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Figure 1. We present DeforHMR, a single-image, regression-based methodology for HMR. DeforHMR uses a vision transformer (ViT)
encoder to derive spatial features from the input image and a deformable cross-attention transformer decoder to learn meaningful spatial
relations from the features, enabling the ability to recover accurate 3D human body meshes. Left to right: (1) An image in the ~out-
doors_fencing_01” class of 3DPW [44]. (2) Spatial feature of the image outputted by our ViT encoder. (3) Attention visualization for
the first head of the first layer of our deformable attention transformer decoder. Red and maroon square dots are attention locations; we
emphasize the boxed and highlighted areas. (4) DeforHMR’s output mesh projected onto original image.

Abstract

Human Mesh Recovery (HMR) is an important yet chal-
lenging problem with applications across various domains
including motion capture, augmented reality, and biome-
chanics. Accurately predicting human pose parameters
from a single image remains a challenging 3D computer
vision task. In this work, we introduce DeforHMR, a novel
regression-based monocular HMR framework designed to
enhance the prediction of human pose parameters using
deformable attention transformers. DeforHMR leverages
a novel query-agnostic deformable cross-attention mecha-
nism within the transformer decoder to effectively regress
the visual features extracted from a frozen pretrained vi-
sion transformer (ViT) encoder. The proposed deformable
cross-attention mechanism allows the model to attend to rel-
evant spatial features more flexibly and in a data-dependent

manner. Equipped with a transformer decoder capable

of spatially-nuanced attention, DeforHMR achieves state-
of-the-art performance for single-frame regression-based
methods on the widely used 3D HMR benchmarks 3DPW
and RICH. By pushing the boundary on the field of 3D hu-
man mesh recovery through deformable attention, we intro-
duce an new, effective paradigm for decoding local spatial
information from large pretrained vision encoders in com-
puter vision.

1. Introduction

Motion capture (MoCap) technology has applications in nu-
merous fields such as film, gaming, AR/VR, as well as
sports medicine by providing a tool to capture and analyze
human pose in 3D. Traditional marker-based MoCap sys-
tems utilizing multi-view cameras and marker suits recover
highly accurate human pose but suffer from poor accessi-
bility due to the high cost of setting up the adequate labora-



tory environment [31]. In contrast, a single camera with the
correct algorithm can perform 3D Monocular Human Mesh
Recovery (HMR), which recovers a mesh of a human body
in 3D given an input image or video as a more accessible
alternative using deep neural networks [19].

A common parametric approach to 3D HMR leverages
the Skinned Multi-Person Linear (SMPL) [29] representa-
tion model that regresses joint articulations (often referred
to as the pose parameter) and a body shape parameter to
generate accurate 3D human body meshes. Current chal-
lenges in HMR include occlusion situations [21] and the
complexity and variability of human pose, but underlying
these issues is simply insufficient spatial understanding in
neural networks to output correct pose parameters [26].

More recently, advances in vision transformers [11]
have demonstrated versatility and overall impressive perfor-
mance across a wide range of vision tasks and domains [20],
particularly in determining complex spatial relations [14].
In the field of object detection, deformable attention [54]
[46] has emerged as one promising solution for accurate,
space-aware localization, and extending such an approach
to HMR requires even greater focus on extracting precise
positional semantics [54].

In parallel, issues of data generalization across diverse
real world applications for vision models have been dimin-
ished by the release of large vision transformer models pre-
trained on self-supervision tasks on web-scale datasets [33]
[3]. The ability of these foundation models to generate
meaningful features across all data spectra for downstream
application has created a new effective learning paradigm,
and more recently, works [12] have begun on improving the
spatial resolution of these vision foundation model features
for ever better results. For HMR, [14] has noted how pre-
training with both masked auto-encoding [15] along with
2D keypoint prediction [49] [4] has been essential to model
convergence, and we build upon along this line of work, in-
vestigating how to most effectively decode the features from
these large-scale pretrained models.

Integrating the information derived from large, pre-
trained vision transformer [49] features and deformable
attention decoding, we present DeforHMR, a novel
transformer-based HMR framework that significantly im-
proves upon current methods in both accuracy and compu-
tation efficiency.

We believe DeforHMR offers significant benefit through
the synergy between the semantically-meaningful spatial
features from a pretrained vision transformer and the de-
formable attention mechanism; in deformable attention the
reference and offset locations are floating point values in
the feature map coordinate space, and bilinear interpolation
is used to extract the relevant key and value information.
Hence, the advantage of such deformable attention mech-
anism is derived mostly from data-dependent spatial flexi-

bility, or the ability to dynamically shift attention to rele-

vant spatial regions based on the characteristics of the input

feature. We believe utilizing rich features from the trans-
former encoder would enable the spatial dynamism of the
deformable attention mechanism to be influential by learn-
ing better spatial relations.

In summary, our contributions are twofold:

1. We present DeforHMR, a regression-based monocular
HMR framework that demonstrates SOTA performance
on multiple well-known public 3D HMR datasets under
the single-frame, regression-based setting.

2. Inspired by [46], we propose a novel deformable cross-
attention mechanism designed to be query-agnostic and
spatially flexible.

2. Related Work
2.1. Monocular HMR

Early work in 3D HMR [34][2] revolved mainly around
fitting the SMPL parametric body model to minimize the
discrepancy between its reprojected joint locations and 2D
keypoint predictions on the 2D image. End-to-end 3D hu-
man mesh recovery, not relying upon intermediate 2D key-
points or joints, was first proposed by Kanazawa et al. [19].
This was achieved by leveraging novel deep learning ad-
vancements at the time and regressing the SMPL param-
eters along with a camera model to derive the 3D human
meshes. Ever since then, various neural network-based
HMR methodologies have been proposed. In [25], the au-
thors aim to resolve the discrepancy between plausible hu-
man meshes and accurate 3D key-point predictions through
a hybrid inverse kinematics solution involving twist-and-
swing decomposition. Li et al. [26] proposes to miti-
gate the loss of global positional information after crop-
ping the human body through utilizing more holistic fea-
tures containing global location-aware information to ulti-
mately regress the global orientation better, and, Goel et al.
[14] would contribute to this through implementing a vision
transformer architecture using a single query token fed into
the decoder for SMPL parameter predictions. HMR-2.0 es-
tablished a new competitive baseline on single human mesh
recovery, and in particular, they show how their transformer
network can encode and decode complex human pose due
to their ability to better capture difficult spatial relations.

2.1.1 Optimization-Based HMR

In [25], Li et al. notes how an alternative approach to di-
rect regression of the SMPL parameters is optimization-
based HMR [8][48][47][55], which estimates the body pose
and shape through an iterative fitting process. For instance,
PLIKS [39] fits a linearized formulation of the SMPL model
on region-based 2D pixel-alignment, and ReFit [45] itera-



tively projects 2D keypoints in order to effectively gener-
ate accurate meshes. However, optimization-based HMR at
inference-time does not have any runtime guarantees and
often struggles from large runtime due to the iterative re-
finement process, and thus can be difficult to integrate into
real-time application settings.

2.1.2 Temporal HMR

As computational capacity has increased over recent years,
the ability to use complete sequences of video frames for
human mesh recovery has recently found success. Within
this area of temporal HMR [10][30][7][24], Kocabas et al.
[22] have proposed adversarial training with a temporal net-
work architecture to learn to discriminate between real and
fake pose sequences. Moreover, [52] proposes to mitigate
the effects of occlusions in video sequences through infill-
ing occluded humans with a deep generative motion infiller,
and [50] utilizes a temporal motion prior [36] to effectively
decouple the human motion and camera motion given a
video sequence. More recently, Shin et al. [40] have incor-
porated motion encoding and SLAM [42] approximation,
along with model scale in order to achieve obtain state of
the art performance for multi-frame inputs.

While this line of work is promising for integrating com-
plete video information in human mesh recovery, we restrict
our focus to single-frame inputs so that our method gener-
alizes to individual images.

2.2. Deformable Attention

The Deformable Transformer [54] architecture, first pro-
posed in end-to-end object detection [5], has demonstrated
comparable performance to other SOTA methods without
needing any hand-designed components commonly used in
object detection [35][13]. The deformable attention module
is designed for efficiency and complex relational parame-
terization, having the keys and values be sparsely sampled
learned offsets from a reference location determined by a
given query. Zhu et al. [54] show that this increases model
training and inference speed while also incorporating induc-
tive biases for precise spatial modeling beneficial for object
detection.

Yoshiyasu [51] extends this notion of deformable atten-
tion to optimization-based non-parametric 3D HMR with
the DeFormer architecture, using the joint and shape query
tokens at each layer to generate reference points and offsets
on multi-scale maps to be used in the attention computa-
tion. DeFormer works directly with positional information
without the SMPL parameterization for dense mesh recon-
struction, and it improves upon previous baselines of similar
model size.

In [46], Xia et al., show how previous works for de-
formable attention, in fact, function more like a deformable

convolution [9] without attention interactions between all
queries and all keys. They then propose the Deformable At-
tention Transformer (DAT), a vision transformer backbone
using true deformable self-attention. DAT demonstrates
its advantage of deformable self-attention for localization-
based tasks such as object detection and instance segmenta-
tion, outperforming shifted window full self-attention meth-
ods [28] on COCO [27]. In their analysis, they suggest that
deformable attention consistently attends to more important
and relevant areas of the image and feature map compared
to full self-attention, confirming that the true deformable
attention interactions between queries and keys result in re-
alized performance and interpretable improvements.

3. Methodology

In this section, we delve into the methodologies of each
component of DeforHMR. More specifically, we discuss
using a frozen ViT pretrained on pose estimation as a
feature encoder and our novel deformable cross-attention
mechanism. Lastly, we touch upon model training specifi-
cations.

3.1. Generating Feature Maps

We use the ViT-Pose from Xu et al. [49] as our initial fea-
ture encoder. This is a ViT-H with patch size 16 and input
size 256 by 192 that is pretrained with masked autoencod-
ing on ImageNet and 2D pose estimation on COCO [49].
We freeze all the weights during training and pass the in-
put image through to generate the features maps. That is,
given an input image x € R¥ *W'*3 and a patch size of 16,
we represent the spatial output tokens of the encoder f as
f(z) € REXWXC for H = H'/16 and W = W'/16. We
freeze the weights of the ViT encoder to isolate the contribu-
tions of our novel deformable cross-attention decoder, en-
suring that any observed performance improvements stem
solely from the decoder’s ability to refine feature represen-
tations rather than changes in the backbone’s learned em-
beddings.

3.2. Deformable Attention Decoder
3.2.1 SMPL Multi-query Transformer Decoder

Our approach can be thought of as using query tokens
for SMPL parameters. These are learnable tokens ¢ €
R25x1024 " representing 24 pose tokens and 1 shape token,
which further incorporate information from the image fea-
tures through the decoder blocks.

Following the standard paradigm of the transformer de-
coder [43], each layer of our deformable cross-attention
decoder is compromised of a self-attention, a deformable
cross-attention, and a feed-forward network. We further
elaborate on our deformable cross-attention mechanism in
the subsequent section.
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Figure 2. Full system architecture of DeforHMR. We dedicate a
learnable query embedding for each of the 24 joint articulations
and the body shape vector.

After passing the queries through the decoder, we learn
linear projections Wpose and Wpqpe to get the desired out-
puts of pose parameters § € R?4*, and shape parameters
B € RY. For the pose rotation angles in the SMPL pa-
rameters, we use the common 6D representation proposed
by Zhou et al. (2020) [53] for a more continuous loss-
landscape, converting to the actual pitch/roll/yaw and ro-
tation matrix afterwards. Moreover, we use one round of
iterative error feedback [6], starting with the mean SMPL
values from Humans 3.6M [ 18] to condition our predictions
better. These are thus finally passed into the SMPL model
to generate our 3D meshes. The 3D meshes are reprojected
onto the original image using ground-truth camera parame-
ters provided in each respective dataset.

3.2.2 Deformable Cross-Attention

We propose a novel, query-agnostic deformable cross-
attention mechanism designed to capture fine-grained spa-
tial details as shown in 3. The deformable aspect introduces
learnable offsets that allow the attention to adaptively select
key-value pairs from the feature map, as opposed to uniform
attention to all spatial locations. Our method is inspired by
the self-attention mechanism proposed in [46].

For some layer /, let the input tokens to this layer be
Y1 e REX2XD for batch size B, the 25 SMPL to-

kens, and model dimension D = 1024. The first part of our
decoder block is multi-head self-attention with residual on
the query tokens, so let the output from the self-attention
be Y = Self-Attn(Y~1)) + Y (=1 Let the spatial fea-
tures from the encoder be X € REXHXWXC e will refer
to these spatial features as the context for our decoder.

We consider a base set of reference points R €
R(BG)x2xHxW " \which are initialized as grid coordinates
normalized to the range [—1, 1]. These reference points pro-
vide an initial uniform bias for the positions of the keys in
the feature map:

Rij:<;{><2—17é/x2—1), (1)
where ¢ and j denote the indices over height and width,
respectively.

We then compute G unique raw offsets for each ref-
erence point by processing the context features through
a series of grouped convolutions, non-linear activations
(GELU) [16], and normalization layers:

AP’ = Conv2D(GELU(LayerNorm(Conv2D(X)))). (2)

These raw offsets are then passed through hyperbolic
tangent and scaled by %, restricting the offset to within
A, multiplied by the grid spacing. Hence, the final offsets

AP are

AP = % tanh(AP’)

T

The resulting offsets AP € R(BG)*2xXHXW indicate the
amount by which each reference point in the grid of dimen-
sion H x W should be shifted, allowing the model to focus
on different parts of the feature map depending on the input
context. This mechanism enables the attention to be more
flexible and context-aware.

The final sampling positions are hence the sum of the
reference point positions and offsets.

P=AP+R. 3)

With these positions, we sample the context X, em-
ploying bilinear interpolation to extract precise embedding
values at these adjusted positions. The sampled context
S € RBOXGXHXW can finally be projected into keys
K = W, - S and values V = W, - S. And likewise, we
project the input tokens into the queries Q = W, - Y%E).

We calculate cross-attention scores by first taking the
dot product of the queries Q with the keys K, then sum-
ming this term with an attention bias term, which is com-
puted through sampling a learnable relative positional em-
bedding tensor Z,,. via bilinear interpolation ¢(_, ) using
P as sampling location:
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Figure 3. Our proposed deformable cross-attention module. The offset-generating convolutional neural network takes the spatial features
from the transformer encoder to generate sampling position offsets A P. These offsets are added to the grid reference positions Py to get
our final sampling positions P. These sampling positions are used to 1) sample the input context via bilinear interpolation, which is then
projected to keys and values for attention computation, as well as 2) sample the relative positional embeddings (RPE) to get our attention
bias. These are combined in the standard multi-head cross-attention formulation with relative position biases to generate the output.

QK"
V Dy,

where Dy, is the dimension of the keys, used to scale the
scores and stabilize training.

A = Softmax ( + &(Zype, P)) 4)

More specifically, the relative positional embedding is a
unique learned grid for each query position. This is similar
to both DAT [46] and the original relative position encod-
ing [37]; the keys have actual positions P, so it uses the
grid formulation as in DAT, but the queries do not have po-
sitions, so we simply index and learn the relative position
embedding separately for each query.

We lastly multiply the attention coefficients by the val-
ues and add the residual to get the cross attention output
Yy) = AV + Yy). Passing this through a 2-layer feed-
forward network, we get the layer’s final output Y =
FFN(YS)) + Y3

3.2.3 Difference Between DeforHMR and Previous De-
formable Cross-Attention

We want to emphasize that our deformable cross-attention
differs greatly from DeformableDETR[54]-style cross-
attention proposed by previous works. Unlike typical de-
formable attention methods where offsets are conditioned
on the queries, our model computes offsets directly from
the context, meaning they are query-agnostic. These query-
agnostic offsets are then used to sample the context from our
spatial features that would be shared by all queries. This de-
sign choice is inspired by the Deformable Attention Trans-
former [46] (DAT) paper; however, their focus on encoder
architectures means their deformable self-attention models
do not fully decouple relations between queries and key-
values. By having query-agnostic cross-attention here, we
can ensure that the shifts in receptive fields and sampling
clusters via deformable attention are consistent and coordi-
nated across all queries, capturing global information more



effectively.

3.3. Training Details

Following [26], we train with reconstruction loss on the
SMPL parameters, the 3D joint positions, the 3D mesh ver-
tices, and the projected 2D joint positions, all using mean
square error. The relative loss weight for SMPL parameters
is Asprpr. = 1, 2D and 3D joint positions is Ajoint = 5,
and mesh vertices \,,es;, = 60. For all training runs, we
freeze the ViT-Pose to explore efficient decoding methods.
We train all models on real world datasets, two with 3D
SMPL ground truth derived from motion capture—3DPW
[44] and MPI-INF-3DHP [32]—and three psuedo-labeled
from 2D pose ground truth using the CLIFF-annotator [26]:
COCO [27], MPII [1], and Humans3.6M [18]. We train for
100 epochs. The evaluation is performed on the test split of
3DPW and RICH, and we use mean per-joint position er-
ror (MPJPE), procrustes analysis MPJPE (PA-MPJPE), and
per-vertex error (PVE), all in millimeters (mm) to determine
how well the model recovers accurate human pose in 3D.

4. Results

We compare various model architectures and approaches
using our evaluation metrics in Table 1. Note that since
we are interested in single-frame inputs and inference in
real-time applications, we exclude multi-frame temporal
approaches and optimization-based approaches.

Upon comparing HMR evaluation metrics with several
state-of-the-art regression-based HMR methodologies, we
demonstrate that DeforHMR establishes a new state-of-the-
art benchmark on both 3DPW [44] and RICH [17] datasets
by a considerable margin.

4.1. Analysis

Our HMR model exhibits a robust capability in capturing
the general body pose and proportions of individuals across
various scenarios, as seen in the visualizations on Figure
4. Upon rendering the recovered meshes on four distinct
images from the test set of the 3DPW [44] and RICH[17]
dataset, we confirm our model comprised of the ViT-Pose
transformer encoder and the transformer decoder using de-
formable cross-attention generalizes well across various in-
the-wild image examples. Our model demonstrates accu-
rate, plausible, and realistic meshes for humans in various
scenarios such as but not limited to executing a fencing
motion, walking while conversing sideways, sitting at a ta-
ble, crouching downwards, etc. In particular, compared to
pre-existing HMR models, namely HMR2.0 [14], we show
strengths in accuracy of upper body articulation and orien-
tation, as well as feet and hand position.

In Table 2, we decouple some of the main differences be-
tween HMR2.0" and DeforHMR: multi-query decoder and

Ours (DeforHMR)

TS BT
5 W

Figure 4. Qualitative results on test set. We visualize the original
image and the predicted mesh projected onto the original image
for both HMR2.0 [14] and DeforHMR. We highlight the inac-
curate mesh regions outputted by HMR2.0 in red boxes and high-
light the corresponding mesh region on DeforHMR’s mesh output
in green boxes. Upon visualizing HMR2.0 and our model’s re-
covered meshes on four distinct scenarios across 3DPW [44] and
RICH [17], we observe DeforHMR s significant improvements on
HMR?2.0’s ability to recover accurate 3D human meshes. While
HMR?2.0 shows inaccurate feet & hand positions in all four rows
as well as inaccurate orientation of the entire torso in the lowest
row, DeforHMR consistently shows more accurate feet, hand, and
torso positions.

deformable cross-attention. To do so, we evaluate all four
combinations of 1) multi-query versus single-query, and 2)
deformable cross-attention versus regular cross-attention on
the test set of 3DPW [44]. The ablation results clearly indi-
cate that both the use of multiple queries and the deformable
cross-attention mechanism in DeforHMR contribute signif-
icantly to performance improvements across all three met-
rics. Specifically, models incorporating these components



3DPW [44] RICH [17]

Method PA-MPJPE| MPJPE| PVE| PA-MPJPE| MPJPE| PVE |
ROMP [41] 47.3 76.7 93.4 - - -
PARE [23] 46.5 74.5 88.6 60.7 109.2 123.5
CLIFF [26] 43.0 69.0 81.2 56.6 102.6 115.0
HybrIK [25] 41.8 71.6 82.3 56.4 96.8 110.4
SA-HMR [38] - - - - 93.9 103.0
HMR2.0* [14] 44.4 69.8 83.2 48.1 96.0 110.9
DeforHMR 383 63.6 75.2 48.6 84.2 94.5

Table 1. Comparison of state-of-the-art models on 3DPW [44] and RICH [17] datasets. DeforHMR achieves superior HMR performance
by a wide margin across all metrics on both datasets except PA-MPJPE on RICH that is comparable to that of HMR2.0 [14]. (*) represents

the exclusion of 3DPW data during training.

consistently achieve lower error rates, indicating the effec-
tiveness of each design choice, and furthermore, the per-
formance increase going from single to multi-query for de-
formable cross-attention is much larger than regular cross-
attention (4.0mm PVE decrease versus 3.1). This suggests
true synergy between the multi-query formulation and de-
formable cross-attention, enabling superior 3D HMR per-
formance.

Configuration PA-MPJPE MPJPE PVE
Reg-S (HMR2.0") 41.5 67.2 81.2
Reg-M 39.3 65.3 78.1
Def-S 41.1 66.4 79.5
Def-M (DeforHMR) 38.3 63.6 75.2

Table 2. Performance on 3DPW [44] for 1) single-query versus
multi-query and 2) regular cross-attention versus our proposed
deformable cross-attention. Models with ”-S” are single-query
models, and models with ”-M” are multi-query. “Reg” models
use decoders with regular cross-attention, while “Def” employ
our deformable cross-attention. Reg-S represents our reimplem-
tation of HMR2.0 with our training data and losses (which we call
HMR2.0%), and Def-M is DeforHMR.

In Figure 5, we visualize what the first attention head of
the first (left) and last (right) layer in DeforHMR decoder
attends towards. The maroon and red square dots are con-
text positions where the attention value sum over the queries
is over 0.25, with bright red corresponding to the largest
values. DeforHMR is able to incorporate specific infor-
mation of each individual’s limb positions well through the
deformable cross-attention, and we can see that the most
important positions correspond well with the attention val-
ues and locations. Specifically, in the second and third row
the model is able to attend towards uncommon arm and leg
positions accurately.

Figure 5. Deformable Attention visualizations for first (left) and
last (right) layer of decoder. In each pair of images, we can see
important body areas where DeforHMR focuses on in order to
model these challenging poses.



# Attn Heads # Groups (G) Offset Range (\,) ‘ 3DPW [44] ‘ RICH [17]
| PA-MPJPE  MPJPE PVE | PA-MPJPE MPJPE PVE
16 8 1 38.3 63.6 75.2 48.6 84.2 94.5
16 8 2 38.5 63.5 75.4 49.0 84.4 95.4
8 4 1 39.2 63.2 75.5 49.0 85.8 96.2
8 4 2 38.6 62.5 74.5 48.3 85.3 95.8

Table 3. Comparison of DeforHMR model performance on 3DPW and RICH datasets across various configurations of deformable cross-
attention. We vary the 1) number of attention heads, 2) number of offset groups, and 3) offset range factor. We keep the ratio between the
number of attention heads and number offset groups the same in order to scale the information capacity of each offset and head equally.

5. Conclusion

Through this work, we push the boundaries of HMR by
combining a pretrained vision transformer encoder with
novel deformable cross attention. We have two main con-
tributions. First, we introduce DeforHMR, a regression-
based framework for monocular HMR that demonstrates
SOTA performance on popular 3D HMR datasets such as
3DPW [44] and RICH [17]. Second, inspired by the self-
attention mechanism proposed in the Deformable Attention
Transformer (DAT) [46], we extend their method with an
innovative deformable cross-attention transformer decoder.
This mechanism is both query-agnostic and spatially adap-
tive, enabling the model to dynamically shift focus on rel-
evant spatial features. We show our decoder performs well
without additional encoder fine-tuning, allowing for this
method to be applicable for API-based large scale models
as well.

Despite these advancements, our work possesses some
limitations. While our approach demonstrates significant
improvements, there is always room for enhancing the
model’s robustness, particularly towards examples that are
inherently more challenging due occlusions and varying
lighting conditions in real-world in-the-wild scenarios. No-
tably, occlusion from obstacles as well as self-occlusion
presents a challenge for the model, particularly noticeable
in scenarios where one limb occludes another, such as arms
or legs during walking motions. These situations often re-
sult in inaccurate limb positioning.

Our work reveals several promising future directions,
both within HMR and in other applications. Given the ef-
fectiveness of deformable cross-attention for decoding in-
formation from spatial features, we believe this method can
easily be applied to lower-level tasks such as object detec-
tion, instance segmentation, keypoint detection, and pose
estimation. Moreover, a potential avenue for advancement
is applying our deformable attention towards video data
and temporal HMR, dynamically attending towards rele-
vant temporal frames as needed. All things considered, De-
forHMR provides a new effective form of decoding spatial
features, a paramount necessity in future applications for

large pretrained vision models.
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DeforHMR: Vision Transformer with Deformable Cross-Attention for 3D
Human Mesh Recovery

Supplementary Material

A. Training and Evaluation Details

We train on two NVIDIA TITAN-RTX GPUs with DDP
and global batch size 200. We use AdamW optimizer with
learning rate 10~# and weight decay 10~3. For both train-
ing and evaluation, in each provided scene, we crop the
bounding box of each person and resize it to 256 by 192.

B. Additional Ablation Studies
B.1. Effect of positional encoding type

PE Type | 3DPW [44] | RICH [17]
| MPJPE | MPJPE

No PE 65.4 87.0
Absolute PE 64.0 86.8
Relative PE 63.6 84.2

Table 4. Comparison of DeforHMR model performance on
3DPW and RICH datasets for different positional encoding types.
We can observe that the relative positional encoding implementa-
tion that we implement results in performance gains, particularly
for the out of distribution RICH evaluation dataset.

C. More Qualitative Results

We have provided additional qualitative results in the form
of human mesh renderings projected onto the original image
for several 3DPW [44] and RICH [17] examples. Please
refer to ’qualitative_results.pdf” to view these results.
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