
Online Sparsification of Bipartite-Like Clusters in Graphs

Joyentanuj Das 1 Suranjan De 1 He Sun 1

Abstract
Graph clustering is an important algorithmic
technique for analysing massive graphs, and has
been widely applied in many research fields of
data science. While the objective of most graph
clustering algorithms is to find a vertex set of
low conductance, a sequence of recent studies
highlights the importance of the inter-connection
between vertex sets when analysing real-world
datasets. Following this line of research, in this
work we study bipartite-like clusters and present
efficient and online sparsification algorithms that
find such clusters in both undirected graphs and
directed ones. We conduct experimental studies
on both synthetic and real-world datasets, and
show that our algorithms significantly speedup
the running time of existing clustering algorithms
while preserving their effectiveness.

1. Introduction
Graph clustering is a fundamental technique in data anal-
ysis with wide-ranging applications in machine learning
and data science. A classical graph clustering problem
involves partitioning the vertices of a graph into sets of
highly connected vertices to minimize the normalised cut
value. However, many real-world clustering tasks are de-
fined by alternative objective functions, tailored to the spe-
cific needs and constraints of the problem at hand. One
such example involves uncovering the vertex sets that are
densely connected to each other, and these two vertex sets
form a bipartite-like graph. For example, when represent-
ing the migration or trade datasets with a graph, a bipartite-
like cluster captures a typical pattern of regional migration
or trade (Cucuringu et al., 2020; Laenen & Sun, 2020; He
et al., 2022), and the significance of bipartite-like clusters
is further highlighted when studying many other real-world
datasets (Bennett et al., 2022; Concas et al., 2022).
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Our Results. We first study bipartite-like clusters in
undirected graphs, and present an algorithm that sparsi-
fies an undirected graph while preserving its structure of
bipartite-like clusters. Our algorithm can be implemented
online, and directly applied to speed up the running time
of existing algorithms that find bipartite-like clusters. For-
mally speaking, for an undirected G = (V,E) and a pair of
disjoint and non-empty subsets A,B ⊂ V , we define

ϕG(A,B) ≜
2wG(A,B)

volG(A ∪B)
,

where
wG(A,B) ≜

∑
{u,v}∈E
u∈A,v∈B

w(u, v)

is the cut value between A and B and volG(A ∪ B) is the
volume of A ∪B defined by

volG(A ∪B) =
∑

{u,v}∈E
u∈A∪B

wG(u, v).

Notice that a high value of ϕG(A,B) implies that most
edges adjacent to the vertices in A ∪ B are between A and
B, and A and B form a bipartite-like cluster. Generalis-
ing this to multiple clusters, for every k ∈ N we define the
k-way dual Cheeger constant by

ρ̄G(k) ≜ max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi), (1.1)

where the maximum is taken over all the possible k pairs
of subsets (A1, B1), . . . , (Ak, Bk) satisfying Ai ∩ Aj =
∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k],
and Ai ∪ Bi ̸= ∅ for different i, j ∈ [k]. Notice that a
high value of ρ̄G(k) implies that G contains k bipartite-
like clusters, in each of which the vertex sets Ai and Bi

are densely connected to each other. We prove that, when
G presents a clear structure of k bipartite-like clusters, this
structure can be represented by a sparse subgraph G∗ of
G with Õ(n) edges, and G∗ can be constructed online in
nearly-linear time1. Our result is as follows:

1We say that a graph algorithm runs in nearly-linear time if
the algorithm’s running time is O(m · poly logn), where m and
n are the number of edges and vertices of the input graph. For
simplicity, we use Õ(·) to hide a poly-logarithmic factor of n.
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Theorem 1 (Result for undirected graphs). Let G =
(VG, EG, wG) be an undirected and weighted graph of m
edges, and assume that G contains k bipartite-like clusters
(A1, B1), . . . , (Ak, Bk) corresponding to ρ̄G(k). Then,
there is an algorithm that runs in Õ(m) time and com-
putes a sparsifier G∗ = (VG, F ⊂ EG, w̃), such that
these k bipartite-like clusters are preserved in G∗ with high
probability. That is, it holds with high probability that
ρ̄G∗(k) = Ω (ρ̄G(k)), and G∗ contains only k bipartite-
like clusters.

Secondly, we study the bipartite-like clusters in directed
graphs. Let

−→
G = (V−→

G
, E−→

G
, w−→

G
) be a digraph with weight

function w−→
G

: E−→
G

→ R≥0. For any vertex u ∈ V−→
G

,
we use degout(u) ≜

∑
(u,v)∈E wG(u, v) and degin(u) ≜∑

(v,u)∈E wG(v, u) to express the sum of weights of di-
rected edges with u as the tail or the head, respectively. For
any S ⊂ V−→

G
, we define volout(S) ≜

∑
u∈S degout(u) and

volin(S) ≜
∑

u∈S degin(u). For any two disjoint subsets
A,B ⊂ V−→

G
, we define ϕ−→

G
(A,B) by

ϕ−→
G
(A,B) ≜

2w−→
G
(A,B)

volout(A) + volin(B)
, (1.2)

where
w−→

G
(A,B) ≜

∑
(u,v)∈E
u∈A,v∈B

w(u, v)

is the sum of the weights of the edges from A to B. For
every k ∈ N, the k-way directed dual Cheeger constant is
defined by

ρ̄−→
G
(k) ≜ max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi), (1.3)

where the maximum is taken over all the possible k pairs
of subsets (A1, B1), . . . , (Ak, Bk) satisfying Ai ∩ Aj =
∅, Bi ∩ Bj = ∅, Ai ∩ Bj = ∅ for different i, j ∈ [k],
Ai ∪ Bi ̸= ∅ for any i ∈ [k]. By definition, a high
value of ρ̄−→

G
(k) implies that

−→
G contains k bipartite-like

clusters (A1, B1), . . . , (Ak, Bk) such that most edges with
their tails in Ai have their head in Bi and conversely most
edges with their head in Bi have their tail in Ai. We prove
that, when

−→
G presents a structure of k bipartite-like clus-

ters with respect to ρ̄−→
G
(k), this structure can be represented

by a sparse graph
−→
G∗ with Õ(n) edges, and

−→
G∗ can be con-

structed online in nearly-linear time:

Theorem 2 (Result for directed graphs). Let
−→
G =

(V−→
G
, E−→

G
, w−→

G
) be a directed and weighted graph of m

edges, and assume that
−→
G contains k directly bipartite-like

clusters (A1, B1), . . . , (Ak, Bk) with respect to ρ̄−→
G
(k).

Then, there is an algorithm that runs in Õ(m) time and
computes a sparsifier

−→
G∗ = (V−→

G
, F ⊂ E−→

G
, w̃), such that

these k directed bipartite-like clusters of
−→
G are preserved

in
−→
G∗ with high probability. That is, it holds with high prob-

ability that ρ̄−→
G∗(k) = Ω

(
ρ̄−→
G
(k)
)
, and

−→
G∗ only contains k

directed bipartite-like clusters.

Now we examine the significance of Theorems 1 and 2. We
first highlight that our algorithms preserve the cut values
w(Ai, Bi) between the pairs of vertex sets Ai and Bi for
1 ≤ i ≤ k; this objective is different from the one for most
graph sparsification problems, which only preserve the cut
values between vertex set S and V \S. Secondly, our algo-
rithms preserve k bipartite-like clusters, and the value of k
in the output graph is the same as the input graph. Thirdly,
our second result works for directed graphs; this result is
very interesting on its own since most sparsification algo-
rithms are only applicable for undirected graphs. Finally,
while the design of most graph sparsification algorithms
are based on Laplacian solvers making it unpractical, our
designed algorithms only use random sampling.

The design of our algorithms is based on several new re-
ductions and sampling routines, and our algorithms can be
implemented online with the degree oracles. As such one
can run our algorithms online while exploring the underly-
ing graph with existing local algorithms (e.g., (Andersen,
2010; Li & Peng, 2013)), resulting in direct improvement
on the running time of the existing algorithms. To demon-
strate this, we conduct experimental studies and show that
our algorithms can be directly applied to significantly speed
up the running time of the the ones presented in (Macgre-
gor & Sun, 2021a), while preserving similar output results
on both the synthetic and real-world datasets.

Related Work. Bipartite-like clusters are widely studied
in both theoretical computer science and machine learn-
ing communities. In theoretical computer science, Trevisan
(2009) developed a spectral algorithm that finds a bipartite-
like cluster in an undirected graph, and used this to design
an approximation algorithm for the max-cut problem. This
result is improved by Soto (2015). Liu (2015) studied the
relationship between the k-way dual Cheeger constant and
the eigenvalues of the normalised graph Laplacians, and
developed a Cheer-type inequality.

In the machine learning community, bipartite-like clusters
are employed to model highly-correlated data items of dif-
ferent types, and algorithms finding these clusters are stud-
ied in different settings. Andersen (2010), Li & Peng
(2013) and Macgregor & Sun (2021a) presented local al-
gorithms that find bipartite-like clusters, and Macgregor
& Sun (2021b) presented an algorithm that finds bipar-
tite components in hypergraphs. Cucuringu et al. (2020)
proved that densely connected clusters in a directed graph
can be uncovered through spectral clustering on a complex-
valued Hermitian matrix representation of directed graphs.
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Neumann & Peng (2022) designed a sublinear-time ora-
cle which, under a certain condition, correctly classified
the membership of most vertices in a set of hidden planted
ground-truth clusters in signed graphs.

Our work relates to finding clusters in disassortative net-
works (Moore et al., 2011; Pei et al., 2019; Zhu et al.,
2020), although most existing techniques are based on
semi-supervised and global methods. Our work is also
related to designing graph sparsification algorithms, e.g.,
(Spielman & Teng, 2011; Batson et al., 2012; Cohen et al.,
2017; Lee & Sun, 2017; 2018). We highlight that, while a
spectral sparsifier preserves the cut value w(S, V \ S) be-
tween any vertex set S and its complement V \S, our algo-
rithms’ output preserves the cut value w(Ai, Bi) for pairs
of vertex sets Ai and Bi. Moreover, our algorithms are
much easier to implement, and work for directed graphs.

2. Preliminaries
In this section we list the notation and preliminary results
used in the analysis.

Matrix Representation of Graphs. We always use G =
(V,E,w) to represent an undirected and weighted graph
with n vertices and weight function w : E → R≥0. The de-
gree of any vertex u is defined as dG(u) =

∑
u∼v w(u, v),

where the notation u ∼ v represents that u and v are adja-
cent, i.e., {u, v} ∈ E(G). The normalised indicator vector
of any S ⊂ V is defined by

χS(v) =

√
dG(v)

volG(S)

if v ∈ S, and χS(v) = 0 otherwise. Let AG be the
adjacency matrix of G defined by (AG)u,v = w(u, v)
if {u, v} ∈ E(G), and (AG)u,v = 0 otherwise. The
degree matrix DG of G is a diagonal matrix defined by
(DG)u,u = dG(u), and the normalised Laplacian of G is
defined by

LG = I −D
−1/2
G AGD

−1/2
G .

We can also write the normalised Laplacian matrix with re-
spect to the indicator vectors of the vertices: for each vertex
v, we define an indicator vector χv ∈ Rn by χv(u) =

1√
dv

if u = v, and χv(u) = 0 otherwise. We further define
be = χu −χv for each edge e = {u, v}, where the orienta-
tion of e is chosen arbitrarily. Then, we have

LG =
∑

e={u,v}∈E

w(u, v) · beb⊺e .

We also define

JG ≜ I +D
−1/2
G AGD

−1/2
G .

For any symmetric matrix A ∈ Rn×n, let λ1(A) ≤
λ2(A) ≤ · · · ≤ λn(A) be the eigenvalues of A. For ease of
presentation, we always use 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2
to express the eigenvalues of LG, with the corresponding
orthonormal eigenvectors f1, f2, · · · , fn. With slight abuse
of notation, we use L−1

G for the pseudo-inverse of LG, i.e.,

L−1
G ≜

n∑
i=2

1

λi
fif

⊺
i .

Note that when G is connected, it holds that λ2 > 0 and
the matrix L−1

G is well defined. We sometimes drop the
subscript G when it is clear from the context.

For any x ∈ Rn we define ∥x∥ ≜
√∑n

i=1 x
2
i , and for any

M ∈ Rn×n we define

∥M∥ = max
x∈Rn\{0}

∥Mx∥
∥x∥

.

Graph expansion and Cheeger inequality. For any
undirected graph G, the expansion (or conductance) of any
non-empty subset S ⊂ V in G is defined as

ϕG(S) ≜
wG(S, S̄)

volG(S)
,

where S̄ is the complement of S. We call subsets of vertices
S1, S2, · · · , Sk a k-way partition of G if Si ̸= ∅ for all
1 ≤ i ≤ k, Si ∩ Sj = ∅ for i ̸= j and

⋃k
i=1 Si = V . For

any k ∈ N, the k-way expansion constant is defined as

ρG(k) = min
S1,S2,··· ,Sk

max
1≤i≤k

ϕG(Si),

where the minimum is taken over all possible k-way parti-
tions of G. Lee et al. (2014) proves the following higher-
order Cheeger inequality:
Lemma 3 (Higher-order Cheeger Inequality, (Lee et al.,
2014)). It holds for any undirected graph G of n vertices
and integer 1 ≤ k ≤ n that

λk/2 ≤ ρG(k) ≤ Ck2
√
λk,

where C is a universal constant.

Generalising this, Liu (2015) proves the following higher-
order dual-Cheeger inequality:
Lemma 4 (Higher-order dual-Cheeger Inequality, (Liu,
2015)). It holds for any undirected graph G of n vertices
and integer 1 ≤ k ≤ n that

(2− λn−k+1)/2 ≤ 1− ρ̄G(k) ≤ Ck3
√

2− λn−k+1,

where C is a universal constant.

The higher-order dual Cheeger inequality can be viewed as
a quantitative version of the fact that λn−k+1 = 2 if and
only if G has at least k bipartite connected components.
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3. Proof of Theorem 1
In this section we present a nearly-linear time sparsification
algorithm such that every bipartite-like cluster in an undi-
rected graph G is approximately preserved in the sparsifed
graph G∗, and sketch the proof. Our result is as follows:

Theorem 5 (Formal Statement of Theorem 1). There exists
a nearly-linear time algorithm that, given an input graph
G = (V,E,w) with ρ̄G(k) ≥ 1

logn for constant some k,
with high probability computes a sparsifier G∗ = (V, F ⊂
E, w̃) with |F | = O

(
n·log3 n
2−λn−k

)
edges such that the fol-

lowing hold: (1) ρ̄G∗(k) = Ω(ρ̄G(k)); (2) λk+1(JG∗) =
Θ(λk+1(JG)).

The first statement of Theorem 5 shows that the k bipartite-
like clusters of G is approximately preserved in G∗, and
together with Lemma 4 the second statement shows that the
number of bipartite-like clusters in G and G∗ is the same.

Algorithm. Our algorithm is similar with (Sun & Zanetti,
2019) at a high level, and is based on sampling edges in G
with carefully defined probabilities. Formally, for an in-
put undirected graph G = (V,E,wG), the algorithm starts
with G∗ = (V, ∅, w̃) and samples every edge u ∼ v in G
with probability pe ≜ pu(v)+pv(u)−pu(v) ·pv(u), where

pu(v)

≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
, (3.1)

for some constant C. For every sampled edge e = {u, v},
the algorithm adds e to graph G∗, and sets wG∗(e) =
wG(e)/pe. Notice that, the choice of C only changes the
sampling probability by a constant factor, and doesn’t in-
fluence the asymptotic order of the sampled edges. More-
over, in practice we usually treat C·log3 n

2−λn−k
as O(logc n) for

a constant c, and this only influences the total number of
sampled edges and the algorithm’s running time by a poly-
logarithmic factor.

Proof Sketch of Theorem 5. We first prove that the cut
values between Ai and Bi in G is preserved in H for any
1 ≤ i ≤ k. For any edge e = {u, v}, we define the random
variable Ye by Ye = wG(u, v)/pe with probability pe, and
Ye = 0 otherwise. By defining X = wH(Ai, Bi), we prove
that E[X] = wG(Ai, Bi) and

E
[
X2
]

≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
.

Let {(Ai, Bi)}ki=1 be the optimal clusters corresponding to
ρ̄(k). Then, we have for every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies

ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v).

Applying the Chebyshev’s inequality, we have for any con-
stant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]] ≤ E[X2]

c2 ·E[X]2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2

·

(
max e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}
)

volG(Ai ∪Bi)2
·

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v).

Since volG(Ai∪Bi) =
∑

u∈Ai
dG(u)+

∑
v∈Bi

dG(v) and
dG(u) =

∑
u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

(dG(u) + dG(v))

≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v) = volG(Ai ∪Bi)

and
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪ Bi). Applying

these gives us that

P [|X −E[X]| ≥ c ·E[X]]

≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2
= O

(
1

log n

)
.

Hence, by the union bound, we have that wH(Ai, Bi) =
Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. The proof of the sec-
ond statement of Theorem 5 can be found in the appendix.
Finally, the total number of edges in H follows by the def-
inition of sampling probability and the Markov inequality.
This completes the proof of Theorem 5.

4. Proof of Theorem 2
In this section we present a nearly-linear time sparsification
algorithm such that every directed bipartite-like cluster in
a directed graph is approximately preserved in the output
sparsifier, and prove Theorem 2. Specifically, for a digraph
−→
G that contains exactly k pairs of (A1, B1), . . . , (Ak, Bk)
with high values of ϕ−→

G
(Ai, Bi) for every 1 ≤ i ≤ k, our
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objective is to construct a sparse digraph
−→
G∗, such that (i)

the values of ϕ−→
G∗(Ai, Bi) are high for every 1 ≤ i ≤ k and

(ii) the number of such pairs in
−→
G∗ is the same as

−→
G . Our

result is as follows:

Theorem 6 (Formal Statement of Theorem 2). There is
a nearly-linear time algorithm that, given a directed and
weighted graph

−→
G = (V−→

G
, E−→

G
, w−→

G
) with n vertices and

k directed bipartite-like clusters satisfying ρ̄−→
G
(k) = 1 −

o(1/k) as input, with high probability computes a sparsifier
−→
G∗ = (V−→

G
, F ⊂ E−→

G
, w̃) such that ρ̄−→

G∗(k) = Ω
(
ρ̄−→
G
(k)
)
.

Moreover, the total number of edges in the output graph is
nearly-linear in n.

Before sketching our technique, recall that, for undi-
rected graphs, the value of k is proven to be identical
for G and G∗ by analysing the eigenvalues of JG and
JG∗ and applying the higher-order dual-Cheeger inequal-
ity (Lemma 4). However, a natural matrix representation
for directed graphs could result in complex-valued eigen-
values, and there is no analogue of Lemma 4 for directed
graphs. To overcome this, our developed algorithm is based
on a novel reduction from a directed graph to an undirected
one, and its reverse operation. Specifically, our designed
algorithm consists of the following three steps:

1. for any input digraph
−→
G , the algorithm constructs an

undirected graph H such that every directed bipartite-
like cluster defined by (Ai, Bi) in

−→
G corresponds to a

low-conductance set in H;

2. the algorithm constructs a sparsifier H∗ of H , such
that H and H∗ have the same structure of clusters;

3. the algorithm applies the sparsified undirected graph
H∗ to construct a directed graph

−→
G∗ of

−→
G that satisfies

ρ̄−→
G∗(k) = Ω

(
ρ̄−→
G
(k)
)
.

See Figure 1 for illustration.

(−→
G∗, ρ̄−→

G∗(k)
)

(H∗, ρH∗(k))

(−→
G, ρ̄−→

G
(k)
)

(H, ρH(k))

reverse
semi-double cover

semi-double
cover

graph
sparsification

graph
sparsification

Figure 1: A commutative diagram of our construction. To
construct

−→
G∗ from

−→
G , we construct graphs H and H∗ and

prove the close relationships between
−→
G , H , H∗, and

−→
G∗.

Constructing H from
−→
G . Notice that, to preserve

ϕ−→
G∗(Ai, Bi), the cut values w(Ai, Bi) between Ai and Bi

need to be approximately preserved in a sparsified directed
graph; this objective is different from the most graph spar-
sification one, which only preserves the cut value between
any set S and its complement. To overcome this, we con-
struct an undirected graph H such that every bipartite-like
cluster defined by (Ai, Bi) in

−→
G corresponds to a low-

conductance set in H . Specifically, for a weighted digraph
−→
G = (V−→

G
, E−→

G
, w−→

G
), we construct its semi-double cover

H = (VH , EH , wH) as follows: (1) every vertex v ∈ V−→
G

has two corresponding vertices v1, v2 ∈ VH ; (2) for every
edge (u, v) ∈ E−→

G
, we add the edge {u1, v2} in EH . See

Figure 2 for illustration.

c

a

d

b

a2 b2 c2 d2

a1 b1 c1 d1

Figure 2: Illustration of the semi-double cover construc-
tion. A directed graph of n vertices (left) corresponds to an
undirected and bipartite graph of 2n vertices (right).

Next we analyse the properties of the reduced graph. Let
−→
G be a directed graph with semi-double cover H . For any
S ⊂ V−→

G
, we define S1 ⊂ VH and S2 ⊂ VH by S1 ≜

{v1|v ∈ S} and S2 ≜ {v2|v ∈ S}. A subset S of VH is
called simple if |{v1, v2} ∩ S| ≤ 1 holds for all v ∈ V−→

G
.

The following lemma develops a relationship between the
flow ratio from A to B defined by

f−→
G
(A,B) ≜ 1− ϕ−→

G
(A,B) (4.1)

and ΦH(A1 ∪B2), for any A,B.

Lemma 7. Let
−→
G be a directed graph with semi-double

cover H . Then, it holds for any A,B ⊂ V−→
G

that
f−→
G
(A,B) = ϕH(A1 ∪ B2). Similarly, for any simple set

S ⊂ VH , let A = {u : u1 ∈ S} and B = {u : u2 ∈ S}.
Then, it holds that f−→

G
(A,B) = ϕH(S).

Lemma 7 proves a one-to-one correspondence between any
bipartite-like cluster in

−→
G and a vertex set in H . Building

on this, we prove that this one-to-one correspondence can
be generalised between any k bipartite-like clusters in

−→
G

and k disjoint vertex sets in H . Moreover, the structure of
k bipartite-like clusters in

−→
G is preserved by a collection of

k disjoint vertex sets of low conductance in H .

Lemma 8. For any directed and weighted graph
−→
G =

(V−→
G
, E−→

G
, w−→

G
) and k ∈ N, it holds that

ρ̄−→
G
(k) = 1− min

C1,...,Ck

max
1≤i≤k

ϕH(Ci), (4.2)
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where the minimum is taken over k disjoint simple subsets
of VH defined by Ci = Ai1 ∪Bi2 for 1 ≤ i ≤ k.

Sparsification of H . Next we construct a sparse repre-
sentation of H , denoted by H∗, such that the k vertex sets
of low conductance is preserved in H∗. To achieve this, we
apply the following result to construct a cluster-preserving
sparsifier.

Lemma 9 ((Sun & Zanetti, 2019)). There exists a nearly-
linear time algorithm that, given a graph G = (V,E,w)
with k clusters as input, with probability at least 9/10,
computes a sparsifier H = (V, F ⊂ E, w̃) with |F | =
O((1/λk+1) · n log n) edges such that the following holds:
(1) it holds for any 1 ≤ i ≤ k that ϕH(Si) = O(k ·
ϕG(Si)), where S1, · · · , Sk are the optimal clusters in G
that achieves ρ(k); (2) λk+1(LH) = Ω(λk+1(LG)).

Constructing
−→
G∗ from H∗. Finally, we construct a di-

rected graph
−→
G∗ from H∗ such that the original k directed

bipartite-like clusters in
−→
G is preserved in

−→
G∗. To achieve

this, we introduce the following reverse semi-double cover:

Definition 10 (reverse semi-double cover). Given any dou-
ble cover graph H∗ = (VH∗ , EH∗ , wH∗) as input, the re-
verse semi-double cover of H∗ is a directed graph

−→
G∗ =

(V−→
G∗ , E−→

G∗ , w−→
G∗) constructed as follows:

• every pair of vertices u1 and u2 in VH∗ corresponds
to a vertex v ∈ V−→

G∗ ;

• we add an edge (u, v) to E−→
G

if there is edge
{u1, v2} ∈ EH∗ , and set w−→

G∗(u, v) = wH∗(u1, v2).

One might think that the reverse double cover plays an
exact opposite role of the double cover, however it is
not the case. In particular, while our constructed sub-
sets C1, . . . , Ck in the first step are always simple in
H (cf. Lemma 8), the k subsets corresponding to ρH(k)
are not necessarily simple. As a result,

min
C1,...,Ck

max
1≤i≤k

ϕH(Ci) = ρH(k)

doesn’t hold in general, and there is no direct corre-
spondence between C1, . . . , Ck in H and the k directed
bipartite-like clusters in

−→
G∗ that correspond to ρ̄−→

G∗(k).

To analyse ρ−→
G∗(k), for any set S ⊂ VH we partition the set

into two subsets S1 and S2 defined by S1 = S∩(Ai1∪Bi2)
and S2 = S∩(Ai2∪Bi1). For example, following Figure 2,
if Ai = {a, c} and Bi = {b, d} and the set S ⊂ VH is
S = {a1, b1, b2, c1, c2}, then we have S1 = {a1, b2, c1}
and S2 = {b1, c2}. As Ai and Bi are densely connected in
H , there are few edges within Ai and Bi for 1 ≤ i ≤ k.

Hence, there are very few edges between S1 and S2 for any
S ⊂ VH . Without loss of generality, we assume that

2wH(S1, S2)

wH(S1, S̄1) + wH(S2, S̄2)
≤ c

for some constant c < 1. Simplifying the inequality above
we get

wH(S1, S̄1) + wH(S2, S̄2)− 2wH(S1, S2)

≥ (1− c) ·
[
wH(S1, S̄1) + wH(S2, S̄2)

]
.

Thus, for any not necessarily simple vertex set S ⊂ VH we
have

ϕH(S) =
wH(S, S̄)

vol(S)

=
wH(S1, S̄1) + wH(S2, S̄)− 2wH(S1, S2)

vol(S1) + vol(S2)

≥ (1− c) ·min

{
wH(S1, S̄1)

vol(S1)
,
wH(S2, S̄2)

vol(S2)

}
= (1− c) ·min {ϕH(S1), ϕH(S2)} ,

where the last inequality follows by the median inequality.
Thus, for every S ⊂ VH , there is a simple set T ⊂ VH such
that ϕH(S) ≥ (1−c)·ϕH(T ). Moreover, for any collection
of k-disjoint sets S1, S2, · · · , Sk, where Si ⊂ VH we have
a collection of k-disjoint simple sets T1, T2, · · · , Tk, where
Ti ⊂ VH , such that

max
1≤i≤k

ϕH(Si) ≥ (1− c) · max
1≤i≤k

ϕH(Ti).

Taking minimum over all such collection of k-disjoint sub-
sets of VH gives us that

min
S1,S2,··· ,Sk

max
1≤i≤k

ϕH(Si)

= ρH(k) ≥ (1− c) · min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti),

where in the second half of the inequality the minimum is
taken over collection of k-disjoint simple subsets of VH .
On one hand, rearranging the above inequality we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti), (4.3)

and on the other hand, since the collection of k-disjoint
simple subsets of VH is a sub-collection of the collection
of k-disjoint subsets of VH , we have

min
T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k). (4.4)

Thus, combining (4.3) and (4.4), we have

1

1− c
· ρH(k) ≥ min

T1,T2,··· ,Tk

max
1≤i≤k

ϕH(Ti) ≥ ρH(k).

(4.5)
Further, combining (4.2) and (4.5) we have

1− 1

1− c
· ρH(k) ≤ ρ̄−→

G
(k) ≤ 1− ρH(k). (4.6)

6
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(a) Runtime comparison (b) Bipartiteness Ratio comparison

Figure 3: Runtime and bipartiteness comparison between MS and our algorithm by fixing p = 0.3, q = 0.1p and varying
the number of vertices between 500 and 2, 500 in each partition.

Proof of Theorem 2. Now we are ready to prove The-
orem 2. Since

−→
G is a directed graph with k bipartite-

like clusters, the value of ρ̄−→
G
(k) is high; together with

(4.6), this implies that ρH(k) = o(1). By Lemma 9, we
know that there exists a sparsifier H∗ of H , such that
ρH∗(k) = O(k · ρH(k)). Thus, we can conclude that
ρH∗(k) = o(1). Hence, applying (4.6) for

−→
G∗ and H∗

we have

1− 1

1− c
· ρH∗(k) ≤ ρ̄−→

G∗(k) ≤ 1− ρH∗(k). (4.7)

Finally, using the fact that ρH∗(k) = o(1), we conclude
that ρ̄−→

G∗(k) is close to 1 and hence the structure of
−→
G will

be preserved in
−→
G∗. Moreover, by the construction of H ,

and H∗, and
−→
G∗, the value of k is preserved.

For the running time, notice that all the intermediate graphs
H and H∗ can be constructed locally, and it’s sufficient to
examine every edge of the input graph

−→
G once throughout

the execution of the algorithm. This implies the nearly-
linear running time of our overall algorithm. Combining
everything above above proves Theorem 2.

5. Experiments
We evaluate the performance of our proposed algorithms
on synthetic and real-world datasets. We employ the
algorithms presented in (Macgregor & Sun, 2021a) as
the baseline algorithms, and examine the speedup of
their algorithms when applying our sparsification al-
gorithms as subroutines. Notice that, as all the in-
volved operations of our algorithms can be performed
locally, one can run our graph sparsification algorithms
online while exploring the underlying graph with a lo-
cal algorithm. For ease of presentation, in this sec-
tion we call the local algorithm in (Macgregor & Sun,
2021a) with our sparsification framework our algorithm.

All experiments were performed on a HP ZBook Stu-
dio with 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz processor and 32 GB of RAM. Our code can be
downloaded from https://github.com/suranjande4/Online-
Sparsification-of-Bipartite-Like-Clusters-in-Graphs.

5.1. Results for Undirected Graphs

Synthetic Dataset. We compare the performance of our
algorithm with the LOCBIPARTDC algorithm presented in
(Macgregor & Sun, 2021a), which we refer to as MS, on
synthetic graphs generated from the stochastic block model
(SBM). Specifically, we assume that the graph has k = 2
clusters, say C1, C2, and the number of vertices in each
cluster, denoted by n1 and n2 respectively, satisfies n1 =
n2. Moreover, any pair of vertices u ∈ Ci and v ∈ Cj

is connected with probability pij . We assume that p12 =
p21 = p and p11 = p22 = q, where q = 0.1p. Throughout
the experiments, we leave the parameters n and p free but
maintain the above relations.

Our algorithm sparsifies the underlying graph and simulta-
neously applies the MS algorithm. We evaluate the qual-
ity of the output (L,R) returned by each algorithm with
respect to its bipartiteness ratio defined by β(L,R) =
1−ϕ(L,R). All our reported results are the average perfor-
mance of each algorithm over 10 runs, in which a random
vertex from C1 ∪ C2 is chosen as the starting vertex of the
algorithm. We generate graphs from the SBM such that
q = 0.1p and vary the size of the target set by varying n1

between 500 and 2, 500. In Figure 3, we fix the probability
p = 0.3 and vary the number of vertices n1 = n2 and com-
pare both runtime and the bipartiteness ratio between the
MS algorithm and our algorithm. One can observe that for
a fixed probability p as we increase the number of vertices,
our algorithm takes much less time than the MS algorithm
and maintains a similar bipartiteness ratio with the MS al-
gorithm.
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Table 1: Comparison of MS with our algorithm on the Militarised Interstate Disputes Dataset. We use the vertices corre-
sponding to the listed countries in the first column as the seed vertex of the local algorithm.

COUNTRY NAME MS MS OUR ALGO. OUR ALGO.
RUNTIME BIPARTITENESS RUNTIME BIPARTITENESS

USA 0.034 0.292 0.0044 0.285
NETHERLANDS 0.0351 0.307 0.0042 0.281

LITHUANIA 0.0336 0.303 0.0043 0.165

(a) Runtime comparison (b) Flow-ratio comparison

Figure 4: Runtime and flow-ratio comparison between ECD and our algorithm by fixing η = 0.7 and varying the number
of vertices in each partition from 500 to 2, 500.

Real-world Dataset. We evaluate the performance of our
algorithm on the Dyadic Militarised Interstate Disputes
Dataset (v3.1) (Maoz et al., 2019), which records every in-
terstate dispute during 1900–1950, including the level of
hostility resulting from the dispute and the number of ca-
sualties. We construct a graph from the dataset as follows:
every country is represented by a vertex; two vertices are
connected by an edge with weight 30 if there is a war be-
tween the corresponding countries, and the two vertices are
connected by an edge with weight 1 if the corresponding
countries have other dispute which is not part of an inter-
state war. We set γ = 0.02 for the MS algorithm, and Ta-
ble 1 compares the performance of the MS algorithm with
ours. This shows that our algorithm takes much less time
than the MS algorithm and maintains a similar bipartite-
ness ratio.

5.2. Results for Directed Graphs

Synthetic Dataset. We compare the performance of our al-
gorithm with the EVOCUTDIRECTED algorithm presented
in (Macgregor & Sun, 2021a), which we refer to as ECD,
and use the graphs generated from the SBM as the algo-
rithms’ input. In our algorithm, given a digraph G as input,
we sparsify the graph along with generating the volume-
biased ESP on G′s semi-double cover H . Since the ECD
is a local algorithm, we also test our algorithm locally. In
this model, we look into a cluster which is almost bipartite
with the bipartition being L and R. We set the number of
vertices in L and R to be n1 and n2 such that n1 = n2 and

the probability of assigning an edge is defined by

L R( )
L 9/n1 η
R 1− η 9/n2

,

i.e., the probability that there is an edge within the partition
is 9/n1 = 9/n2 and so on. As most of our directed edges
are from L to R, the value of η is high. For our experiments
we generate two sets of plots:

• We fix the value of η = 0.7 and increase the number
of vertices in each partition from 500 to 2, 500, and
compare the runtime of ECD and our algorithm. As
reported in Figure 4, our algorithm takes much less
time than the ECD algorithm and gives a similar flow-
ratio at the same time as we increase the number of
vertices.

• We increase the number of vertices in each partition
from 500 to 2, 500, increase the value of η from 0.7 to
0.9, and compare the runtime of the ECD algorithm
and our algorithm. As reported in Figure 5, our al-
gorithm runs faster than the ECD algorithm as η in-
creases.

Real-world Dataset. Now we evaluate the algorithms’ per-
formance on the US Migration Dataset (U.S. Census Bu-
reau, 2000). We construct the digraph from the dataset as
follows: every county in the mainland USA is represented

8
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(a) η = 0.7 (b) for η = 0.8 (c) η = 0.9

Figure 5: Runtime comparison between ECD and our algorithm for η = 0.7, 0.8, and 0.9 respectively.

Table 2: Comparison of ECD with our algorithm on real-world datasets. We use the vertices corresponding to the listed
counties in the first column as the seed vertex of the local algorithm.

COUNTY NAME TARGET ϕ ECD ECD OUR ALGO. OUR ALGO.
RUNTIME FLOW-RATIO RUNTIME FLOW-RATIO

Maricopa County 0.2 20.661 0.414 13.434 0.417
Virginia Beach City 0.2 15.31 0.546 12.29 0.621

Kanawha county 0.2 9.318 0.33 8.483 0.33

by a vertex; for any vertices i, j, the edge weight of is given
by |(Mi,j −Mj,i)/(Mi,j +Mj,i)|, where Mi,j is the num-
ber of people who migrated from county to county between
1995 and 2000; in addition, the direction of (i, j) is set to
be from i to j if Mi,j > Mj,i, otherwise the direction is
set to be the opposite. We compare the output of ECD
and the output of ECD when applying our sparsification
algorithm as subroutine. Furthermore, we use the vertices
corresponding to different counties as the input of the local
algorithm ECD. As shown in Table 2, with our developed
algorithm the local ECD algorithm achieves roughly the
same flow ratio, and our sparsification procedure signifi-
cantly speeds up the total running time of the algorithm.
Moreover, the runtime speedup is more significant when
the local algorithm explores more parts of the input graph.

In conclusion, these experimental studies demonstrate that
our developed algorithms can be directly employed to
speed up the running time of existing algorithms that find
bipartite-like clusters, and can be widely applied when
analysing datasets of various domains. We believe that our
developed techniques and algorithms will motivate future
and fruitful studies for analysing complex cluster structures
of graphs.
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A. Useful Inequalities
The following inequalities will be used in our analysis.
Theorem 11 (Courant-Fischer Theorem). Let A be a n × n symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Then, it holds for any 1 ≤ k ≤ n that

λk = min
S

dim(S)=k

max
y∈S\{0}

y⊺ ·A · y
y⊺ · y

= max
S

dim(S)=n−k+1

min
y∈S\{0}

y⊺ ·A · y
y⊺ · y

,

where the maximisation and minimisation are over the subspaces of Rn.

Lemma 12 (Bernstein’s Inequality). Let X1, X2, · · · , Xn be independent random variables such that |Xi| ≤ M for any
1 ≤ i ≤ n. Let X =

∑n
i=1 Xi, and R =

∑n
i=1 E

[
X2

i

]
. Then, it holds that

P [|X −E[X]| ≥ t] ≤ 2 exp

(
− t2

2
(
R+ Mt

3

)) .

Lemma 13 (Matrix Chernoff Bound). Consider a finite sequence {Xi} of independent, random, PSD matrices of dimen-
sion d that satisfy ∥Xi∥ ≤ R. Let µmin = λmin (E[

∑
i Xi]) and µmax = λmax (E[

∑
i Xi]). Then, it holds that

P

[
λmin

(∑
i

Xi

)
≤ (1− δ)µmin

]
≤ d ·

(
e−δ

(1− δ)1−δ

)µmin
R

,

for δ ∈ [0, 1], and

P

[
λmax

(∑
i

Xi

)
≥ (1 + δ)µmax

]
≤ d ·

(
eδ

(1 + δ)1+δ

)µmax
R

for δ ≥ 0.

B. Omitted Detail from Section 3
This section presents all the omitted detail from Section 3, and gives a complete proof of Theorem 5. We first recall that,
for every vertex u and its adjacent vertex v, the algorithm assigns the edge e = {u, v} the probability

pu(v) ≜ min

{
wG(u, v) ·

C · log3 n
dG(u) · (2− λn−k)

, 1

}
, (B.1)

for a large enough constant C ∈ R≥0. The algorithm checks every edge and samples an edge e = {u, v} with probability
pe, where

pe ≜ pu(v) + pv(u)− pu(v) · pv(u).
Note that, it is easy to check that pe satisfies the inequality

1

2
(pu(v) + pv(u)) ≤ pe ≤ pu(v) + pv(u).

We start with an empty set F and gradually store all the sampled edges in F , which is sampled by the algorithm. Finally, the
algorithm returns a weighted graph H = (V, F,wH), where the weight wH(u, v) of every sampled edge e = {u, v} ∈ F
is defined by

wH(u, v) =
wG(u, v)

pe
.

Next, we analyze the size of F . Since∑
u

∑
e={u,v}

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
= O

(
n · log3 n
2− λn−k

)
,
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it holds by Markov inequality that with constant probability the number of edges e = {u, v} with pu(v) ≥ 1 is
O
(

n·log3 n
2−λn−k

)
. Without loss of generality, we assume that these edges are in F , and in the remaining part of the proof

we assume it holds for any edge u ∼ v that

wG(u, v) ·
C · log3 n

dG(u) · (2− λn−k)
< 1.

Then, the expected number of edges in H equals∑
e={u,v}

pe ≤
∑

e={u,v}

pu(v) + pv(u)

=
C · log3 n
(2− λn−k)

∑
e={u,v}

w(u, v) ·
(

1

dG(u)
+

1

dG(v)

)

= O

(
n · log3 n
2− λn−k

)
,

and by Markov inequality it holds with constant probability that

|F | = O

(
n · log3 n
2− λn−k

)
.

Now we show that the cut value between Ai and Bi is preserved in H for all 1 ≤ i ≤ k. For any edge e = {u, v}, we
define the random variable Ye by

Ye =


wG(u, v)

pe
with probability pe,

0 otherwise.
(B.2)

Also, we define X = wH(Ai, Bi), and have that

E[X] =
∑

e={u,v}
u∈Ai,v∈Bi

E [Ye] =
∑

e={u,v}
u∈Ai,v∈Bi

pe ·
wG(u, v)

pe

=
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v) = wG(Ai, Bi).
(B.3)

Next, we analyse the second moment of the random variable X and have that

E
[
X2
]
=

∑
e={u,v}

u∈Ai,v∈Bi

pe ·
(
wG(u, v)

pe

)2

=
∑

e={u,v}
u∈Ai,v∈Bi

wG(u, v)
2

pe

≤
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

pu(v) + pv(u)

=
∑

e={u,v}
u∈Ai,v∈Bi

2wG(u, v)
2

wG(u,v)·C·log3 n
(2−λn−k)

·
(

1
dG(u) +

1
dG(v)

)
≤ 2− λn−k

C · log3 n

∑
e={u,v}

u∈Ai,v∈Bi

w(u, v) ·
(
dG(u) + dG(v)

2

)
,

(B.4)
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where the last step follows by the means inequality. Let {(Ai, Bi)}ki=1 be the optimal cluster where ρ̄(k) is attained for
graph G. Recall that for every k ∈ N, the k-way dual Cheeger constant is defined by

ρ̄G(k) = max
(A1,B1),··· ,(Ak,Bk)

min
1≤i≤k

ϕG(Ai, Bi).

Then, we have for every 1 ≤ i ≤ k that

ρ̄G(k) ≤ ϕG(Ai, Bi) =
2wG(Ai, Bi)

volG(Ai ∪Bi)
,

which implies
ρ̄G(k)

2
· volG(Ai ∪Bi) ≤

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v). (B.5)

Next, by the Chebyshev’s inequality we have for any constant c ∈ R+ that

P [|X −E[X]| ≥ c ·E[X]]

≤ E[X2]

c2 ·E[X]2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
c2 ·

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v)

)2

≤

2−λn−k

C·log3 n

(∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ·
(

dG(u)+dG(v)
2

))
c2 ·

(
ρ̄G(k)

2 · volG(Ai ∪Bi)
)2

=
2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) · (dG(u) + dG(v))

volG(Ai ∪Bi)2

≤ 2 · (2− λn−k)

c2 · C · log3 n · ρ̄G(k)2
·

 max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)}

 ·

∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v)

volG(Ai ∪Bi)2
.

(B.6)

Since volG(Ai ∪Bi) =
∑

u∈Ai
dG(u) +

∑
v∈Bi

dG(v) and dG(u) =
∑

u∼v wG(u, v), we have

max
e={u,v}

u∈Ai,v∈Bi

{dG(u) + dG(v)} ≤
∑
u∈Ai

dG(u) +
∑
v∈Bi

dG(v)

= volG(Ai ∪Bi)

and ∑
e={u,v}

u∈Ai,v∈Bi

wG(u, v) ≤ volG(Ai ∪Bi).

Thus, we have by (B.6) and the assumption of ρ̄(k) ≥ 1
log(n) that

P [|X −E[X]| ≥ c ·E[X]] ≤ 2(2− λn−k)

c2 · C · log3 n · ρ̄(k)2

= O

(
1

log n

)
.

13
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Hence, by choosing a sufficient large constant c and the union bound, we have that

wH(Ai, Bi) = Ω (wG(Ai, Bi)) for all 1 ≤ i ≤ k. (B.7)

Next, we show that the degree of every vertex in H is approximately preserved with high probability. Based on the random
variable Ye defined in (B.2), we define the random variable Zu by

Zu =
∑
e:v∼u

Ye.

Then, the expected value of Zu is given by

E[Zu] =
∑
e:v∼u

E[Ye] =
∑
e:v∼u

pe ·
wG(u, v)

pe

=
∑

v:v∼u

wG(u, v) = dG(u),

and the second moment can be upper bounded by

∑
e:v∼u

E
[
Y 2
e

]
=
∑
e:v∼u

pe ·
(
wG(u, v)

pe

)2

=
∑
e:v∼u

wG(u, v)
2

pe
≤
∑

v:v∼u

wG(u, v)
2

pu(v)
,

since pe ≥ pu(v). Now using the value of pu(v) from (3.1), we have

∑
e:v∼u

E
[
Y 2
e

]
≤
∑

v:v∼u

w(u, v)2 · dG(u) · (2− λn−k)

w(u, v) · C · log3 n

=
dG(u) · (2− λn−k)

C · log3 n

∑
v:v∼u

wG(u, v)

=
d2G(u) · (2− λn−k)

C · log3 n

and for any edge e = {u, v} we have that

0 ≤ w(u, v)

pe
≤ w(u, v)

pu(v)
≤ dG(u) · (2− λn−k)

C · log3 n
.

Now, applying Bernstein’s inequality (Lemma 12), we have

P
[
|dH(u)− dG(u)| ≥

du
2

]
= P

[
|Zu − E[Zu]| ≥

E[Zu]

2

]

≤ 2 · exp

 − 1
8 · d2G(u)

d2
G(u)·(2−λn−k)

C·log3 n
+ 1

6 · d2
G(u)·(2−λn−k)

C·log3 n


= 2 · exp

(
−

1
8 · C · log3 n
7
6 · (2− λn−k)

)

= o

(
1

n2

)
.

14
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Hence, it holds by the union bound that, with high probability, the degree of all the vertices in H are approximately
preserved up to a constant factor. This implies that for any subset S ⊆ V , we have

volH(S) = Θ (volG(S)) ,

more specifically,
volH(Ai ∪Bi) = Θ (volG(Ai ∪Bi)) , (B.8)

for all 1 ≤ i ≤ k. Thus, combining (B.7) and (B.8) gives us that

ϕH(Ai, Bi) = Ω
(
ϕG(Ai, Bi)

)
(B.9)

for all 1 ≤ i ≤ k, which implies that

ρ̄H(k) ≥ min
1≤i≤k

ϕH(Ai, Bi) = min
1≤i≤k

Ω
(
ϕG(Ai, Bi)

)
= Ω(ρ̄G(k)) ,

where the last equality follows from the fact that {(Ai, Bi)}ki=1 is the optimal cluster where ρ̄(k) is attained for graph G.

Next, we show that the top (n− k)-eigenspaces of JG are preserved in H . Without loss of generality we assume the graph
is connected. Since JG = 2I − LG by definition, it holds that

λi(JG) = 2− λn+1−i(LG). (B.10)

Let

P ≜
n−k∑
i=1

(2− λi(LG))fif
⊺
i ,

and with slight abuse of notation we call P−1/2 as the square root of the pseudo-inverse of P , i.e.,

P−1/2 =

n−k∑
i=1

(2− λi(LG))
−1/2fif

⊺
i .

Let P be the projection on the span of {f1, f2, · · · , fn−k}, then

P =

n−k∑
i=1

fif
⊺
i .

Recall that, for each vertex v, the indicator vector χv ∈ Rn is defined by χv(u) = 1√
dG(v)

if u = v and χv(u) = 0

otherwise. For each edge e = {u, v} of G we define a vector ge = χu + χv ∈ Rn and a random matrix Xe ∈ Rn×n by

Xe =


wH(u, v) · P−1/2geg

⊺
eP−1/2 if e = {u, v} is sampled

by the algorithm,
0 otherwise.

(B.11)

Then, it holds that ∑
e∈E

Xe =
∑

e={u,v}∈F

wH(u, v) · P−1/2geg
⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wH(u, v) · geg⊺e

P−1/2

= P−1/2J ′
HP−1/2,

15
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where
J ′
H ≜

∑
e={u,v}∈F

wH(u, v) · geg⊺e

is the signless Laplacian matrix of H normalised with respect to the degree of the vertices in the original graph G. We
will now prove that, with high probability the top n − k eigenspaces of J ′

H and JG are approximately the same. We first
analyse the expectation of

∑
e∈E Xe, and have that

E

[∑
e∈E

Xe

]
=

∑
e={u,v}∈E

pe · wH(u, v) · P−1/2geg
⊺
eP−1/2

=
∑

e={u,v}∈E

pe ·
wG(u, v)

pe
· P−1/2geg

⊺
eP−1/2

= P−1/2

 ∑
e={u,v}∈F

wG(u, v) · geg⊺e

P−1/2

= P−1/2JGP−1/2 =

n−k∑
i=1

fif
⊺
i = P.

Moreover, for any edge e = {u, v} ∈ E sampled by the algorithm, we have

∥Xe∥ ≤ wH(u, v) · g⊺eP−1/2P−1/2ge =
wG(u, v)

pe
· g⊺eP−1ge

≤ wG(u, v)

pe
· 1

2− λn−k
· ∥ge∥2

≤ 2wG(u, v)

pu(v) + pv(u)
· 1

2− λn−k
·
(

1

dG(u)
+

1

dG(v)

)
≤ 2

C · log3 n
,

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply the matrix Chernoff bound
(Lemma 13) to analyze the eigenvalues of

∑
e∈E Xe. Following Lemma 13 we set the parameters as follows:

µmax = λmax

(
E

[∑
e∈E

Xe

])
= λmax

(
P
)
= 1,

R =
2

C · log3 n
, and

δ =
1

2
.

(B.12)

Then using the Matrix Chernoff bound (Lemma 13), we have

P

[
λmax

(∑
e∈E

Xe

)
≥ 3

2

]
≤ n ·

(
e

1
2

1.5
3
2

)C·log3 n
2

= O

(
1

n3

)
,

for some constant C; this implies that

P

[
λmax

(∑
e∈E

Xe

)
≤ 3

2

]
= 1−O

(
1

n3

)
. (B.13)

On the other hand, since E
[∑

e∈E Xe

]
= P , we have µmin = 1 and hence keeping R and δ the same as above, using the

Matrix Chernoff bound (Lemma 13), we get

P

[
λmin

(∑
e∈E

Xe

)
≤ 1

2

]
≤ n ·

(
e−

1
2

0.5
1
2

)C·log3 n
2

= O

(
1

n3

)
;

16



Online Sparsification of Bipartite-Like Clusters in Graphs

this implies that

P

[
λmin

(∑
e∈E

Xe

)
≥ 1

2

]
= 1−O

(
1

n3

)
. (B.14)

Combining (B.13), (B.14) and the fact that
∑

e∈E Xe = P−1/2J ′
HP−1/2, with probability 1 − O

(
1
n3

)
it holds for any

non-zero x ∈ Rn in span{f1, f2, · · · , fn−k} that

x⊺P−1/2J ′
HP−1/2x

x⊺x
∈
[
1

2
,
3

2

]
. (B.15)

Let y = P−1/2x, and we rewrite (B.15) as

y⊺J ′
Hy

y⊺Py
=

y⊺J ′
Hy

y⊺y
· y⊺y

y⊺Py
∈
[
1

2
,
3

2

]
.

Since dim(span{f1, f2, · · · , fn−k}) = n− k, there exist n− k orthogonal vectors whose Rayleigh quotient with respect
to J ′

H is Θ(λn−k(2I − LG)). Hence, by the Courant-Fischer Theorem (Theorem 11) we have

1

2
· λn−k(2I − LG) ≤ λk+1(J ′

H) ≤ 3

2
· λn−k(2I − LG) (B.16)

By the definition of J ′
H = D

−1/2
G (DH +AH)D

−1/2
G , we have

JH = D
−1/2
H (DH +AH)D

−1/2
H

= D
−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H .

Hence, we set y = D
1/2
G D

−1/2
H x for any x ∈ Rn and have that

x⊺JHx

x⊺ · x
=

x⊺ ·D−1/2
H

(
D

1/2
G · J ′

H ·D1/2
G

)
D

−1/2
H · x

x⊺ · x

=
y⊺ · J ′

H · y
x⊺ · x

≥ 1

2
· y

⊺ · J ′
H · y

y⊺ · y
,

(B.17)

where we use the fact that the degree of a vertex differs by a constant factor between H and G. Similarly, we also have

x⊺ · JH · x
x⊺ · x

≤ 3

2
· y

⊺ · J ′
H · y

y⊺ · y
, (B.18)

Let T ⊂ Rn be a (k + 1)-dimensional subspace of Rn satisfying

λk+1(JH) = max
x ̸=0,x∈T

x⊺ · JH · x
x⊺ · x

,

and T̃ =
{
D

1/2
G D

−1/2
H x : x ∈ T

}
. Since D

1/2
G D

−1/2
H has full rank, T̃ is also a (k + 1)-dimensional subspace of Rn.

Hence, by the Courant-Fischer Theorem (Theorem 11) and (B.17), we have that

λk+1(J ′
H) = min

S
dim(S)=k+1

max
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ max
y∈T̃\{0}

y⊺ · J ′
H · y

y⊺ · y

≤ 2 · max
x∈T\{0}

x⊺ · JH · x
x⊺ · x

= 2 · λk+1(JH).

(B.19)
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Next, using (B.16) and (B.19), we have

1

2
· λk+1(JG) ≤ λk+1(J ′

H) ≤ 2 · λk+1(JH),

which implies that
1

4
· λk+1(JG) ≤ λk+1(JH). (B.20)

Similarly, let U ⊂ Rn be an (n− k)-dimensional subspace of Rn satisfying

λk+1(JH) = min
x ̸=0,x∈U

x⊺ · JH · x
x⊺ · x

,

and Ũ =
{
D

1/2
G D

−1/2
H x : x ∈ U

}
. Since D

1/2
G ·D−1/2

H has full rank, Ũ is also an (n− k)-dimensional subspace of Rn.
Thus, using the Courant-Fischer Theorem (Theorem 11) and (B.18), we have

λk+1(J ′
H) = max

S
dim(S)=n−k

min
y∈S\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ min
y∈Ũ\{0}

y⊺ · J ′
H · y

y⊺ · y

≥ 2

3
· min
x∈U\{0}

x⊺ · (2I − LH) · x
x⊺ · x

=
2

3
· λk+1 (JH) .

(B.21)

Next, by (B.16) and (B.21) we have

2

3
· λk+1(JH) ≤ γk+1(L′

H) ≤ 3

2
· λk+1(JG),

which implies that

λk+1(JH) ≤ 9

4
· λk+1(JG). (B.22)

Thus, combining (B.20) and (B.22) we have

1

4
· λk+1(JG) ≤ λk+1(JH) ≤ 9

4
· λk+1(JG),

Hence, the the top n− k eigenspaces of JG are preserved in JH . This proves the second statement of the theorem.

C. Omitted Detail from Section 4
In this section we list all the proofs omitted from Section 4.

Proof of Lemma 7. The proof follows from (Macgregor & Sun, 2021a), which proves the result for undirected graphs. We
include the proof here for completeness. Let S = A1 ∪B2 in H , then

ϕH(A1 ∪B2) = ϕH(S) =
wH(S, V \ S)

volH(S)

=
volH(S)− 2wH(S, S)

volH(S)

= 1− 2wH(S, S)

volH(S)

= 1−
2w−→

G
(A,B)

volout(A) + volin(B)

= f−→
G
(A,B).

(C.1)

This proves the first statement of the lemma. The second statement of the lemma follows by the similar argument.
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Proof of Lemma 8. By definition, we have that

f−→
G
(A,B) = 1− ϕ−→

G
(A,B), (C.2)

and this implies that

ρ̄−→
G
(k) = max

(A1,B1),...,(Ak,Bk)
min

1≤i≤k
ϕ−→
G
(Ai, Bi)

= max
(A1,B1),...,(Ak,Bk)

min
1≤i≤k

(
1− f−→

G
(Ai, Bi)

)
= 1− min

(A1,B1),...,(Ak,Bk)
max
1≤i≤k

f−→
G
(Ai, Bi)

= 1− min
C1,...,Ck

max
1≤i≤k

ϕH(Ci),

where the second line follow by (C.2), and the last one follows by Lemma 7 and Ci = Ai1 ∪Bi2 .
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