represen-
tations, i.e. the activations of hidden units are more correlated across populations; and supervised
training increased the dimensionality of the representation, and the increase is more prominent in
deeper layers (Fig. H.1A, [9]). In the other perspective, the units become less correlated to each other
during training, which is consistent with our finding that the prototypes of the units become more and
more diverse during training.

Prototype diversity seems like a promising proxy for the richness of neural representation, however,
it may not be the full story, these prototypes need to be related to the training and testing distribution
of images in a meaningful way to be useful. Thus, one deep and open question is to elucidate the
relationship between these prototypes and the training distribution of the network. Classic work
of efficient coding [11, 24, 25] relates Gabor-like V1 receptive field (i.e. prototypes) to the natural
image distribution and the sparse coding objective. Future works of similar flavor may be able to
illuminate the relationship between the collection of prototypes of deeper layers and the training
distribution of the network.
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6 Extended Method

6.1 Details for Self-Supervised Learning

We used a popular self-supervised learning pipeline for training neural networks, SimCLR [2]. We
used the implementation in lightly-ai [29].

Augmentations We tested two augmentation conditions, 1) the default stochastic augmentation
pipeline with color jittering, 2) the same pipeline with color jittering and random grayscaling disabled
(cj_prob=0.0, random_gray_scale=0.0)

Model Architecture For the model backbone, we used the ResNet18 model [16], with 128d
projection head.

Dataset For computational feasibility, we experimented with the SimCLR algorithm on the STL10
dataset [5] with the 96-pixel resolution, a classic testbed for self-supervised learning. Where the
unlabeled training set has 100000 images, the training set has 500 images for each of the 10 classes
and the testing set has 800 images for each of the 10 classes. The 10 classes are airplane, bird, car,
cat, deer, dog, horse, monkey, ship, and truck, where 4 of those are animate man-made vehicles, and
6 of those are animate species.

Training hyperparameters For all models, we trained 100 epochs with Stochastic Gradient
Descent with Cosine Annealing learning rate (lr = 6× 10−2,momentum = 0.9, weight_decay =
5× 10−4)

Evaluation For evaluation, we used the linear probe protocol: We fixed all parameters of the
CNN and used it to map images from the training and test set to feature vectors. Here no image
augmentation was used, only RGB value normalization. Then we fit a linear classifier based on the
training set features and evaluated the classifiers on the test set features. We used three ways to fit the
linear classifier: Logistic regression (LogisticRegression from sklearn), Linear Support Vector
Classifier (LinearSVC from sklearn), and gradient descent (Adam) on Cross Entropy Loss.

6.2 Scalable methods for synthesizing prototypes

This work requires us to synthesize a huge amount of highly activating images (prototypes), so we
developed a more scalable way to synthesize them efficiently.

Specifically, we parallelized the hybrid of CMA-ES [15, 18] and gradient optimization [3] to optimize
the images for each channel in a layer independently. Our rationale is as follows, gradient-based
feature visualization is efficient and parallelizable: a batch of images can be sent into the network,
with the activations extracted, then the optimization objective can be set as the sum of activations of
the target unit for each image. Taking the gradient of this summed objective to the batch of samples
is equivalent to optimizing each image independently.

L =

B∑
i

f(i)(G(zi)) (1)

∇ziL = ∇zif(i)(G(zi)) (2)

However, gradient-based optimization suffers from vanishing gradient problem, i.e. when the initial
image didn’t evoke any response in the target unit, then for ReLU activation, the gradient is zero,
and optimization stopped for this unit. To mitigate this issue, we used Evolutionary algorithms
i.e. CMA-ES to search for proper initialization for each unit. CMA-ES proposes a Gaussian
distributed population of vectors in each iteration, and then adapts this distribution to optimize
response. This algorithm is surprisingly good at navigating the landscape of activations and usually
finds initializations with non-zero activation with 10s of iterations. Then we used the latent vector
and image with maximal activation as the starting point to perform the gradient-based optimization.

As a concrete example, we need to synthesize, 101× (64 + 128 + 256 + 512) = 96960 prototypes
for all channels in all major layers for each epoch of a training run in ResNet18. This will take around
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269hrs on a single GPU using the previous non-parallelized CMA-ES algorithm per channel pipeline.
Using our current method, it takes only 8hrs on a single GPU, which is a 33 times speed up. Using
this method, we synthesized over 1 million prototypes in a reasonable time.

6.3 Methods for computing receptive field of units

We used gradient-based receptive field mapping for hidden units. We denote the hidden unit as
f : RH×W×C → R,x 7→ r. We sample random white noise patterns x with image shape and then
send the noise pattern through the neural network, and compute the gradient of f .

Mraw = Ex∼Unif [0,1]H×W×C∇xf(x) (3)

We averaged this gradient across 200 samples of x and then took the sum of squares over the channel
C dimension as a H ×W spatial mask. Finally, we fit this mask with a 2D Gaussian function, and
the fitted mask is denoted as Mfit. This Gaussian mask was called the receptive field mask and was
used to mask the prototypes and highlight the central features.

6.4 Methods for comparing image similarity

To compare the image similarity between prototypes generated by various networks, we computed
similarity metric (MSE and Cosine) in the pixel space and the embedding space. For both spaces,
we first masked the image with the Gaussian receptive field mask for the target unit. The method
to calculate the receptive field size and mask is mentioned in subsection 6.3. In the pixel space,
the pixels from the masked images were vectorized and used to compute the distance matrices. In
the embedding space, we mapped the masked prototypes to vector embeddings with ten pre-trained
neural networks and computed similarity metrics there. Specifically, we sent the masked prototypes
into the ten pre-trained convolutional neural networks (CNNs): ResNet50, ResNet101, ResNet152,
InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201 and MobileNetV2. The
activations from the last fully connected layer of the network, like the ’avgpool’ layer from ResNet50
were chosen for each network to extract the activations. These were then used to compute the distance
matrices.

Note that, we used the receptive field mask to mask the prototype image, before computing their
similarity. Because of this, the similarity or distance value might not be comparable across layers, as
the units in different layers have different sizes of receptive field masks, thus the different masked
prototypes will have different amounts of black backgrounds.
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7 Extended Results

7.1 Linear Probe Evaluation of Learned Features

Figure 5: Linear feature evaluation of representation during SimCLR training. A. Test set
accuracy during SimCLR training, Each panel corresponds to one way of fitting the linear readout
layer: Logistic regression, Linear Support Vector Classifier, and gradient optimization (Adam) on
Cross Entropy. B. Final test set accuracy for the self-supervised models, separated by whether they
used color jittering augmentation.

7.2 Additional observations on the distance structure of prototypes

Aside from prototype diversity, we also examined the rate of prototype change during training:
we computed the distances between the prototype of the same unit c during neighboring epochs
Ep and Ep+ 1. We averaged the distance for channels in each layer and showed it across epochs
and networks (Fig.7). We can see, that all the networks experienced a transient peak at the first
step, showing the drastic change of representation between randomly initialized network to network
after one training epoch. Here we also saw clrjit networks experienced a higher rate of change of
prototypes in layers 3 and 4, which might be the cause of their higher diversity.

Finally, we examined the consistency of prototype across repeated Evolution. This is related to
the overall geometry of the landscape, i.e. how multimodal the tuning of the unit is. We computed
the distances between the prototype of the same channel c for the two extractions. We averaged the
distance for channels in each layer and showed it across epochs and networks (Fig.8). Generally, the
distance between prototypes of the same channel (repeated evolution) is smaller than the distance
between prototypes of different channels (cf. Fig.3). Intriguingly this distance between re-evolved
prototypes is increasing through the training process, especially for the deeper layers of the models
trained with color jittering. This highlights that during training, for the same unit, repeated evolution
led to increasingly different prototypes — namely the tuning functions of units are becoming more and
more multimodal. This increase in multimodality may also benefit the final quality of representation.

Figure 6: Dynamics of prototypes diversity during training. Cosine distance metric, resnet50
embedding
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Figure 7: Speed of prototype change during training.

Figure 8: Similarity of prototype between repeated evolution.

7.3 Developmental process of prototypes during training (keepclr)

(a)

(b)

(c)

(d)
Figure 9: Development of prototypes through training without color jittering (keepclr) condition,
layer 3. Columns correspond to 0,10,20,... to 90 epoch; Rows correspond to Units 71, 93, 211, and,
248 (0-based index)
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