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Abstract

Long video understanding is a significant and
ongoing challenge in the intersection of mul-
timedia and artificial intelligence. Employ-
ing large language models (LLMs) for com-
prehending video becomes an emerging and
promising method. However, this approach
incurs high computational costs due to the ex-
tensive array of video tokens, experiences re-
duced visual clarity as a consequence of to-
ken aggregation, and confronts challenges aris-
ing from irrelevant visual tokens while an-
swering video-related questions. To alleviate
these issues, we present an Interactive Visual
Adapter (IVA) within LLMs, designed to en-
hance interaction with fine-grained visual el-
ements. Specifically, we first transform long
videos into temporal video tokens via lever-
aging a visual encoder alongside a pretrained
causal transformer, then feed them into LLMs
with the video instructions. Subsequently, we
integrated IVA, which contains a lightweight
temporal frame selector and a spatial feature in-
teractor, within the internal blocks of LLMs to
capture instruction-aware and fine-grained vi-
sual signals. Consequently, the proposed video-
LLM facilitates a comprehensive understand-
ing of long video content through appropriate
long video modeling and precise visual inter-
actions. We conducted extensive experiments
on nine video understanding benchmarks and
experimental results show that our interactive
visual adapter significantly improves the perfor-
mance of video LLMs on long video QA tasks.
Ablation studies further verify the effectiveness
of IVA in long and short video understandings.

1 Introduction

The exponential advancement of the Internet and
multimedia technologies has resulted in a signifi-
cant surge in video content production by individ-
uals and enterprises across various domains. The
ability to interpret and extract meaningful content
from videos is increasingly vital for meeting human

demands and promoting the speed of information
dissemination (Tang et al., 2023). Therefore, Video
Question Answering (Yu et al., 2019; Li et al.,
2023b; Castro et al., 2022) (Video QA), which
allows users to ask about the content of videos
through natural language and receive answers de-
rived from their visual and auditory content, at-
tracts tremendous research interest. Recently, large
language models (LLMs) (OpenAl, 2023; Chiang
et al., 2023) have demonstrated exceptional efficacy
in the domains of human-machine interaction and
the handling of extensive contextual information.
Capitalizing on these advancements, there is a bur-
geoning inclination towards integrating LLMs into
the realm of video information processing. This
approach primarily aims to enhance the interface
between users and video content through intelligent
question-and-answer sessions.

The core of this innovation is a strategy that
bridges the gap between the visual information in
videos and the textual comprehension capabilities
of LLMs. This is accomplished through a meticu-
lously designed process that translates video data
into a format comprehensible by LLMs, thereby fa-
cilitating an advanced question-answering system
tailored for video content. The process involves
mapping video encoding into the language space of
LLMs via a learnable visual mapping network (Wu
et al., 2023; Li et al., 2023d; Dai et al., 2023). Es-
sentially, the video is converted into “video tokens”,
which are then fed into the LLM along with tex-
tual tokens of natural language questions. Lever-
aging the vast knowledge storage and natural lan-
guage processing prowess of LL.Ms, this approach
effectively handles video QA tasks. For instance,
Maaz et al. (2023) performs spatial and tempo-
ral pooling for video tokens and feeds them into
Vicuna (Chiang et al., 2023) to achieve the inter-
action between users and video content. Zhang
et al. (2023b) utilizes Q-former (Li et al., 2023d) to
extract question-relevant video tokens, which are



then fed into LLama (Gao et al., 2023) to generate
the answer.

These LLMs-powered video understanding mod-
els (Tang et al., 2023; Song et al., 2023) mainly
focus on short video modeling and have achieved
a successful performance on short video caption-
ing (Zhang et al., 2023c), question-answering (Jin
et al., 2023), and summarization (Tang et al., 2023).
However, the core challenges of video processing
(Xu et al., 2023) stem from the need to efficiently
model long video sequences and precisely respond
to questions relevant to the video. Generally, using
LLMs to handle long-form video often encounters
the following hurdles: 1) high computational costs
from a multitude of video tokens; 2) reduced vi-
sual clarity as a consequence of token aggregation
such as employing average or maximum represen-
tation pooling for visual frames; 3) irrelevant vi-
sual tokens leading to incorrect answers, notably
when question-relevant information is embedded
within long temporal cues. Hence, previous mod-
els struggle to handle long-form videos owing to
the constrained input capacity for video tokens and
the challenge of distilling question-relevant, fine-
grained visual features during generation.

To alleviate these issues, we present a long video
comprehension method for LLMs, named Interac-
tive Visual Adapter (IVA) to achieve in-depth inter-
actions between LLMs and video content. Specif-
ically, we first use the pretrained visual encoder
to obtain global and fine-grained frame represen-
tations. We construct the temporal video tokens
by integrating the global features of frames with
temporal video embeddings, which are obtained
through a pretrained causal transformer. The whole
set of temporal video tokens is fed into the LLM to
attain a whole understanding of the video content.
Additionally, we designed a parameters-sharing
Interactive Visual Adapter (IVA) that contains an
instruction-aware temporal frames selector and a
spatial feature interactor. The selector is used to ob-
tain question-relevant frames based on contextual
query embeddings and global encodings of videos.
The selected frames are then fed into the spatial
interactor to engage with the contextual query em-
beddings, in which fine-grained representations of
frames are used. By doing so, LLMs could achieve
in-depth interaction with video content by applying
IVA between different layers.

To verify the effectiveness of our method, we
conduct extensive experiments on four long video

QA and five short video understanding benchmarks.
Experimental results indicate that IVA is capable
of achieving effective interactions between LLMs
and long or short videos. Our contributions are
summarized as follows:

* We analyze the challenges of modeling long
videos for LLMs and propose an interactive vi-
sual adapter for LLMs to handle long videos.
It realizes the in-depth interaction between
LLMs and long videos based on efficient
video tokens and the IVA mechanism.

* The proposed IVA is capable of selecting rel-
evant frames and interacting with their fine-
grained spatial features through the internal
selector and interactor, respectively. The IVA
architecture is lightweight and designed to be
shareable between layers of LLMs.

* Experimental results show that LLMs with
IVA could achieve powerful performances in
understanding long videos. Ablation studies
underscore the critical role and effectiveness
of IVA, confirming its significant contribution
to enhanced performance.

2 Related Work

Traditional Video Understanding Models The
rapid development of deep learning methods pos-
sesses superior task-solving capabilities for video
understanding. DeepVideo (Karpathy et al., 2014)
was the earliest method introducing a Convolu-
tional Neural Network (CNN), for video under-
standing. Two-stream networks (Feichtenhofer
et al., 2016), then integrating Convolutional Neural
Networks (CNNSs) (Feichtenhofer et al., 2016) and
Improved Dense Trajectories (IDT) (Li et al., 2021),
enhanced motion analysis in video understanding.
For long-form content, Long Short-Term Memory
(LSTM) (Yue-Hei Ng et al., 2015) networks were
adopted, offering a robust solution for sequential
data analysis over extended durations. Addition-
ally, Temporal Segment Network (TSN) (Wang
et al., 2016) advanced long-form video understand-
ing by segmenting videos for individual analysis be-
fore aggregating insights, enabling more nuanced
interpretation. Meanwhile, 3D networks started
another branch by introducing 3D CNN to video
understanding (C3D) (Tran et al., 2015). The intro-
duction of Vision Transformers (ViT) (Dosovitskiy
etal.,2021; Arnab et al., 2021; Fan et al., 2021) pro-



motes a series of prominent models Among the pio-
neering efforts in this self-supervised video training
domain, VideoBERT (Sun et al., 2019) leverages
the bidirectional language model BERT (Kenton
and Toutanova, 2019) for self-supervised learn-
ing from video-text data. This model, and oth-
ers following the "pre-training and fine-tuning"
paradigm, such as ActBERT (Zhu and Yang, 2020),
SpatiotemporalMAE (Feichtenhofer et al., 2022),
OmniMAE (Girdhar et al., 2023), showcase the
diverse strategies developed to enhance video un-
derstanding. Notably, these models have set a foun-
dation for advanced video-language models like
maskViT (Gupta et al., 2022), CLIP-ViP (Xue et al.,
2022), LF-VILA (Sun et al., 2022), further push-
ing the boundaries of what’s achievable in action
classification, video captioning, and beyond. The
evolution from VideoBERT to more recent inno-
vations like HiTeA (Ye et al., 2023), and CHAM-
PAGNE (Han et al., 2023) underscores the rapid
advancement in this field.

LLMs for Video Understanding The recent
advancement in large language models (LLMs),
pre-trained on expansive datasets, has ushered in
groundbreaking capabilities in in-context learning
(Zhang et al., 2023a) and long-form context model-
ing (Lyu et al., 2023). This innovation has paved
the way for integrating LL.Ms with computer vi-
sion technologies, exemplified by initiatives like
Visual-ChatGPT (Wu et al., 2023). These models
transcend traditional boundaries by calling vision
model APIs (Qin et al., 2023), thereby addressing
complex problems within the computer vision do-
main. Integrating language models with video un-
derstanding technologies (Maaz et al., 2023; Zhang
etal., 2023d; Li et al., 2023e; Xu et al., 2023; Song
et al., 2023) enhances multimodal understanding,
facilitating sophisticated processing and interpre-
tation of the intricate interplay between visual and
textual data. They leverage their extensive mul-
timodal knowledge base and nuanced contextual
understanding, mirroring a more human-like com-
prehension of visual content. Moreover, the explo-
ration of LLMs in video understanding tasks (Tang
et al., 2023) represents a significant stride towards
harnessing their potential in analyzing and reason-
ing about visual data.

Multimodal Instruction Tuning for LLMs Re-
cent advancements have significantly enhanced the
performance of instruction-tuned, text-only large
language models (LLMs) (Ouyang et al., 2022;

Muennighoff et al., 2022; Chung et al., 2022) on
various NLP tasks and human-machine interaction
scenarios. SFT LLMs have demonstrated remark-
able capabilities in these areas. Building on this
foundation, researchers are now exploring the in-
tegration of multimodal instruction data to further
refine pre-trained LLMs, aiming to elevate their
multimodal human-machine interaction competen-
cies. For instance, a study (Liu et al., 2023) em-
ployed GPT-4 to generate multimodal instruction
data, which was then used to fine-tune the lan-
guage model LLaMA on a synthetic dataset de-
signed for instruction following. Similarly, an-
other research (Zhu et al., 2023) effort constructed
a well-aligned multimodal instruction-following
dataset to fine-tune Vicuna, an instruction-tuned
language model, which showed superior perfor-
mance in open-domain multimodal dialogues. Fur-
thermore, a lightweight adaptation method (Zhang
et al., 2023d) was introduced to efficiently convert
LLaMA into an instruction-following model, show-
casing the potential for streamlined model enhance-
ment. In this paper, we also explore the lightweight
adapter to help LLMs understand long videos.

3 Methodology

3.1 Overview

Our work primarily introduces an interactive visual
adapter for LLMs to handle long videos and answer
relevant questions. The overview of workflow is
shown in Figure 1. Specifically, given a video V,
we first extract frames to obtain the whole sequence
frame representations hy = (hy,...,hy,....hr,)
via the pretrained image encoder, where h;, =
(hé’f, h{’“ . hé%) refers to the representations of k
th frame and N is the total number of extracted
frames. Then, we use a casual transformer to ac-
quire temporal video embeddings from the aggre-
gated spatial representation. The overall video to-
kens are formed by merging temporal video embed-
dings and global spatial features [hél , hék, vy héN s
where each frame is represented by two tokens.
To enhance the capability of LLMs in leveraging
fine-grained visual details from videos, we have de-
veloped an Interactive Visual Adapter (IVA) that is
integrated into the blocks of LLM. This integration
allows LLMs to comprehend the entirety of long
videos through efficient video tokens while simulta-
neously capturing fine-grained visual information
facilitated by the IVA.
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Figure 1: The overview of our framework employing LLMs to handle long video. While producing video tokens,
we combine the global features and aggregated fine-grained features to represent a frame, allocating two tokens for
each frame. The casual transformer is used to capture temporal relationships across frames and its output will be
spliced with spatial feature sequence. The IVA will be inserted between blocks of LLMs to incorporate fine-grained
visuals based on an understanding of the long video tokens, text instructions, and query tokens.

3.2 Producing Video Tokens

We elaborate on the detailed process employed to
produce efficient tokens for long videos, charac-
terized by the extraction of one frame per second.
First, we use the self-weighted calculation on the
fine-grained feature h’; = (h1, ..., hy7e) of a frame
(k th) to obtain its overall representation, which
will be fed into the following casual transformer.
This calculation process for the & th frame is given
in the following Eq. 1:

s’} = Softmax(W(hl}) +b),

(1)
hf = s;h¥,

where s; € R1*576 i the weight distribution and

W and b are learnable parameters. Hence, we
denote the obtained sequence-level frame represen-
tation as hy = (h}, ey hﬁcv)

Casual Transformer is employed to acquire
the temporal video embeddings. Specifically, we
use a four-layer transformer to facilitate interaction
across frames, where a frame only attends to its
previous ones. Take the first layer as an example,
the specific operation of the casual transformer is
presented in Eq. 2:

h, = Sel f Atten(LayerN (hy), WMask) 4 h,
h, = Layer N (hy),

h! = MLP(hy)
(2)

where SelfAtten and Layer N are the self-
attention calculation and the feature normaliza-
tion. The top output of the casual transformer
will be projected into the language model by a lin-
ear layer, which is spliced with the global features
hY = (hlt,hlr, .. h[N). These global features of
frames will be transferred into language models
via a learnable MLP. We denote the final spliced
feature to hy = (hi,, h%,, ..., h3Y).

3.3 Interactive Visual Adapter

After obtaining video tokens hy , and supposing
that the textual embeddings of instruction are initi-
ated to hy via the frozen word embedding table of
LLMs, we concatenate them into a single sequence
and fed it into LLMs. Considering fine-grained
visual details existing in long videos, we expect
that LMMs are capable of capturing the specific
fine-grained visual information based on the un-
derstanding of instructions and the whole video
representations. Hence, we devise a lightweight
interactive visual adapter (IVA) to enable LLMs to
focus on instruction-relevant fine-grained visuals
during content generation.

Concretely, as the bottom part shown in Fig-
ure 1, we first introduce learnable dynamic tokens
hp = (kP,...,hL)) as the query signals and in-
tegrate it at the end of the input token sequence.
It aims to capture previous instruction and video
information via the self-attention mechanism of
LLMs, functioning as query tokens to engage with



the fine-grained spatial features of videos. Suppose
that the output of i th layer of LLMs is h’. The
specific calculation process of IVA between the 7
and ¢ + 1 th layers of LLMs is shown in Eq. 3 and
4 in order. Each layer of IVA consists of a selector
and an interactor, which are capable of selecting
relevant frames and capturing valuable fine-grained
visual information. The operational process of the
selector is described as follows:

hY = Wi, + b4,
hy = WrhY + bk,
M = hg (b)),

h® = Softmax(MS/T)Trans([hﬂ, o h}cN]),
| | 3)
where h, refers to the hidden states h* associated
with the indices of dynamic tokens. W9, W*, b9,
and b* are learnable parameters. M* signifies the
distribution score on the frames, which represents
the relevant attention distribution. 7 is the hyperpa-
rameter, which is set to 0.5. “Trans” refers to the
transportation of feature dimension. [h}cl, e h}cN]
represents the fine-grained features of the entire
video. The output h® € RV*Mx576xds wi]] be
fed into the following interactor as the key value,
where dg represents the dimension of the selector.
For the interactor, the specific calculation
progress could be given as Eq. 4.

hl = Wih + b,
hf = W2h% + b2,
M = hg(hp)”, )
h? = Softmaz(M!)(W3h? + b3),
h® = MLP(hS) + h?

where W1, W2, W3, b, b2, and b? are learnable
parameters. Overall, we use the same four-layer
calculations of the above selector and interactor
to facilitate that LL.Ms interact with fine-grained
visual features.

3.4 Training

Stage 1: Pretraining. To endow video tokens
with meaningful representation, we first train the
casual transformer, linear layers, and other learn-
able parameters during video tokens production, on
massive video-caption pairs from WebVid, a total
of 703k video-caption pairs. We freeze the other
parameters of the overall model during this process
and do not introduce the IVA module.

Stage 2: Video Instruction Tuning. At this stage,
the model is required to generate responses that
align with various instructions. These instruc-
tions often involve complex visual comprehen-
sion and reasoning, rather than merely describ-
ing visual signals. Note that the conversation data
[Q1, A1, ..., Qr, Ay] consists of multiple rounds.

r=1
r>1

)
where r represents the round count. As shown in
Eq. 5, when » > 1, we concatenate the conver-
sations from all previous rounds with the current
instruction as the input for this round. The training
objective remains the same as the previous stage.
After this stage, the model will be capable of gen-
erating corresponding responses based on various
instructions.

X7, — Qla
T =
Concat(Q1, A1, ..., Qr, Ar),

4 Experiments

4.1 Data sets

While training the casual transformer, we utilize
702 thousand video-text pairs derived from Val-
ley (Luo et al., 2023), sourced from WebVid (Bain
et al.,, 2021). For the Video Instruction Tuning
stage, we first collect instructional datasets from
three sources. This includes a 100K video-text
instruction dataset from Video-ChatGPT (Muham-
mad Maaz and Khan, 2023), a 36K short video-text
instruction dataset from Valley-Instruct-73k (Luo
et al., 2023), and a 34K multiple-choice QA dataset
from NEXT-QA (Xiao et al., 2021).

Additionally, we assessed the generalization of
IVA using long and short video benchmarks. Long
video benchmarks typically are characterized by
videos exceeding one minute in duration. We eval-
uated our model using four prominent long video
evaluation benchmarks: ActivityNet-QA (Yu et al.,
2019), Social-IQ 2.0 (Wilf et al., 2023), LifeQA
(Castro et al., 2020), WildQA (Castro et al., 2022).
For short video benchmarks, the duration of the
videos is often measured in seconds. We evaluated
our model against three notable short video eval-
uation benchmarks: MSVD-QA (Xu et al., 2017),
MSRVTT-QA (Xu et al., 2017) and SEED-Bench
(Lietal., 2023c).

4.2 Baselines

We mainly compare our models with the following
video LLMs that could be extended to handle long



ActivityNet-QA Social-1Q 2.0 LifeQA WildQA
Method
Accuracy score Accuracy score Accuracy score Accuracy score

Video-LLaMA (Zhang et al., 2023b) 12.4 1.1 55.8 29 35.8 2.3 63.2 32
Video-Chat (Li et al., 2023f) 26.5 22 - - - - - -
LLaMA-Adapter (Zhang et al., 2023d) 342 2.7 - - - - - -
Video-ChatGPT (Maaz et al., 2023) 35.2 2.7 57.5 3.3 339 2.6 58.0 33
Baseline (w/o IVA) 40.8 3.0 46.8 3.0 31.7 2.3 522 3.1
IVA (LQ=8, NI=8) 41.6 3.0 54.0 3.6 46.5 2.8 51.2 3.1
IVA (LQ=16, NI=8) 42.1 3.0 64.9 39 50.5 3.0 53.5 32
IVA (LQ=32, NI=8) 41.9 3.0 57.1 3.7 51.9 3.1 53.7 32
IVA (LQ=16, NI=4) 42.2 3.0 63.3 3.9 50.1 3.0 52.5 32
IVA (LQ=16, NI=16) 42.3 3.0 554 3.7 50.0 3.0 55.1 33
IVA (LQ=16, NI=8)-272K 46.8 31 68.0 4.0 48.1 29 50.9 3.1

Table 1: Comparison between different methods on 4 zero-shot long video QA datasets. LLM with IVA achieves
best performance on long videos compared to baselines and strong video LLMs. “LQ” refers to the length of query
tokens and “NI” represents the number of interactions between LLMs and IVA. “-272K” indicates that we introduce
additional training data of long video datasets like LifeQA and Social-IQ based on the original short video data.

videos. Video-ChatGPT (Muhammad Maaz and
Khan, 2023) encodes frames independently and
generates frame-level embeddings. Subsequently,
it employs average pooling to transform these em-
beddings into both temporal and spatial features.
These temporal and spatial features are then con-
catenated to derive video-level features and are fed
into the LLM. Video-LLaMA (Zhang et al., 2023c)
utilizes Vision-Language and Audio-Language to
process video frames and audio signals separately.
After fine-tuning on image instruction dataset and
video instruction dataset, Video-LLaMA exhibited
remarkable abilities in comprehending images and
videos. Video-Chat (Li et al., 2023f) leverages
perception tools to convert videos into textual de-
scriptions in real-time, and employs a foundation
model named InternVideo to encode videos into
embeddings. These textual descriptions and video
embeddings are then processed by an LLM for mul-
timodal understanding. LLaMA-Adapter (Zhang
et al., 2023d) is a lightweight adapter injected into
the attention calculation of LLLM, which could be
used to handle videos, text, and image tasks.

4.3 Evaluation Metrics

For open-ended video QA tasks, we employ
ChatGPT-Assistant to evaluate the performance
following Video-ChatGPT (Muhammad Maaz and
Khan, 2023). First, we input the question, the pre-
dicted answer, and the correct answer into Chat-
GPT. Second, we request ChatGPT to verify the
accuracy of the predicted answer, expecting a bi-
nary response of ’yes’ for correct predictions or
’no’ for incorrect ones. Additionally, we require
ChatGPT to rate the quality of the predicted an-

swer on a scale from O to 5, where 5 indicates a
perfect match. Finally, we determine the overall ac-
curacy by counting the number of ’yes’ responses
and calculate the overall score by averaging all
quality scores. This evaluation employs the "gpt-
3.5-turbo" version of ChatGPT.

4.4 Implementation Details

We employ the AdamW optimizer (Kingma and
Ba, 2014) in conjunction with a cosine learning
rate scheduler to train our model. We first utilize 2
A100 GPUs to train visual-language MLP with 2
million image-text pairs with a global batch size of
256 and a base learning rate of 2e-4. Subsequently,
we train the causal transformers using 703K video-
text pairs data on the same two GPUs, employing a
global batch size of 24 and a base learning rate of
3e-4. Transitioning to the video instruction tuning
stage, we scale up to 8 A100 GPUs with a global
batch size of 64. Here, we leverage LoRA to effi-
ciently fine-tune the language model LLaMA. In
our implementation, we set the rank to 128 and al-
pha to 256, maintaining a learning rate of le-4 for
both LoRA and IVA parameters. Given the pretrain-
ing visual-language MLP and causal transformers,
we adopt a smaller learning rate of 2e-5.

4.5 Main Results

We present the performance of the models on
four long video QA benchmarks and five short
video QA benchmarks. In zero-shot long video
QA benchmarks, our model achieved state-of-the-
art (SOTA) results compared to the previous pure
video LLMs, except WildQA. Especially on the
LifeQA and Social-IQ 2.0 evaluation datasets,



Method MSVD-QA MSRVTT-QA SEED”R  SEEDA"  SEED"Y
Accuracy  score Accuracy  score Accuracy  Accuracy  Accuracy
Valley - - - - 31.3 23.2 20.7
Video-LLaMA 51.6 2.5 29.6 1.8 - - -
LLaMA-Adapter 54.9 3.1 43.8 2.7 - - -
Video-Chat 56.3 2.8 45.0 2.5 349 36.4 27.3
Video-ChatGPT 64.9 33 493 2.8 27.6 21.3 21.1
Baseline (w/o IVA) 54.5 32 49.6 29 22.5 235 24.8
IVA (LQ=8, NI=8) 53.2 32 47.6 29 320 31.8 27.5
IVA (LQ=16, NI=8) 55.7 32 49.1 29 35.2 32.0 34.2
IVA (LQ=32, NI=8) 53.0 32 472 29 322 32.1 28.8
IVA (LQ=16, NI=4) 55.0 32 47.8 29 325 31.7 26.0
IVA (LQ=16, NI=16) 533 3.1 47.1 2.8 31.8 29.4 31.0
IVA (LQ=16, NI-8)-272K 58.6 32 50.2 29 322 30.0 31.6

Table 2: Comparison between different methods on 5 zero-shot short video QA benchmarks. Benchmark
names are abbreviated due to space limits. MSVD-QA(Xu et al., 2017); MSRVTT-QA(Xu et al., 2017); SEEDAR:
SEED-Bench Action Recognition(Li et al., 2023¢c); SEEDAP: SEED-Bench Action Prediction(Li et al., 2023c);
SEEDPY: SEED-Bench Procedure Understanding(Li et al., 2023c).

our model achieved significantly higher results,
surpassing the previous SOTA accuracy by 18.0
and 7.4 percentage points, respectively. In zero-
shot short video QA benchmarks, our model also
demonstrated strong capabilities across some eval-
uation datasets, especially in procedure understand-
ing. Overall, IVA significantly enhances the capa-
bility of LLMs to analyze and interpret long videos,
maintaining high-performance levels without com-
promising the understanding and reasoning abilities
of short videos.

4.6 Ablation Study

Effect of IVA. From the results in Tables 1 and
2, we found that introducing the IVA module im-
proved the overall visual understanding of the
long video datasets of Social 1Q2, LifeQA, and
ActivityNet-QA, as well as the short video datasets.
Among them, our model achieved an improvement
of over 20% on LifeQA compared to the baseline,
notably suggesting the effectiveness of IVA.

Length of Query Tokens. Comparing the ex-
perimental results of IVA (LQ=8, NI=8) and IVA
(LQ=16, NI=8) in Tables 1 and 2, we observed
a significant decrease in evaluation results across
various benchmarks when reducing the length of
query tokens (16 — 8). Regarding the compari-
son between IVA (LQ=16, NI=8) and IVA (LQ=32,
NI=8) in long video benchmarks, we noted a slight
decrease in performance on the first two bench-
marks when increasing the length. However, while
there was a slight improvement in LifeQA, it did
not conclude an overall performance enhancement.

In contrast, in the short video benchmarks, there
was a downward trend in results across all bench-
marks. Overall, increasing the length of query to-
kens may not lead to performance improvement.
Moreover, reducing the length of query tokens may
result in the loss of crucial visual information, con-
sequently leading to performance degradation.

Impact of long video instruction data. Further-
more, we attempted to further enhance the model’s
performance during the Video Instruction Tun-
ing phase by introducing more long video data.
Therefore, we included the training sets of Social
1Q2 and LifeQA, the video instruction part of the
MIMIC-IT dataset(Li et al., 2023a), along with the
open-ended question-answering training data from
NEXT-QA, to the existing 170K training data, form-
ing a new 272K training dataset. From the results
of IVA(1Q=16, NI=8)-272K in the Tables 1 and
2, we observed a significant improvement on the
long video dataset Social 1Q2 with the inclusion
of more training data. However, there was little
difference in the results on the remaining datasets,
and in some cases, a certain degree of decline was
observed. This may be attributed to the somewhat
indiscriminate addition of new datasets, leading
to a certain imbalance in the proportions of differ-
ent data. Additionally, the training set of LifeQA
only consisted of 1,383 instances, which is rela-
tively small in proportion to the total data, thus not
providing sufficient improvement.

Number of Interaction between IVA and LLMs.
Similar to the analysis of Query Tokens Length, we
also conducted experiments with both doubled and



[Input Instruction] What shape does the woman make the cake?
Baseline: The woman makes a large red heart-shaped cake.

IVA: The woman makes a large cake in the shape of a basketball.

& our BT w34t .

[Input Instruction] What is the material of the bowl in the video?
Baseline: The bowl used in the demonstration is made of plastic.

IV A: The bowl used in the demonstration is made of glass.

[Input Instruction] What color bucket does spiderman carry?

Baseline: The video shows that Spiderman carries a red bucket.
IV A: Spiderman carries a blue bucket.

[Input Instruction] What is the weather in the video?

Baseline: The video does not provide any information about the weather.

IV A: The video shows that the weather is sunny.

[Input Instruction] Describe this Video in detail.

Baseline: In this video, we see a group of men dancing on a stage. The men are dressed in black and white outfits, and they are performing a choreography
that involves a lot of hip movements. The dance starts with the men standing in a line, and then they start moving their hips in a circular motion. .....

IV A: The video shows a group of people dancing on a street. They are dressed in colorful clothing and are performing a variety of dance moves. The camera
captures their movements from different angles, and the music playing in the background is upbeat and lively. The dancers seem to be enjoying themselves, and
their energy is contagious. The street they are dancing in is bustling with activity, with cars and people passing by in the distance. The video captures the vibrant
and lifestyle of the city, and it is clear that the dances are having a great time. ....

Figure 2: Five cases illustrate the comparative performances of our IVA Model and Baseline. The bottom part shows
the detailed description of a video. Red words represent the inaccurate statement and the green words indicate the

accurate statement.

halved number of interaction layers. The detailed
injection layers are shown in Appendix A. Upon
analyzing the results of IVA(LQ=16, NI=8) and
IVA(LQ=16, NI=4) in Tables 1 and 2, we observe
that this reduction resulted in a significant decrease
in its performance on most long video datasets, es-
pecially on the Action Prediction and Procedure
Understanding of the SEED-Bench. Moreover, the
experimental results also indicate that increasing
the number of layers (8§ — 16) in the IVA inter-
action likewise caused a slight degradation in the
model’s performance. Given that there was no sig-
nificant improvement observed when increasing
the interaction times between IVA and LLMs, we
set it to 8 as the standard for experimentation.

4.7 Case Study

We present four open-ended question-answering
cases and one detailed description example in Fig-
ure 2. Upon examining the initial two examples,
we observe that the model augmented with IVA
exhibits enhanced proficiency in recognizing par-
ticular actions associated with specific frames. In
response to specific queries, it could discern ob-
jects such as the ’basketball-shaped cake’, which
solely appears towards the video’s conclusion, and
the ’glass bowl,” present solely in the video’s open-
ing segment. Furthermore, the fourth question-

answering example illustrates that IVA augments
the model’s reasoning ability, enabling it to de-
duce the prevailing weather conditions based on
the lighting conditions within the video. These
indicate the effectiveness of IVA in incorporating
fine-grained visuals of long videos. Meanwhile, the
bottom detailed description example reveals that
when confronted with lengthy video descriptions,
IVA could refine the perceptual acuity of LLMs,
resulting in more precise recognition of elements
such as the environment and color.

5 Conclusion

In this study, our primary goal is to enhance the
capacity of LLMs to process and interpret long
video content effectively. We identified the princi-
pal obstacles in this area and introduced an Inter-
active Visual Adapter (IVA) designed to facilitate
dynamic interaction between LLMs and extended
video sequences. The IVA incorporates a selector
module for identifying relevant temporal frames
within long videos based on specific instructions
and tokens, along with an interactor module that
isolates detailed spatial visual features within long
videos. The empirical results demonstrate that our
IVA significantly improves LLMs’ ability to com-
prehend and reason about long video content.



Limitations

Our work, while contributing valuable insights into
video understanding through LLMs, is subject to
several limitations that warrant further investiga-
tion:

* Optimization for Longer Videos: Our cur-
rent methodology demonstrates proficient per-
formance in processing videos ranging from
a few seconds to two minutes. However, the
challenge of comprehensively understanding
longer videos remains. Specifically, the opti-
mization of video token length and the integra-
tion method of the Interactive Visual Adapter
(IVA) within LLMs require further refinement
to enhance their effectiveness and efficiency
in handling extended content.

e Impact of Interaction Frequency and
Query Token Length: The stability of the
IVA can be influenced by the frequency of
interactions and the length of query tokens.
These factors often occur in the development
of multimodal large models, where a delicate
balance must be struck between achieving
high performance and maintaining operational
efficiency, particularly in the context of long
video interaction and encoding.

* Accuracy and Appropriateness of Gener-
ated Responses: Another limitation is the
potential for LLMs to generate responses that
may be inaccurate, contain harmful content, or
be factually incorrect. This issue stems from
the inherent unpredictability in the response
generation process of LLMs, underscoring the
need for mechanisms that can ensure the relia-
bility and appropriateness of the output.
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A Inserting IVA in Different Layers

NI \ Corresponding Decoder Layers

4 0, 8, 16, 24

8 0, 4,8, 12, 16, 20, 24, 28

16 0,2,4,6, 8,10, ..., 22, 24, 26, 28, 30

Table 3: Ablation Study on Injection Layers for IVA.
NI: Number of Inserting Layers. The incorporated in-
serting layers were positioned before the respective de-
coder layers.

In this section, we detail the methodology behind
our ablation studies focusing on the variation in the
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Number of Injection Layers. Our experiments were
structured around three different setups, where the
injection layers were configured to be 4, 8, and 16
in number. To ensure a uniform distribution, these
Injection Layers were interspersed throughout the
decoder layers of the language model evenly. We
utilized the Vicuna-7B model as our experimental
framework, which is equipped with 32 decoder lay-
ers. The specific layers of the decoder that received
the Injection Layers are outlined in Table 3, pro-
viding a clear reference to how the integration was
achieved in each experimental setup
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