
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INTENTION-CONDITIONED
FLOW OCCUPANCY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale pre-training has fundamentally changed how machine learning research
is done today: large foundation models are trained once, and then can be used
by anyone in the community (including those without data or compute resources
to train a model from scratch) to adapt and fine-tune to specific tasks. Applying
this same framework to reinforcement learning (RL) is appealing because it of-
fers compelling avenues for addressing core challenges in RL, including sample
efficiency and robustness. However, there remains a fundamental challenge to
pre-train large models in the context of RL: actions have long-term dependencies,
so training a foundation model that reasons across time is important. Recent ad-
vances in generative AI have provided new tools for modeling highly complex
distributions. In this paper, we build a probabilistic model to predict which states
an agent will visit in the temporally distant future (i.e., an occupancy measure)
using flow matching. As large datasets are often constructed by many distinct
users performing distinct tasks, we include in our model a latent variable capturing
the user’s intention. This intention increases the expressivity of our model and
enables adaptation with generalized policy improvement. We call our proposed
method intention-conditioned flow occupancy models (InFOM). Comparing
with alternative methods for pre-training, our experiments on 36 state-based and
4 image-based benchmark tasks demonstrate that the proposed method achieves
1.8× median improvement in returns and increases success rates by 36%.

1 INTRODUCTION

Figure 1: InFOM is a latent variable model for pre-
training and fine-tuning in reinforcement learning. (Left)
The datasets are collected by users performing distinct
tasks. (Center) We encode intentions by maximizing
an evidence lower bound of data likelihood, (Right)
enabling intention-aware future prediction using flow
matching. See Sec. 4 for details.

Many of the recent celebrated successes of ma-
chine learning have been enabled by training
large foundation models on vast datasets, and
then adapting those models to downstream tasks.
Examples include today’s chatbots (e.g., Gem-
ini (Team et al., 2023) and ChatGPT (Achiam
et al., 2023)) and generalist robotic systems (e.g.,
π0 (Black et al., 2024) and Octo (Team et al.,
2024)). This pre-training-fine-tuning paradigm
has been wildly successful in fields ranging from
computer vision to natural language process-
ing (Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023; Zhai et al., 2023; Radford
et al., 2021; He et al., 2022; Ouyang et al., 2022;
Lu et al., 2019), yet harnessing it in the context
of reinforcement learning (RL) remains an open
problem. What fundamentally makes the RL problem difficult is reasoning about time and intention—
an effective RL agent must reason about the long-term effect of actions taken now, and must recognize
that the data observed are often collected by distinct users performing multiple tasks. However,
current attempts to build foundation models for RL often neglect these two important bits, focusing
on predicting the actions in the pre-training dataset instead (Team et al., 2024; O’Neill et al., 2024;
Walke et al., 2023).
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The closest attempts to building RL algorithms that capture temporal bits are those based on world
models (Ding et al., 2024; Hafner et al., 2023; Mendonca et al., 2021) and those based on occupancy
models (Janner et al., 2020; Blier et al., 2021; Zheng et al., 2024; Farebrother et al., 2025).1 World
models can achieve great performance in sample efficiency (Janner et al., 2019) and generalize
to diverse tasks (Hafner et al., 2023; Mendonca et al., 2021), although their capacity to perform
long-horizon reasoning remains limited because of compounding errors (Talvitie, 2014; Janner et al.,
2019; Lambert et al., 2022). Occupancy models (Dayan, 1993) and variants that enable scaling to
high-dimensional tasks can also achieve great performance in predicting future events (Sikchi et al.,
2024; Barreto et al., 2018; Zheng et al., 2024; 2025; Farebrother et al., 2025), but are typically hard
to train and ignore user intentions. Recent advances in generative AI (e.g., flow-matching (Lipman
et al., 2024; 2023; Liu et al., 2023) and diffusion (Ho et al., 2020; Song et al., 2021) models) enable
modeling complex distributions taking various inputs, providing new tools for constructing occupancy
models that depend on intentions.

In this paper, we propose a framework (Fig. 1) for pre-training in RL that simultaneously learns a
probabilistic model to capture bits about time and intention. Building upon prior work on variational
inference (Kingma & Welling, 2013; Alemi et al., 2017) and successor representations (Janner
et al., 2020; Touati & Ollivier, 2021; Barreto et al., 2017; Zheng et al., 2024; Farebrother et al.,
2025), we learn latent variable models of temporally distant future states, enabling intention-aware
prediction. Building upon prior work on generative modeling, we use an expressive flow matching
method (Farebrother et al., 2025) to train occupancy models, enabling highly flexible modeling of
occupancy measures. We call the resulting algorithm intention-conditioned flow occupancy models
(InFOM). Experiments on 36 state-based and 4 image-based benchmark tasks show that InFOM
outperforms alternative methods for pre-training and fine-tuning by 1.8× median improvement in
returns and 36% improvement in success rates. Additional experiments demonstrate that our latent
variable model is capable of inferring underlying user intentions (Sec. 5.2) and enables efficient
policy extraction (Sec. 5.3).

2 RELATED WORK

Offline unsupervised RL. The goal of offline unsupervised RL is to pre-train policies, value functions,
or models from an unlabeled (reward-free) dataset to enable efficient learning of downstream tasks.
Prior work has proposed diverse offline unsupervised RL approaches based on unsupervised skill
learning (Touati & Ollivier, 2021; Frans et al., 2024; Park et al., 2024b; Kim et al., 2024; Hu et al.,
2023), offline goal-conditioned RL (Eysenbach et al., 2019; 2022; Valieva & Banerjee, 2024; Park
et al., 2023a; Zheng et al., 2024; Park et al., 2025a), and model-based RL (Mendonca et al., 2021;
Mazzaglia et al., 2022). Among these categories, our method is conceptually related to offline
unsupervised skill learning approaches (Park et al., 2024b; Touati et al., 2023), which also learns a
model that predictions intention. However, our approach differs in that it does not learn multiple
skills during pre-training. Our work is complementary to a large body of prior work on using
behavioral cloning for pretraining (O’Neill et al., 2024; Team et al., 2024), demonstrating that there
are significant additional gains in performance that can be achieved by modeling intentions and
occupancy measures simultaneously.

Unsupervised representation learning for RL. Another way to leverage an unlabeled offline dataset
is to learn representations that facilitate subsequent downstream task learning. Some works adapt
existing representation learning techniques from computer vision, such as contrastive learning (He
et al., 2020; Parisi et al., 2022; Nair et al., 2023) and masked autoencoding (He et al., 2022; Xiao et al.,
2022). Others design specific methods for RL, including self-predictive representations (Schwarzer
et al., 2020; Ni et al., 2024) and temporal distance learning (Sermanet et al., 2018; Ma et al., 2023;
Mazoure et al., 2023). Those learned representations are typically used as inputs for policy and value
networks. The key challenge with these representation learning methods is that it is often (Laskin
et al., 2020), though not always (Zhang et al., 2021), unclear whether the learned representations
will facilitate policy adaptation. In our experiments, we demonstrate that learning occupancy models
enables faster policy learning.

RL with generative models. Modern generative models have been widely adopted to solve RL
problems. Prior work has employed autoregressive models (Vaswani et al., 2017), iterative generative

1We will use “successor representations,” “occupancy measures,” and “occupancy models” interchangeably.
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models (e.g., denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow matching (Liu
et al., 2023; Lipman et al., 2023; 2024)), or autoencoders (Kingma & Welling, 2013) to model trajec-
tories (Chen et al., 2021; Janner et al., 2021; 2022; Ajay et al., 2023), environment dynamics (Ding
et al., 2024; Alonso et al., 2024), skills (Ajay et al., 2021; Pertsch et al., 2021; Frans et al., 2024),
policies (Wang et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025b), and values (Dong et al.,
2025; Agrawalla et al., 2025). We employ a state-of-the-art flow-matching objective (Farebrother
et al., 2025) to model discounted state occupancy measures.

Successor representations and successor features. Prior work has used successor representa-
tions (Dayan, 1993) and successor features (Barreto et al., 2017) for transfer learning (Barreto et al.,
2017; 2018; Borsa et al., 2018; Nemecek & Parr, 2021; Kim et al., 2022), unsupervised RL (Machado
et al., 2017; Hansen et al., 2019; Ghosh et al., 2023; Touati et al., 2023; Park et al., 2024b; 2023b;
Chen et al., 2023; Zheng et al., 2025; Jain et al., 2023; Zhu et al., 2024), and goal-conditioned
RL (Eysenbach et al., 2020; 2022; Zheng et al., 2024). Our method is closely related to prior methods
that learn successor representations with generative models (Janner et al., 2020; Thakoor et al., 2022;
Tomar et al., 2024; Farebrother et al., 2025). In particular, the most closely related to ours is the prior
work by Farebrother et al. (2025), which also uses flow-matching to model the occupancy measures
and partly employs the generalized policy improvement (GPI) for policy extraction. Unlike Fare-
brother et al. (2025), which uses forward-backward representations to capture behavioral intentions
and perform GPI over a finite set of intentions, our method employs a latent variable model to learn
intentions (Sec. 4.2) and uses an expectile loss to perform implicit GPI (Sec. 4.4). We empirically
show that these choices lead to higher returns and success rates (Sec. 5.1, Sec. 5.3).

3 PRELIMINARIES

We consider a Markov decision process (MDP) (Sutton et al., 1998) defined by a state space S, an
action space A, an initial state distribution ρ ∈ ∆(S), a reward function r : S → R, a discount factor
γ ∈ [0, 1), and a transition distribution p : S ×A → ∆(S), where ∆(·) denotes the set of all possible
probability distributions over a space. We will use h to denote a time step in the MDP and assume
the reward function only depends on the state at the current time step rh ≜ r(sh) without loss of
generality (Tomar et al., 2024; Frans et al., 2024; Thakoor et al., 2022). In Appendix A.1, we briefly
review the definition of value functions and the actor-critic framework in RL.

Occupancy measures. Alternatively, one can summarize the stochasticity over trajectories into
the discounted state occupancy measure (Dayan, 1993; Eysenbach et al., 2022; Janner et al., 2020;
Touati & Ollivier, 2021; Zheng et al., 2024; Myers et al., 2024; Blier et al., 2021) that quantifies
the discounted visitation frequency of different states under the policy π. Prior work (Dayan, 1993;
Janner et al., 2020; Touati & Ollivier, 2021; Zheng et al., 2024) has shown that the discounted state
occupancy measure follows a Bellman equation backing up the probability density at the current time
step and the future time steps:

pπγ (sf | s, a) = (1− γ)δs(sf ) + γEs′∼p(s′|s,a),
a′∼π(a′|s′)

[
pπγ (sf | s′, a′)

]
, (1)

where δs(·) denotes the Dirac delta measure centered at s.2 The discounted state occupancy measure
allows us to rewrite the Q-function as a linear function of rewards (Barreto et al., 2017; Touati &
Ollivier, 2021; Zheng et al., 2024; Sikchi et al., 2024):

Qπ(s, a) =
1

1− γ
Esf∼pπγ (sf |s,a) [r(sf )] . (2)

The alternative (dual (Sikchi et al., 2024)) definition of Q-function (Eq. 2) allows us to cast the policy
evaluation step as first learning a generative model pγ(sf | s, a) to simulate the discounted state
occupancy measure of πk and then regressing the estimator Q towards the average reward at states
sampled from pγ (Toussaint & Storkey, 2006; Tomar et al., 2024; Thakoor et al., 2022; Zheng et al.,
2024). See Sec. 4.4 for detailed formulation.

2The recursive relationship in Eq. 1 starts from the current time step (Eysenbach et al., 2022; Touati &
Ollivier, 2021) instead of the next time step as in some prior approaches (Janner et al., 2020; Zheng et al., 2024;
Thakoor et al., 2022).
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Flow matching and TD flows. Flow matching (Lipman et al., 2023; 2024; Liu et al., 2023; Albergo
& Vanden-Eijnden, 2023) refers to a family of generative models based on ordinary differential
equations (ODEs), which are close cousins of denoising diffusion models (Sohl-Dickstein et al., 2015;
Song et al., 2021; Ho et al., 2020), which instead solve a stochastic differential equation (SDE). The
deterministic nature of ODEs equips flow-matching methods with more stable learning objectives
and faster inference speed than denoising diffusion models (Lipman et al., 2023; 2024; Verine et al.,
2023). In Appendix A.2, we discuss the problem setting and the standard learning objective for flow
matching.

In the context of RL, prior work has used flow matching to estimate the discounted state occupancy
measure (Farebrother et al., 2025) by incorporating the Bellman equation (Eq. 1) into the condi-
tional flow matching loss (Eq. 10), resulting in a temporal difference flow matching procedure (TD
flows) (Farebrother et al., 2025). In Appendix A.3, we discuss the detailed formulations of the TD
flow objective for a target policy π. Choosing the target policy π to be the same as the behavioral
policy β, we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing the SARSA
flows. We will use the SARSA variant of the TD flow objective to learn our generative occupancy
models in Sec. 4.3.

4 INTENTION-CONDITIONED FLOW OCCUPANCY MODELS

In this section, we will introduce our method for pre-training and fine-tuning in RL. After formalizing
the problem setting, we will dive into the latent variable model for pre-training an intention encoder
and flow occupancy model. After pre-training the occupancy models, our method will extract polices
for solving different tasks by invoking a generalized policy improvement procedure (Barreto et al.,
2017). We refer to our method as intention-conditioned flow occupancy models (InFOM).

4.1 PROBLEM SETTING

We consider learning with purely offline datasets, where an unlabeled (reward-free) dataset of
transitions D = {(s, a, s′, a′)} collected by the behavioral policy β is provided for pre-training and
a reward-labeled dataset Dreward = {(s, a, r)} collected by some other policy β̃ on a downstream
task is used for fine-tuning. Importantly, the behavioral policy β used to collect D can consist of a
mixture of policies used by different users to complete distinct tasks. We will call this heterogeneous
structure of the unlabeled datasets “intentions,” which are latent vectors zs in some latent space Z .
In practice, these intentions can refer to desired goal images or language instructions that index the
behavioral policy β = {β(· | ·, z) : z ∈ Z}. Because these latent intentions are unobserved to the
pre-training algorithm, we want to infer them as a latent random variable Z from the offline dataset,
similar to prior work (Hausman et al., 2017; Li et al., 2017; Henderson et al., 2017). In Appendix B.2,
we include discussions distinguishing our problem setting from meta RL and multi-task RL problems.

During pre-training, our method exploits the heterogeneous structure of the unlabeled dataset and
extracts actionable information by (1) inferring intentions of the data collection policy and (2)
learning occupancy models to predict long-horizon future states based on those intentions (Sec. 4.2
& 4.3). During fine-tuning, we first recover a set of intention-conditioned Q functions by regressing
towards average rewards at future states generated by the occupancy models, and then extract a policy
to maximize task-specific discounted cumulative returns (Sec. 4.4). Our method builds upon an
assumption regarding the consistency of latent intentions.
Assumption 1 (Consistency). The unlabeled dataset D for pre-training is obtained by executing a
behavioral policy following a mixture of unknown intentions z ∈ Z . We assume that consecutive
transitions (s, a) and (s′, a′) share the same intention.

The consistency of intentions across transitions enables both intention inference using two sets of
transitions and dynamic programming over trajectory segments. See Appendix B.1 for justifications
of this assumption.

4.2 VARIATIONAL INTENTION INFERENCE

The goal of our pre-training framework is to learn a latent variable model that captures both long-
horizon temporal information and unknown user intentions in the unlabeled datasets.
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This part of our method aims to infer the intention z based on consecutive transitions (s, a, s′, a′)
using the encoder pe(z | s′, a′) and predict the occupancy measures of a future state sf using the
occupancy models qd(sf | s, a, z). We want to maximize the likelihood of observing a future state
sf starting from a state-action pair (s, a) (amortized variational inference (Kingma & Welling, 2013;
Margossian & Blei, 2024)), both sampled from the unlabeled dataset D following the joint behavioral
distribution pβ(s, a, sf ) = pβ(s, a)pβ(sf | s, a):

max
qd

Epβ(s,a,sf ) [log qd(sf | s, a)]

≥ max
pe,qd

Epβ(s,a,sf ,s′,a′)
[
Epe(z|s′,a′) [log qd(sf | s, a, z)]− λDKL(pe(z | s′, a′) ∥ p(z))

]
, (3)

where p(z) = N (0, I) denotes an uninformative standard Gaussian prior over intentions, λ ≥ 1
denotes the coefficient that controls the strength of the KL divergence regularization. In practice, we
can use any λ ≥ 0 because rescaling the input (s, a, sf ), similar to normalizing the range of images
from {0, · · · , 255} to [0, 1] in the original VAE (Kingma & Welling, 2013), preserves the ELBO. We
defer the full derivation of the evidence lower bound (ELBO) and the explanation of λ to Appendix C.1.
Inferring the intention z from the next transition (s′, a′) follows from our consistency assumption
(Assump. 1), and is important for avoiding overfitting (Frans et al., 2024). Importantly, pe and qd
are optimized jointly with this objective. One way of understanding this ELBO is as maximizing
an information bottleneck with the chain of random variables (S′, A′) → Z → (S,A, Sf ). See
Appendix C.1 for the connection.

We use flow matching to reconstruct the discounted state occupancy measure rather than maximizing
the likelihood directly, resulting in minimizing a surrogate objective:

min
pe,qd
LFlow(qd, pe) + λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] . (4)

We use LFlow to denote a placeholder for the flow matching loss and will instantiate this loss for the
flow occupancy models qd next.

4.3 PREDICTING THE FUTURE VIA SARSA FLOWS

We now present the objective used to learn the flow occupancy models, where we first introduce some
motivations and desiderata and then specify the actual loss. Given an unlabeled dataset D and an
intention encoder pe(z | s′, a′), the goal is to learn a generative occupancy model qd(sf | s, a, z)
that approximates the discounted state occupancy measure of the behavioral policy conditioned on
different intentions, i.e., qd(sf | s, a, z) ≈ pβ(sf | s, a, z). We will use vd : [0, 1]×S×S×A×Z →
S to denote the time-dependent vector field that corresponds to qd. There are two desired properties
of the learned occupancy models: (1) distributing the peak probability density to multiple sf , i.e.,
modeling multimodal structure, and (2) stitching together trajectory segments that share some
transitions in the dataset, i.e., enabling combinatorial generalization. The first property motivates us
to use an expressive flow-matching model (Lipman et al., 2024), while the second property motivates
us to learn those occupancy models using temporal difference approaches (Janner et al., 2020; Tomar
et al., 2024; Farebrother et al., 2025). Prior work (Farebrother et al., 2025) has derived the TD version
of the regular (Monte Carlo) flow matching loss (Eq. 10) that incorporates the Bellman backup into
the flow matching procedure, showing the superiority in sample efficiency and the capability of
dynamic programming. We will adopt the same idea and use the SARSA variant of the TD flow loss
(Eq. 11) to learn our intention-conditioned flow occupancy models:

LSARSA flow(vd, pe) = (1− γ)LSARSA current flow(vd, pe) + γLSARSA future flow(vd, pe), (5)

LSARSA current flow(vd, pe) = E(s,a,s′,a′)∼pβ(s,a,s′,a′),
z∼pe(z|s′,a′),

t∼UNIF([0,1]),ϵ∼N (0,I)

[
∥v(t, st, s, a, z)− (s− ϵ)∥22

]
,

LSARSA future flow(vd, pe) = E(s,a,s′,a′)∼pβ(s,a,s′,a′),
z∼pe(z|s′,a′),

t∼UNIF([0,1]),ϵ∼N (0,I)

[
∥vd(t, s̄tf , s, a, z)− v̄d(t, s̄tf , s′, a′, z)∥22

]
.

Importantly, incorporating the information from latent intentions into the flow occupancy models
allows us to (1) use the simpler and more stable SARSA bootstrap instead of the Q-learning style
bootstrap (Eq. 11) on large datasets, (2) generalize over latent intentions, avoiding counterfactual
errors. Sec. 5.2 visualizes the latent intentions, and Appendix F.2 contains additional experiments.
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4.4 GENERATIVE VALUE ESTIMATION AND IMPLICIT GENERALIZED POLICY IMPROVEMENT

We next discuss the fine-tuning process in our algorithm. Our fine-tuning method builds on the
dual perspective of value estimation introduced in the preliminaries (Eq. 2). We first estimate a set
of intention-conditioned Q functions using regression and then use those intention-conditioned Q
functions to extract a policy, utilizing generalized policy improvement (GPI) (Barreto et al., 2017).
The key idea of GPI is that, in addition to taking the maximum over the actions, we can also take the
maximum over the intentions. In our setting, the number of intentions is infinite—one for every choice
of continuous z. Thus, taking the maximum over the intentions is both nontrivial and susceptible to
instability (Sec. 5.3). We address this issue by replacing the greedy “max” with an upper expectile
loss, resulting in an implicit generalized policy improvement procedure.

Generative value estimation. Given a reward-labeled dataset Dreward and the pre-trained flow occu-
pancy models qd, we can estimate intention-conditioned Q values for a downstream task. Specifically,
for a fixed latent intention z ∈ Z , we first sample a set of N future states from the flow occupancy
models, s(1)f , · · · , s(N)

f : s
(i)
f ∼ qd(sf | s, a, z), and then constructs a Monte Carlo (MC) estimation

of the Q function using those generative samples:3

Qz(s, a) =
1

(1− γ)N

N∑
i=1

r
(
s
(i)
f

)
, s

(i)
f ∼ qd(sf | s, a, z), (6)

where r(·) is the reward function or a learned reward predictor. Importantly, the choice of the number
of future states N affects the accuracy and variance of our Q estimate. Ablation experiments in
Appendix F.11 indicate that N = 16 works effectively in our experiments. Note that we choose to
sample z from the prior p(z) instead of from the posterior qd(z | s′, a′), resembling drawing random
samples from a variational auto-encoder (Kingma & Welling, 2013). We include an ablation study in
Appendix F.5, comparing the effect of fine-tuning with latents from the prior p(z) and the posterior
qd(z | s′, a′). In practice, we find sampling from the prior p(z) worked well in our experiments.

Implicit generalized policy improvement. We can then use those MC estimation of Q functions to
learn a policy by invoking the generalized policy improvement. The naive GPI requires sampling
a finite set of latent intentions from the prior distribution p(z), z(1), · · · , z(M) : z(j) ∼ p(z) and
greedily choose one Qz to update the policy (Barreto et al., 2017):

argmax
π

E
s∼pβ̃(s), a∼π(a|s)

z(1),··· ,z(M): z(j)∼p(z)

[
max
z(j)

Qz(j)(s, a)

]
.

Despite its simplicity, the naive GPI suffers from two main disadvantages. First, using the maximum
Q over a finite set of latent intentions to approximate the maximum Q over an infinite number of
intentions results in local optima. Second, when we take gradients of this objective with respect to
the policy, the chain rule gives one term involving ∇aqd(sf |s, a, z). Thus, computing the gradients
requires differentiating through the ODE solver (backpropagating through time (Park et al., 2025b)),
which is unstable. We address these challenges by learning an explicit scalar Q function to distill the
MC estimation of intention-conditioned Q functions. This approach is appealing because gradients of
the Q function no longer backpropagate through the ODE solver. We also replace the “max” over
a finite set of intention-conditioned Q functions with an upper expectile loss Lµ2 (Kostrikov et al.,
2022), resulting in the following critic loss

L(Q) = E(s,a)∼pβ̃(s,a), z∼p(z) [L
µ
2 (Qz(s, a)−Q(s, a))] , (7)

where Lµ2 (x) = |µ− 1(x < 0)|x2 and µ ∈ [0.5, 1). In Appendix C.2, we discuss the intuition and
theoretical soundness of this distillation step. After distilling the intention-conditioned Q functions
into a single function, we can extract the policy by selecting actions to maximize Q with a behavioral
cloning regularization (Fujimoto & Gu, 2021) using the actor loss

L(π) = −E(s,a)∼pβ̃(s,a),aπ∼π(aπ|s)[Q(s, aπ) + α log π(a | s)], (8)

where α controls the regularization strength. We use the behavioral cloning regularization to both
reduce errors from sampling out-of-distribution (OOD) actions (Kumar et al., 2020; Fujimoto & Gu,

3We omit the dependency of Qz on s
(1)
f , · · · , s(N)

f to simplify notations.
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cheetah walker quadruped jaco cube single cube double scene puzzle 4x4

Figure 2: Domains for evaluation. (Left) ExORL domains (16 state-based tasks). (Right) OGBench domains
(20 state-based tasks and 4 image-based tasks).
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(a) 16 state-based ExORL tasks from Yarats et al. (2022).
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(b) 20 state-based and 4 image-based OGBench tasks
from Park et al. (2025a). We average over 5 tasks for
each state-based domain and average over 4 visual tasks.

Figure 3: Evaluation on ExORL and OGBench tasks. We compare InFOM against prior methods that
utilize various learning paradigms on task-agnostic pre-training and task-specific fine-tuning. InFOM performs
similarly to, if not better than, prior methods on 7 out of the 9 domains, including the most challenging visual
tasks. We report means and standard deviations over 8 random seeds (4 random seeds for image-based tasks)
with error bars indicating one standard deviation. See Table 4 for full results.

2021) and mitigate error propagations through overestimated Qz values. Ablation experiments in
Appendix F.7 and Appendix F.12 show that this behavioral cloning regularization is important for
improving the policy performance. Taken together, we call the expectile Q distillation step (Eq. 7)
and the policy optimization step (Eq. 8) implicit generalized policy improvement (implicit GPI).

Algorithm summary. We use neural networks to parameterize the intention encoder pϕ, the vector
field of the occupancy models vθ, the reward predictor rη, the critic Qψ, and the policy πω. We
consider two stages: pre-training and fine-tuning. In Alg. 1, we summarize the pre-training process
of InFOM. InFOM pre-trains (1) the vector field vθ using the SARSA flow loss (Eq. 5) and (2) the
intention encoder pϕ using the ELBO (Eq. 3). Alg. 2 shows the pseudocode of InFOM for fine-tuning.
InFOM mainly learns (1) the reward predictor rη via simple regression, (2) the critic Qψ using
expectile distillation (Eq. 7), and (3) the policy πω by conservatively maximizing the Qψ (Eq. 8).
The open-source implementation is available in the supplementary materials.

5 EXPERIMENTS

Our experiments start with comparing InFOM to prior methods that first pre-train on reward-free
datasets and then fine-tune on reward-labeled datasets, measuring the performance on downstream
tasks. We then study the two main components of our method: the variational intention encoder and
the implicit GPI policy extraction strategy. Visualizations of the latent intention inferred by our varia-
tional intention encoder show alignment with the underlying ground-truth intentions. Our ablation
experiments reveal the effect of the implicit GPI policy extraction strategy. We also include additional
experiments showing InFOM enables faster policy learning during fine-tuning in Appendix F.3.
Our algorithm is robust to various choices of hyperparameters (Appendix F.12). Following prior
work (Park et al., 2025b), all experiments report means and standard deviations across 8 random
seeds for state-based tasks and 4 random seeds for image-based tasks.

5.1 COMPARING TO PRIOR PRE-TRAINING AND FINE-TUNING METHODS

Our experiments study whether the proposed method (InFOM), which captures actionable information
conditioned on user intentions from unlabeled datasets, enables effective pre-training and fine-tuning.
We select 36 state-based and 4 image-based tasks across diverse robotic navigation and manipula-
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Figure 4: Visualization of latent intentions. (Top) The optimal policy picks up the blue block from the left
and places it on the right. (Bottom) Using t-SNE (Maaten & Hinton, 2008), we visualize the latent intentions
inferred by the variational intention encoder in InFOM, comparing against latent representations inferred by
HILP and FB for learning FOMs. The predictions from InFOM align with the underlying intentions. See Sec. 5.2
for details and Appendix E for more visualizations.

tion domains and compare against 8 baselines. The models pre-trained by those methods include
behavioral cloning policies (Kostrikov et al., 2022; Tarasov et al., 2023a), transition models (Janner
et al., 2019), representations (Caron et al., 2021), discriminative classifiers that predict occupancy
measures (Eysenbach et al., 2022; Zheng et al., 2024), and latent skills (Touati & Ollivier, 2021; Park
et al., 2024b). We defer the detailed discussions about benchmarks and datasets to Appendix D.1 and
the rationale for choosing different baselines to Appendix D.2. Whenever possible, we use the same
hyperparameters for all methods (Table 1). See Appendix D.3 for details of the evaluation protocol
and Appendix D.4 for implementations and hyperparameters of each method.

We report results in Fig. 3, aggregating over four tasks in each domain of ExORL and five tasks in
each domain of OGBench, and present the full results in Table 4. These results show that InFOM
matches or surpasses all baselines on six out of eight domains. On ExORL benchmarks, all methods
perform similarly on the two easier domains (cheetah and quadruped), while InFOM can obtain
20× improvement on jaco, where baselines only make trivial progress (Table 4). We suspect the
outsized improvement on the jaco task is because of the high-dimensional state space (twice that of
the other ExORL tasks (Yarats et al., 2022)) and because it has sparse rewards; Appendix Fig. 13
supports this hypothesis by showing that the ReBRAC baseline achieves significantly higher returns
when using dense rewards. On those more challenging state-based manipulation tasks from OGBench,
we find a marked difference between baselines and InFOM; our method achieves 36% higher success
rate over the best performing baseline. In addition, InFOM is able to outperform the best baseline
by 31% using RGB images as input directly (visual tasks). We hypothesize that the baselines
fail to solve these more challenging tasks because of the semi-sparse reward functions. In contrast,
our method can explore different regions of the state space using the different intentions, thereby
addressing the challenge of reward sparsity. We conjecture that the variance of InFOM across seeds
in some experiments (e.g., cheetah, cube single, and puzzle 4x4) reflects stochasticity in
the MC Q estimates (Eq. 6), which might be mitigated by increasing the number of sampled future
states (See Appendix F.11). In Appendix F.1, we compare InFOM against selective baselines on real
robotics datasets, showing 34% improvement.

5.2 VISUALIZING LATENT INTENTIONS

Our next experiment studies the intention encoder in our algorithm. To investigate whether the
proposed method discovers distinct user intentions from an unlabeled dataset, we visualize latent
intentions inferred by our variational intention encoder. We include comparisons against two alterna-
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tive intention encoding mechanisms proposed by prior methods. Specifically, we consider replacing
the variational intention encoder with either (1) a set of Hilbert representations (Park et al., 2024b) or
(2) a set of forward-backward representations (Touati & Ollivier, 2021), and then pre-training the
flow occupancy models (FOM) conditioned on these two sets of representations. We call these two
variants HILP + FOM and FB + FOM. Note that FB + FOM is equivalent to TD flows with GPI
in Farebrother et al. (2025). Using t-SNE (Maaten & Hinton, 2008), we visualize latent intentions
predicted by these three methods on cube double task 1 from the OGBench benchmarks.

Fig. 4 shows the optimal trajectory, where the manipulator picks the blue block from the left and
then places it on the right, and the visualizations. The 2D t-SNE visualizations indicate that both
FB + FOM and HILP + FOM infer mixed latent intentions for “pick” and “place” behaviors, while
InFOM predicts a sequence of latent intentions with clear clustering. This result suggests that InFOM
is capable of inferring latent intentions that align with the underlying ground-truth intentions. See
Appendix E for more visualizations. In Appendix F.2, we include additional experiments comparing
the downstream performance between InFOM and HILP + FOM and FB + FOM. Results in Appendix
Fig. 9 suggest that InFOM can outperform those two baselines on 3 of 4 tasks.

5.3 IMPORTANCE OF THE IMPLICIT GENERALIZED POLICY IMPROVEMENT
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Figure 5: Comparison to alternative policy extrac-
tion strategies. We compare InFOM to alternative pol-
icy extraction strategies based on the standard general-
ized policy improvement or one-step policy improve-
ment. Our method is 44% more performant with 8×
smaller variance than the variant using the standard GPI.
See Sec. 5.3 for details.

Our final experiments study different approaches
for policy optimization. We hypothesize that
our proposed method is more efficient and ro-
bust than other policy extraction strategies. To
test this hypothesis, we conduct ablation exper-
iments on one task in the ExORL benchmarks
(quadruped jump) and another task taken
from the OGBench benchmarks (scene task
1), again following the evaluation protocols in
Appendix D.3. We compare two alternative
policy learning approaches in the fine-tuning
phase. First, we ablate the effect of the upper
expectile loss by comparing against the standard
GPI, which maximizes Q functions over a finite
set of intentions {z(1), · · · , z(M)}. We choose
M = 32 latent intentions to balance between performance and compute budget, and call this variant
InFOM + GPI. Second, we ablate the effect of the variational intention encoder by removing the
intention dependency in the flow occupancy models and extracting the policy via one-step policy
improvement (PI) (Wang et al., 2018; Brandfonbrener et al., 2021; Peters & Schaal, 2007; Peters et al.,
2010). We call this method FOM + one-step PI and defer the detailed formulation to Appendix C.3.

As shown in Fig. 5, InFOM achieves significantly higher returns and success rates than its variant
based on one-step policy improvement, suggesting the importance of inferring user intentions.
Compared with its GPI counterpart, our method is 44% more performant with 8× smaller variance
(the error bar indicates one standard deviation), demonstrating that the implicit GPI indeed performs
a relaxed maximization over intentions while maintaining robustness.

Additional experiments. In Appendix F.3, we include additional ablations showing that InFOM
enables faster policy learning. Appendix F.4 ablate InFOM against a variant of InFOM with a set of
discrete latents trained vector quantization loss, showing that the continous latent space generally
performs better. In Appendix F.8, we relate the diversity of the pre-training datasets to their sizes. The
dataset size ablations in Appendix F.9 show that using sufficient pre-training and fine-tuning data is
important. Appendix F.10 study the effects of fine-tuning on suboptimal datasets. Our hyperparameter
ablations can be found in Appendix F.12.

Alternative generative occupancy models. Farebrother et al. (2025) has already discussed using
alternative prior generative modeling approaches to learn the occupancy measure. Specifically,
they compare flow-based occupancy models against representative generative methods, including
denoising diffusion (Ho et al., 2020), VAE (Kingma & Welling, 2013; Higgins et al., 2017), and
GAN (Goodfellow et al., 2014). Results in Fig. 2 of Farebrother et al. (2025) show that flow-based
occupancy models (TD2-CFM in the figure) outperforms alternative generative methods in modeling
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the occupancy measures. For this reason, we do not include comparisons against alternative generative
occupancy models to distinguish our contributions.

6 CONCLUSION

In this work, we presented InFOM, a method that captures diverse intentions and their long-term
behaviors from an unstructured dataset, leveraging the expressivity of flow models. We empirically
showed that the intentions captured in flow occupancy models enable effective and efficient fine-
tuning, outperforming prior unsupervised pre-training approaches on diverse state- and image-based
domains.

Limitations. One limitation of InFOM is that our reduction from trajectories to consecutive state-
action pairs might not always accurately capture the original intentions in the trajectories. While
we empirically showed that this simple approach is sufficient to achieve strong performance on our
benchmark tasks, it can be further improved with alternative trajectory encoding techniques and data
collection strategies, which we leave for future work.

REPRODUCIBILITY STATEMENT

We implement InFOM and all baselines in the same codebase using JAX (Bradbury et al., 2018). Our
implementations build on top of OGBench’s and FQL’s implementations (Park et al., 2025a;b). We
include the common hyperparameters for all the methods in Appendix Table 1, the hyperparameters
for InFOM in Appendix Table 2 and Appendix Table 3, and the hyperparameters for baselines in
Appendix Table 3. All the experiments were run on a single NVIDIA A6000 GPU and can be
finished in 4 hours for state-based tasks and 12 hours for image-based tasks. We provide open-source
implementations of InFOM and all baselines in the supplementary materials.
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Algorithm 1 Intention-Conditioned Flow Occupancy Model (pre-training).

1: Input The intention encoder pϕ, the vector field vθ, the target vector field vθ̄, the policy πω , and
the reward-free dataset D.

2: for each iteration do
3: Sample a batch of {(s, a, s′, a′) ∼ D}.
4: Sample a batch of {ϵ ∼ N (0, I)} and a batch of {t ∼ UNIF([0, 1])}.
5: Encode intentions {z ∼ pϕ(z | s′, a′)} for each (s′, a′).

▽ SARSA flow occupancy model loss.
6: st ← (1− t)ϵ+ ts
7: s̄f ← EulerMethod(vθ̄, ϵ, s

′, a′, z), s̄tf ← (1− t)z + ts̄f .
8: LSARSA current flow(θ, ϕ)← E(s,a,z,t,ϵ,st)

[
∥vθ(t, st, s, a, z)− (s− z)∥22

]
.

9: LSARSA future flow(θ, ϕ)← E(s,a,z,t,ϵ,s̄tf )

[
∥vθ(t, s̄tf , s, a, z)− vθ̄(t, s̄tf , s′, a′, z)∥22

]
.

10: LSARSA flow(θ, ϕ)← (1− γ)Lcurrent(θ, ϕ) + γLfuture(θ, ϕ). ▷ Eq. 5
▽ Intention encoder loss.

11: LELBO(θ, ϕ)← LSARSA flow(θ, ϕ) + λE(s′,a′) [DKL (pϕ(z | s′, a′) ∥ N (0, I))]. ▷ Eq. 4
▽ (Optional) Behavioral cloning loss.

12: LBC(ω)← −E(s,a) [log πω(a | s)].
13: Update the vector field θ and the intention encoder ϕ by minimizing LELBO(θ, ϕ).
14: Update the policy ω by minimizing LBC(ω).
15: Update the target vector field θ̄ using an exponential moving average of θ.
16: Return vθ, pϕ, and πω .

A PRELIMINARIES

A.1 VALUE FUNCTIONS AND THE ACTOR-CRITIC FRAMEWORK

Algorithm 3 Euler method for solving the flow
ODE (Eq. 9).

1: Input The vector field v and the noise ϵ. (Op-
tional) The number of steps T with default
T = 10.

2: Initialize t = 0 and xt = ϵ
3: for each step t = 0, 1, · · · , T − 1 do
4: xt+1 ← xt + v(t/T, xt)/T

5: Return x̂ = xT

The goal of RL is to learn a policy π : S →
∆(A) that maximizes the expected discounted
return J(π) = Eτ∼π(τ)

[∑∞
h=0 γ

hrh
]
, where τ

is a trajectory sampled by the policy. We will
use β : S → ∆(A) to denote the behavioral pol-
icy. Given a policy π, we measure the expected
discounted return starting from a state-action
pair (s, a) and a state s as the (unnormalized)
Q-function and the value function, respectively:

Qπ(s, a) = Eτ∼π(τ)

[ ∞∑
h=0

γhrh

∣∣∣∣∣ s0 = s, a0 = a

]
, V π(s) = Ea∼π(a|s) [Qπ(s, a)] .

Prior actor-critic methods (Schulman et al., 2015; 2017; Haarnoja et al., 2018; Fujimoto et al., 2018;
Kumar et al., 2020; Fujimoto & Gu, 2021) typically maximize the RL objective J(π) by (1) learning
an estimate Q of Qπ via the temporal difference (TD) loss (policy evaluation) and then (2) improving
the policy π by selecting actions that maximizes Q (policy improvement):

Qk+1 ← argmax
Q

E(s,a,r,s′)∼pβ(s,a,r,s′),a′∼πk(a′|s′)

[(
Q(s, a)− (r + γQk(s′, a′))

)2]
πk+1 ← argmax

π
Es∼pβ(s),a∼π(a|s)

[
Qk+1(s, a)

]
,

where k indicates the number of updates and β is the behavioral policy representing either a replay
buffer (online RL) or a fixed dataset (offline RL).
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Algorithm 2 Intention-Conditioned Flow Occupancy Model (fine-tuning).

1: Input The intention encoder pϕ, the vector field vθ, the target vector field vθ̄, the reward predictor
rη, the critic Qψ, the policy πω (random initialization or initialized using πω from Alg. 1), and
the reward-labeled dataset Dreward.

2: for each iteration do
3: Sample a batch of {(s, a, r, s′, a′) ∼ Dreward}.
4: Sample a batch of {ϵ ∼ N (0, I)} and a batch of {t ∼ UNIF([0, 1])}.
5: Sample prior intentions {z ∼ p(z)}.
6: Sample a batch of {(ϵ(1), · · · , ϵ(N)) ∼ (N (0, I), · · · ,N (0, I))}.

▽ SARSA flow occupancy model loss and intention encoder loss.
7: LELBO(θ, ψ) as in Alg. 1.

▽ Reward predictor loss.
8: LReward(η)← E(s,r)

[
(rη(s)− r)2

]
.

▽ Critic loss.
9: s

(i)
f ← EulerMethod(vθ, ϵ(i), s, a, z) (Alg. 3) for each (s, a, z, ϵ(i)).

10: Qz (s, a)← 1
(1−γ)N

∑N
i=1 rη

(
s
(i)
f

)
. ▷ Eq. 6

11: LCritic(ψ)← E(
s,a,z,s

(1)
f ,··· ,s(N)

f

) [Lµ2 (Qz (s, a)−Qψ(s, a))]. ▷ Eq. 7

▽ Actor loss.
12: LActor(ω)← −E(s,a),aπ∼πω(aπ|s) [Qψ(s, a

π) + α log πω(a | s)]. ▷ Eq. 8
13: Update the vector field θ and the intention encoder ϕ by minimizing LELBO(θ, ϕ).
14: Update the reward predictor η, the critic ψ, and the policy ω by minimizing LReward(η),

LCritic(ψ), and LActor(ω) respectively.
15: Update the target vector field θ̄ using an exponential moving average of θ.
16: Return vθ, pϕ, rη , Qϕ, and πω .

A.2 FLOW MATCHING

The goal of flow matching methods is to transform a simple noise distribution (e.g., a d-dimensional
standard Gaussian) into a target distribution pX over some spaceX ⊂ Rd that we want to approximate.
Specifically, flow matching uses a time-dependent vector field v : [0, 1]× Rd → Rd to construct a
time-dependent diffeomorphic flow ϕ : [0, 1]× Rd → Rd (Lipman et al., 2023; 2024) that realizes
the transformation from a single noise ϵ to a generative sample x̂, following the ODE

d

dt
ϕ(t, ϵ) = v(t, ϕ(t, ϵ)), ϕ(0, ϵ) = ϵ, ϕ(1, ϵ) = x̂. (9)

We will use t to denote a time step for flow matching and sample the noise ϵ from a standard Gaussian
distribution N (0, I) throughout our discussions.4 Prior work has proposed various formulations for
learning the vector field (Lipman et al., 2023; Campbell et al., 2024; Liu et al., 2023; Albergo &
Vanden-Eijnden, 2023) and we adopt the simplest flow matching objective building upon optimal
transport (Liu et al., 2023) and conditional flow matching (CFM) (Lipman et al., 2023),

LCFM(v) = E t∼UNIF([0,1]),
x∼pX (x),ϵ∼N (0,I)

[
∥v(t, xt)− (x− ϵ)∥22

]
, (10)

where UNIF([0, 1]) is the uniform distribution over the unit interval and xt = tx + (1 − t)ϵ is a
linear interpolation between the ground-truth sample x and the Gaussian noise ϵ. Importantly, we
can generate a sample from the vector field v by numerically solving the ODE (Eq. 9). We will use
the Euler method (Alg. 3) as our ODE solver following prior practice (Grathwohl et al., 2019; Chen
et al., 2018; Lipman et al., 2023; Liu et al., 2023; Park et al., 2025b; Frans et al., 2025).

4In theory, the noise can be drawn from any distribution, not necessarily limited to a Gaussian (Liu et al.,
2023).
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A.3 TEMPORAL DIFFERENCE FLOWS

Given a policy π, prior work (Farebrother et al., 2025) models the occupancy measure pπγ by
optimizing the vector field v : [0, 1]× S × S ×A → S using the following loss:

LTD flow(v) = (1− γ)LTD current flow(v) + γLTD future flow(v) (11)

LTD current flow(v) = Et∼UNIF([0,1]),ϵ∼N (0,I),

(s,a)∼pβ(s,a)

[
∥v(t, st, s, a)− (s− ϵ)∥22

]
LTD future flow(v) = E t∼UNIF([0,1]),ϵ∼N (0,I),

(s,a,s′)∼pβ(s,a,s′),a′∼π(a′|s′)

[
∥v(t, s̄tf , s, a)− v̄(t, s̄tf , s′, a′)∥22

]
,

where pβ(s, a) and pβ(s, a, s′) denote the joint distribution of transitions, st = ts + (1 − t)ϵ is a
linear interpolation between the current state s and the noise ϵ, and v̄ denotes an exponential moving
average of historical v over iterations (a target vector field) (Grill et al., 2020; Mnih et al., 2015;
Caron et al., 2021). Of particular note is that we obtain a target future state s̄f by applying the Euler
method (Alg. 3) to v̄ at the next state-action pair (s′, a′), where a′ is sampled from the target policy π
of interest, and the noisy future state s̄tf = ts̄f + (1− t)ϵ is a linear interpolation between this future
state s̄f and the noise ϵ. Intuitively, minimizing LTD current flow reconstructs the distribution of current
state s, while minimizing LTD future flow bootstraps the vector field v at a noisy target future state s̄tf ,
similar to Q-learning (Watkins & Dayan, 1992). Choosing the target policy π to be the same as the
behavioral policy β, we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing
the SARSA flows. We call the loss in Eq. 11 the TD flow loss5 and use the SARSA variant of it to
learn generative occupancy models.

B FURTHER DISCUSSIONS ON THE PROBLEM SETTING

B.1 THE CONSISTENCY ASSUMPTION ON INTENTIONS

We now discuss the reason for making the consistency assumption (Assumption 1) on latent intentions.
Since we use a heterogeneous behavioral policy to collect the unlabeled dataset, each unknown user
intention indexed their own behavioral policy β : S × Z → ∆(A). The key observation is that
the occupancy measure of each intention-conditioned behavioral policy follows its own Bellman
equations (Similar to Eq. 1):

pβγ (sf | s, a, z) = (1− γ)δs(sf ) + γEs′∼p(s′|s,a),
a′∼β(a′|s′,z)

[
pβγ (sf | s′, a′, z)

]
,

suggesting that the same latent z propagates through the transitions with the same underlying user
intentions. Importantly, this propagation requires using a TD loss to estimate the behavioral occupancy
measure, which aligns with the goal of our SARSA flow-matching losses (Eq. 5). We note that
prior work (Touati & Ollivier, 2021) also adapts the same formulation of the intention-conditioned
occupancy measure for zero-shot RL.

B.2 DISTINCTIONS FROM META RL AND MULTI-TASK RL

Our problem setting is conceptually similar to meta RL (Duan et al., 2016; Rakelly et al., 2019;
Pong et al., 2022) with two key distinctions. First, offline meta RL methods typically have access to
explicit task descriptions (e.g., a one-hot task indicator) together with task-specific datasets. These
descriptions and datasets induce a clear clustering of transitions. In contrast, our method must infer
this structure from a heterogeneous dataset in an unsupervised manner. Second, offline meta RL
trains on reward-labeled data during the meta-training phase, where task-specific rewards provide
supervision for policy learning. In contrast, during pre-training, our method learns a generative model
that predicts future states from inferred intentions without using any task-specific reward signals.

Similar to the distinctions between our setting and offline meta RL problems, our method does not
fall into the multi-task RL category (Sodhani et al., 2021; Yu et al., 2020). During pre-training, (1)
InFOM does not have access to task descriptions or task-specific datasets, and (2) it does not use any
supervision from task-specific reward signals. Instead, InFOM pre-trains a generative, multi-step
transition model that facilitates value estimation for downstream tasks.

5The TD flow loss is called the TD2-CFM loss in Farebrother et al. (2025) and we rename it for simplicity.
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C THEORETICAL ANALYSES

C.1 THE EVIDENCE LOWER BOUND AND ITS CONNECTION WITH AN INFORMATION
BOTTLENECK

We first derive the evidence lower bound for optimizing the latent variable model and then show its
connection with an information bottleneck. Given the unlabeled dataset D, we want to maximize
the likelihood of consecutive transitions (s, a, s′, a′) and a future state sf sampled from the same
trajectory following the behavioral joint distribution pβ(s, a, sf , s′, a′) = pβ(s)β(a | s)pβγ (sf |
s, a)p(s′ | s, a)β(a′ | s′). We use (s′, a′) to encode the intention z by the encoder pe(z | s, a) and
(s, a, sf , z) to learn the occupancy models qd(sf | s, a, z), employing an ELBO of the likelihood of
the prior data:

Epβ(s,a,sf ) [log qd(sf | s, a)]
= Epβ(s,a,sf ,s′,a′) [log qd(sf | s, a)]
= Epβ(s,a,sf ,s′,a′)

[
logEp(z) [qd(sf | s, a, z)]

]
(a)
= Epβ(s,a,sf ,s′,a′)

[
logEp(z)

[
qd(sf | s, a, z)

pe(z | s′, a′)
pe(z | s′, a′)

]]
(b)

≥ Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)]−DKL(pe(z | s′, a′) ∥ p(z))]
(c)

≥ Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)]− λDKL(pe(z | s′, a′) ∥ p(z)]
= ELBO(pe, qd),

where in (a) we introduce the amortized variational encoder pe(z | s′, a′), in (b) we apply the Jensen’s
inequality (Durrett, 2019), and in (c) we introduce a coefficient λ ≥ 1 to control the strength of
the KL divergence regularization. In practice, we can use any λ ≥ 0 because rescaling the input
(s, a, sf ), similar to normalizing the range of images from {0, · · · , 255} to [0, 1] in the original
VAE (Kingma & Welling, 2013), preserves the ELBO. Formally, following prior work (Higgins et al.,
2017), maximizing this ELBO can also be interpreted as an optimization problem that simultaneously
predicts future states while penalizing the intention encoder:

max
pe,qd

Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)] s.t. DKL(pe(z | s′, a′) ∥ p(z)) ≤ const..

Rewriting this constrained optimization problem as the Lagrangian produces

Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)]− λDKL(pe(z | s′, a′) ∥ p(z)),

where we introduce a coefficient λ ≥ 0 to control the strength of the KL divergence regularization.

Alternatively, the constrained optimization problem can also be cast as a variational lower bound on
an information bottleneck with the chain of random variables (S′, A′)→ Z → (S,A, Sf ) (Tishby
et al., 2000; Alemi et al., 2017; Saxe et al., 2018):

Iβ(S,A, Sf ;Z)− λIβ(S′, A′;Z)

(a)
= Iβ(S,A, Sf ;Z)− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ pe(z))]
(b)

≥ Iβ(S,A, Sf ;Z)− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))]
(c)

≥ Epβ(s,a,sf ,s′,a′)
pe(z|s′,a′)

[log qd(s, a, sf | z)]− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] +Hβ(S,A, Sf )

(d)

≥ Epβ(s,a,sf ,s′,a′)
pe(z|s′,a′)

[log qd(sf | s, a, z)]− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] + const.

where in (a) we use the definition of Iβ(S′, A′;Z) and pe(z) is the marginal distribution of latent
intentions z defined as pe(z) =

∫
pβ(s′, a′)pe(z | s′, a′)ds′da′, in (b) we apply the non-negative

property of the KL divergence DKL(pe(z) ∥ p(z)), in (c) we apply the standard variation lower
bound of the mutual information (Barber & Agakov, 2004; Poole et al., 2019) to incorporate the
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decoder (occupancy models) qd(s, a, sf | z), and in (d) we choose the variational decoder to satisfy
log qd(s, a, sf | z) = log pβ(s, a) + log qd(sf | s, a, z) and consider the entropy Hβ(S,A, Sf ) as a
constant. Therefore, the lower bound in Eq. 3 can also be interpreted as maximizing the information
bottleneck Iβ(S,A, Sf ;Z)− λIβ(S′, A′;Z) with λ ≥ 0.

C.2 INTUTIONS AND DISCUSSIONS ABOUT THE IMPLICIT GENERALIZED POLICY
IMPROVEMENT

The intuition for the expectile distillation loss (Eq. 7) is that the scalar Q function Q(·, ·) is a one-step
summary of the average reward at future states sampled from the flow occupancy models, while the
expectile loss serves as a "softmax" operator over the entire latent intention space. Theoretically, this
expectile loss is guaranteed to converge to the maximum over p(z) when µ → 1 (See Sec. 4.4 in
Kostrikov et al. (2022) for details). Therefore, given an infinite amount of samples (N →∞) and an
expectile µ→ 1, the Q converges to the greedy value functions:

Q⋆(s, a) = max
z∼p(z)

1

(1− γ)
Eqd(sf |s,a,z)[r(sf )].

If we further assume that the flow occupancy models are optimal, i.e., q⋆d(sf | s, a, z) = pβ(sf |
s, a, z), then the optimal Q corresponds to a greedy value function under the behavioral policy β:

Q⋆(s, a) = max
z∼p(z)

Qβ(s, a, z).

Unlike Q-learning, which converges to the optimal Q-function sequentially (Watkins & Dayan, 1992;
Sutton et al., 1998), the implicit GPI proposes a new policy that is strictly no worse than the set
of policies that correspond to each Qz in parallel (See Sec. 4.1 in Barreto et al. (2017) for further
discussions). Unlike one-step policy improvement (Wang et al., 2018; Brandfonbrener et al., 2021;
Peters & Schaal, 2007; Peters et al., 2010), implicit GPI is able to converge to the optimal policy for
a downstream task, assuming that the task-specific intention has been captured during pre-training.

C.3 ONE-STEP POLICY IMPROVEMENT WITH FLOW OCCUPANCY MODELS

The FOM + one-step PI variant performs one-step policy improvement using a flow occupancy
model qd(sf | s, a) that is not conditioned on latent intentions. This flow occupancy model captures
the discounted state occupancy measure of the (average) behavioral policy. After training the flow
occupancy model, FOM + one-step PI fits a Q function and extracts a behavioral-regularized policy:

Q← argmin
Q

1

1− γ
E(s,a)∼pβ̃(s,a),sf∼qd(sf |s,a)[(Q(s, a)− r(sf ))2],

π ← argmax
π

E(s,a)∼pβ̃(s,a),aπ∼π(aπ|s) [Q(s, aπ) + α log π(a | s)] .

Intuitively, the first objective fits the behavioral Q function based on the dual definition (Eq. 2),
and the second objective trains a policy to maximize this behavioral Q function, invoking one-
step policy improvement. While this simple objective sometimes achieves strong performance on
some benchmark tasks (Brandfonbrener et al., 2021; Eysenbach et al., 2022), it does not guarantee
convergence to the optimal policy due to the use of a behavioral value function.

D EXPERIMENTAL DETAILS

D.1 TASKS AND DATASETS

Our experiments use a suite of 36 state-based and 4 image-based control tasks taken from ExORL
benchmarks Yarats et al. (2022) and OGBench task suite (Park et al., 2025a) (Fig. 2).

ExORL. We use 16 state-based tasks from the ExORL (Yarats et al., 2022) benchmarks based on the
DeepMind Control Suite (Tassa et al., 2018). These tasks involve controlling four robots (cheetah,
walker, quadruped, and jaco) to achieve different locomotion behaviors. For each domain,
the specific tasks are: cheetah {run, run backward, walk, walk backward}, walker
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{walk, run, stand, flip}, quadruped {run, jump, stand, walk}, jaco {reach top
left, reach top right, reach bottom left, reach bottom right}. For all tasks
in cheetah, walker, and quadruped, both the episode length and the maximum return are
1000. For all tasks in jaco, both the episode length and the maximum return are 250. Following
prior work (Park et al., 2024b), we multiply the return of jaco tasks by 4 to match other ExORL
tasks during aggregation.

Following the prior work (Touati et al., 2023; Park et al., 2024b; Kim et al., 2024), we will use 5M
unlabeled transitions collected by some exploration methods (e.g., RND (Burda et al., 2019)) for
pre-training, and another 500K reward-labeled transitions collected by the same exploratory policy
for fine-tuning. The fine-tuning datasets are labeled with task-specific dense rewards (Yarats et al.,
2022), except in the jaco domains, where the reward signals are sparse.

OGBench. We use 20 state-based manipulation tasks from four domains (cube single, cube
double, scene, and puzzle 4x4) in the OGBench task suite Park et al. (2025a), where the
goal is to control a simulated robot arm to rearrange various objects. For each domain, the specific
tasks are: cube single {task 1 (pick and place cube to left), task 2 (pick and place cube to
front), task 3 (pick and place cube to back), task 4 (pick and place cube diagonally), task 5
(pick and place cube off-diagonally)}, cube double {task 1 (pick and place one cube), task
2 (pick and place two cubes to right), task 3 (pick and place two cubes off-diagonally), task
4 (swap cubes), task 5 (stack cubes)}, scene {task 1 (open drawer and window), task 2
(close and lock drawer and window), task 3 (open drawer, close window, and pick and place cube
to right), task 4 (put cube in drawer), task 5 (fetch cube from drawer and close window)},
puzzle 4x4 {task 1 (all red to all blue), task 2 (all blue to central red), task 3 (two blue
to mix), task 4 (central red to all red), task 5 (mix to all red)}. Note that some of these tasks,
e.g., cube double task 5 (stack cubes) and scene task 4 (put cube in drawer), involve
interacting with the environment in a specific order and thus require long-horizon temporal reasoning.
For all tasks in cube single, cube double, and scene, the maximum episode length is 400.
For all tasks in puzzle 4x4, the maximum episode length is 800. We also use 4 image-based tasks
in the OGBench task suite. Specifically, we consider visual cube single task 1, visual
cube double task 1, visual scene task 1, and visual puzzle 4x4 task 1
from each domain respectively. The observations are 64 × 64 × 3 RGB images. These tasks are
challenging because the agent needs to reason from pixels directly. All the manipulation tasks from
OGBench are originally designed for evaluating goal-conditioned RL algorithms (Park et al., 2025a).

For both state-based and image-based tasks from OGBench, we will use 1M unlabeled transitions
collected by a non-Markovian expert policy with temporally correlated noise (the play datasets) for
pre-training, and another 500K reward-labeled transitions collected by the same noisy expert policy
for fine-tuning. Unlike the ExORL benchmarks, the fine-tuning datasets for OGBench tasks are
relabeled with semi-sparse rewards (Park et al., 2025b), providing less supervision for the algorithm.

D.2 BASELINES

We compare InFOM with eight baselines across five categories of prior methods, focusing on
different strategies for pre-training and fine-tuning in RL. First, implicit Q-Learning (IQL) (Kostrikov
et al., 2022) and revisited behavior-regularized actor-critic (ReBRAC) (Tarasov et al., 2023a) are
state-of-the-art offline RL algorithms based on the standard actor-critic framework (Appendix A.1).
Second, we compare to a variant of ReBRAC learning on top of representations pre-trained on
the unlabeled datasets. We chose an off-the-shelf self-supervised learning objective in vision tasks
called self-distillation with no labels (DINO) (Caron et al., 2021) as our representation learning loss
and name the resulting baseline DINO + ReBRAC. Third, our next baseline, model-based policy
optimization (MBPO) (Janner et al., 2019), pre-trains a one-step model to predict transitions in the
environment, similar to the next token prediction in language models (Radford et al., 2018). The
one-step model is then used to augment the datasets for downstream policy optimization. We will
again use ReBRAC to extract the policy (MBPO + ReBRAC). Fourth, we also include comparisons
against the InfoNCE variant of contrastive RL (Eysenbach et al., 2019) and temporal difference
InfoNCE (Zheng et al., 2024), which pre-train the discounted state occupancy measure using Monte
Carlo or temporal difference contrastive losses. While our method fits generative occupancy models,
These two approaches predict the ratio of occupancy measures over some marginal densities serving
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Table 1: Common hyperparameters for our method and the baselines.

Hyperparameter Value

learning rate 3× 10−4

optimizer Adam (Kingma, 2014)
pre-training gradient steps 1× 106 for state-based tasks, 2.5× 105 for image-based tasks
fine-tuning gradient steps 5× 105 for state-based tasks, 1× 105 for image-based tasks
batch size 256
MLP hidden layer sizes (512, 512, 512, 512)
MLP activation function GELU (Hendrycks & Gimpel, 2016)
discount factor γ 0.99
target network update coefficient 5× 10−3

double Q aggregation min
policy update frequency in fine-tuning 1/4
image encoder small IMPALA encoder (Espeholt et al., 2018; Park et al., 2025b)
image augmentation method random cropping
image augmentation probability 1.0 for DINO + ReBRAC, 0.5 for all other methods
image frame stack 3

as the discriminative counterparts. After pre-training the ratio predictors, importance sampling is
required to recover the Q function (CRL + IS & TD InfoNCE + IS) (Mazoure et al., 2023; Zheng
et al., 2024), enabling policy maximization. Fifth, our final set of baselines are prior unsupervised
RL methods that pre-train a set of latent intentions and intention-conditioned policies using forward-
backward representations (Touati & Ollivier, 2021) or a Hilbert space (Park et al., 2024b). Given a
downstream task, these methods first infer the corresponding intention in a zero-shot manner and
then fine-tune the policy using offline RL (Kim et al., 2024), differing from the implicit GPI as in our
method. We will use IQL as the fine-tuning algorithm and call the resulting methods FB + IQL and
HILP + IQL. For image-based tasks, we selectively compare to four baselines: ReBRAC, CRL + IS,
DINO + ReBRAC, and FB + IQL.

D.3 EVALUATION PROTOCOLS

We compare the performance of InFOM against the eight baselines (Sec. 5.1) after first pre-training
each method for 1M gradient steps (250K gradient steps for image-based tasks) and then fine-tuning
for 500K gradient steps (100K gradient steps for image-based tasks). We measure the episode return
for tasks from ExORL benchmarks and the success rate for tasks from the OGBench task suite.
For OGBench tasks, the algorithms still use the semi-sparse reward instead of the success rate for
training. Following prior practice (Park et al., 2025b; Tarasov et al., 2023b), we do not report the
best performance during fine-tuning and report the evaluation results averaged over 400K, 450K, and
500K gradient steps instead. For image-based tasks, we report the evaluation results averaged over
50K, 75K, and 100K gradient steps during fine-tuning. For evaluating the performance of different
methods throughout the entire fine-tuning process, we defer the details to specific figures (e.g., Fig. 10
& 9).

D.4 IMPLEMENTATIONS AND HYPERPARAMETERS

In this section, we discuss the implementation details and hyperparameters for InFOM and the eight
baselines. Whenever possible, we use the same set of hyperparameters for all methods (Table 1) across
all tasks, including learning rate, network architecture, batch size, image encoder, etc. Of particular
note is that we use asynchronous policy training (Zhou et al., 2025), where we update the policy 4
times less frequently than other models during fine-tuning. For specific hyperparameters of each
method, we tune them on the following tasks from each domain and use one set of hyperparameters for
every task in that domain. For image-based tasks, we tune hyperparameters for each task individually.

• cheetah: cheetah run

• walker: walker walk

• quadruped: quadruped jump
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Table 2: Hyperparameters for InFOM. See Appendix D.4 for descriptions of each hyperparameter.

Hyperparameter Value
latent intention dimension d See Table 3
number of steps for the Euler method T 10
number of future states N 16
normalize the Q loss term in L(π) (Eq. 8) No
expectile µ See Table 3
KL divergence regularization coefficient λ See Table 3
behavioral cloning regurlaization coefficient α See Table 3

Table 3: Domain-specific hyperparameters for our method and the baselines. We individually tune these
hyperparameters for each domain and use the same set of hyperparameters for tasks in the same domain. See
Appendix D.4 for tasks used to tune these hyperparameters and descriptions of each hyperparameter. “-” indicates
that the hyperparameter does not exist.

InFOM (Ours) IQL ReBRAC DINO + ReBRAC MBPO + ReBRAC CRL + IS TD InfoNCE + IS FB + IQL HILP + IQL

Domain or Task d µ λ α α αactor αcritic κstudent Nimaginary Himaginary α α αrepr αAWR α

cheetah 128 0.9 0.05 0.3 1 0.1 0.1 0.1 128 1 0.03 0.003 1 1 1
walker 512 0.9 0.1 0.3 1 10 0.1 0.1 128 1 0.03 0.03 1 10 10
quadruped 512 0.9 0.005 0.3 10 1 1 0.1 128 1 0.03 0.03 10 1 10
jaco 512 0.9 0.2 0.1 0.1 0.1 0.1 0.1 128 1 0.003 0.03 1 1 1

cube single 512 0.95 0.05 30 1 1 1 0.04 256 2 30 30 10 1 1
cube double 128 0.9 0.025 30 1 1 1 0.04 256 2 30 30 1 10 1
scene 128 0.99 0.2 300 1 1 1 0.1 256 2 3 3 10 10 1
puzzle 4x4 128 0.95 0.1 300 10 0.1 0.1 0.1 256 2 3 3 10 10 1

visual cube single task 1 512 0.95 0.025 30 - 1 0 0.1 - - 30 - 10 1 -
visual cube double task 1 128 0.9 0.01 30 - 0.1 0 0.1 - - 30 - 10 1 -
visual scene task 1 128 0.99 0.1 300 - 0.1 0.01 0.1 - - 3 - 10 10 -
visual puzzle 4x4 task 1 128 0.95 0.1 300 - 0.1 0.01 0.1 - - 3 - 10 10 -

• jaco: jaco reach top left

• cube single: cube single task 2

• cube double: cube double task 2

• scene: scene task 2

• puzzle 4x4: puzzle 4x4 task 4

InFOM. InFOM consists of two main components for pre-training: the intention encoder and the
flow occupancy models. First, we use a Gaussian distribution conditioned on the next state-action
pair as the intention encoding distribution. Following prior work (Kingma & Welling, 2013; Alemi
et al., 2017), we model the intention encoder as a multilayer perceptron (MLP) that takes the next
state-action pair (s′, a′) as input and outputs two heads representing the mean and the (log) standard
deviation of the Gaussian. We apply layer normalization to the intention encoder to stabilize optimiza-
tion. We use the reparameterization trick (Kingma & Welling, 2013) to backpropagate the gradients
from the flow-matching loss and the KL divergence regularization (Eq. 4) into the intention encoder.
Our initial experiments suggest that the dimension of the latent intention space d is an important
hyperparameter, and we sweep over {64, 128, 256, 512} and find that d = 512 is sufficient for most
ExORL tasks and d = 128 is generally good enough for all OGBench tasks. For the coefficient of the
KL divergence regularization λ, we sweep over {2.0, 1.0, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005} to find
the best λ for each domain. Second, we use flow-matching vector fields to model the flow occupancy
models. The vector field is an MLP that takes in a noisy future state stf , a state-action pair (s, a),
and a latent intention z, and outputs the vector field with the same dimension as the state. We apply
layer normalization to the vector field to stabilize optimization. As mentioned in Sec. 3, we use
flow-matching objectives based on optimal transport (linear path) and sample the time step t from the
uniform distribution over the unit interval. Following prior work (Park et al., 2025b), we use a fixed
T = 10 steps (step size = 0.1) for the Euler method and do not apply a sinusoidal embedding for the
time. To make a fair comparison with other baselines, we also pre-train a behavioral cloning policy
that serves as initialization for fine-tuning.

For fine-tuning, InFOM learns three components: the reward predictor, the critic, and the policy,
while fine-tuning the intention encoder and the flow occupancy models. The reward predictor is an
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MLP that predicts the scalar reward of a state trained using mean squared error. We apply layer
normalization to the reward predictor to stabilize learning. The critic is an MLP that predicts double
Q values (Van Hasselt et al., 2016; Fujimoto et al., 2018) of a state-action pair, without conditioning
on the latent intention. We apply layer normalization to the critic to stabilize learning. We train the
critic using the expectile distillation loss (Eq. 7) and sweep the expectile over {0.9, 0.95, 0.99} to
find the best µ for each domain. We use N = 16 future states sampled from the flow occupancy
models to compute the average reward, which we find to be sufficient. We use the minimum of
the double Q predictions to prevent overestimation. The policy is an MLP that outputs a Gaussian
distribution with a unit standard deviation. In our initial experiments, we find that the behavioral
cloning coefficient α in Eq. 8 is important, and we sweep over {300, 30, 3, 0.3} to find the best α for
each domain. Following prior practice (Park et al., 2025b), we do not normalize the Q loss term in
the actor loss L(π) (Eq. 8) as in Fujimoto & Gu (2021). Other choices of the policy network include
the diffusion model (Ren et al., 2025; Wang et al., 2023) and the flow-matching model (Park et al.,
2025b), and we leave investigating these policy networks to future work.

For image-based tasks, following prior work (Park et al., 2025b), we use a smaller variant of the
IMPALA encoder (Espeholt et al., 2018) and apply random cropping augmentation with a probability
of 0.5. We also apply frame stacking with three images. Table 2 and Table 3 summarize the
hyperparameters for InFOM.

IQL and ReBRAC. We reuse the IQL (Kostrikov et al., 2022) implementation and the Re-
BRAC (Tarasov et al., 2023a) implementation from Park et al. (2025b). Since learning a critic
requires reward-labeled datasets or relabeling rewards for unlabeled datasets (Yu et al., 2022), we
simply pre-train a behavioral cloning policy. During the fine-tuning, we use the behavioral cloning
policy as initialization and train a critic from scratch using the TD error (Kostrikov et al., 2022;
Fujimoto & Gu, 2021; Tarasov et al., 2023a). Following prior work (Park et al., 2025b), we use the
same expectile value 0.9 for IQL on all tasks, and sweep over {100, 10, 1, 0.1, 0.01} to find the best
AWR inverse temperature α for each domain. For ReBRAC, we tune the behavioral cloning (BC)
regularization coefficients for the actor and the critic separately. We use the range {100, 10, 1, 0.1}
to search for the best actor BC coefficient αactor and use the range {100, 10, 1, 0.1, 0} to search for
the best critic BC coefficient αcritic. We use the default values for other hyperparameters following
the implementation from Park et al. (2025b). See Table 3 for domain-specific hyperparameters.

DINO + ReBRAC. We implement DINO on top of ReBRAC. DINO (Caron et al., 2021) learns a
state encoder using two augmentations of the same state. For state-based tasks, the state encoder is
an MLP that outputs representations. We apply two clipped Gaussian noises centered at zero to the
same state to obtain those augmentations. The standard deviation of the Gaussian noise is set to 0.2,
and we clip the noise into [−0.2, 0.2] on all domains. For image-based tasks, the state encoder is the
small IMPALA encoder that also outputs representations. We apply two different random cropings
to the same image observation to obtain those augmentations. We sweep over {0.01, 0.04, 0.1, 0.4}
for the temperature for student representations κstudent and use a fixed temperature 0.04 for teacher
representations on all domains. We use a representation space with 512 dimensions. We update
the target representation centroid with a fixed ratio 0.1. During pre-training, we learns the DINO
representations along with a behavioral cloning policy. During fine-tuning, we learn the actor and
the critic using ReBRAC on top of DINO representations, while continuing to fine-tune those DINO
representations. We use the same BC coefficients αactor and αcritic as in ReBRAC. For image-based
tasks, we apply random cropping to the same image twice with a probability of 1.0 and use those two
augmentations to compute the teacher and the student representations. See Table 3 for domain-specific
temperatures for student representations.

MBPO + ReBRAC. We implement MBPO (Janner et al., 2019) on top of ReBRAC and only
consider this baseline for state-based tasks. MBPO learns a one-step transition MLP to predict the
residual between the next state s′ and the current state s conditioned on the current state-action
pair (s, a). We pre-train the one-step model with a behavioral cloning policy. During fine-tuning,
we use the model with a learned reward predictor to collect imaginary rollouts. We only use these
imaginary rollouts to learn the actor and the critic. We sweep over {64, 128, 256} for the number of
imaginary rollouts to collect for each gradient step Nimaginary and sweep over {1, 2, 4} for the number
of steps in each rollout Himaginary. We use the same BC coefficient as in ReBRAC. See Table 3 for the
domain-specific number of imaginary rollouts and number of steps in each rollout.
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CRL + IS and TD InfoNCE + IS. We mostly reuse the CRL (Eysenbach et al., 2022) implemen-
tation based on the InfoNCE loss from Park et al. (2025a) and adapt it to our setting by adding the
important sampling component. We implement TD InfoNCE by adapting the official implementa-
tions (Zheng et al., 2024). For both methods, we pre-train the classifiers that predict the ratio between
the occupancy measures and the marginal densities over future states with a behavioral cloning policy.
We use the SARSA variant of TD InfoNCE during pre-training. After pre-training the classifiers, we
learn a reward predictor and apply importance sampling weights predicted by the classifiers to a set of
future states sampled from the fine-tuning datasets to estimateQ. This Q estimation then drives policy
optimization. We use a single future state from the fine-tuning dataset to construct the importance
sampling estimation, which is sufficient. We use 512-dimensional contrastive representations. We
sweep over {300, 30, 3, 0.3, 0.03} for the BC coefficient α (Table 3).

FB + IQL and HILP + IQL. We implement FB (Touati & Ollivier, 2021) and HILP (Park et al.,
2024b) by adapting the FB implementation from Jeen et al. (2024) and the HILP implementation
from Kim et al. (2024). During pre-training, for FB, we pre-train the forward-backward repre-
sentations and the intention-conditioned policies in an actor-critic manner. We use a coefficient
1 for the orthonormality regularization of the backward representations. We use 512-dimensional
forward-backward representations. We sample the latent intentions for pre-training from either a
standard Gaussian distribution (with probability 0.5) or the backward representations for a batch of
states (with probability 0.5), normalizing those latent intentions to length

√
512. We sweep over

{100, 10, 1, 0.1} for the BC coefficient αrepr. For HILP, we pre-train the Hilbert representations ϕ and
Hilbert foundation policies using an actor-critic framework as well. We use implicit value learning to
learn the Hilbert representations following implementations from Park et al. (2024a; 2025a). We set
the expectile to 0.9 for all domains. We sweep over {100, 10, 1, 0.1} to find the best AWR inverse
temperature α. We also use a 512-dimensional Hilbert representation space. To construct the intrinsic
rewards, we first sample the latent intention z from a standard Gaussian, normalizing them to length√
512, and then use the representation of the next state ϕ(s′) and the representation of the current

state ϕ(s) to compute the intrinsic reward (ϕ(s′)− ϕ(s))⊤z.

During fine-tuning, we first infer a task-specific backward representation or a Hilbert representation
using a small amount of transitions (10K) from the fine-tuning datasets, and then invoke IQL to
learn the critic and the actor using downstream rewards conditioned on the inferred representations.
For FB, we sweep over {100, 10, 1, 0.1} for the AWR inverse temperature αAWR for IQL. For HILP,
we reuse the same AWR inverse temperature in representation learning for IQL. See Table 3 for
domain-specific BC coefficients and AWR inverse temperatures.

E ADDITIONAL VISUALIZATIONS OF LATENT INTENTIONS

We include additional visualization of latent intentions on quadruped-jump in Fig. 6.

F ADDITIONAL EXPERIMENTS

F.1 EVALUATION ON ROBOTICS BENCHMARKS

To further study the pre-training and fine-tuning effects of our method on realistic datasets. Specifi-
cally, we choose the RT-1 dataset (Brohan et al., 2022), which contains 73499 episodes of transitions.
This dataset was collected by commanding a Google robot to pick, place, and move 17 objects in
the Google micro-kitchens, covering a diverse set of intentions. Since collecting distinct robotics
datasets for pre-training and fine-tuning is difficult, we use the entire dataset as both the reward-
free pre-training dataset and the reward-labeled fine-tuning dataset. For the evaluation task, we
use google robot pick coke can from the SimplerEnv (Li et al., 2024), which contains a
suite of simulation tasks that efficiently and informatively complement real-world evaluations of the
Google robot.

We compare against two baselines from our experiments (ReBRAC and DINO + ReBRAC) due to
computational constraints, and also include a behavioral cloning (BC) baseline for reference. Our
initial experiments indicate that all the algorithms (except DINO + ReBRAC) perform poorly when
trained end-to-end from pixels directly. Following prior practice in latent flow matching (Rombach
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Table 4: Evaluation on ExORL and OGBench benchmarks. Following OGBench (Park et al., 2025a), we
bold values at and above 95% of the best performance for each task.

Task InFOM (Ours) IQL ReBRAC DINO + ReBRAC MBPO + ReBRAC CRL + IS TD InfoNCE + IS FB + IQL HILP + IQL

cheetah run 97.6± 7.8 80.0± 8.4 97.2± 12.9 87.2± 8.6 104.7± 2.4 73.3± 6.7 68.2± 8.9 83.3± 10.9 90.3± 1.9
cheetah run backward 104.7± 7.3 77.0± 12.6 84.9± 3.7 67.1± 6.4 87.0± 4.8 74.7± 8.1 74.3± 17.1 67.3± 7.0 64.4± 6.4
cheetah walk 254.8± 158.6 357.9± 16.4 443.4± 15.3 383.5± 10.3 447.4± 12.7 327.4± 38.7 336.7± 22.1 346.5± 24.3 366.8± 6.9
cheetah walk backward 251.8± 116.9 303.7± 12.6 403.0± 16.1 318.4± 23.0 398.6± 16.0 330.2± 8.5 326.3± 45.1 298.0± 22.8 318.1± 11.4
walker walk 467.3± 82.1 208.6± 3.7 208.1± 5.8 228.0± 3.7 327.6± 4.5 213.3± 7.8 212.2± 13.2 225.3± 6.7 225.4± 3.7
walker run 116.3± 15.3 92.4± 0.6 97.8± 1.2 98.5± 1.0 107.6± 1.2 91.5± 3.2 91.0± 3.7 97.4± 1.2 97.4± 2.2
walker stand 581.2± 72.1 409.1± 2.3 460.6± 1.1 453.0± 3.1 458.1± 2.5 409.0± 7.5 397.2± 6.0 446.8± 7.1 443.3± 3.8
walker flip 358.8± 10.3 260.3± 2.8 344.6± 2.7 320.3± 4.3 341.8± 3.7 255.0± 8.0 231.6± 6.9 287.0± 3.1 280.7± 5.4
quadruped run 341.8± 41.2 358.0± 6.2 343.0± 2.6 344.7± 2.9 395.1± 2.6 323.4± 2.9 222.1± 39.7 367.0± 3.8 371.1± 11.5
quadruped jump 626.0± 6.8 628.5± 7.8 605.2± 7.8 573.0± 9.6 666.9± 3.4 576.7± 13.7 421.4± 93.4 639.4± 8.9 626.5± 14.5
quadruped stand 718.3± 18.7 714.2± 9.8 688.6± 5.0 663.2± 8.3 703.7± 3.6 653.1± 8.4 457.1± 47.7 728.9± 11.5 715.6± 13.9
quadruped walk 360.7± 7.9 375.1± 3.7 343.5± 7.1 391.4± 7.2 390.0± 5.7 309.6± 9.6 243.1± 29.2 388.9± 7.0 393.4± 3.4
jaco reach top left 742.5± 43.7 74.7± 19.6 59.0± 4.9 17.5± 3.8 60.1± 6.2 29.1± 4.7 31.5± 3.0 25.0± 11.4 40.4± 11.5
jaco reach top right 687.5± 46.7 40.6± 14.0 38.0± 13.1 11.0± 4.1 52.5± 10.8 21.4± 6.5 25.5± 10.3 16.2± 3.2 25.1± 9.6
jaco reach bottom left 746.7± 12.6 77.1± 12.5 44.5± 4.0 13.7± 2.8 43.4± 4.6 19.8± 8.8 26.6± 5.9 19.8± 4.0 27.8± 4.6
jaco reach bottom right 733.0± 19.6 78.7± 19.1 41.4± 5.0 8.3± 2.8 34.0± 6.0 19.6± 2.0 25.4± 5.7 12.4± 2.7 24.7± 3.9

cube single task 1 92.5± 4.0 53.0± 8.7 67.3± 14.2 1.8± 1.0 77.8± 11.7 10.1± 2.7 13.8± 3.8 17.7± 8.8 32.9± 9.2
cube single task 2 78.4± 12.3 51.7± 15.1 93.7± 3.5 1.2± 0.6 94.2± 2.0 3.7± 2.8 8.5± 5.6 16.7± 8.6 26.5± 15.4
cube single task 3 56.4± 36.9 41.5± 5.3 94.8± 0.8 1.5± 1.4 93.1± 4.7 12.5± 3.2 11.7± 7.4 16.0± 12.2 35.5± 14.7
cube single task 4 91.5± 14.2 42.2± 8.3 89.5± 3.6 0.5± 1.0 88.7± 4.7 1.7± 1.7 3.3± 3.0 18.7± 9.9 36.4± 14.9
cube single task 5 70.0± 39.1 33.7± 12.9 83.3± 6.8 0.5± 0.6 87.8± 2.7 4.3± 2.2 4.0± 3.2 14.2± 12.0 18.5± 5.6
cube double task 1 29.3± 10.5 17.8± 9.6 2.2± 1.7 0.0± 0.0 2.7± 1.1 4.1± 1.9 6.7± 2.7 0.2± 0.3 0.7± 1.1
cube double task 2 12.5± 10.7 1.3± 1.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 3 11.6± 8.3 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 4 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 5 2.8± 4.6 1.5± 1.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.3± 0.7 0.2± 0.3 0.0± 0.0 0.0± 0.0
scene task 1 97.8± 1.0 66.5± 13.1 47.7± 7.2 26.7± 4.3 35.3± 7.7 17.5± 5.1 21.0± 4.3 12.3± 11.3 8.8± 3.0
scene task 2 15.6± 3.4 2.5± 1.5 7.8± 4.9 1.3± 0.0 5.6± 5.6 2.3± 0.7 1.7± 1.3 1.5± 1.8 1.2± 1.7
scene task 3 43.5± 2.8 0.7± 0.5 1.7± 1.1 0.2± 0.3 2.4± 0.8 0.8± 0.3 0.5± 1.0 0.0± 0.0 0.0± 0.0
scene task 4 1.0± 0.7 0.2± 0.3 2.8± 0.8 0.2± 0.3 2.0± 1.3 1.2± 1.4 0.7± 1.3 0.2± 0.3 0.0± 0.0
scene task 5 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.3± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
puzzle 4x4 task 1 24.2± 14.4 2.3± 2.3 12.8± 3.1 0.3± 0.7 16.9± 1.4 0.0± 0.0 0.0± 0.0 0.2± 0.3 0.3± 0.6
puzzle 4x4 task 2 14.5± 9.4 0.5± 0.6 0.5± 0.6 0.0± 0.0 0.2± 0.4 0.3± 0.4 0.0± 0.0 0.2± 0.3 0.4± 0.6
puzzle 4x4 task 3 26.3± 13.4 1.0± 0.9 5.0± 2.7 0.0± 0.0 5.1± 2.8 0.3± 0.4 0.0± 0.0 0.2± 0.3 0.1± 0.3
puzzle 4x4 task 4 12.0± 7.1 0.3± 0.7 0.8± 0.8 0.0± 0.0 0.4± 0.4 0.0± 0.0 0.0± 0.0 0.2± 0.3 0.1± 0.3
puzzle 4x4 task 5 12.3± 6.2 0.7± 0.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.5± 0.6 0.0± 0.0 0.0± 0.0 0.1± 0.3

visual cube single task 1 52.1± 20.8 - 10.6± 7.2 15.3± 14.6 - 12.0± 5.6 - 31.0± 15.0 -
visual cube double task 1 11.2± 9.2 - 0.0± 0.0 5.0± 2.0 - 5.0± 3.6 - 1.3± 1.5 -
visual scene task 1 72.4± 17.7 - 32.0± 13.0 26.0± 17.2 - 9.0± 6.6 - 74.7± 22.2 -
visual puzzle 4x4 task 1 6.0± 3.2 - 0.0± 0.0 0.0± 0.0 - 0.0± 0.0 - 0.0± 0.0 -

time
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Figure 6: Visualization of latent intentions on quadruped-jump.

et al., 2022; Dao et al., 2023), we therefore pre-train a β-VAE (Higgins et al., 2017) to encode images
into a latent embedding space and then learn algorithms on top of those embeddings. For DINO +
ReBRAC, we directly use the image representations learned by DINO to train the actor and the critic.
We report means and standard deviations of success rates over 4 random seeds.
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Figure 7: Evaluation on robotics datasets. InFOM
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top of embeddings from a fixed image encoder. See
Appendix F.1 for details.
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Figure 8: Comparison to prior intention encod-
ing mechanisms after pre-training. We com-
pare InFOM to prior intention encoding mech-
anisms based on unsupervised skill discovery
(HILP (Park et al., 2024b)) or successor feature
learning (FB (Touati & Ollivier, 2021)) after pre-
training. FB + FOM is equivalent to TD flows
with GPI in Farebrother et al. (2025). InFOM
achieves lower prediction errors on both tasks.

Results in Fig. 7 suggest that InFOM outperforms the best baseline by 34% when trained on top
of embeddings from a fixed image encoder, indicating that our method can effectively fine-tune on
challenging, realistic datasets with overlapping intentions.

F.2 VARIATIONAL INTENTION INFERENCE IS SIMPLE AND PERFORMANT

We now conduct experiments ablating a key component in our method: the variational intention
encoder. To investigate whether this framework induces a simple and performant way to infer diverse
user intentions from an unlabeled dataset, we compare it to various intention encoding mechanisms
proposed by prior methods. Specifically, we consider replacing the variational intention encoder
with either (1) a set of Hilbert representations and Hilbert foundation policies (Park et al., 2024b)
(HILP + FOM) or (2) a set of forward-backward representations and representation-conditioned
policies (Touati & Ollivier, 2021) (FB + FOM), and then pre-training the flow occupancy models
conditioned on these two sets of representations. Note that FB + FOM is equivalent to TD flows with
GPI in Farebrother et al. (2025).

We first compare the future state predictions from InFOM against HILP + FOM and FB + FOM on
two ExORL tasks (quadruped jump and scene task 1) after pre-training. Specifically, we
compute the pairwise mean squared error (MSE) between predicted future states and ground-truth
future states along a trajectory. We first sample 100 trajectories from the pre-training datasets, and
then, for each trajectory, we sample 400 future states from InFOM and the two baselines starting from
the same initial (s, a) pair. We compute the pairwise MSE between each sampled future state and
the corresponding sequence of ground-truth future states within the same trajectory. The prediction
error is reported as the pairwise MSE averaged over all transitions in the 100 trajectories and the 400
sampled future states. Results in Fig. 8 show that InFOM achieves lower prediction errors than two
FOM baselines.

We then compare the performance of InFOM against HILP + FOM and FB + FOM after fine-tuning.
We choose two tasks in the ExORL benchmarks (walker flip and quadruped jump) and
another two tasks taken from the OGBench benchmarks (cube double task 1 and scene
task 1), following the same evaluation protocols as in Appendix D.3. Results in Fig. 9 indicate
that InFOM can outperform prior intention encoding methods on 3 of 4 tasks, while being simpler.
Both HILP and FB capture intentions with full unsupervised RL objectives based on an actor-critic
backbone. In contrast, we capture intentions by simply training an intention encoder based on a latent
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Figure 9: Comparison to prior intention encoding
mechanisms after fine-tuning. We compare InFOM
to prior intention encoding mechanisms based after
fine-tuning. We observe that InFOM outperforms prior
methods on 3 out of the 4 tasks.
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Figure 10: Convergence speed during fine-
tuning. On tasks where InFOM and baselines
perform similarly, our flow occupancy models en-
able faster policy learning.

variable model over adjacent transitions, without relying on a potentially complicated offline RL
procedure (Tarasov et al., 2023b; Park et al., 2024a).

F.3 FLOW OCCUPANCY MODELS ENABLE FASTER POLICY LEARNING

We then investigate whether the proposed method leads to faster policy learning on downstream
tasks. We answer this question by an ablation study with a high evaluation frequency, analyzing the
performance of various methods throughout the entire fine-tuning phase every 2K gradient steps.
We compare InFOM to prior methods on two ExORL tasks (cheetah run and quadruped
jump), including ReBRAC, CRL + IS, DINO + ReBRAC, MBPO + ReBRAC, and FB + IQL
(See Appendix D.2 for details of these baselines). We choose these baselines because they perform
similarly to our method, helping to prevent counterfactual errors derived from the performance
deviation when comparing convergence speed.

We compare different algorithms by plotting the returns at each evaluation step, with the shaded
regions indicating one standard deviation. As shown in Fig. 10, InFOM converges faster than prior
methods that only pre-train behavioral cloning policies (ReBRAC) or self-supervised state represen-
tations (DINO + ReBRAC), demonstrating the effectiveness of extracting temporal information. The
observation that methods utilizing a one-step transition model (MBPO + ReBRAC) or a future state
classifier (CRL + IS) learn more slowly than our method highlights the importance of predicting
long-horizon future events using expressive generative models. Additionally, our flow occupancy
models extract rich latent intentions from the unlabeled datasets, resulting in adaptation speed similar
to the prior zero-short RL method (FB + IQL).

F.4 LEARNING WITH DISCRETE INTENTIONS

The choice of the prior over latent variables p(z) is still an open question in the literature. Prior
work has used a standard Gaussian distribution (Frans et al., 2024), a uniform von Mises–Fisher
distribution Park et al. (2024b); Touati & Ollivier (2021); Zheng et al. (2025), a continuous uniform
distribution (Sharma et al., 2019), and a discrete uniform distribution (Eysenbach et al., 2019).

To further investigate the effect of using a discrete set of latent intentions for InFOM, we run additional
ablation experiments. We selected a set of discrete latent embeddings Z = {z1, · · · , zK} (a lookup
table with K = 256), and used a vector quantization (VQ) loss to learn those embeddings together
with InFOM as in VQ-VAE (Van Den Oord et al., 2017). Specifically, given a consecutive transition
(s, a, z, s′, a′), the flow-based intention decoder qd(z | s, a) remains the same, while the intention
encoder pe(z | s′, a′) can now be decomposed into two components: (1) the deterministic encoder
penc : S × A → Rd and the quantizer pquant : Rd → Z . The role of the quantizer is to query the
closest discrete latent intentions from the encoder outputs using the nearest neighbor,

pquant(penc(s
′, a′)) = zk, where k = argmini=1,··· ,K ∥penc(s

′, a′)− zi∥2.
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Figure 11: Using discrete intentions slightly de-
creases InFOM’s performance on ExORL tasks
(−11%), while drastically decreasing the mean suc-
cess rate of InFOM on OGBench tasks (−78%).
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Figure 12: Using the posterior qd(z | s′, a′) to sam-
ple the latents does not significantly change the perfor-
mance of InFOM (+7%), suggesting that our method
is robust against unseen latents. We choose to use the
prior p(z) for sampling latents to estimate Qz through-
out our experiments.

Using this quantizer, we replace the surrogate objective in Eq. 4 with the following SARSA flow loss
with a vector quantization loss:

LSARSA flow(penc, pquant, qd) + LVQ(penc, pquant, qd),

LVQ(penc, pquant, qd) = Epβ(s′,a′)[∥⌊penc(s
′, a′)⌋sg − zk(s′, a′)∥22]

+ λEpβ(s′,a′)[∥penc(s
′, a′)− ⌊zk(s′, a′)⌋sg∥22],

where ⌊·⌋sg denotes the stop gradient operator, and we use straight-through gradients (Bengio
et al., 2013) to optimize the SARSA flow loss. During fine-tuning, we use all the discrete latents
{z1, · · · , zK} to construct intention-conditioned Qz estimations (Eq. 6) and distill them into the
critic Q as in Eq. 7.

We conducted ablation experiments on two ExORL tasks (walker flip and quadruped jump)
and two OGBench tasks (cube single task 2 and cube double task 1) and report
performances aggregated over 8 random seeds. Results in Fig. 11 suggest that using discrete
intentions slightly decreases InFOM’s performance on ExORL tasks (−11%), while drastically
decreasing the mean success rate of InFOM on OGBench tasks (−78%). These results indicate that
using a continous latent space generally leads to better performance in our experiments.

F.5 FINE-TUNING WITH POSTERIOR INTENTIONS

In Sec. 4.4, when estimating the intention-conditionedQz for a specific task, we have already sampled
the latent z from the prior p(z) instead of the posterior qd(z | s′, a′). Sampling from the prior, in
general, increases the possibility of drawing out-of-distribution latents. We hypothesize that InFOM
can generalize over unseen latents on different (s, a) pairs. To quantitatively test this hypothesis,
we conduct additional ablation experiments to study the effect of estimating intention-conditioned
Qz using in-distribution latents on the final performance of InFOM. Specifically, we replace the
distillation loss in Eq. 7 with a variant that samples z from the posterior qd(z | s′, a′):

L̃(Q) = E(s,a,s′,a′)∼pβ̃(s,a,s′,a′), z∼qd(z|s′,a′) [L
µ
2 (Qz(s, a)−Q(s, a))] .

We choose to conduct ablation experiments on two ExORL tasks (walker flip and quadruped
jump) and two OGBench tasks (cube double task 1 and scene task 1), aggregating the
return and the success rate over 8 random seeds. Results in Fig. 12 indicate that using the posterior
to sample the latents for each Qz does not significantly change the performance of InFOM (+7%).
Conversely, these results suggest that InFOM is robust against unseen latents for different (s, a) pairs
and using the prior p(z) to sample latents provides sufficient learning signals to drive fine-tuning. We
choose to use the prior p(z) for sampling latents to estimate Qz throughout our experiments.

F.6 LEARNING WITH SPARSE REWARDS IS CHALLENGING

We hypothesize that the sparse reward function on jaco tasks explains the performance gap between
InFOM and baselines. To test this hypothesis, we conduct ablation experiments on jaco reach
top left and jaco reach bottom right, studying whether using dense rewards will miti-
gate the performance gap. Specifically, the dense reward function is defined as r(s, g) = −∥s− g∥2
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Figure 14: The behavioral cloning regularization in
the policy loss is a key component of InFOM.
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Figure 15: The diversity of the pre-training datasets
has a positive correlation with their sizes.

with g as the target position. To make a fair comparison, we fine-tune the ReBRAC baseline on
variants of those two jaco tasks with dense reward functions, measuring the performance in the
original environments. We report returns across 8 random seeds.
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Figure 13: Reward function structure can impose
challenges. The baseline ReBRAC achieves 3.6×
higher performance on variants of jaco tasks with a
dense reward function.

Results in Fig. 13 highlight that using a dense
reward function results in 3.6× smaller perfor-
mance gap, suggesting that the original sparse
reward function imposes challenges for learning
on jaco tasks. We note that Yarats et al. (2022)
has also included consistent evidence for this ob-
servation, where TD3 + BC (the base algorithm
for ReBRAC) performed poorly on the jaco
domain (Fig. 9 of Yarats et al. (2022)).

F.7 IMPORTANCE OF THE
BEHAVIORAL CLONING REGULARIZATION

To study the effect of the BC regularizer (Eq. 8),
we conduct experiments comparing a variant of
InFOM without the behavioral cloning regular-
ization coefficient (α = 0) to our full algorithm
with domain-dependent α values (Table 2). We
select the same ExORL and OGBench tasks as
in Fig. 5 (walker flip, quadruped jump, cube double task 1, and scene task
1) and report the means and standard deviations of performance over 8 random seeds after fine-tuning.
Results in Fig. 14 suggest that behavioral cloning regularization (α > 0) in the policy loss is a key
component of our algorithm.

F.8 DIVERSITY OF THE PRE-TRAINING DATASETS

To quantify the diversity of the pre-training dataset, we conduct a statistical analysis on the datasets for
two ExORL tasks (cheetah run and quadruped jump), analyzing the relationship between
the size of the dataset and the diversity of the dataset. Following prior work (Park et al., 2023b), we
discretize the continuous state space as a high-dimensional grid (up to 10−2) and use the number
of unique grid points covered by the dataset to measure the diversity. Results in Fig. 15 show that
increasing the dataset size induces a higher diversity in the pre-training datasets, with an average
correlation coefficient of 0.76 over those two tasks. Thus, we can study the effect of diverse pre-
training datasets on InFOM’s performance by varying the pre-training dataset size.

F.9 THE EFFECT OF DATASET SIZES

Pre-training dataset size. Since we aim to predict temporally distant future states from het-
erogeneous data (Sec. 4.1), InFOM implicitly requires a sufficiently diverse dataset for effective
pre-training. To study the relationship between the size of pre-training datasets and the perfor-
mance of our algorithm, we conduct ablation experiments varying the pre-training dataset size
in {1K, 10K, 100K, 500K, 1M}. We compare the performances of InFOM on two ExORL tasks
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Figure 16: The effect of pre-training dataset size on
InFOM. Increasing pre-training dataset sizes boosts
the final performances of InFOM.
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Figure 17: The effect of fine-tuning dataset size on
InFOM. Increasing the fine-tuning dataset size yields
consistent improvements in success rates.

(cheetah run and quadruped jump) after fine-tuning on the same reward-labeled dataset. We
report results across 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results in Fig. 16 indicate that larger pre-training datasets yield higher returns on these tasks. We
conjecture that pre-training InFOM on a diverse, reward-free dataset reduces the possibility of
sampling out-of-distribution (unseen) intentions, resulting in a higher final performance.

Fine-tuning dataset size. We also conduct ablation experiments studying the effect of
fine-tuning dataset sizes. Specifically, we select two OGBench tasks (cube single task 2
and puzzle 4x4 task 1) and vary the size of the fine-tuning datasets in
{5K, 10K, 25K, 50K, 100K, 250K, 500K}. Again, we aggregate the performance of InFOM
over 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results Fig. 17 show that increasing the fine-tuning dataset size (within the chosen range) yields con-
sistent improvements in success rates on the OGBench tasks. Our explanation for these observations
is that the size of the fine-tuning dataset affects the accuracy of the reward prediction.

F.10 FINE-TUNING ON SUBOPTIMAL DATASETS

We hypothesize that using highly suboptimal fine-tuning datasets will decrease the downstream
performance of InFOM. To study the effect of fine-tuning on suboptimal datasets, we conduct
ablation experiments on two ExORL tasks (cheetah run and quadruped jump) because they
have dense reward functions and can still produce diverse rewards. To construct suboptimal datasets,
we use the reward quantile to filter each transition in the 106 ExORL dataset collected by RND (see
Appendix D.1 for details) and then sample 5× 105 reward-labeled transitions from the remaining
transitions. After constructing these suboptimal datasets, we use them to fine-tune InFOM. Results
in Fig. 18 indicate that fine-tuning InFOM on highly suboptimal datasets (0.2 reward quantile)
achieved only 9% performance of the original InFOM, while using datasets with 0.8 reward quantile
can already achieve 85% performance of the original InFOM. These results suggest that using a
sufficiently optimal dataset is important for improving the fine-tuning performance.

F.11 THE SUFFICIENT NUMBER OF FUTURE STATES IN THE Q ESTIMATION

Since we use MC future states from the InFOM to estimate the intention-conditioned Qz (Eq. 6),
it is possible that the model produces unrealistic future states. Thus, the number of future states
N affects the accuracy and variance of the Q value estimation (Eq. 6). To investigate the effect of
N , we conduct ablation studies on a total of 8 tasks, with 4 tasks from the ExORL benchmarks
(cheetah walk, walker walk, walker flip, and quadruped jump) and 4 tasks from
the OGBench benchmarks (cube double task 3, puzzle 4x4 task 1, cube double
task 1, and scene task 1). Below, we report returns and success rates after fine-tuning,
aggregating the results over 8 random seeds.

Fig. 19 suggests that, in cheetah walk and puzzle 4x4 task 1, increasing the number
of flow future states yields better performance with consistent variance. In walker walk and
cube double task 3, a largerN does mitigate the high variance inQz , at the cost of increasing
computation. Taken together, these results indicate that a sufficiently large number of flow future
states used in Qz achieves more accurate estimation of Q values, while reducing the variance. In
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Figure 18: Fine-tuning on suboptimal datasets.
Fine-tuning on highly suboptimal datasets (0.2 re-
ward quantile) decreased the performance of InFOM,
while using a sufficiently optimal (0.8 reward quan-
tile) dataset can already retain the performance.
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Figure 19: Using a sufficient number of flow future
states is important. Increasing the number of flow fu-
ture states (N ) in the Qz estimate boosts the accuracy
while reducing variance, resulting in higher final perfor-
mances of InFOM. We choose N = 16 as a balance
between the accuracy, variance, and computational con-
straints in our experiments.

contrast, a smaller number ofN potentially yields errors inQz from unrealistic future states, resulting
in high variance. In practice, our choice of N = 16 is a balance between the accuracy, variance, and
computational constraints of the estimator.

F.12 ADDITIONAL HYPERPARAMETER ABLATIONS

We conduct additional ablation experiments on walker flip, quadruped jump, cube
double task 1, and scene task 1 to study the effect of some key hyperparameters in In-
FOM (Table 2). Following the same evaluation protocols as in Appendix D.3, we report means and
standard deviations across eight random seeds after fine-tuning each variant.

As shown in Fig. 20a, our algorithm is sensitive to the latent intention dimension d. Additionally,
the effect of the number of steps for the Euler method T (Fig. 20b) saturates after increasing it to a
certain threshold (T = 10), suggesting the usage of a common value for all tasks.

Results in Fig. 20c, Fig. 20d, and Fig. 20e suggest that the expectile µ can affect the performance
on ExORL tasks, while having minor effects on OGBench tasks. Importantly, the KL divergence
regularization coefficient λ and the behavioral cloning regularization coefficient α are crucial hyper-
parameters for InFOM, where domain-specific hyperparameter tuning is required. As discussed in
Appendix D.4, we generally select one task from each domain to sweep hyperparameters and then
use one set of hyperparameters for every task in that domain.
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Figure 20: Hyperparameter ablations. We conduct ablations to study the effect of key hyperpa-
rameters of InFOM as listed in Table 2 on walker flip, quadruped jump, cube double
task 1, and scene task 1.
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