
LLM-VeriPPA: Power, Performance, and Area
Optimization aware Verilog Code Generation with

Large Language Models

Abstract—
Large Language Models (LLMs) are gaining prominence in

various fields, thanks to their ability to generate high-quality con-
tent from human instructions. This paper delves into the field of
chip design using LLMs, specifically in Power-Performance-Area
(PPA) optimization and the generation of accurate Verilog codes
for circuit designs. We introduce a novel framework VeriPPA
designed to optimize PPA and generate Verilog code using LLMs.
Our method includes a two-stage process where the first stage
focuses on improving the functional and syntactic correctness of
the generated Verilog codes, while the second stage focuses on
optimizing the Verilog codes to meet PPA constraints of circuit
designs, a crucial element of chip design. Our framework achieves
an 81.37% success rate in syntactic correctness and 62.06% in
functional correctness for code generation, outperforming current
state-of-the-art (SOTA) methods. On the RTLLM dataset. On the
VerilogEval dataset, our framework achieves 99.56% syntactic
correctness and 43.79% functional correctness, also surpassing
SOTA, which stands at 92.11% for syntactic correctness and
33.57% for functional correctness. Furthermore, Our framework
able to optimize the PPA of the designs. These results highlight
the potential of LLMs in handling complex technical areas and
indicate an encouraging development in the automation of chip
design processes. Our source codes are here 1.

I. INTRODUCTION

As Moore’s law continues to drive design complexity and
scaling in chip design, it pushes chip design tools like Elec-
tronic Design Automation (EDA) to their limits. These tradi-
tional tools are time-consuming and rely on human experts.
Machine learning (ML) has been successfully integrated into
chip design for logic synthesis [9], [11], placement [36],
routing [13], [19], testing [5], and verification [6], [12]. The
popularity of agile hardware design exploration has been on
the rise due to the growth of large language models (LLMs).
A promising direction is using natural language instruction to
generate hardware description language (HDL), e.g., Verilog,
aiming to greatly lower hardware design barriers and increase
design productivity, especially for users who do not possess
extensive expertise in chip design [16], [28], [29], [38].

Despite various efforts, optimizing PPA remains the most
critical task in chip design, and to the best of our knowledge,
no existing methods support PPA optimization. Before we

1https://anonymous.4open.science/r/LLM-VeriPPA-B016

perform PPA optimization, we must generate correct Verilog
code. Recent work in correct Verilog code generation falls into
two categories: prompt engineering and fine-tuning. Prompt
engineering improves Verilog code generation by adjusting
descriptions and prompt structures. For example, hierarchical
prompting [23] generates hierarchical code, ChipGPT [4]
applies prompt engineering for automatic chip generation,
and RTLLM [18] uses self-planning prompt engineering to
enhance correctness. Fine-tuning improves Verilog code gen-
eration by modifying model parameters. VeriGen [32] uses
fine-tuning on a collected dataset from GitHub, but lacks data
cleaning and task-specific training, which reduces functional
accuracy. ChipNeMo [14] performs a two-round fine-tuning
with in-house data, although only the first round benefits RTL
code generation. BetterV [28] fine-tunes the model along-
side a generative discriminator, which increases deployment
complexity. VerilogEval [15] and RTLCoder [16] provide
benchmark datasets for single-round fine-tuning. In summary,
no existing work addresses PPA optimization a very crucial
aspect of chip design. There are two existing works that
provides the PPA result (Vanilla) without optimization. In
regards to the correct Verilog generation existing methods do
not use the exact error details from the integrated simulator
and multi-round conversation to understand the Verilog code
for the circuit design. We highlighted the recent work in the
comparison our VeriPPA framework in Table I. In this work,
we propose VeriPPA, a systematic open-source framework that
makes LLM capable of PPA optimization and strengthens
LLM’s capability generation of Verilog code, as shown in
Figure 1. Our key contributions are summarized here:

• We introduce PPA optimizations to ensure that the gener-
ated Verilog codes meet design specification (i.e., PPA) is
optimized, we use Synopsys Design Compiler to perform
logic synthesis and use the open source ASAP 7nm
Predictive PDK to obtain PPA reports.

• We propose an effective method for Verilog code genera-
tion using refinement of the errors by enabling the LLM
to understand Verilog code for circuit design. We use the
detailed error diagnostics from the iverilog simulator [37],
and pinpoint the exact location of syntactic or functional
discrepancies as indicated by testbench failures as new

https://anonymous.4open.science/r/LLM-VeriPPA-B016

prompts. We use multi-round generation to enhance the
syntax and functionality correctness.

• We incorporate in-context learning (ICL) in the PPA
domain to improve the LLM’s understanding of PPA
optimizations, especially when labeled data are scarce.
By carefully creating diverse Verilog to PPA report pairs
using different optimization strategies. Further, we create
PPA aware prompt and corresponding strategy testbench
for the Verilog design.
Compared with state-of-the-arts (SOTAs), e.g.,
RTLLM [18], VerilogEval [15], our VeriPPA achieves a
success rate of 62.0% (+16%) for functional accuracy
and 81.37% (+8.3%) for syntactic correctness in
Verilog code generation on RTLLM dataset. On the
VerilogEval dataset, our framework achieves 99.56%
syntactic correctness and 43.79% functional correctness
surpassing current SOTA methods.

TABLE I
COMPARISON OF PPA AND VERILOG CODE GENERATION USING LLM

WORKS .

Work Vanilla PPA PPA Optimization Accuracy
VeriGen [32] No No Moderate

RTLCoder [16] No No High
ChipNeMo [14] No No Moderate
VerilogEval [15] No No Moderate

BetterV [28] No No High
Revisiting VerilogEval [29] No No High

RTLLM [18] Yes No Moderate
ChipGPT [4] Yes No Moderate

VerilogCoder [10] No NO High
LLM-VeriPPA (Our Work) Yes Yes High

II. BACKGOUND AND RELATED WORK

Register Transfer Logic (RTL) is an critical abstraction in
chip design that outlines how data moves between logical
operations and registers. RTL is typically described using
HDLs such as Verilog. In modern chip design workflows,
human engineers manually convert design specifications into
HDL before synthesizing them into circuits [1]. This man-
ual translation process is time-consuming and susceptible to
errors, which can lead to potential flaws in the hardware
circuit designs. Recent advancements in Artificial Intelligence
(AI), particularly LLMs, have enabled the automation of
translating design specifications into HDL by understanding
the instructions and generating codes in HDLs such as Ver-
ilog. The ability to generate HDL that meets specific design
requirements, such as PPA, is crucial in chip design.
Finetune LLMs. The LLMs have demonstrated various ca-
pabilities such as comprehension, reasoning, instruction fol-
lowing, and coding [22]. However, their capability in gener-
ating practical hardware Verilog codes is limited because of
insufficient available Verilog codes due to propriety natures
of circuit designs [7]. To address these challenges researches
fine-tuned LLMs on hardware datasets. Thakur et al. [33]
advocate for the fine-tuning of open-source LLMs such as
CodeGen [24] to specifically generate Verilog code tailored
for target designs. Subsequently, Chip-Chat [2] delves into

the intricacies of hardware design using LLMs, highlighting
the markedly superior performance of ChatGPT compared to
other open-source LLMs. Chip-GPT [3] also focuses on the
task of register-transfer level (RTL) design by leveraging the
capabilities of ChatGPT. However, these works mainly target
the scale of simple and small circuits (e.g., < 20 designs with
a average of < 45 Verilog code lines), as pointed out in [18].
Enrich Verilog Source. Several recent efforts focus on enrich-
ing Verilog codes. RTLLM [18] introduces a benchmarking
framework consisting of 30 designs that are specifically aimed
at enhancing the scalability of benchmark designs. Further-
more, it utilizes effective prompt engineering techniques to
improve the generation quality. MG-Verilog [39] provides
the multi-level descriptions along side with code sample but
its reliance on Llama-2-70B-chat [34] for annotation raises
quality concerns about the dataset. VerilogEval [15] assesses
the performance of LLM in the realm of Verilog code genera-
tion for hardware design and verification. It comprises 156
problems from the Verilog instructional website HDLBits.
However, VerilogEval [15] does not offer PPA analysis for
the generated codes. In RTLLM, the generated Verilog codes
are directly extracted and synthesized using commercial tools
to obtain PPA results, without PPA constraint-based feedback.
Thus they suffer from limited generation quality.
Verilog Code Agents VerilogCoder [10] introduces the mul-
tiple autonomous AI agents based on Abstract Syntax Tree
(AST) based waveform tracing, graph planner, and other tools.
These highly domain specific AI agent’s output does not work
on smaller LLMs and models goes to hallucination. Further,
It does not give provide any PPA optimizations.

III. FRAMEWORK

A. Design Overview

In our VeriPPA framework, as illustrated in Figure 1, we
use a text-based description (.txt file) of hardware design,
designated as L, to serve as input/prompt for the LLMs. L
details the module name, and specifies both input and output
signals with the corresponding bit widths.

In the first stage, highlighted in light red, we use LLM
to parse the text-based description L and generate the cor-
responding Verilog code V . V is then subjected to syntax
and functionality checks using the ICARUS Verilog simulator
[37] and a design-specific testbench T . Should V fail these
checks, we utilize VeriRectify (Section III-C) to provide an
automated prompt to the LLM to correct the errors. If V
passes, it is synthesized to evaluate the Power, Performance,
and Area (PPA) of the design. The second stage, highlighted in
light green, assesses the design-specific PPA requirements. We
compare the PPA metrics of the synthesized code (after design
compiler) against the design constraints. If not meeting these
constraints, a PPA-aware prompt (using in context learning) is
fed back into the LLM for further optimization. Otherwise, it
is saved as part of the dataset. The details of each technique
are described in the subsequent subsections.

module adder_16bit (
input [15:0] a,
input [15:0] b,
input c_up,
output [15:0] y,
output Co

);
…..
….
generate

for (i = 1; i < 16; i = i +
1) begin : adder_loop

assign sum[i] = a[i] ^
b[i] ^ carry[i - 1];

assign carry[i] = (a[i]
& b[i]) | (carry[i - 1] &
(a[i] ^ b[i]));

end
endgenerate
assign y = sum;
assign Co = carry[15];
Endmodule
Code passed.

PassSimulator
(syntax+functionality)

PPA results
(Design Specific

Constraints)

Constraints
Meet

LLM Generated
Verilog Code (V)

Optimized Verilog
Code

Please act as a
professional verilog
designer.

Implement a module of
a 16-bit full adder.
Module name:
adder_16bit
Input ports：

input [15:0] a,
input [15:0] b,
input c_up

Output ports：
output [15:0] y,
output Co

Optimized Verilog Codeyuyuhj
Hardware design

description prompt

VeriRectify
Error details+ Hint

N
ot

 P
as

s
PPA Aware Prompt:
In Context Learning

(4-shot)

C
on

st
ra

in
ts

N

ot
 M

ee
t

Testbench (T)

GPT-4
Llama-3.1

…

DatasetHardware Design Description Prompt
(L)

Design
Compiler

User Prompt LLM Response Automated Prompt Simulator Design Compiler
Sy

nt
he

si
ze

d
co

de
 (V

)

Fig. 1. VeriPPA framework.

B. Code Generation and Testing

VeriPPA incorporates the ICARUS Verilog simulator [37]
to automate the evaluation (testing) of the generated codes.
In contrast to high-level program languages such as Python,
Verilog requires the use of testbenches, T = {T1, T2, . . . , Tm},
to systematically assess the code’s functionality, encompassing
a wide array of test scenarios. Integrating the ICARUS Verilog
simulator into VeriPPA provides immediate feedback on the
code’s syntactical and operational integrity. The ICARUS
Verilog simulator could pinpoint the exact location of syntactic
errors or functional fails based on testbench test case failures.
This integrated approach contrasts with frameworks such as
RTLLM [18], where an external simulator is used to check
the correctness of the generated Verilog codes.

C. VeriRectify

We create a multi-iteration dialogue with an error feed-
back mechanism (Figure 2 (a) and (b)), analogous to human
problem-solving techniques. This method is designed as a
recursive function that improves the output by carefully an-
alyzing and correcting the errors found in previous iterations.
Let Vi denote the Verilog code resultant from the ith iteration,
and Ei represent the associated set of identified errors at this
stage. Initially, V0 is the first generated code accompanied
by its detected errors E0. Then the refinement function,
R(Vi, Ei), which takes as input Vi and Ei, and yields an
enhanced code version Vi+1 as output. Simultaneously, an
error detection function D(Vi) is employed to identify errors
within Vi, generating Ei. The iterative process can be viewed
as follows:

Vi+1 = R(Vi, Ei) and Ei+1 = D(Vi+1) (1)

This process repeats until either no errors are detected or a
predefined iteration limit, K is reached, i.e., the iteration halts
if, D(Vi+1)=∅ or i = K. K is empirically adjustable (say 4)
based on observed results of code generation. Thus, the multi-
round conversation method enhances code quality with each
iteration until an optimal or satisfactory solution is reached
within the bounds of K. in this context is a systematic, iterative
algorithm aimed at progressively minimizing the error in the
generated Verilog code, enhancing code quality with each
iteration until an optimal or satisfactory solution is reached
within the bounds of K.

D. Power Performance and Area (PPA).
RTL simulation does not guarantee that the design (gen-

erated Verilog code) meet the design specification after we
fabricate. Furthermore, the quality of the hardware design must
be measured by its power, performance, and area metrics.

Our approach takes a step further by inspecting PPA of
the design V which passes the VeriRectify process as the
following:

V =

{
V if PPA(V) satisfies,
VeriRectify(V, PPA(V)) otherwise.

(2)

Our PPA check calls Synopsys Design Compiler to perform
logic synthesis (and technology mapping) on the open-source
ASAP 7nm Predictive PDK [35]. We check all designs’
warning/error messages during the logic synthesis, and the
power (µW), area (µm2), and clock (ps) for quality. When
the Verilog design can be synthesized and meets the PPA
goal, it results in a pass. Otherwise, both the design and its
corresponding PPA report will be fed back to the VeriRectify
(Section III-C) for refinement.

The aim of PPA checking is to ensure the created design
operates within a reasonable clock period, with acceptable

Hardware Design
Description Prompt (L)

LLM Generated Verilog
Code (V0)

Error (E0) from
simulator

VeriRectify R(V0,E0):
Error refinement

Error (Ei-1) from
simulator

LLM Generated Verilog
Code (V1)

LLM Generated Verilog
Code (Vi)

Loop: i times

VeriRectify R(Vi-1,Ei-1) :
Error refinement

Syntactically and functionally
Correct designs

C
od

e
(V
i-1

)

Input

Workflow

Refining

Backtracking

Legends

Incorrect
Verilog code

Correct
Verilog code

(a) (b)

Fig. 2. (a) Multi-round conversation with error feedback; (b) Workflow of
the process.

power and area. This requires determining the power and area
under optimal timing, or the smallest clock period.

IV. EVALUATION

A. Datasets

In assessing our VeriPPA framework, We utilize two bench-
mark datasets, the RTLLM dataset [18] includes 29 designs,
and the VerilogEval dataset [15], which comprises two subsets:
VerilogEval-human, featuring 156 designs, and VerilogEval-
machine, consisting of 108 designs.

B. Experimental Setup

We demonstrate the effectiveness of VeriPPA for generating
PPA-optimized Verilog for the given designs. We adopt GPT-
3.5 [25], GPT-4 [26], GPT-4o [27], Llama-2-7B [34], Llama-3-
8B [20], Codellama-7B [31], Llama3.1-405B [21], RTL-Coder
[17], and DeepSeek Coder [8] as our LLM models. We use
n=1, temperature temp = 0.7, and a context length of 2,048.
Further, we incorporate the ICARUS Verilog simulator [37] to
automate the testing of the generated code. For PPA check, we
perform the logic synthesis using Synopsys Design Compiler
with compile_ultra command and we use the ASAP 7nm
Predictive PDK [35]. We implement an in-house simulator
to sweep the timing constraints to find the fastest achievable
clock frequency for all the generated designs. All experiments

are conducted on a Linux- based host with AMD EPYC 7543
32-Core Processor and an NVIDIA A100-SXM 80 GB.

C. Generation Correctness

We evaluate Verilog generation accuracy using two pri-
mary metrics: syntax checking and functionality verification.
Table II shows results from our methodology of correcting
Verilog code through multiple correction attempts. For each
design description, five codes are generated, with up to four
corrections per generation. The number of correction attempts
is set to four because after this point, correction efficiency
decreases due to repetitive model outputs. For the GPT-3.5
model, initial syntax correctness is 44.13% and functional-
ity correctness is 24.13%. Applying the VeriPPA framework
changes syntax correctness to 65.51% and functionality cor-
rectness to 31.03%. For the RTLLM baseline, syntax cor-
rectness is 32.41% and functionality correctness is 20.68%.
With the VeriPPA framework, these become 55.17% and
31.03%. For the GPT-4 model, syntax correctness is 66.20%
and functionality correctness is 37.93%. With VeriPPA, syntax
correctness is 81.37% and functionality correctness is 48.27%.
RTLLM baseline scores are 60.00% for syntax and 34.48% for
functionality. After applying VeriPPA, these become 77.93%
and 48.27%. Testing GPT-4 with four-shot learning, syntax
correctness is 70.34% and functionality correctness is 37.93%.
With VeriPPA, syntax correctness is 79.31% and functional-
ity correctness is 41.37%. For RTLLM, syntax correctness
is 66.89% and functionality correctness is 44.82%. With
VeriPPA, syntax correctness is 81.37% and functionality cor-
rectness is 62.06%. For GPT-4o, syntax correctness is 75.17%
and functionality correctness is 44.82%. With VeriPPA, syntax
correctness is 86.20% and functionality correctness is 48.27%.
RTLLM baseline scores are 75.86% for syntax and 41.37%
for functionality. After applying VeriPPA, syntax correctness
is 82.06% and functionality correctness is 44.82%.

These results show that applying the VeriPPA framework
to both GPT and RTLLM models changes both syntax and
functionality correctness across all tested models and settings.

We evaluated VeriPPA using open-source LLMs, demon-
strating its strong effectiveness with these models. Starting
with the large Llama 3.1-405B model [21], VeriPPA increases
syntax accuracy from 31.72% to 80.68% and functionality
accuracy from 20.68% to 44.82%, as shown in Table III.
For smaller models, VeriPPA continues to enhance syntax
correctness. With Llama 2-7B [34] , syntax correctness rises
from 20.68% to 27.58%. In the case of Llama 3-8B [20],
syntax correctness improves from 3.4% to 17.5%. Codellama-
7B [31] shows an increase in syntax correctness from 16.2%
to 28.35%. Despite these syntax improvements, these smaller
models do not achieve functionality correctness due to the
rigorous tests in our test benches. As demonstrated in Table
III, VeriPPA is highly effective with larger open-source LLMs.

We evaluate the VeriPPA framework using the VerilogEval-
Machine and VerilogEval-Human datasets. Table IV summa-
rizes results for VerilogEval-Machine. For GPT-4, syntax cor-
rectness with Revisiting VerilogEval [30] is 92.11%, and with

To	Improve	Power,	Performance,
and	Area	(PPA)	in	Verilog	designs,	
Here	are	some	strategies.
Strategy:	Pipelining
Non- pipeline	implementation:
….
Pipeline	implementation:
….
Strategy:	Clock	Gating
Non-clock	gating
….
Clock	gating
….
Strategy	:	Parallel	Operations	
Non-Parallel
….
Parallel
….
Strategy:	Adding	Hierarchy
Non-Hierarchical	implementation
….
Hierarchical	implementation
….
Analyze	the	design	methodologies
and	optimizations	provided	in	the	
above	examples.

In-context	learning	 PPA	aware	prompt

In	following	designs	implementation,	
500ps	clock	can	be	synthesized.	
Area	of	the	design	is	213.217918um.
Power	required	is	14.7292uW.	

Please	optimize	following	design	to	
achieve:
clock	less	than	300ps,.
module	adder_32bit	#(parameter	SIZE	
=	32)(
input	[SIZE-1:0]	A,	//	index	from	0
input	[SIZE-1:0]	B,	//	index	from	0
output	[SIZE-1:0]	S,	//	index	from	0
output	C32);

endmodule

Please	do	not	modify	the	name	of	
module.	Always	give	the	verilog code	
which	starts	with	module	and	end
with	endmodule

Sy
nt
ac
ti
ca
lly
	a
nd
	fu
nc
ti
on
al
ly
	

Co
rr
ec
t	d
es
ig
ns

Non	–optimized
PPA	results:

Synopsys	
Design	
Compiler	

To	achieve	given	
specification,	LLM	
used	pipeline	strategy.

Example	
Design:	
adder_32bit
Clock:	
500ps
Power:
14.72	uW
Area:
213.21	um

Optimized	PPA	results

Pipelined	adder_32bit:
module	adder_32bit#
(parameter	size=32)
(input	clk,	
input	rst_n,
input	[size-1:0]	A,
input[size-1:0]	B,
output	reg	[size-1:0]	S,
output	reg	C32);

Endmodule

PPA	Results:
Clock:180	ps

Power:587.31	uW
Area:1005.67	um

ASAP	7nm	
Predictive	
PDK	
technology Synopsys	Design	Compiler	

(d) (e) (f)

(a) (b) (c)

:Prompt

:LLM Response

:Compiler

Fig. 3. Optimization Flow; (a) Syntactically and functionally correct designs, (b) Synopsis compiler, (c) Non-optimized PPA results based on 7nm ASAP
technology, (d) In-context learning to optimize PPA, (e) PPA aware prompt, (e) Optimized results

TABLE II
COMPARISON OF DIFFERENT MODELS AND RTLLMS METHODS ON RTLLM DATASET.

Model Syntax (%) Functionality (%) Syntax (%) Functionality (%)
w/o VeriPPA w/ VeriPPA w/o VeriPPA w/ VeriPPA RTLLM RTLLM w/ VeriPPA RTLLM RTLLM w/ VeriPPA

GPT-3.5 44.13 65.51 24.13 31.03 32.41 55.17 20.68 31.03
GPT-4 66.20 81.37 37.93 48.27 60.00 77.93 34.48 48.27

GPT-4 (4-shot) 70.34 79.31 37.93 41.37 66.89 81.37 44.82 62.06
GPT-4o 75.17 86.20 44.82 48.27 75.86 82.06 41.37 44.82

TABLE III
OPEN SOURCE LLM RESULTS.

Model Without VeriPPA With VeriPPA
Synt. (%) Funct. (%) Synt. (%) Funct. (%)

Llama3.1-405B 31.72 20.68 80.68 44.82
Llama-2-7B 20.68 0 27.58 0
Llama-3-8B 3.4 0 17.24 0

CodeLlama 7B 16.2 0 28.35 0

VeriPPA it is 99.56%. Functionality correctness for GPT-4 is
33.57% for Revisiting VerilogEval and 43.79% for VeriPPA.
Using GPT-4 with four-shot learning, syntax correctness is
90.21% (Revisiting VerilogEval) and 95.91% (VeriPPA), while
functionality correctness is 35.76% and 45.25%, respectively.
For the VerilogEval-Human dataset, as shown in Table V,
GPT-4 syntax correctness is 91.28% with Revisiting Verilo-
gEval and 97.17% with VeriPPA. Functionality correctness is
29.48% (Revisiting VerilogEval) and 39.74% (VeriPPA). The
four-shot learning variant of GPT-4 shows similar results, with
syntax correctness at 88.97% and 95.76%, and functionality
correctness at 29.4% and 39.74% for Revisiting VerilogEval
and VeriPPA, respectively.

We also evaluate the VeriPPA framework using RTL-
Coder [17] and DeepSeek Coder [8]. For DeepSeek Coder on
the VerilogEval-Machine dataset, syntax correctness is 55.12%

TABLE IV
COMPARISON ON VERILOGEVAL-MACHINE DATASET: REVISITING

VERILOGEVAL [30] VS. VERIPPA.

Model Revisiting VerilogEval [30] VeriPPA
Syntax (%) Function (%) Syntax (%) Function (%)

GPT-4 92.11 33.57 99.56 43.79
GPT-4 (4-shot) 90.21 35.76 95.91 45.25

RTL-Coder 0.38 0.64 27.94 1.28
DeepSeek-Coder-67B 55.12 16.66 78.97 24.35

with Revisiting VerilogEval and 78.97% with VeriPPA. Func-
tionality correctness is 16.66% (Revisiting VerilogEval) and
24.35% (VeriPPA). For RTL-Coder, syntax correctness is
0.38% with Revisiting VerilogEval and 27.94% with VeriPPA,
while functionality correctness is 0.64% and 1.28%, respec-
tively. These results show that applying VeriPPA with the
VeriPPA framework changes both syntax and functionality cor-
rectness across different models and datasets. Using four-shot
learning also changes functionality correctness, indicating the
benefit of multi-sample correction for Verilog code generation.

D. PPA Optimization

In this section, we shift focus from verifying the correctness
of the generated Verilog codes to optimizing its quality. In
VeriPPA, We use the Synopsys Design Compiler to synthesize
our designs and generate PPA reports. Table VI shows the

TABLE V
COMPARISON ON VERILOGEVAL-HUMAN DATASET: REVISITING

VERILOGEVAL [30] VS. VERIPPA.

Model Revisiting VerilogEval [30] VeriPPA
Syntax (%) Function (%) Syntax (%) Function (%)

GPT-4 91.28 29.48 97.17 39.74
GPT-4 (4-shot) 88.97 29.48 95.76 39.74

TABLE VI
PPA RESULTS OF GENERATED VERILOG CODE

Design Name GPT-4 GPT-4 (4-shot)
Clock
(ps)

Power
(µW)

Area
(µm2)

Clock
(ps)

Power
(µW)

Area
(µm2)

adder 8bit 318.5 6.3 38.5 333.1 6.1 42.9
adder 16bit 342.2 10.9 104.5 135.1 41.1 152.8
adder 32bit 500.0 14.2 211.6 500.0 14.7 213.2
multi booth 409.0 112.1 526.0 409.0 112.1 526.0
right shifter 47.5 144.3 42.9 47.5 144.3 42.9
width 8to16 74.1 223.2 145.8 145.6 128.7 157.2
edge detect 61.5 49.0 23.3 61.5 49.0 23.3

mux 54.7 215.3 86.1 54.7 215.3 86.1
pe 500.0 552.5 2546.5 500.0 541.0 2488.6

asyn fifo 295.2 406.4 1279.3 228.3 526.6 1295.4
counter 12 134.4 33.1 40.6 124.5 34.6 36.4

fsm 88.3 32.7 31.5 68.7 49.0 50.2
multi pipe 4bit 254.7 40.7 131.3 - - -

pulse detect 10.3 187.5 13.5 32.7 59.1 13.5
calendar - - - 208.6 86.6 199.0

results of different designs with different LLM models. It
shows the without optimization PPA (Vanilla) result of each
design. To demonstrate VeriPPA ability to optimize PPA later,
we show best Vanilla PPA from multiple PPA reports. For ex-
ample, the pulse detect design passes five times functionally
and syntactically. Therefore, in post-synthesis, we collect five
PPA reports for the pulse detect design, and we select the
best PPA result to include in Table VI. However, these best
PPA results do not meet design-specific PPA requirements,

To address this, We further perform the PPA constraint-
based feedback mechanism, integrated with ICL, as illustrated
in Figure 3. This approach represents a significant step towards
aligning LLM-generated codes with application-specific PPA
requirements. Figure 3 demonstrates our process, starting
with the collection of syntactically and functionally correct
designs and generating non-optimized PPA results as shown
in Figure 3 (a), (b), and (c). The non-optimized PPA results do
not meet application-specific PPA requirements. For example,
adder 32bit, can be synthesized with a 500ps clock as shown
in Figure 3 (c). However, this clock speed does not fulfill the
rapid clock requirements necessary for some applications, such
as cryptographic hardware which consists of adders, where a
fast clock is crucial, but area and power constraints are less
critical. To enhance the speed of adder 32bit, we impose a
clock constraint, aiming for a clock speed of less than 300ps,
as outlined in the PPA constraint-based prompt in Figure 3
(e). The framework instructs the LLM to consider various
optimization strategies, including Pipelining, Clock Gating,
Parallel Operation, and Hierarchical Design as depicted in
Figure 3 (d).

Upon providing the PPA-based constraint prompt and con-

TABLE VII
PPA OPTIMIZED VERILOG DESIGN RESULTS

Design Name Clock (ps) Power (µW) Area (µm)
adder 32bit 180.0 587.31 1005.67
multi booth 123.2 42.39 42.92

pe 325.0 1206.0 4863.88
asyn fifo 114.8 988.92 1344.86

TABLE VIII
ANALYSIS TABLE - ONE ITERATION COMPARISON USING GPT-4O [27]

MODEL

Method MACs Tokens Accuracy (%)
Syntax Functionality

Self-panning 647589.84 317446 77.93 41.37
VeriPPA 552317.76 270744 80.68 41.37

text to the LLM, we analyze the resultant Verilog code for
syntax and functional accuracy, making corrections where
necessary. If the code passes both checks, we proceed to its
final synthesis, achieving an optimized Verilog code as shown
in Figure 3 (f), where the adder 32bit operates at an improved
180ps clock. In Table VII, we present the results of selected
optimized designs. Notably, no design from the VerilogEval
[15] dataset is present in Table VII, as those designs did not
require complex optimization.

E. Computational cost analysis between self-planning (SOTA)
and VeriPPA

. To provide a fair comparison, we first limit both methods
to a single iteration: the self-planning (SOTA) and our VeriPPA
approach. As shown in Table VIII, VeriPPA used 46,702
fewer tokens (a 14.71% reduction) compared to SOTA, while
also achieving better syntax accuracy 80.68% for VeriPPA
versus 77.93% for SOTA, with the same functionality accuracy
41.37%. Our estimation shows, for a GPT-4o VeriPPA re-
quires 95272.08 trillion less Multiply-Accumulate Operations
(MACs) than the SOTA . Overall, results demonstrate that
VeriPPA has lower computational costs than the SOTA method
while maintaining or improving accuracy.

V. CONCLUSION

In this paper, we introduce a novel framework VeriPPA,
designed to assess and enhance LLM efficiency in this spe-
cialized area. Our method includes generating initial Verilog
code using LLMs, followed by a unique two-stage refinement
process. The first stage focuses on improving the functional
and syntactic integrity of the code, while the second stage aims
to optimize the code in line with Power-Performance-Area
(PPA) constraints, an essential aspect of effective hardware
design. This dual-phase approach of error correction and PPA
optimization has led to notable improvements in the quality
of LLM-generated Verilog code. Our framework achieves
62.0% (+16%) for functional accuracy and 81.37% (+8.3%)
for syntactic correctness in Verilog code generation, compared
to SOTAs.

REFERENCES

[1] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce.
Chip-chat: Challenges and opportunities in conversational hardware
design. In 2023 ACM/IEEE 5th Workshop on Machine Learning for
CAD (MLCAD), page 1–6. IEEE, September 2023.

[2] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce.
Chip-chat: Challenges and opportunities in conversational hardware
design. arXiv preprint arXiv:2305.13243, 2023.

[3] Kaiyan Chang et al. Chipgpt: How far are we from natural language
hardware design, 2023.

[4] Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen
Liang, Yinhe Han, Huawei Li, and Xiaowei Li. Chipgpt: How far are
we from natural language hardware design, 2023.

[5] Wen Chen et al. Novel test detection to improve simulation efficiency:
A commercial experiment. In ICCAD’12, page 101–108, New York,
NY, USA, 2012.

[6] Shai Fine and Avi Ziv. Coverage directed test generation for functional
verification using bayesian networks. In DAC ’03, page 286–291, New
York, NY, USA, 2003.

[7] Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian
Li, Cheng Wan, and Yingyan Celine Lin. Gpt4aigchip: Towards next-
generation ai accelerator design automation via large language models,
2025.

[8] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao
Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei
Xiong, and Wenfeng Liang. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence, 2024.

[9] Winston Haaswijk et al. Deep learning for logic optimization algorithms.
In 2018 ISCAS, pages 1–4, 2018.

[10] Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. Verilogcoder:
Autonomous verilog coding agents with graph-based planning and
abstract syntax tree (ast)-based waveform tracing tool, 2025.

[11] Abdelrahman Hosny et al. Drills: Deep reinforcement learning for logic
synthesis. In 2020 25th ASP-DAC, pages 581–586, 2020.

[12] Hanbin Hu et al. Hfmv: Hybridizing formal methods and machine
learning for verification of analog and mixed-signal circuits. In DAC
’18, New York, NY, USA, 2018.

[13] Rongjian Liang et al. Drc hotspot prediction at sub-10nm process nodes
using customized convolutional network. In ISPD ’20, page 135–142,
New York, NY, USA, 2020.

[14] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel
Pinckney, Rongjian Liang, Jonah Alben, Himyanshu Anand, Sanmitra
Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran, Bryan Catanzaro,
Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Desh-
pande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu,
Sumit Jain, Ankit Jindal, Brucek Khailany, George Kokai, Kishor Kunal,
Xiaowei Li, Charley Lind, Hao Liu, Stuart Oberman, Sujeet Omar,
Ghasem Pasandi, Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar,
Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner,
Kaizhe Xu, and Haoxing Ren. Chipnemo: Domain-adapted llms for chip
design.

[15] Mingjie Liu et al. VerilogEval: evaluating large language models for
verilog code generation. In ICCAD’23, 2023.

[16] Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce
Zhang, and Zhiyao Xie. Rtlcoder: Fully open-source and efficient llm-
assisted rtl code generation technique. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pages 1–1, 2024.

[17] Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce
Zhang, and Zhiyao Xie. Rtlcoder: Fully open-source and efficient llm-
assisted rtl code generation technique, 2024.

[18] Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-
source benchmark for design rtl generation with large language model,
2023.

[19] Dani Maarouf et al. Machine-learning based congestion estimation for
modern fpgas. In FPL’18, pages 427–4277, 2018.

[20] Meta. Introducing meta llama 3: The most capable openly available
llm to date. https://ai.meta.com/blog/meta-llama-3/, 2024. Accessed:
2024-06-15.

[21] Meta AI. Meta llama 3.1. Meta AI Blog, July 2024. Accessed: October
15, 2024.

[22] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu,
Richard Socher, Xavier Amatriain, and Jianfeng Gao. Large language
models: A survey, 2024.

[23] Andre Nakkab, Sai Qian Zhang, Ramesh Karri, and Siddharth Garg.
Rome was not built in a single step: Hierarchical prompting for llm-
based chip design. In Proceedings of the 2024 ACM/IEEE International
Symposium on Machine Learning for CAD, MLCAD ’24, New York,
NY, USA, 2024. Association for Computing Machinery.

[24] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo
Zhou, Silvio Savarese, and Caiming Xiong. Codegen: An open large
language model for code with multi-turn program synthesis. arXiv
preprint arXiv:2203.13474, 2022.

[25] OpenAI. Gpt-3.5. https://platform.openai.com/docs/models/gpt-3-5,
2023. Accessed on 15/11/2023.

[26] OpenAI. Gpt-4. https://platform.openai.com/docs/models/gpt-4, 2023.
Accessed on 15/11/2023.

[27] OpenAI. Gpt-4o model documentation. https://platform.openai.com/
docs/models/gpt-4o, 2024. Accessed: 2024-10-15.

[28] Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu.
Betterv: Controlled verilog generation with discriminative guidance,
2024.

[29] Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren,
and Brucek Khailany. Revisiting verilogeval: Newer llms, in-context
learning, and specification-to-rtl tasks. arXiv preprint arXiv:2408.11053,
2024.

[30] Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and
Brucek Khailany. Revisiting verilogeval: A year of improvements in
large-language models for hardware code generation, 2025.

[31] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal
Remez, et al. Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

[32] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan,
Brendan Dolan-Gavitt, Ramesh Karri, and Siddharth Garg. Verigen:
A large language model for verilog code generation, 2023.

[33] Shailja Thakur et al. Benchmarking large language models for automated
verilog rtl code generation. In DATE’23, pages 1–6. IEEE, 2023.

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and
fine-tuned chat models, 2023.

[35] Vinay Vashishtha, Manoj Vangala, and Lawrence T Clark. Asap7 predic-
tive design kit development and cell design technology co-optimization.
In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017.

[36] Samuel Ward et al. Pade: A high-performance placer with automatic dat-
apath extraction and evaluation through high dimensional data learning.
In DAC’12, pages 756–761.

[37] S. Williams. The icarus verilog compilation system, 2023. [Online].
Available: https://github.com/steveicarus/iverilog.

[38] Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng,
Haisheng Zheng, and Bei Yu. Chateda: A large language model powered
autonomous agent for eda. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 43(10):3184–3197, October
2024.

[39] Yongan Zhang, Zhongzhi Yu, Yonggan Fu, Cheng Wan, and Yingyan Ce-
line Lin. Mg-verilog: Multi-grained dataset towards enhanced llm-
assisted verilog generation, 2024.

https://ai.meta.com/blog/meta-llama-3/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://github.com/steveicarus/iverilog

	Introduction
	Backgound and Related Work
	Framework
	Design Overview
	Code Generation and Testing
	VeriRectify
	Power Performance and Area (PPA).

	Evaluation
	Datasets
	Experimental Setup
	Generation Correctness
	PPA Optimization
	Computational cost analysis between self-planning (SOTA) and VeriPPA

	Conclusion
	References

