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Abstract

Long video understanding is a significant and001
ongoing challenge in the intersection of mul-002
timedia and artificial intelligence. Employ-003
ing large language models (LLMs) for com-004
prehending video becomes an emerging and005
promising method. However, this approach006
incurs high computational costs due to the ex-007
tensive array of video tokens, experiences re-008
duced visual clarity as a consequence of to-009
ken aggregation, and confronts challenges aris-010
ing from irrelevant visual tokens while an-011
swering video-related questions. To alleviate012
these issues, we present an Interactive Visual013
Adapter (IVA) within LLMs, designed to en-014
hance interaction with fine-grained visual el-015
ements. Specifically, we first transform long016
videos into temporal video tokens via lever-017
aging a visual encoder alongside a pretrained018
causal transformer, then feed them into LLMs019
with the video instructions. Subsequently, we020
integrated IVA, which contains a lightweight021
temporal frame selector and a spatial feature in-022
teractor, within the internal blocks of LLMs to023
capture instruction-aware and fine-grained vi-024
sual signals. Consequently, the proposed video-025
LLM facilitates a comprehensive understand-026
ing of long video content through appropriate027
long video modeling and precise visual inter-028
actions. We conducted extensive experiments029
on nine video understanding benchmarks and030
experimental results show that our interactive031
visual adapter significantly improves the perfor-032
mance of video LLMs on long video QA tasks.033
Ablation studies further verify the effectiveness034
of IVA in long and short video understandings.035

1 Introduction036

The exponential advancement of the Internet and037

multimedia technologies has resulted in a signifi-038

cant surge in video content production by individ-039

uals and enterprises across various domains. The040

ability to interpret and extract meaningful content041

from videos is increasingly vital for meeting human042

demands and promoting the speed of information 043

dissemination (Tang et al., 2023). Therefore, Video 044

Question Answering (Yu et al., 2019; Li et al., 045

2023b; Castro et al., 2022) (Video QA), which 046

allows users to ask about the content of videos 047

through natural language and receive answers de- 048

rived from their visual and auditory content, at- 049

tracts tremendous research interest. Recently, large 050

language models (LLMs) (OpenAI, 2023; Chiang 051

et al., 2023) have demonstrated exceptional efficacy 052

in the domains of human-machine interaction and 053

the handling of extensive contextual information. 054

Capitalizing on these advancements, there is a bur- 055

geoning inclination towards integrating LLMs into 056

the realm of video information processing. This 057

approach primarily aims to enhance the interface 058

between users and video content through intelligent 059

question-and-answer sessions. 060

The core of this innovation is a strategy that 061

bridges the gap between the visual information in 062

videos and the textual comprehension capabilities 063

of LLMs. This is accomplished through a meticu- 064

lously designed process that translates video data 065

into a format comprehensible by LLMs, thereby fa- 066

cilitating an advanced question-answering system 067

tailored for video content. The process involves 068

mapping video encoding into the language space of 069

LLMs via a learnable visual mapping network (Wu 070

et al., 2023; Li et al., 2023d; Dai et al., 2023). Es- 071

sentially, the video is converted into “video tokens”, 072

which are then fed into the LLM along with tex- 073

tual tokens of natural language questions. Lever- 074

aging the vast knowledge storage and natural lan- 075

guage processing prowess of LLMs, this approach 076

effectively handles video QA tasks. For instance, 077

Maaz et al. (2023) performs spatial and tempo- 078

ral pooling for video tokens and feeds them into 079

Vicuna (Chiang et al., 2023) to achieve the inter- 080

action between users and video content. Zhang 081

et al. (2023b) utilizes Q-former (Li et al., 2023d) to 082

extract question-relevant video tokens, which are 083
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then fed into LLama (Gao et al., 2023) to generate084

the answer.085

These LLMs-powered video understanding mod-086

els (Tang et al., 2023; Song et al., 2023) mainly087

focus on short video modeling and have achieved088

a successful performance on short video caption-089

ing (Zhang et al., 2023c), question-answering (Jin090

et al., 2023), and summarization (Tang et al., 2023).091

However, the core challenges of video processing092

(Xu et al., 2023) stem from the need to efficiently093

model long video sequences and precisely respond094

to questions relevant to the video. Generally, using095

LLMs to handle long-form video often encounters096

the following hurdles: 1) high computational costs097

from a multitude of video tokens; 2) reduced vi-098

sual clarity as a consequence of token aggregation099

such as employing average or maximum represen-100

tation pooling for visual frames; 3) irrelevant vi-101

sual tokens leading to incorrect answers, notably102

when question-relevant information is embedded103

within long temporal cues. Hence, previous mod-104

els struggle to handle long-form videos owing to105

the constrained input capacity for video tokens and106

the challenge of distilling question-relevant, fine-107

grained visual features during generation.108

To alleviate these issues, we present a long video109

comprehension method for LLMs, named Interac-110

tive Visual Adapter (IVA) to achieve in-depth inter-111

actions between LLMs and video content. Specif-112

ically, we first use the pretrained visual encoder113

to obtain global and fine-grained frame represen-114

tations. We construct the temporal video tokens115

by integrating the global features of frames with116

temporal video embeddings, which are obtained117

through a pretrained causal transformer. The whole118

set of temporal video tokens is fed into the LLM to119

attain a whole understanding of the video content.120

Additionally, we designed a parameters-sharing121

Interactive Visual Adapter (IVA) that contains an122

instruction-aware temporal frames selector and a123

spatial feature interactor. The selector is used to ob-124

tain question-relevant frames based on contextual125

query embeddings and global encodings of videos.126

The selected frames are then fed into the spatial127

interactor to engage with the contextual query em-128

beddings, in which fine-grained representations of129

frames are used. By doing so, LLMs could achieve130

in-depth interaction with video content by applying131

IVA between different layers.132

To verify the effectiveness of our method, we133

conduct extensive experiments on four long video134

QA and five short video understanding benchmarks. 135

Experimental results indicate that IVA is capable 136

of achieving effective interactions between LLMs 137

and long or short videos. Our contributions are 138

summarized as follows: 139

• We analyze the challenges of modeling long 140

videos for LLMs and propose an interactive vi- 141

sual adapter for LLMs to handle long videos. 142

It realizes the in-depth interaction between 143

LLMs and long videos based on efficient 144

video tokens and the IVA mechanism. 145

• The proposed IVA is capable of selecting rel- 146

evant frames and interacting with their fine- 147

grained spatial features through the internal 148

selector and interactor, respectively. The IVA 149

architecture is lightweight and designed to be 150

shareable between layers of LLMs. 151

• Experimental results show that LLMs with 152

IVA could achieve powerful performances in 153

understanding long videos. Ablation studies 154

underscore the critical role and effectiveness 155

of IVA, confirming its significant contribution 156

to enhanced performance. 157

2 Related Work 158

Traditional Video Understanding Models The 159

rapid development of deep learning methods pos- 160

sesses superior task-solving capabilities for video 161

understanding. DeepVideo (Karpathy et al., 2014) 162

was the earliest method introducing a Convolu- 163

tional Neural Network (CNN), for video under- 164

standing. Two-stream networks (Feichtenhofer 165

et al., 2016), then integrating Convolutional Neural 166

Networks (CNNs) (Feichtenhofer et al., 2016) and 167

Improved Dense Trajectories (IDT) (Li et al., 2021), 168

enhanced motion analysis in video understanding. 169

For long-form content, Long Short-Term Memory 170

(LSTM) (Yue-Hei Ng et al., 2015) networks were 171

adopted, offering a robust solution for sequential 172

data analysis over extended durations. Addition- 173

ally, Temporal Segment Network (TSN) (Wang 174

et al., 2016) advanced long-form video understand- 175

ing by segmenting videos for individual analysis be- 176

fore aggregating insights, enabling more nuanced 177

interpretation. Meanwhile, 3D networks started 178

another branch by introducing 3D CNN to video 179

understanding (C3D) (Tran et al., 2015). The intro- 180

duction of Vision Transformers (ViT) (Dosovitskiy 181

et al., 2021; Arnab et al., 2021; Fan et al., 2021) pro- 182
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motes a series of prominent models Among the pio-183

neering efforts in this self-supervised video training184

domain, VideoBERT (Sun et al., 2019) leverages185

the bidirectional language model BERT (Kenton186

and Toutanova, 2019) for self-supervised learn-187

ing from video-text data. This model, and oth-188

ers following the "pre-training and fine-tuning"189

paradigm, such as ActBERT (Zhu and Yang, 2020),190

SpatiotemporalMAE (Feichtenhofer et al., 2022),191

OmniMAE (Girdhar et al., 2023), showcase the192

diverse strategies developed to enhance video un-193

derstanding. Notably, these models have set a foun-194

dation for advanced video-language models like195

maskViT (Gupta et al., 2022), CLIP-ViP (Xue et al.,196

2022), LF-VILA (Sun et al., 2022), further push-197

ing the boundaries of what’s achievable in action198

classification, video captioning, and beyond. The199

evolution from VideoBERT to more recent inno-200

vations like HiTeA (Ye et al., 2023), and CHAM-201

PAGNE (Han et al., 2023) underscores the rapid202

advancement in this field.203

LLMs for Video Understanding The recent204

advancement in large language models (LLMs),205

pre-trained on expansive datasets, has ushered in206

groundbreaking capabilities in in-context learning207

(Zhang et al., 2023a) and long-form context model-208

ing (Lyu et al., 2023). This innovation has paved209

the way for integrating LLMs with computer vi-210

sion technologies, exemplified by initiatives like211

Visual-ChatGPT (Wu et al., 2023). These models212

transcend traditional boundaries by calling vision213

model APIs (Qin et al., 2023), thereby addressing214

complex problems within the computer vision do-215

main. Integrating language models with video un-216

derstanding technologies (Maaz et al., 2023; Zhang217

et al., 2023d; Li et al., 2023e; Xu et al., 2023; Song218

et al., 2023) enhances multimodal understanding,219

facilitating sophisticated processing and interpre-220

tation of the intricate interplay between visual and221

textual data. They leverage their extensive mul-222

timodal knowledge base and nuanced contextual223

understanding, mirroring a more human-like com-224

prehension of visual content. Moreover, the explo-225

ration of LLMs in video understanding tasks (Tang226

et al., 2023) represents a significant stride towards227

harnessing their potential in analyzing and reason-228

ing about visual data.229

Multimodal Instruction Tuning for LLMs Re-230

cent advancements have significantly enhanced the231

performance of instruction-tuned, text-only large232

language models (LLMs) (Ouyang et al., 2022;233

Muennighoff et al., 2022; Chung et al., 2022) on 234

various NLP tasks and human-machine interaction 235

scenarios. SFT LLMs have demonstrated remark- 236

able capabilities in these areas. Building on this 237

foundation, researchers are now exploring the in- 238

tegration of multimodal instruction data to further 239

refine pre-trained LLMs, aiming to elevate their 240

multimodal human-machine interaction competen- 241

cies. For instance, a study (Liu et al., 2023) em- 242

ployed GPT-4 to generate multimodal instruction 243

data, which was then used to fine-tune the lan- 244

guage model LLaMA on a synthetic dataset de- 245

signed for instruction following. Similarly, an- 246

other research (Zhu et al., 2023) effort constructed 247

a well-aligned multimodal instruction-following 248

dataset to fine-tune Vicuna, an instruction-tuned 249

language model, which showed superior perfor- 250

mance in open-domain multimodal dialogues. Fur- 251

thermore, a lightweight adaptation method (Zhang 252

et al., 2023d) was introduced to efficiently convert 253

LLaMA into an instruction-following model, show- 254

casing the potential for streamlined model enhance- 255

ment. In this paper, we also explore the lightweight 256

adapter to help LLMs understand long videos. 257

3 Methodology 258

3.1 Overview 259

Our work primarily introduces an interactive visual 260

adapter for LLMs to handle long videos and answer 261

relevant questions. The overview of workflow is 262

shown in Figure 1. Specifically, given a video V , 263

we first extract frames to obtain the whole sequence 264

frame representations hV = (hI1 , ...,hIk , ...,hIN ) 265

via the pretrained image encoder, where hIk = 266

(hIkg , hIk1 ..., hIk576) refers to the representations of k 267

th frame and N is the total number of extracted 268

frames. Then, we use a casual transformer to ac- 269

quire temporal video embeddings from the aggre- 270

gated spatial representation. The overall video to- 271

kens are formed by merging temporal video embed- 272

dings and global spatial features [hI1g , hIkg , ..., hINg ], 273

where each frame is represented by two tokens. 274

To enhance the capability of LLMs in leveraging 275

fine-grained visual details from videos, we have de- 276

veloped an Interactive Visual Adapter (IVA) that is 277

integrated into the blocks of LLM. This integration 278

allows LLMs to comprehend the entirety of long 279

videos through efficient video tokens while simulta- 280

neously capturing fine-grained visual information 281

facilitated by the IVA. 282
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Figure 1: The overview of our framework employing LLMs to handle long video. While producing video tokens,
we combine the global features and aggregated fine-grained features to represent a frame, allocating two tokens for
each frame. The casual transformer is used to capture temporal relationships across frames and its output will be
spliced with spatial feature sequence. The IVA will be inserted between blocks of LLMs to incorporate fine-grained
visuals based on an understanding of the long video tokens, text instructions, and query tokens.

3.2 Producing Video Tokens283

We elaborate on the detailed process employed to284

produce efficient tokens for long videos, charac-285

terized by the extraction of one frame per second.286

First, we use the self-weighted calculation on the287

fine-grained feature hk
f = (h1, ..., h576) of a frame288

(k th) to obtain its overall representation, which289

will be fed into the following casual transformer.290

This calculation process for the k th frame is given291

in the following Eq. 1:292

skf = Softmax(W(hk
f ) + b),

hk
t = sfh

k
f ,

(1)293

where sf ∈ R1×576 is the weight distribution and294

W and b are learnable parameters. Hence, we295

denote the obtained sequence-level frame represen-296

tation as hf = (h1
f , ...,h

N
f ).297

Casual Transformer is employed to acquire298

the temporal video embeddings. Specifically, we299

use a four-layer transformer to facilitate interaction300

across frames, where a frame only attends to its301

previous ones. Take the first layer as an example,302

the specific operation of the casual transformer is303

presented in Eq. 2:304

hs = SelfAtten(LayerN(hf ),W
Mask) + hf

hs = LayerN(hs),

h1
o = MLP (hs)

(2)305

where SelfAtten and LayerN are the self- 306

attention calculation and the feature normaliza- 307

tion. The top output of the casual transformer 308

will be projected into the language model by a lin- 309

ear layer, which is spliced with the global features 310

hV
g = (hI1g , hIkg , ..., hINg ). These global features of 311

frames will be transferred into language models 312

via a learnable MLP. We denote the final spliced 313

feature to hV = (h1V , h
2
V , ..., h

2N
V ). 314

3.3 Interactive Visual Adapter 315

After obtaining video tokens hV , and supposing 316

that the textual embeddings of instruction are initi- 317

ated to hT via the frozen word embedding table of 318

LLMs, we concatenate them into a single sequence 319

and fed it into LLMs. Considering fine-grained 320

visual details existing in long videos, we expect 321

that LMMs are capable of capturing the specific 322

fine-grained visual information based on the un- 323

derstanding of instructions and the whole video 324

representations. Hence, we devise a lightweight 325

interactive visual adapter (IVA) to enable LLMs to 326

focus on instruction-relevant fine-grained visuals 327

during content generation. 328

Concretely, as the bottom part shown in Fig- 329

ure 1, we first introduce learnable dynamic tokens 330

hD = (hD1 , ..., h
D
M ) as the query signals and in- 331

tegrate it at the end of the input token sequence. 332

It aims to capture previous instruction and video 333

information via the self-attention mechanism of 334

LLMs, functioning as query tokens to engage with 335
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the fine-grained spatial features of videos. Suppose336

that the output of i th layer of LLMs is hi. The337

specific calculation process of IVA between the i338

and i+ 1 th layers of LLMs is shown in Eq. 3 and339

4 in order. Each layer of IVA consists of a selector340

and an interactor, which are capable of selecting341

relevant frames and capturing valuable fine-grained342

visual information. The operational process of the343

selector is described as follows:344

hS
q = W qhi

d + bq,

hS
k = W khV

g + bk,

MS = hS
q (h

S
k )

T ,

hS = Softmax(MS/τ)Trans([hf
I1
, ...,hf

IN
]),
(3)345

where hi
d refers to the hidden states hi associated346

with the indices of dynamic tokens. W q, W k, bq,347

and bk are learnable parameters. MS signifies the348

distribution score on the frames, which represents349

the relevant attention distribution. τ is the hyperpa-350

rameter, which is set to 0.5. “Trans” refers to the351

transportation of feature dimension. [hf
I1
, ...,hf

IN
]352

represents the fine-grained features of the entire353

video. The output hS ∈ Rb×M×576×dS will be354

fed into the following interactor as the key value,355

where dS represents the dimension of the selector.356

For the interactor, the specific calculation357

progress could be given as Eq. 4.358

hI
q = W 1hi

d + b1,

hI
k = W 2hS + b2,

MI = hI
q(h

I
k)

T ,

hS
c = Softmax(MI)(W 3hS + b3),

hS = MLP (hS
c ) + hS

c

(4)359

where W 1, W 2, W 3, b1, b2, and b3 are learnable360

parameters. Overall, we use the same four-layer361

calculations of the above selector and interactor362

to facilitate that LLMs interact with fine-grained363

visual features.364

3.4 Training365

Stage 1: Pretraining. To endow video tokens366

with meaningful representation, we first train the367

casual transformer, linear layers, and other learn-368

able parameters during video tokens production, on369

massive video-caption pairs from WebVid, a total370

of 703k video-caption pairs. We freeze the other371

parameters of the overall model during this process372

and do not introduce the IVA module.373

Stage 2: Video Instruction Tuning. At this stage, 374

the model is required to generate responses that 375

align with various instructions. These instruc- 376

tions often involve complex visual comprehen- 377

sion and reasoning, rather than merely describ- 378

ing visual signals. Note that the conversation data 379

[Q1, A1, ..., Qr, Ar] consists of multiple rounds. 380

Xr
T =

{
Q1, r = 1

Concat(Q1, A1, ..., Qr, Ar), r > 1
(5) 381

where r represents the round count. As shown in 382

Eq. 5, when r > 1, we concatenate the conver- 383

sations from all previous rounds with the current 384

instruction as the input for this round. The training 385

objective remains the same as the previous stage. 386

After this stage, the model will be capable of gen- 387

erating corresponding responses based on various 388

instructions. 389

4 Experiments 390

4.1 Data sets 391

While training the casual transformer, we utilize 392

702 thousand video-text pairs derived from Val- 393

ley (Luo et al., 2023), sourced from WebVid (Bain 394

et al., 2021). For the Video Instruction Tuning 395

stage, we first collect instructional datasets from 396

three sources. This includes a 100K video-text 397

instruction dataset from Video-ChatGPT (Muham- 398

mad Maaz and Khan, 2023), a 36K short video-text 399

instruction dataset from Valley-Instruct-73k (Luo 400

et al., 2023), and a 34K multiple-choice QA dataset 401

from NExT-QA (Xiao et al., 2021). 402

Additionally, we assessed the generalization of 403

IVA using long and short video benchmarks. Long 404

video benchmarks typically are characterized by 405

videos exceeding one minute in duration. We eval- 406

uated our model using four prominent long video 407

evaluation benchmarks: ActivityNet-QA (Yu et al., 408

2019), Social-IQ 2.0 (Wilf et al., 2023), LifeQA 409

(Castro et al., 2020), WildQA (Castro et al., 2022). 410

For short video benchmarks, the duration of the 411

videos is often measured in seconds. We evaluated 412

our model against three notable short video eval- 413

uation benchmarks: MSVD-QA (Xu et al., 2017), 414

MSRVTT-QA (Xu et al., 2017) and SEED-Bench 415

(Li et al., 2023c). 416

4.2 Baselines 417

We mainly compare our models with the following 418

video LLMs that could be extended to handle long 419
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Method ActivityNet-QA Social-IQ 2.0 LifeQA WildQA
Accuracy score Accuracy score Accuracy score Accuracy score

Video-LLaMA (Zhang et al., 2023b) 12.4 1.1 55.8 2.9 35.8 2.3 63.2 3.2
Video-Chat (Li et al., 2023f) 26.5 2.2 - - - - - -
LLaMA-Adapter (Zhang et al., 2023d) 34.2 2.7 - - - - - -
Video-ChatGPT (Maaz et al., 2023) 35.2 2.7 57.5 3.3 33.9 2.6 58.0 3.3
Baseline (w/o IVA) 40.8 3.0 46.8 3.0 31.7 2.3 52.2 3.1
IVA (LQ=8, NI=8) 41.6 3.0 54.0 3.6 46.5 2.8 51.2 3.1
IVA (LQ=16, NI=8) 42.1 3.0 64.9 3.9 50.5 3.0 53.5 3.2
IVA (LQ=32, NI=8) 41.9 3.0 57.1 3.7 51.9 3.1 53.7 3.2
IVA (LQ=16, NI=4) 42.2 3.0 63.3 3.9 50.1 3.0 52.5 3.2
IVA (LQ=16, NI=16) 42.3 3.0 55.4 3.7 50.0 3.0 55.1 3.3
IVA (LQ=16, NI=8)-272K 46.8 3.1 68.0 4.0 48.1 2.9 50.9 3.1

Table 1: Comparison between different methods on 4 zero-shot long video QA datasets. LLM with IVA achieves
best performance on long videos compared to baselines and strong video LLMs. “LQ” refers to the length of query
tokens and “NI” represents the number of interactions between LLMs and IVA. “-272K” indicates that we introduce
additional training data of long video datasets like LifeQA and Social-IQ based on the original short video data.

videos. Video-ChatGPT (Muhammad Maaz and420

Khan, 2023) encodes frames independently and421

generates frame-level embeddings. Subsequently,422

it employs average pooling to transform these em-423

beddings into both temporal and spatial features.424

These temporal and spatial features are then con-425

catenated to derive video-level features and are fed426

into the LLM. Video-LLaMA (Zhang et al., 2023c)427

utilizes Vision-Language and Audio-Language to428

process video frames and audio signals separately.429

After fine-tuning on image instruction dataset and430

video instruction dataset, Video-LLaMA exhibited431

remarkable abilities in comprehending images and432

videos. Video-Chat (Li et al., 2023f) leverages433

perception tools to convert videos into textual de-434

scriptions in real-time, and employs a foundation435

model named InternVideo to encode videos into436

embeddings. These textual descriptions and video437

embeddings are then processed by an LLM for mul-438

timodal understanding. LLaMA-Adapter (Zhang439

et al., 2023d) is a lightweight adapter injected into440

the attention calculation of LLM, which could be441

used to handle videos, text, and image tasks.442

4.3 Evaluation Metrics443

For open-ended video QA tasks, we employ444

ChatGPT-Assistant to evaluate the performance445

following Video-ChatGPT (Muhammad Maaz and446

Khan, 2023). First, we input the question, the pre-447

dicted answer, and the correct answer into Chat-448

GPT. Second, we request ChatGPT to verify the449

accuracy of the predicted answer, expecting a bi-450

nary response of ’yes’ for correct predictions or451

’no’ for incorrect ones. Additionally, we require452

ChatGPT to rate the quality of the predicted an-453

swer on a scale from 0 to 5, where 5 indicates a 454

perfect match. Finally, we determine the overall ac- 455

curacy by counting the number of ’yes’ responses 456

and calculate the overall score by averaging all 457

quality scores. This evaluation employs the "gpt- 458

3.5-turbo" version of ChatGPT. 459

4.4 Implementation Details 460

We employ the AdamW optimizer (Kingma and 461

Ba, 2014) in conjunction with a cosine learning 462

rate scheduler to train our model. We first utilize 2 463

A100 GPUs to train visual-language MLP with 2 464

million image-text pairs with a global batch size of 465

256 and a base learning rate of 2e-4. Subsequently, 466

we train the causal transformers using 703K video- 467

text pairs data on the same two GPUs, employing a 468

global batch size of 24 and a base learning rate of 469

3e-4. Transitioning to the video instruction tuning 470

stage, we scale up to 8 A100 GPUs with a global 471

batch size of 64. Here, we leverage LoRA to effi- 472

ciently fine-tune the language model LLaMA. In 473

our implementation, we set the rank to 128 and al- 474

pha to 256, maintaining a learning rate of 1e-4 for 475

both LoRA and IVA parameters. Given the pretrain- 476

ing visual-language MLP and causal transformers, 477

we adopt a smaller learning rate of 2e-5. 478

4.5 Main Results 479

We present the performance of the models on 480

four long video QA benchmarks and five short 481

video QA benchmarks. In zero-shot long video 482

QA benchmarks, our model achieved state-of-the- 483

art (SOTA) results compared to the previous pure 484

video LLMs, except WildQA. Especially on the 485

LifeQA and Social-IQ 2.0 evaluation datasets, 486
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Method MSVD-QA MSRVTT-QA SEEDAR SEEDAP SEEDPU

Accuracy score Accuracy score Accuracy Accuracy Accuracy
Valley - - - - 31.3 23.2 20.7
Video-LLaMA 51.6 2.5 29.6 1.8 - - -
LLaMA-Adapter 54.9 3.1 43.8 2.7 - - -
Video-Chat 56.3 2.8 45.0 2.5 34.9 36.4 27.3
Video-ChatGPT 64.9 3.3 49.3 2.8 27.6 21.3 21.1
Baseline (w/o IVA) 54.5 3.2 49.6 2.9 22.5 23.5 24.8
IVA (LQ=8, NI=8) 53.2 3.2 47.6 2.9 32.0 31.8 27.5
IVA (LQ=16, NI=8) 55.7 3.2 49.1 2.9 35.2 32.0 34.2
IVA (LQ=32, NI=8) 53.0 3.2 47.2 2.9 32.2 32.1 28.8
IVA (LQ=16, NI=4) 55.0 3.2 47.8 2.9 32.5 31.7 26.0
IVA (LQ=16, NI=16) 53.3 3.1 47.1 2.8 31.8 29.4 31.0
IVA (LQ=16, NI-8)-272K 58.6 3.2 50.2 2.9 32.2 30.0 31.6

Table 2: Comparison between different methods on 5 zero-shot short video QA benchmarks. Benchmark
names are abbreviated due to space limits. MSVD-QA(Xu et al., 2017); MSRVTT-QA(Xu et al., 2017); SEEDAR:
SEED-Bench Action Recognition(Li et al., 2023c); SEEDAP: SEED-Bench Action Prediction(Li et al., 2023c);
SEEDPU: SEED-Bench Procedure Understanding(Li et al., 2023c).

our model achieved significantly higher results,487

surpassing the previous SOTA accuracy by 18.0488

and 7.4 percentage points, respectively. In zero-489

shot short video QA benchmarks, our model also490

demonstrated strong capabilities across some eval-491

uation datasets, especially in procedure understand-492

ing. Overall, IVA significantly enhances the capa-493

bility of LLMs to analyze and interpret long videos,494

maintaining high-performance levels without com-495

promising the understanding and reasoning abilities496

of short videos.497

4.6 Ablation Study498

Effect of IVA. From the results in Tables 1 and499

2, we found that introducing the IVA module im-500

proved the overall visual understanding of the501

long video datasets of Social IQ2, LifeQA, and502

ActivityNet-QA, as well as the short video datasets.503

Among them, our model achieved an improvement504

of over 20% on LifeQA compared to the baseline,505

notably suggesting the effectiveness of IVA.506

Length of Query Tokens. Comparing the ex-507

perimental results of IVA (LQ=8, NI=8) and IVA508

(LQ=16, NI=8) in Tables 1 and 2, we observed509

a significant decrease in evaluation results across510

various benchmarks when reducing the length of511

query tokens (16 → 8). Regarding the compari-512

son between IVA (LQ=16, NI=8) and IVA (LQ=32,513

NI=8) in long video benchmarks, we noted a slight514

decrease in performance on the first two bench-515

marks when increasing the length. However, while516

there was a slight improvement in LifeQA, it did517

not conclude an overall performance enhancement.518

In contrast, in the short video benchmarks, there 519

was a downward trend in results across all bench- 520

marks. Overall, increasing the length of query to- 521

kens may not lead to performance improvement. 522

Moreover, reducing the length of query tokens may 523

result in the loss of crucial visual information, con- 524

sequently leading to performance degradation. 525

Impact of long video instruction data. Further- 526

more, we attempted to further enhance the model’s 527

performance during the Video Instruction Tun- 528

ing phase by introducing more long video data. 529

Therefore, we included the training sets of Social 530

IQ2 and LifeQA, the video instruction part of the 531

MIMIC-IT dataset(Li et al., 2023a), along with the 532

open-ended question-answering training data from 533

NExT-QA, to the existing 170K training data, form- 534

ing a new 272K training dataset. From the results 535

of IVA(lQ=16, NI=8)-272K in the Tables 1 and 536

2, we observed a significant improvement on the 537

long video dataset Social IQ2 with the inclusion 538

of more training data. However, there was little 539

difference in the results on the remaining datasets, 540

and in some cases, a certain degree of decline was 541

observed. This may be attributed to the somewhat 542

indiscriminate addition of new datasets, leading 543

to a certain imbalance in the proportions of differ- 544

ent data. Additionally, the training set of LifeQA 545

only consisted of 1,383 instances, which is rela- 546

tively small in proportion to the total data, thus not 547

providing sufficient improvement. 548

Number of Interaction between IVA and LLMs. 549

Similar to the analysis of Query Tokens Length, we 550

also conducted experiments with both doubled and 551
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Figure 2: Five cases illustrate the comparative performances of our IVA Model and Baseline. The bottom part shows
the detailed description of a video. Red words represent the inaccurate statement and the green words indicate the
accurate statement.

halved number of interaction layers. The detailed552

injection layers are shown in Appendix A. Upon553

analyzing the results of IVA(LQ=16, NI=8) and554

IVA(LQ=16, NI=4) in Tables 1 and 2, we observe555

that this reduction resulted in a significant decrease556

in its performance on most long video datasets, es-557

pecially on the Action Prediction and Procedure558

Understanding of the SEED-Bench. Moreover, the559

experimental results also indicate that increasing560

the number of layers (8 → 16) in the IVA inter-561

action likewise caused a slight degradation in the562

model’s performance. Given that there was no sig-563

nificant improvement observed when increasing564

the interaction times between IVA and LLMs, we565

set it to 8 as the standard for experimentation.566

4.7 Case Study567

We present four open-ended question-answering568

cases and one detailed description example in Fig-569

ure 2. Upon examining the initial two examples,570

we observe that the model augmented with IVA571

exhibits enhanced proficiency in recognizing par-572

ticular actions associated with specific frames. In573

response to specific queries, it could discern ob-574

jects such as the ’basketball-shaped cake’, which575

solely appears towards the video’s conclusion, and576

the ’glass bowl,’ present solely in the video’s open-577

ing segment. Furthermore, the fourth question-578

answering example illustrates that IVA augments 579

the model’s reasoning ability, enabling it to de- 580

duce the prevailing weather conditions based on 581

the lighting conditions within the video. These 582

indicate the effectiveness of IVA in incorporating 583

fine-grained visuals of long videos. Meanwhile, the 584

bottom detailed description example reveals that 585

when confronted with lengthy video descriptions, 586

IVA could refine the perceptual acuity of LLMs, 587

resulting in more precise recognition of elements 588

such as the environment and color. 589

5 Conclusion 590

In this study, our primary goal is to enhance the 591

capacity of LLMs to process and interpret long 592

video content effectively. We identified the princi- 593

pal obstacles in this area and introduced an Inter- 594

active Visual Adapter (IVA) designed to facilitate 595

dynamic interaction between LLMs and extended 596

video sequences. The IVA incorporates a selector 597

module for identifying relevant temporal frames 598

within long videos based on specific instructions 599

and tokens, along with an interactor module that 600

isolates detailed spatial visual features within long 601

videos. The empirical results demonstrate that our 602

IVA significantly improves LLMs’ ability to com- 603

prehend and reason about long video content. 604
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Limitations605

Our work, while contributing valuable insights into606

video understanding through LLMs, is subject to607

several limitations that warrant further investiga-608

tion:609

• Optimization for Longer Videos: Our cur-610

rent methodology demonstrates proficient per-611

formance in processing videos ranging from612

a few seconds to two minutes. However, the613

challenge of comprehensively understanding614

longer videos remains. Specifically, the opti-615

mization of video token length and the integra-616

tion method of the Interactive Visual Adapter617

(IVA) within LLMs require further refinement618

to enhance their effectiveness and efficiency619

in handling extended content.620

• Impact of Interaction Frequency and621

Query Token Length: The stability of the622

IVA can be influenced by the frequency of623

interactions and the length of query tokens.624

These factors often occur in the development625

of multimodal large models, where a delicate626

balance must be struck between achieving627

high performance and maintaining operational628

efficiency, particularly in the context of long629

video interaction and encoding.630

• Accuracy and Appropriateness of Gener-631

ated Responses: Another limitation is the632

potential for LLMs to generate responses that633

may be inaccurate, contain harmful content, or634

be factually incorrect. This issue stems from635

the inherent unpredictability in the response636

generation process of LLMs, underscoring the637

need for mechanisms that can ensure the relia-638

bility and appropriateness of the output.639
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A Inserting IVA in Different Layers 909

NI Corresponding Decoder Layers

4 0, 8, 16, 24
8 0, 4, 8, 12, 16, 20, 24, 28

16 0, 2, 4, 6, 8, 10, ..., 22, 24, 26, 28, 30

Table 3: Ablation Study on Injection Layers for IVA.
NI: Number of Inserting Layers. The incorporated in-
serting layers were positioned before the respective de-
coder layers.

In this section, we detail the methodology behind 910

our ablation studies focusing on the variation in the 911
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Number of Injection Layers. Our experiments were912

structured around three different setups, where the913

injection layers were configured to be 4, 8, and 16914

in number. To ensure a uniform distribution, these915

Injection Layers were interspersed throughout the916

decoder layers of the language model evenly. We917

utilized the Vicuna-7B model as our experimental918

framework, which is equipped with 32 decoder lay-919

ers. The specific layers of the decoder that received920

the Injection Layers are outlined in Table 3, pro-921

viding a clear reference to how the integration was922

achieved in each experimental setup923
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