
INTENTION-CONDITIONED FLOW OCCUPANCY MODELS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale pre-training has fundamentally changed how machine learning research is done today: large foundation models are trained once, and then can be used by anyone in the community (including those without data or compute resources to train a model from scratch) to adapt and fine-tune to specific tasks. Applying this same framework to reinforcement learning (RL) is appealing because it offers compelling avenues for addressing core challenges in RL, including sample efficiency and robustness. However, there remains a fundamental challenge to pre-train large models in the context of RL: actions have long-term dependencies, so training a foundation model that reasons across *time* is important. Recent advances in generative AI have provided new tools for modeling highly complex distributions. In this paper, we build a probabilistic model to predict which states an agent will visit in the temporally distant future (i.e., an occupancy measure) using flow matching. As large datasets are often constructed by many distinct users performing distinct tasks, we include in our model a latent variable capturing the user’s intention. This intention increases the expressivity of our model and enables adaptation with generalized policy improvement. We call our proposed method **intention-conditioned flow occupancy models (InFOM)**. Comparing with alternative methods for pre-training, our experiments on 36 state-based and 4 image-based benchmark tasks demonstrate that the proposed method achieves $1.8 \times$ median improvement in returns and increases success rates by 36%.

1 INTRODUCTION

Many of the recent celebrated successes of machine learning have been enabled by training large foundation models on vast datasets, and then adapting those models to downstream tasks. Examples include today’s chatbots (e.g., Gemini (Team et al., 2023) and ChatGPT (Achiam et al., 2023)) and generalist robotic systems (e.g., π_0 (Black et al., 2024) and Octo (Team et al., 2024)). This pre-training-fine-tuning paradigm has been wildly successful in fields ranging from computer vision to natural language processing (Devlin et al., 2019; Brown et al., 2020; Touvron et al., 2023; Zhai et al., 2023; Radford et al., 2021; He et al., 2022; Ouyang et al., 2022; Lu et al., 2019), yet harnessing it in the context of reinforcement learning (RL) remains an open problem. What fundamentally makes the RL problem difficult is reasoning about time and intention—an effective RL agent must reason about the long-term effect of actions taken now, and must recognize that the data observed are often collected by distinct users performing multiple tasks. However, current attempts to build foundation models for RL often neglect these two important bits, focusing on predicting the actions in the pre-training dataset instead (Team et al., 2024; O’Neill et al., 2024; Walke et al., 2023).

Figure 1: **InFOM** is a latent variable model for pre-training and fine-tuning in reinforcement learning. (Left) The datasets are collected by users performing distinct tasks. (Center) We encode intentions by maximizing an evidence lower bound of data likelihood, (Right) enabling intention-aware future prediction using flow matching. See Sec. 4 for details.

054 The closest attempts to building RL algorithms that capture temporal bits are those based on world
055 models (Ding et al., 2024; Hafner et al., 2023; Mendonca et al., 2021) and those based on occupancy
056 models (Janner et al., 2020; Blier et al., 2021; Zheng et al., 2024; Farebrother et al., 2025).¹ World
057 models can achieve great performance in sample efficiency (Janner et al., 2019) and generalize
058 to diverse tasks (Hafner et al., 2023; Mendonca et al., 2021), although their capacity to perform
059 long-horizon reasoning remains limited because of compounding errors (Talvitie, 2014; Janner et al.,
060 2019; Lambert et al., 2022). Occupancy models (Dayan, 1993) and variants that enable scaling to
061 high-dimensional tasks can also achieve great performance in predicting future events (Sikchi et al.,
062 2024; Barreto et al., 2018; Zheng et al., 2024; 2025; Farebrother et al., 2025), but are typically hard
063 to train and ignore user intentions. Recent advances in generative AI (e.g., flow-matching (Lipman
064 et al., 2024; 2023; Liu et al., 2023) and diffusion (Ho et al., 2020; Song et al., 2021) models) enable
065 modeling complex distributions taking various inputs, providing new tools for constructing occupancy
066 models that depend on intentions.

067 In this paper, we propose a framework (Fig. 1) for pre-training in RL that simultaneously learns a
068 probabilistic model to capture bits about time and intention. Building upon prior work on variational
069 inference (Kingma & Welling, 2013; Alemi et al., 2017) and successor representations (Janner
070 et al., 2020; Touati & Ollivier, 2021; Barreto et al., 2017; Zheng et al., 2024; Farebrother et al.,
071 2025), we learn latent variable models of temporally distant future states, enabling intention-aware
072 prediction. Building upon prior work on generative modeling, we use an expressive flow matching
073 method (Farebrother et al., 2025) to train occupancy models, enabling highly flexible modeling of
074 occupancy measures. We call the resulting algorithm **intention-conditioned flow occupancy models**
075 (**InFOM**). Experiments on 36 state-based and 4 image-based benchmark tasks show that InFOM
076 outperforms alternative methods for pre-training and fine-tuning by 1.8 \times median improvement in
077 returns and 36% improvement in success rates. Additional experiments demonstrate that our latent
078 variable model is capable of inferring underlying user intentions (Sec. 5.2) and enables efficient
079 policy extraction (Sec. 5.3).

080 2 RELATED WORK

081 **Offline unsupervised RL.** The goal of offline unsupervised RL is to pre-train policies, value functions,
082 or models from an unlabeled (reward-free) dataset to enable efficient learning of downstream tasks.
083 Prior work has proposed diverse offline unsupervised RL approaches based on unsupervised skill
084 learning (Touati & Ollivier, 2021; Frans et al., 2024; Park et al., 2024b; Kim et al., 2024; Hu et al.,
085 2023), offline goal-conditioned RL (Eysenbach et al., 2019; 2022; Valieva & Banerjee, 2024; Park
086 et al., 2023a; Zheng et al., 2024; Park et al., 2025a), and model-based RL (Mendonca et al., 2021;
087 Mazzaglia et al., 2022). Among these categories, our method is conceptually related to offline
088 unsupervised skill learning approaches (Park et al., 2024b; Touati et al., 2023), which also learns a
089 model that predictions intention. However, our approach differs in that it does not learn multiple
090 skills during pre-training. Our work is complementary to a large body of prior work on using
091 behavioral cloning for pretraining (O’Neill et al., 2024; Team et al., 2024), demonstrating that there
092 are significant additional gains in performance that can be achieved by modeling intentions and
093 occupancy measures simultaneously.

094 **Unsupervised representation learning for RL.** Another way to leverage an unlabeled offline dataset
095 is to learn representations that facilitate subsequent downstream task learning. Some works adapt
096 existing representation learning techniques from computer vision, such as contrastive learning (He
097 et al., 2020; Parisi et al., 2022; Nair et al., 2023) and masked autoencoding (He et al., 2022; Xiao et al.,
098 2022). Others design specific methods for RL, including self-predictive representations (Schwarzer
099 et al., 2020; Ni et al., 2024) and temporal distance learning (Sermanet et al., 2018; Ma et al., 2023;
100 Mazoure et al., 2023). Those learned representations are typically used as inputs for policy and value
101 networks. The key challenge with these representation learning methods is that it is often (Laskin
102 et al., 2020), though not always (Zhang et al., 2021), unclear whether the learned representations
103 will facilitate policy adaptation. In our experiments, we demonstrate that learning occupancy models
104 enables faster policy learning.

105 **RL with generative models.** Modern generative models have been widely adopted to solve RL
106 problems. Prior work has employed autoregressive models (Vaswani et al., 2017), iterative generative

107 ¹We will use “successor representations,” “occupancy measures,” and “occupancy models” interchangeably.

108 models (e.g., denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow matching (Liu
109 et al., 2023; Lipman et al., 2023; 2024)), or autoencoders (Kingma & Welling, 2013) to model trajec-
110 tories (Chen et al., 2021; Janner et al., 2021; 2022; Ajay et al., 2023), environment dynamics (Ding
111 et al., 2024; Alonso et al., 2024), skills (Ajay et al., 2021; Pertsch et al., 2021; Frans et al., 2024),
112 policies (Wang et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025b), and values (Dong et al.,
113 2025; Agrawalla et al., 2025). We employ a state-of-the-art flow-matching objective (Farebrother
114 et al., 2025) to model discounted state occupancy measures.

115 **Successor representations and successor features.** Prior work has used successor representa-
116 tions (Dayan, 1993) and successor features (Barreto et al., 2017) for transfer learning (Barreto et al.,
117 2017; 2018; Borsa et al., 2018; Nemecek & Parr, 2021; Kim et al., 2022), unsupervised RL (Machado
118 et al., 2017; Hansen et al., 2019; Ghosh et al., 2023; Touati et al., 2023; Park et al., 2024b; 2023b;
119 Chen et al., 2023; Zheng et al., 2025; Jain et al., 2023; Zhu et al., 2024), and goal-conditioned
120 RL (Eysenbach et al., 2020; 2022; Zheng et al., 2024). Our method is closely related to prior methods
121 that learn successor representations with generative models (Janner et al., 2020; Thakoor et al., 2022;
122 Tomar et al., 2024; Farebrother et al., 2025). In particular, the most closely related to ours is the prior
123 work by Farebrother et al. (2025), which also uses flow-matching to model the occupancy measures
124 and partly employs the generalized policy improvement (GPI) for policy extraction. Unlike Fare-
125 brother et al. (2025), which uses forward-backward representations to capture behavioral intentions
126 and perform GPI over a finite set of intentions, our method employs a latent variable model to learn
127 intentions (Sec. 4.2) and uses an expectile loss to perform implicit GPI (Sec. 4.4). We empirically
128 show that these choices lead to higher returns and success rates (Sec. 5.1, Sec. 5.3).
129

3 PRELIMINARIES

132 We consider a Markov decision process (MDP) (Sutton et al., 1998) defined by a state space \mathcal{S} , an
133 action space \mathcal{A} , an initial state distribution $\rho \in \Delta(\mathcal{S})$, a reward function $r : \mathcal{S} \rightarrow \mathbb{R}$, a discount factor
134 $\gamma \in [0, 1]$, and a transition distribution $p : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$, where $\Delta(\cdot)$ denotes the set of all possible
135 probability distributions over a space. We will use h to denote a time step in the MDP and assume
136 the reward function only depends on the state at the current time step $r_h \triangleq r(s_h)$ without loss of
137 generality (Tomar et al., 2024; Frans et al., 2024; Thakoor et al., 2022). In Appendix A.1, we briefly
138 review the definition of value functions and the actor-critic framework in RL.

139 **Occupancy measures.** Alternatively, one can summarize the stochasticity over trajectories into
140 the *discounted state occupancy measure* (Dayan, 1993; Eysenbach et al., 2022; Janner et al., 2020;
141 Touati & Ollivier, 2021; Zheng et al., 2024; Myers et al., 2024; Blier et al., 2021) that quantifies
142 the discounted visitation frequency of different states under the policy π . Prior work (Dayan, 1993;
143 Janner et al., 2020; Touati & Ollivier, 2021; Zheng et al., 2024) has shown that the discounted state
144 occupancy measure follows a Bellman equation backing up the probability density at the current time
145 step and the future time steps:

$$p_\gamma^\pi(s_f | s, a) = (1 - \gamma)\delta_s(s_f) + \gamma \mathbb{E}_{\substack{s' \sim p(s'|s, a), \\ a' \sim \pi(a'|s')}} [p_\gamma^\pi(s_f | s', a')], \quad (1)$$

146 where $\delta_s(\cdot)$ denotes the Dirac delta measure centered at s .² The discounted state occupancy measure
147 allows us to rewrite the Q-function as a linear function of rewards (Barreto et al., 2017; Touati &
148 Ollivier, 2021; Zheng et al., 2024; Sikchi et al., 2024):
149

$$Q^\pi(s, a) = \frac{1}{1 - \gamma} \mathbb{E}_{s_f \sim p_\gamma^\pi(s_f | s, a)} [r(s_f)]. \quad (2)$$

150 The alternative (dual (Sikchi et al., 2024)) definition of Q-function (Eq. 2) allows us to cast the policy
151 evaluation step as first learning a generative model $p_\gamma(s_f | s, a)$ to simulate the discounted state
152 occupancy measure of π^k and then regressing the estimator Q towards the average reward at states
153 sampled from p_γ (Toussaint & Storkey, 2006; Tomar et al., 2024; Thakoor et al., 2022; Zheng et al.,
154 2024). See Sec. 4.4 for detailed formulation.

155 ²The recursive relationship in Eq. 1 starts from the current time step (Eysenbach et al., 2022; Touati &
156 Ollivier, 2021) instead of the next time step as in some prior approaches (Janner et al., 2020; Zheng et al., 2024;
157 Thakoor et al., 2022).

162 **Flow matching and TD flows.** Flow matching (Lipman et al., 2023; 2024; Liu et al., 2023; Albergo
163 & Vandenberg-Eijnden, 2023) refers to a family of generative models based on ordinary differential
164 equations (ODEs), which are close cousins of denoising diffusion models (Sohl-Dickstein et al., 2015;
165 Song et al., 2021; Ho et al., 2020), which instead solve a stochastic differential equation (SDE). The
166 deterministic nature of ODEs equips flow-matching methods with more stable learning objectives
167 and faster inference speed than denoising diffusion models (Lipman et al., 2023; 2024; Verine et al.,
168 2023). In Appendix A.2, we discuss the problem setting and the standard learning objective for flow
169 matching.

170 In the context of RL, prior work has used flow matching to estimate the discounted state occupancy
171 measure (Farebrother et al., 2025) by incorporating the Bellman equation (Eq. 1) into the conditional
172 flow matching loss (Eq. 10), resulting in a temporal difference flow matching procedure (TD
173 flows) (Farebrother et al., 2025). In Appendix A.3, we discuss the detailed formulations of the TD
174 flow objective for a target policy π . Choosing the target policy π to be the same as the behavioral
175 policy β , we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing the SARSA
176 flows. We will use the SARSA variant of the TD flow objective to learn our generative occupancy
177 models in Sec. 4.3.

179 4 INTENTION-CONDITIONED FLOW OCCUPANCY MODELS

181 In this section, we will introduce our method for pre-training and fine-tuning in RL. After formalizing
182 the problem setting, we will dive into the latent variable model for pre-training an intention encoder
183 and flow occupancy model. After pre-training the occupancy models, our method will extract policies
184 for solving different tasks by invoking a generalized policy improvement procedure (Barreto et al.,
185 2017). We refer to our method as **intention-conditioned flow occupancy models (InFOM)**.

186 4.1 PROBLEM SETTING

188 We consider learning with purely *offline* datasets, where an unlabeled (reward-free) dataset of
189 transitions $D = \{(s, a, s', a')\}$ collected by the behavioral policy β is provided for pre-training and
190 a reward-labeled dataset $D_{\text{reward}} = \{(s, a, r)\}$ collected by some other policy $\tilde{\beta}$ on a downstream
191 task is used for fine-tuning. Importantly, the behavioral policy β used to collect D can consist of a
192 mixture of policies used by different users to complete distinct tasks. We will call this heterogeneous
193 structure of the unlabeled datasets “intentions,” which are latent vectors z s in some latent space \mathcal{Z} .
194 In practice, these intentions can refer to desired goal images or language instructions that index the
195 behavioral policy $\beta = \{\beta(\cdot | \cdot, z) : z \in \mathcal{Z}\}$. Because these latent intentions are *unobserved* to the
196 pre-training algorithm, we want to infer them as a latent random variable Z from the offline dataset,
197 similar to prior work (Hausman et al., 2017; Li et al., 2017; Henderson et al., 2017). In Appendix B.2,
198 we include discussions distinguishing our problem setting from meta RL and multi-task RL problems.

199 During pre-training, our method exploits the heterogeneous structure of the unlabeled dataset and
200 extracts actionable information by (1) inferring intentions of the data collection policy and (2)
201 learning occupancy models to predict long-horizon future states based on those intentions (Sec. 4.2
202 & 4.3). During fine-tuning, we first recover a set of intention-conditioned Q functions by regressing
203 towards average rewards at future states generated by the occupancy models, and then extract a policy
204 to maximize task-specific discounted cumulative returns (Sec. 4.4). Our method builds upon an
205 assumption regarding the consistency of latent intentions.

206 **Assumption 1** (Consistency). *The unlabeled dataset D for pre-training is obtained by executing a
207 behavioral policy following a mixture of unknown intentions $z \in \mathcal{Z}$. We assume that consecutive
208 transitions (s, a) and (s', a') share the same intention.*

209 The consistency of intentions across transitions enables both intention inference using two sets of
210 transitions and dynamic programming over trajectory segments. See Appendix B.1 for justifications
211 of this assumption.

213 4.2 VARIATIONAL INTENTION INFERENCE

215 The goal of our pre-training framework is to learn a latent variable model that captures both long-
216 horizon temporal information and unknown user intentions in the unlabeled datasets.

This part of our method aims to infer the intention z based on consecutive transitions (s, a, s', a') using the encoder $p_e(z | s', a')$ and predict the occupancy measures of a future state s_f using the occupancy models $q_d(s_f | s, a, z)$. We want to maximize the likelihood of observing a future state s_f starting from a state-action pair (s, a) (amortized variational inference (Kingma & Welling, 2013; Margossian & Blei, 2024)), both sampled from the unlabeled dataset D following the joint behavioral distribution $p^\beta(s, a, s_f) = p^\beta(s, a)p^\beta(s_f | s, a)$:

$$\begin{aligned} & \max_{q_d} \mathbb{E}_{p^\beta(s, a, s_f)} [\log q_d(s_f | s, a)] \\ & \geq \max_{p_e, q_d} \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\mathbb{E}_{p_e(z | s', a')} [\log q_d(s_f | s, a, z)] - \lambda D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] , \end{aligned} \quad (3)$$

where $p(z) = \mathcal{N}(0, I)$ denotes an uninformative standard Gaussian prior over intentions, $\lambda \geq 1$ denotes the coefficient that controls the strength of the KL divergence regularization. In practice, we can use any $\lambda \geq 0$ because rescaling the *input* (s, a, s_f) , similar to normalizing the range of images from $\{0, \dots, 255\}$ to $[0, 1]$ in the original VAE (Kingma & Welling, 2013), preserves the ELBO. We defer the full derivation of the evidence lower bound (ELBO) and the explanation of λ to Appendix C.1. Inferring the intention z from the next transition (s', a') follows from our consistency assumption (Assump. 1), and is important for avoiding overfitting (Frans et al., 2024). Importantly, p_e and q_d are optimized *jointly* with this objective. One way of understanding this ELBO is as maximizing an information bottleneck with the chain of random variables $(S', A') \rightarrow Z \rightarrow (S, A, S_f)$. See Appendix C.1 for the connection.

We use flow matching to reconstruct the discounted state occupancy measure rather than maximizing the likelihood directly, resulting in minimizing a surrogate objective:

$$\min_{p_e, q_d} \mathcal{L}_{\text{Flow}}(q_d, p_e) + \lambda \mathbb{E}_{p^\beta(s', a')} [D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] . \quad (4)$$

We use $\mathcal{L}_{\text{Flow}}$ to denote a placeholder for the flow matching loss and will instantiate this loss for the flow occupancy models q_d next.

4.3 PREDICTING THE FUTURE VIA SARSA FLOWS

We now present the objective used to learn the flow occupancy models, where we first introduce some motivations and desiderata and then specify the actual loss. Given an unlabeled dataset D and an intention encoder $p_e(z | s', a')$, the goal is to learn a *generative* occupancy model $q_d(s_f | s, a, z)$ that approximates the discounted state occupancy measure of the behavioral policy conditioned on different intentions, i.e., $q_d(s_f | s, a, z) \approx p^\beta(s_f | s, a, z)$. We will use $v_d : [0, 1] \times \mathcal{S} \times \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \rightarrow \mathcal{S}$ to denote the time-dependent vector field that corresponds to q_d . There are two desired properties of the learned occupancy models: (1) distributing the peak probability density to multiple s_f , i.e., modeling multimodal structure, and (2) stitching together trajectory segments that share some transitions in the dataset, i.e., enabling combinatorial generalization. The first property motivates us to use an expressive flow-matching model (Lipman et al., 2024), while the second property motivates us to learn those occupancy models using temporal difference approaches (Janner et al., 2020; Tomar et al., 2024; Farebrother et al., 2025). Prior work (Farebrother et al., 2025) has derived the TD version of the regular (Monte Carlo) flow matching loss (Eq. 10) that incorporates the Bellman backup into the flow matching procedure, showing the superiority in sample efficiency and the capability of dynamic programming. We will adopt the same idea and use the SARSA variant of the TD flow loss (Eq. 11) to learn our intention-conditioned flow occupancy models:

$$\mathcal{L}_{\text{SARSA flow}}(v_d, p_e) = (1 - \gamma) \mathcal{L}_{\text{SARSA current flow}}(v_d, p_e) + \gamma \mathcal{L}_{\text{SARSA future flow}}(v_d, p_e) , \quad (5)$$

$$\mathcal{L}_{\text{SARSA current flow}}(v_d, p_e) = \mathbb{E}_{\substack{(s, a, s', a') \sim p^\beta(s, a, s', a'), \\ z \sim p_e(z | s', a'), \\ t \sim \text{UNIF}([0, 1]), \epsilon \sim \mathcal{N}(0, I)}} [\|v(t, s^t, s, a, z) - (s - \epsilon)\|_2^2] ,$$

$$\mathcal{L}_{\text{SARSA future flow}}(v_d, p_e) = \mathbb{E}_{\substack{(s, a, s', a') \sim p^\beta(s, a, s', a'), \\ z \sim p_e(z | s', a'), \\ t \sim \text{UNIF}([0, 1]), \epsilon \sim \mathcal{N}(0, I)}} [\|v_d(t, \bar{s}_f^t, s, a, z) - \bar{v}_d(t, \bar{s}_f^t, s', a', z)\|_2^2] .$$

Importantly, incorporating the information from latent intentions into the flow occupancy models allows us to (1) use the simpler and more stable SARSA bootstrap instead of the Q-learning style bootstrap (Eq. 11) on large datasets, (2) generalize over latent intentions, avoiding counterfactual errors. Sec. 5.2 visualizes the latent intentions, and Appendix F.2 contains additional experiments.

270 4.4 GENERATIVE VALUE ESTIMATION AND IMPLICIT GENERALIZED POLICY IMPROVEMENT
 271

272 We next discuss the fine-tuning process in our algorithm. Our fine-tuning method builds on the
 273 dual perspective of value estimation introduced in the preliminaries (Eq. 2). We first estimate a *set*
 274 of intention-conditioned Q functions using regression and then use those intention-conditioned Q
 275 functions to extract a policy, utilizing generalized policy improvement (GPI) (Barreto et al., 2017).
 276 The key idea of GPI is that, in addition to taking the maximum over the actions, we can also take the
 277 maximum over the intentions. In our setting, the number of intentions is infinite—one for every choice
 278 of continuous z . Thus, taking the maximum over the intentions is both nontrivial and susceptible to
 279 instability (Sec. 5.3). We address this issue by replacing the greedy “max” with an upper expectile
 280 loss, resulting in an implicit generalized policy improvement procedure.

281 **Generative value estimation.** Given a reward-labeled dataset D_{reward} and the pre-trained flow occu-
 282 pancy models q_d , we can estimate intention-conditioned Q values for a downstream task. Specifically,
 283 for a fixed latent intention $z \in \mathcal{Z}$, we first sample a set of N future states from the flow occupancy
 284 models, $s_f^{(1)}, \dots, s_f^{(N)} : s_f^{(i)} \sim q_d(s_f | s, a, z)$, and then constructs a Monte Carlo (MC) estimation
 285 of the Q function using those generative samples:³

$$286 \quad Q_z(s, a) = \frac{1}{(1 - \gamma)N} \sum_{i=1}^N r(s_f^{(i)}), \quad s_f^{(i)} \sim q_d(s_f | s, a, z), \quad (6)$$

289 where $r(\cdot)$ is the reward function or a learned reward predictor. Importantly, the choice of the number
 290 of future states N affects the accuracy and variance of our Q estimate. Ablation experiments in
 291 Appendix F.11 indicate that $N = 16$ works effectively in our experiments. Note that we choose to
 292 sample z from the prior $p(z)$ instead of from the posterior $q_d(z | s', a')$, resembling drawing random
 293 samples from a variational auto-encoder (Kingma & Welling, 2013). We include an ablation study in
 294 Appendix F.5, comparing the effect of fine-tuning with latents from the prior $p(z)$ and the posterior
 295 $q_d(z | s', a')$. In practice, we find sampling from the prior $p(z)$ worked well in our experiments.

296 **Implicit generalized policy improvement.** We can then use those MC estimation of Q functions to
 297 learn a policy by invoking the generalized policy improvement. The naive GPI requires sampling
 298 a finite set of latent intentions from the prior distribution $p(z)$, $z^{(1)}, \dots, z^{(M)} : z^{(j)} \sim p(z)$ and
 299 greedily choose one Q_z to update the policy (Barreto et al., 2017):

$$301 \quad \arg \max_{\pi} \mathbb{E}_{\substack{s \sim p^{\tilde{\beta}}(s), a \sim \pi(a|s) \\ z^{(1)}, \dots, z^{(M)} : z^{(j)} \sim p(z)}} \left[\max_{z^{(j)}} Q_{z^{(j)}}(s, a) \right].$$

304 Despite its simplicity, the naive GPI suffers from two main disadvantages. First, using the maximum
 305 Q over a finite set of latent intentions to approximate the maximum Q over an infinite number of
 306 intentions results in local optima. Second, when we take gradients of this objective with respect to
 307 the policy, the chain rule gives one term involving $\nabla_a q_d(s_f | s, a, z)$. Thus, computing the gradients
 308 requires differentiating through the ODE solver (backpropagating through time (Park et al., 2025b)),
 309 which is unstable. We address these challenges by learning an explicit scalar Q function to distill the
 310 MC estimation of intention-conditioned Q functions. This approach is appealing because gradients of
 311 the Q function no longer backpropagate through the ODE solver. We also replace the “max” over
 312 a finite set of intention-conditioned Q functions with an upper expectile loss L_2^{μ} (Kostrikov et al.,
 313 2022), resulting in the following critic loss

$$314 \quad \mathcal{L}(Q) = \mathbb{E}_{(s, a) \sim p^{\tilde{\beta}}(s, a), z \sim p(z)} [L_2^{\mu}(Q_z(s, a) - Q(s, a))], \quad (7)$$

315 where $L_2^{\mu}(x) = |\mu - \mathbb{1}(x < 0)|x^2$ and $\mu \in [0.5, 1]$. In Appendix C.2, we discuss the intuition and
 316 theoretical soundness of this distillation step. After distilling the intention-conditioned Q functions
 317 into a single function, we can extract the policy by selecting actions to maximize Q with a behavioral
 318 cloning regularization (Fujimoto & Gu, 2021) using the actor loss

$$319 \quad \mathcal{L}(\pi) = -\mathbb{E}_{(s, a) \sim p^{\tilde{\beta}}(s, a), a^{\pi} \sim \pi(a^{\pi} | s)} [Q(s, a^{\pi}) + \alpha \log \pi(a | s)], \quad (8)$$

321 where α controls the regularization strength. We use the behavioral cloning regularization to both
 322 reduce errors from sampling out-of-distribution (OOD) actions (Kumar et al., 2020; Fujimoto & Gu,
 323

³We omit the dependency of Q_z on $s_f^{(1)}, \dots, s_f^{(N)}$ to simplify notations.

Figure 2: **Domains for evaluation.** (Left) ExORL domains (16 state-based tasks). (Right) OGBench domains (20 state-based tasks and 4 image-based tasks).

(a) 16 state-based ExORL tasks from Yarats et al. (2022). (b) 20 state-based and 4 image-based OGBench tasks from Park et al. (2025a). We average over 4 tasks for each domain.

Figure 3: **Evaluation on ExORL and OGBench tasks.** We compare InFOM against prior methods that utilize various learning paradigms on task-agnostic pre-training and task-specific fine-tuning. InFOM performs similarly to, if not better than, prior methods on 7 out of the 9 domains, including the most challenging visual tasks. We report means and standard deviations over 8 random seeds (4 random seeds for image-based tasks) with error bars indicating one standard deviation. See Table 4 for full results.

2021) and mitigate error propagations through overestimated Q_z values. *Ablation experiments in Appendix F.7 and Appendix F.12 show that this behavioral cloning regularization is important for improving the policy performance.* Taken together, we call the expectile Q distillation step (Eq. 7) and the policy optimization step (Eq. 8) *implicit generalized policy improvement (implicit GPI)*.

Algorithm summary. We use neural networks to parameterize the intention encoder p_ϕ , the vector field of the occupancy models v_θ , the reward predictor r_η , the critic Q_ψ , and the policy π_ω . We consider two stages: pre-training and fine-tuning. In Alg. 1, we summarize the pre-training process of InFOM. InFOM pre-trains (1) the vector field v_θ using the SARSA flow loss (Eq. 5) and (2) the intention encoder p_ϕ using the ELBO (Eq. 3). Alg. 2 shows the pseudocode of InFOM for fine-tuning. InFOM mainly learns (1) the reward predictor r_η via simple regression, (2) the critic Q_ψ using expectile distillation (Eq. 7), and (3) the policy π_ω by conservatively maximizing the Q_ψ (Eq. 8). The open-source implementation is available in the supplementary materials.

5 EXPERIMENTS

Our experiments start with comparing InFOM to prior methods that first pre-train on reward-free datasets and then fine-tune on reward-labeled datasets, measuring the performance on downstream tasks. We then study the two main components of our method: the variational intention encoder and the implicit GPI policy extraction strategy. Visualizations of the latent intention inferred by our variational intention encoder show alignment with the underlying ground-truth intentions. Our ablation experiments reveal the effect of the implicit GPI policy extraction strategy. We also include additional experiments showing InFOM enables faster policy learning during fine-tuning in Appendix F.3. Our algorithm is robust to various choices of hyperparameters (Appendix F.12). Following prior work (Park et al., 2025b), all experiments report means and standard deviations across 8 random seeds for state-based tasks and 4 random seeds for image-based tasks.

5.1 COMPARING TO PRIOR PRE-TRAINING AND FINE-TUNING METHODS

Our experiments study whether the proposed method (InFOM), which captures actionable information conditioned on user intentions from unlabeled datasets, enables effective pre-training and fine-tuning. We select 36 state-based and 4 image-based tasks across diverse robotic navigation and manipula-

Figure 4: **Visualization of latent intentions.** (Top) The optimal policy picks up the blue block from the left and places it on the right. (Bottom) Using t-SNE (Maaten & Hinton, 2008), we visualize the latent intentions inferred by the variational intention encoder in InFOM, comparing against latent representations inferred by HILP and FB for learning FOMs. The predictions from InFOM align with the underlying intentions. See Sec. 5.2 for details and Appendix E for more visualizations.

tion domains and compare against 8 baselines. The models pre-trained by those methods include behavioral cloning policies (Kostrikov et al., 2022; Tarasov et al., 2023a), transition models (Janner et al., 2019), representations (Caron et al., 2021), discriminative classifiers that predict occupancy measures (Eysenbach et al., 2022; Zheng et al., 2024), and latent skills (Touati & Ollivier, 2021; Park et al., 2024b). We defer the detailed discussions about benchmarks and datasets to Appendix D.1 and the rationale for choosing different baselines to Appendix D.2. Whenever possible, we use the same hyperparameters for all methods (Table 1). See Appendix D.3 for details of the evaluation protocol and Appendix D.4 for implementations and hyperparameters of each method.

We report results in Fig. 3, aggregating over four tasks in each domain of ExORL and five tasks in each domain of OGBench, and present the full results in Table 4. These results show that InFOM matches or surpasses all baselines on six out of eight domains. On ExORL benchmarks, all methods perform similarly on the two easier domains (cheetah and quadruped), while InFOM can obtain 20 \times improvement on jaco, where baselines only make trivial progress (Table 4). We suspect the outsized improvement on the jaco task is because of the high-dimensional state space (twice that of the other ExORL tasks (Yarats et al., 2022)) and because it has sparse rewards; Appendix Fig. 13 supports this hypothesis by showing that the ReBRAC baseline achieves significantly higher returns when using dense rewards. On those more challenging state-based manipulation tasks from OGBench, we find a marked difference between baselines and InFOM; our method achieves 36% higher success rate over the best performing baseline. In addition, InFOM is able to outperform the best baseline by 31% using RGB images as input directly (visual tasks). We hypothesize that the baselines fail to solve these more challenging tasks because of the semi-sparse reward functions. In contrast, our method can explore different regions of the state space using the different intentions, thereby addressing the challenge of reward sparsity. We conjecture that the variance of InFOM across seeds in some experiments (e.g., cheetah, cube single, and puzzle 4 \times 4) reflects stochasticity in the MC Q estimates (Eq. 6), which might be mitigated by increasing the number of sampled future states (See Appendix F.11). In Appendix F.1, we compare InFOM against selective baselines on real robotics datasets, showing 34% improvement.

5.2 VISUALIZING LATENT INTENTIONS

Our next experiment studies the intention encoder in our algorithm. To investigate whether the proposed method discovers distinct user intentions from an unlabeled dataset, we visualize latent intentions inferred by our variational intention encoder. We include comparisons against two alterna-

432
 433
 434
 435
 436
 437
 438
 tive intention encoding mechanisms proposed by prior methods. Specifically, we consider replacing the variational intention encoder with either (1) a set of Hilbert representations (Park et al., 2024b) or (2) a set of forward-backward representations (Touati & Ollivier, 2021), and then pre-training the flow occupancy models (FOM) conditioned on these two sets of representations. We call these two variants HILP + FOM and FB + FOM. Note that FB + FOM is equivalent to TD flows with GPI in Farebrother et al. (2025). Using t-SNE (Maaten & Hinton, 2008), we visualize latent intentions predicted by these three methods on cube double task 1 from the OGBench benchmarks.

439
 440
 441
 442
 443
 444
 445
 Fig. 4 shows the optimal trajectory, where the manipulator picks the blue block from the left and then places it on the right, and the visualizations. The 2D t-SNE visualizations indicate that both FB + FOM and HILP + FOM infer mixed latent intentions for “pick” and “place” behaviors, while InFOM predicts a sequence of latent intentions with clear clustering. This result suggests that InFOM is capable of inferring latent intentions that align with the underlying ground-truth intentions. See Appendix E for more visualizations. In Appendix F.2, we include additional experiments comparing the downstream performance between InFOM and HILP + FOM and FB + FOM. Results in Appendix Fig. 9 suggest that InFOM can outperform those two baselines on 3 of 4 tasks.

448 5.3 IMPORTANCE OF THE IMPLICIT GENERALIZED POLICY IMPROVEMENT 449

450
 451
 452
 453
 454
 455
 456
 457
 Our final experiments study different approaches for policy optimization. We hypothesize that our proposed method is more efficient and robust than other policy extraction strategies. To test this hypothesis, we conduct ablation experiments on one task in the ExORL benchmarks (quadruped jump) and another task taken from the OGBench benchmarks (scene task 1), again following the evaluation protocols in Appendix D.3. We compare two alternative policy learning approaches in the fine-tuning phase. First, we ablate the effect of the upper expectile loss by comparing against the standard GPI, which maximizes Q functions over a finite set of intentions $\{z^{(1)}, \dots, z^{(M)}\}$. We choose $M = 32$ latent intentions to balance between performance and compute budget, and call this variant InFOM + GPI. Second, we ablate the effect of the variational intention encoder by removing the intention dependency in the flow occupancy models and extracting the policy via one-step policy improvement (PI) (Wang et al., 2018; Brandfonbrener et al., 2021; Peters & Schaal, 2007; Peters et al., 2010). We call this method FOM + one-step PI and defer the detailed formulation to Appendix C.3.

468
 469
 470
 471
 472
 473
 As shown in Fig. 5, InFOM achieves significantly higher returns and success rates than its variant based on one-step policy improvement, suggesting the importance of inferring user intentions. Compared with its GPI counterpart, our method is 44% more performant with 8 \times smaller variance (the error bar indicates one standard deviation), demonstrating that the implicit GPI indeed performs a relaxed maximization over intentions while maintaining robustness.

474
 475
 476
 477
 478
 479
Additional experiments. In Appendix F.3, we include additional ablations showing that InFOM enables faster policy learning. Appendix F.4 ablate InFOM against a variant of InFOM with a set of discrete latents trained vector quantization loss, showing that the continuous latent space generally performs better. In Appendix F.8, we relate the diversity of the pre-training datasets to their sizes. The dataset size ablations in Appendix F.9 show that using sufficient pre-training and fine-tuning data is important. Appendix F.10 study the effects of fine-tuning on suboptimal datasets. Our hyperparameter ablations can be found in Appendix F.12.

481
 482
 483
 484
 485
Alternative generative occupancy models. Farebrother et al. (2025) has already discussed using alternative prior generative modeling approaches to learn the occupancy measure. Specifically, they compare flow-based occupancy models against representative generative methods, including denoising diffusion (Ho et al., 2020), VAE (Kingma & Welling, 2013; Higgins et al., 2017), and GAN (Goodfellow et al., 2014). Results in Fig. 2 of Farebrother et al. (2025) show that flow-based occupancy models (TD²-CFM in the figure) outperforms alternative generative methods in modeling

486 the occupancy measures. For this reason, we do not include comparisons against alternative generative
487 occupancy models to distinguish our contributions.
488

489 **6 CONCLUSION**
490

491 In this work, we presented InFOM, a method that captures diverse intentions and their long-term
492 behaviors from an unstructured dataset, leveraging the expressivity of flow models. We empirically
493 showed that the intentions captured in flow occupancy models enable effective and efficient fine-
494 tuning, outperforming prior unsupervised pre-training approaches on diverse state- and image-based
495 domains.
496

497 **Limitations.** One limitation of InFOM is that our reduction from trajectories to consecutive state-
498 action pairs might not always accurately capture the original intentions in the trajectories. While
499 we empirically showed that this simple approach is sufficient to achieve strong performance on our
500 benchmark tasks, it can be further improved with alternative trajectory encoding techniques and data
501 collection strategies, which we leave for future work.
502

503 **REPRODUCIBILITY STATEMENT**
504

505 We implement InFOM and all baselines in the same codebase using JAX (Bradbury et al., 2018). Our
506 implementations build on top of OGBench’s and FQL’s implementations (Park et al., 2025a;b). We
507 include the common hyperparameters for all the methods in Appendix Table 1, the hyperparameters
508 for InFOM in Appendix Table 2 and Appendix Table 3, and the hyperparameters for baselines in
509 Appendix Table 3. All the experiments were run on a single NVIDIA A6000 GPU and can be
510 finished in 4 hours for state-based tasks and 12 hours for image-based tasks. We provide open-source
511 implementations of InFOM and all baselines in the supplementary materials.
512

513 **REFERENCES**
514

514 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
515 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
516 *arXiv preprint arXiv:2303.08774*, 2023.

517 Bhavya Agrawalla, Michal Nauman, Khush Agrawal, and Aviral Kumar. floq: Training critics via
518 flow-matching for scaling compute in value-based rl. *arXiv preprint arXiv:2509.06863*, 2025.

519 Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
520 primitive discovery for accelerating offline reinforcement learning. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=V69LGwJ01IN>.

521 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
522 Is conditional generative modeling all you need for decision making? In *The Eleventh International
523 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=sP1fo2K9DFG>.

524 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
525 interpolants. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=li7qeBbCR1t>.

526 Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
527 bottleneck. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=HyxQzBceg>.

528 Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
529 Fran ois Fleuret. Diffusion for world modeling: Visual details matter in atari. *Advances in Neural
530 Information Processing Systems*, 37:58757–58791, 2024.

531 David Barber and Felix Agakov. The im algorithm: a variational approach to information maximization.
532 *Advances in neural information processing systems*, 16(320):201, 2004.

540 André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
541 and David Silver. Successor features for transfer in reinforcement learning. *Advances in neural*
542 *information processing systems*, 30, 2017.

543 Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
544 Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
545 and generalised policy improvement. In *International Conference on Machine Learning*, pp. 501–
546 510. PMLR, 2018.

547 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
548 stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

549 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
550 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
551 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

552 Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
553 values: A mathematical viewpoint. *arXiv preprint arXiv:2101.07123*, 2021.

554 Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
555 David Silver, and Tom Schaul. Universal successor features approximators. *arXiv preprint*
556 *arXiv:1812.07626*, 2018.

557 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
558 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
559 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
<http://github.com/jax-ml/jax>.

560 David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
561 evaluation. *Advances in neural information processing systems*, 34:4933–4946, 2021.

562 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
563 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
564 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

565 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
566 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
567 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

568 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
569 distillation. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=H11JJnR5Ym>.

570 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
571 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
572 In *International Conference on Machine Learning*, pp. 5453–5512. PMLR, 2024.

573 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
574 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the*
575 *IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

576 Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
577 reinforcement learning that transfers using random features. *Advances in Neural Information*
578 *Processing Systems*, 36:56411–56436, 2023.

579 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
580 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
581 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

582 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
583 differential equations. *Advances in neural information processing systems*, 31, 2018.

584 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint*
585 *arXiv:2307.08698*, 2023.

594 Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
595 *Neural computation*, 5(4):613–624, 1993.
596

597 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
598 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
599 *the North American chapter of the association for computational linguistics: human language*
600 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

601 Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. *arXiv e-prints*,
602 pp. arXiv–2402, 2024.
603

604 Perry Dong, Chongyi Zheng, Chelsea Finn, Dorsa Sadigh, and Benjamin Eysenbach. Value flows.
605 *arXiv preprint arXiv:2510.07650*, 2025.
606

607 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
608 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.
609

610 Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.
611

612 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
613 Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
614 importance weighted actor-learner architectures. In *International conference on machine learning*,
615 pp. 1407–1416. PMLR, 2018.
616

617 Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
618 need: Learning skills without a reward function. In *International Conference on Learning*
619 *Representations*, 2019. URL <https://openreview.net/forum?id=SJx63jRqFm>.
620

621 Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve
622 goals via recursive classification. *arXiv preprint arXiv:2011.08909*, 2020.
623

624 Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
625 as goal-conditioned reinforcement learning. *Advances in Neural Information Processing Systems*,
626 35:35603–35620, 2022.
627

628 Jesse Farnbrother, Matteo Pirotta, Andrea Tirinzoni, Remi Munos, Alessandro Lazaric, and Ahmed
629 Touati. Temporal difference flows. In *ICLR 2025 Workshop on World Models: Understanding, Mod-*
630 *eling and Scaling*, 2025. URL <https://openreview.net/forum?id=nYL0pn3z3u>.
631

632 Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement
633 learning via functional reward encodings. In *International Conference on Machine Learning*, pp.
634 13927–13942. PMLR, 2024.
635

636 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
637 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
638 <https://openreview.net/forum?id=OlzB6LnXcs>.
639

640 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
641 *Advances in neural information processing systems*, 34:20132–20145, 2021.
642

643 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
644 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.
645

646 Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
647 data via latent intentions. In *International Conference on Machine Learning*, pp. 11321–11339.
648 PMLR, 2023.
649

650 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
651 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
652 *processing systems*, 27, 2014.
653

654 Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
655 generative models with free-form continuous dynamics. In *International Conference on Learning*
656 *Representations*, 2019. URL <https://openreview.net/forum?id=rJxgknCcK7>.
657

648 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
649 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
650 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in neural*
651 *information processing systems*, 33:21271–21284, 2020.

652 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
653 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
654 *on machine learning*, pp. 1861–1870. Pmlr, 2018.

655 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
656 through world models. *arXiv preprint arXiv:2301.04104*, 2023.

657 Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
658 Volodymyr Mnih. Fast task inference with variational intrinsic successor features. *arXiv preprint*
659 *arXiv:1906.05030*, 2019.

660 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
661 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
662 *arXiv:2304.10573*, 2023.

663 Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim. Multi-modal
664 imitation learning from unstructured demonstrations using generative adversarial nets. *Advances*
665 *in neural information processing systems*, 30, 2017.

666 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
667 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
668 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

669 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
670 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
671 *vision and pattern recognition*, pp. 16000–16009, 2022.

672 Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, and Doina Precup.
673 Optiongan: Learning joint reward-policy options using generative adversarial inverse reinforcement
674 learning. *ArXiv*, abs/1709.06683, 2017. URL <https://api.semanticscholar.org/CorpusID:7079525>.

675 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
676 *arXiv:1606.08415*, 2016.

677 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
678 Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
679 constrained variational framework. In *International Conference on Learning Representations*,
680 2017. URL <https://openreview.net/forum?id=Sy2fzU9gl>.

681 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
682 *neural information processing systems*, 33:6840–6851, 2020.

683 Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction
684 via random intent priors. *Advances in Neural Information Processing Systems*, 36:51491–51514,
685 2023.

686 Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy exploration
687 using predecessor and successor representations. *Advances in Neural Information Processing*
688 *Systems*, 36:49991–50019, 2023.

689 Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
690 policy optimization. *Advances in neural information processing systems*, 32, 2019.

691 Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: Generative temporal difference
692 learning for infinite-horizon prediction. *Advances in neural information processing systems*, 33:
693 1724–1735, 2020.

702 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
703 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.
704

705 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
706 flexible behavior synthesis. In *International Conference on Machine Learning*, pp. 9902–9915.
707 PMLR, 2022.

708 Scott Jeen, Tom Bewley, and Jonathan Cullen. Zero-shot reinforcement learning from low quality
709 data. *Advances in Neural Information Processing Systems*, 37:16894–16942, 2024.
710

711 Jaekyeom Kim, Seohong Park, and Gunhee Kim. Constrained gpi for zero-shot transfer in reinforce-
712 ment learning. *Advances in Neural Information Processing Systems*, 35:4585–4597, 2022.

713 Junsu Kim, Seohong Park, and Sergey Levine. Unsupervised-to-online reinforcement learning. *arXiv*
714 preprint *arXiv:2408.14785*, 2024.
715

716 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
717 2014.

718 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
719 *arXiv:1312.6114*, 2013.
720

721 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
722 q-learning. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=68n2s9ZJWF8>.
723

724 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
725 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.
726

727 Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction errors
728 in learned dynamics models. *arXiv preprint arXiv:2203.09637*, 2022.
729

730 Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
731 for reinforcement learning. In *International conference on machine learning*, pp. 5639–5650.
732 PMLR, 2020.

733 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
734 Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
735 simulation. *arXiv preprint arXiv:2405.05941*, 2024.
736

737 Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
738 demonstrations. *Advances in neural information processing systems*, 30, 2017.
739

740 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
741 matching for generative modeling. In *The Eleventh International Conference on Learning Representa-
742 tions*, 2023. URL <https://openreview.net/forum?id=PqvMRDCJT9t>.
743

744 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
745 David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv preprint*
746 *arXiv:2412.06264*, 2024.
747

748 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
749 data with rectified flow. In *The Eleventh International Conference on Learning Representations*,
750 2023. URL <https://openreview.net/forum?id=XVjTT1nw5z>.
751

752 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
753 representations for vision-and-language tasks. *Advances in neural information processing systems*,
754 32, 2019.
755

756 Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
757 Zhang. VIP: Towards universal visual reward and representation via value-implicit pre-training.
758 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=YJ7o2wetJ2>.
759

756 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
757 *learning research*, 9(Nov):2579–2605, 2008.

758

759 Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
760 Campbell. Eigenoption discovery through the deep successor representation. *arXiv preprint*
761 *arXiv:1710.11089*, 2017.

762 Charles C Margossian and David M Blei. Amortized variational inference: When and why? In
763 *Uncertainty in Artificial Intelligence*, pp. 2434–2449. PMLR, 2024.

764

765 Bogdan Mazoure, Benjamin Eysenbach, Ofir Nachum, and Jonathan Tompson. Contrastive value
766 learning: Implicit models for simple offline RL. In *7th Annual Conference on Robot Learning*,
767 2023. URL <https://openreview.net/forum?id=oqOfLP6bJy>.

768 Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
769 Learning and adapting skills in imagination. *arXiv preprint arXiv:2211.13350*, 2022.

770

771 Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
772 and achieving goals via world models. *Advances in Neural Information Processing Systems*, 34:
773 24379–24391, 2021.

774 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
775 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
776 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

777

778 Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
779 temporal distances: Contrastive successor features can provide a metric structure for decision-
780 making. In *International Conference on Machine Learning*, pp. 37076–37096. PMLR, 2024.

781 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
782 visual representation for robot manipulation. In *Conference on Robot Learning*, pp. 892–909.
783 PMLR, 2023.

784

785 Mark Nemecek and Ronald Parr. Policy caches with successor features. In *International Conference*
786 *on Machine Learning*, pp. 8025–8033. PMLR, 2021.

787

788 Tianwei Ni, Benjamin Eysenbach, Erfan SeyedSalehi, Michel Ma, Clement Gehring, Aditya Mahajan,
789 and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-predictive rl.
790 *arXiv preprint arXiv:2401.08898*, 2024.

791

792 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
793 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
794 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
27744, 2022.

795

796 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
797 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
798 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

800

801 Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
802 effectiveness of pre-trained vision models for control. In *international conference on machine*
learning, pp. 17359–17371. PMLR, 2022.

803

804 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
805 rl with latent states as actions. *Advances in Neural Information Processing Systems*, 36:34866–
34891, 2023a.

806

807 Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
808 abstraction. *arXiv preprint arXiv:2310.08887*, 2023b.

809

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? *arXiv preprint arXiv:2406.09329*, 2024a.

810 Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
811 In *International Conference on Machine Learning*, pp. 39737–39761. PMLR, 2024b.
812

813 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
814 offline goal-conditioned RL. In *The Thirteenth International Conference on Learning Representa-*
815 *tions*, 2025a. URL <https://openreview.net/forum?id=M992mjgKzI>.

816 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. *arXiv preprint arXiv:2502.02538*,
817 2025b.

818 Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
819 skill priors. In *Conference on robot learning*, pp. 188–204. PMLR, 2021.

820 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
821 space control. In *Proceedings of the 24th international conference on Machine learning*, pp.
822 745–750, 2007.

823 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *Proceedings of*
824 *the AAAI Conference on Artificial Intelligence*, volume 24, pp. 1607–1612, 2010.

825 Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
826 meta-reinforcement learning with online self-supervision. In *International Conference on Machine*
827 *Learning*, pp. 17811–17829. Pmlr, 2022.

828 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
829 bounds of mutual information. In *International conference on machine learning*, pp. 5171–5180.
830 PMLR, 2019.

831 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
832 understanding by generative pre-training. 2018.

833 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
834 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
835 models from natural language supervision. In *International conference on machine learning*, pp.
836 8748–8763. PmLR, 2021.

837 Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
838 meta-reinforcement learning via probabilistic context variables. In *International conference on*
839 *machine learning*, pp. 5331–5340. PMLR, 2019.

840 Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha
841 Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy
842 optimization. In *The Thirteenth International Conference on Learning Representations*, 2025.
843 URL <https://openreview.net/forum?id=mEpqHvbD2h>.

844 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
845 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
846 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

847 Gavin A Rummery and Mahesan Niranjan. *On-line Q-learning using connectionist systems*, vol-
848 ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

849 Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
850 dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep
851 learning. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=ry_WPG-A-.

852 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
853 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
854 2015.

855 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
856 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

864 Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
865 man. Data-efficient reinforcement learning with self-predictive representations. *arXiv preprint*
866 *arXiv:2007.05929*, 2020.

867 Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
868 Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
869 *2018 IEEE international conference on robotics and automation (ICRA)*, pp. 1134–1141. IEEE,
870 2018.

871 Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
872 unsupervised discovery of skills. *arXiv preprint arXiv:1907.01657*, 2019.

873 Harshit Sikchi, QinQing Zheng, Amy Zhang, and Scott Niekum. Dual RL: Unification and new meth-
874 ods for reinforcement and imitation learning. In *The Twelfth International Conference on Learning*
875 *Representations*, 2024. URL <https://openreview.net/forum?id=xt9Bu66rqv>.

876 Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
877 based representations. In *International conference on machine learning*, pp. 9767–9779. PMLR,
878 2021.

879 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
880 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
881 pp. 2256–2265. pmlr, 2015.

882 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
883 Poole. Score-based generative modeling through stochastic differential equations. In *International*
884 *Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

885 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
886 press Cambridge, 1998.

887 Erik Talvitie. Model regularization for stable sample rollouts. In *UAI*, pp. 780–789, 2014.

888 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
889 minimalist approach to offline reinforcement learning. *Advances in Neural Information Processing*
890 *Systems*, 36:11592–11620, 2023a.

891 Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
892 Research-oriented deep offline reinforcement learning library. *Advances in Neural Information*
893 *Processing Systems*, 36:30997–31020, 2023b.

894 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
895 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint*
896 *arXiv:1801.00690*, 2018.

897 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
898 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
899 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

900 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
901 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
902 policy. *arXiv preprint arXiv:2405.12213*, 2024.

903 Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Rémi Munos, and André Barreto.
904 Generalised policy improvement with geometric policy composition. In *International Conference*
905 *on Machine Learning*, pp. 21272–21307. PMLR, 2022.

906 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv*
907 *preprint physics/0004057*, 2000.

908 Manan Tomar, Philippe Hansen-Estruch, Philip Bachman, Alex Lamb, John Langford, Matthew E
909 Taylor, and Sergey Levine. Video occupancy models. *arXiv preprint arXiv:2407.09533*, 2024.

918 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in*
919 *Neural Information Processing Systems*, 34:13–23, 2021.
920

921 Ahmed Touati, Jérémie Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
922 In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=MYEap_OcQI.
923

924 Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state
925 markov decision processes. In *Proceedings of the 23rd international conference on Machine*
926 *learning*, pp. 945–952, 2006.
927

928 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
929 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
930 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
931

932 Khadichabonu Valieva and Bikramjit Banerjee. Quasimetric value functions with dense rewards.
933 *arXiv preprint arXiv:2409.08724*, 2024.
934

935 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
936 *neural information processing systems*, 30, 2017.
937

938 Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
939 learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.
940

941 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
942 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
943 *systems*, 30, 2017.
944

945 Alexandre Verine, Benjamin Negrevergne, Yann Chevaleyre, and Fabrice Rossi. On the expressivity
946 of bi-lipschitz normalizing flows. In *Asian Conference on Machine Learning*, pp. 1054–1069.
947 PMLR, 2023.
948

949 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
950 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
951 robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.
952

953 Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
954 learning for batched historical data. *Advances in Neural Information Processing Systems*, 31, 2018.
955

956 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
957 class for offline reinforcement learning. In *The Eleventh International Conference on Learning*
958 *Representations*, 2023. URL <https://openreview.net/forum?id=AHvFDPi-FA>.
959

960 Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine learning*, 8:279–292, 1992.
961

962 Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
963 motor control. *arXiv preprint arXiv:2203.06173*, 2022.
964

965 Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
966 and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
967 reinforcement learning. In *ICLR 2022 Workshop on Generalizable Policy Learning in Physical*
968 *World*, 2022. URL <https://openreview.net/forum?id=Su-zh4a41Z5>.
969

970 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
971 Gradient surgery for multi-task learning. *Advances in neural information processing systems*, 33:
972 5824–5836, 2020.
973

974 Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
975 How to leverage unlabeled data in offline reinforcement learning. In *International Conference on*
976 *Machine Learning*, pp. 25611–25635. PMLR, 2022.
977

978 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
979 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
980 pp. 11975–11986, 2023.
981

972 Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
973 invariant representations for reinforcement learning without reconstruction. In *International*
974 *Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=-2FCwDKRREu>.

975

976 Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive difference predictive
977 coding. *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=OakLDTFR9x>.

978

979 Chongyi Zheng, Jens Tuyls, Joanne Peng, and Benjamin Eysenbach. Can a MISL fly? analysis
980 and ingredients for mutual information skill learning. In *The Thirteenth International Conference*
981 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=xoIeVdFO7U>.

982

983 Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online re-
984 inforcement learning fine-tuning need not retain offline data. In *The Thirteenth International*
985 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HN0CYZbAPw>.

986

987 Chuning Zhu, Xinqi Wang, Tyler Han, Simon S Du, and Abhishek Gupta. Distributional successor
988 features enable zero-shot policy optimization. *arXiv preprint arXiv:2403.06328*, 2024.

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Algorithm 1 Intention-Conditioned Flow Occupancy Model (pre-training).

1: **Input** The intention encoder p_ϕ , the vector field v_θ , the target vector field $v_{\bar{\theta}}$, the policy π_ω , and the reward-free dataset D .
 2: **for** each iteration **do**
 3: Sample a batch of $\{(s, a, s', a') \sim D\}$.
 4: Sample a batch of $\{\epsilon \sim \mathcal{N}(0, I)\}$ and a batch of $\{t \sim \text{UNIF}([0, 1])\}$.
 5: Encode intentions $\{z \sim p_\phi(z | s', a')\}$ for each (s', a') .
 6: \triangleright **SARSA flow occupancy model loss.**
 7: $s^t \leftarrow (1 - t)\epsilon + ts$
 8: $\bar{s}_f \leftarrow \text{EulerMethod}(v_{\bar{\theta}}, \epsilon, s', a', z)$, $\bar{s}_f^t \leftarrow (1 - t)z + t\bar{s}_f$.
 9: $\mathcal{L}_{\text{SARSA current flow}}(\theta, \phi) \leftarrow \mathbb{E}_{(s, a, z, t, \epsilon, s^t)} [\|v_\theta(t, s^t, s, a, z) - (s - z)\|_2^2]$.
 10: $\mathcal{L}_{\text{SARSA future flow}}(\theta, \phi) \leftarrow \mathbb{E}_{(s, a, z, t, \epsilon, \bar{s}_f^t)} [\|v_\theta(t, \bar{s}_f^t, s, a, z) - v_{\bar{\theta}}(t, \bar{s}_f^t, s', a', z)\|_2^2]$.
 11: $\mathcal{L}_{\text{SARSA flow}}(\theta, \phi) \leftarrow (1 - \gamma)\mathcal{L}_{\text{current}}(\theta, \phi) + \gamma\mathcal{L}_{\text{future}}(\theta, \phi)$. \triangleright Eq. 5
 12: \triangleright **Intention encoder loss.**
 13: $\mathcal{L}_{\text{ELBO}}(\theta, \phi) \leftarrow \mathcal{L}_{\text{SARSA flow}}(\theta, \phi) + \lambda\mathbb{E}_{(s', a')} [D_{\text{KL}}(p_\phi(z | s', a') \parallel \mathcal{N}(0, I))]$. \triangleright Eq. 4
 14: \triangleright **(Optional) Behavioral cloning loss.**
 15: $\mathcal{L}_{\text{BC}}(\omega) \leftarrow -\mathbb{E}_{(s, a)} [\log \pi_\omega(a | s)]$.
 16: Update the vector field θ and the intention encoder ϕ by minimizing $\mathcal{L}_{\text{ELBO}}(\theta, \phi)$.
 17: Update the policy ω by minimizing $\mathcal{L}_{\text{BC}}(\omega)$.
 18: Update the target vector field $\bar{\theta}$ using an exponential moving average of θ .
 19: **Return** v_θ , p_ϕ , and π_ω .

A PRELIMINARIES

A.1 VALUE FUNCTIONS AND THE ACTOR-CRITIC FRAMEWORK

The goal of RL is to learn a policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ that maximizes the expected discounted return $J(\pi) = \mathbb{E}_{\tau \sim \pi(\tau)} [\sum_{h=0}^{\infty} \gamma^h r_h]$, where τ is a trajectory sampled by the policy. We will use $\beta : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ to denote the behavioral policy. Given a policy π , we measure the expected discounted return starting from a state-action pair (s, a) and a state s as the (unnormalized) Q-function and the value function, respectively:

$$Q^\pi(s, a) = \mathbb{E}_{\tau \sim \pi(\tau)} \left[\sum_{h=0}^{\infty} \gamma^h r_h \middle| s_0 = s, a_0 = a \right], \quad V^\pi(s) = \mathbb{E}_{a \sim \pi(a|s)} [Q^\pi(s, a)].$$

Prior actor-critic methods (Schulman et al., 2015; 2017; Haarnoja et al., 2018; Fujimoto et al., 2018; Kumar et al., 2020; Fujimoto & Gu, 2021) typically maximize the RL objective $J(\pi)$ by (1) learning an estimate Q of Q^π via the temporal difference (TD) loss (policy evaluation) and then (2) improving the policy π by selecting actions that maximizes Q (policy improvement):

$$Q^{k+1} \leftarrow \arg \max_Q \mathbb{E}_{(s, a, r, s') \sim p^\beta(s, a, r, s'), a' \sim \pi^k(a'|s')} \left[(Q(s, a) - (r + \gamma Q^k(s', a')))^2 \right]$$

$$\pi^{k+1} \leftarrow \arg \max_\pi \mathbb{E}_{s \sim p^\beta(s), a \sim \pi(a|s)} [Q^{k+1}(s, a)],$$

where k indicates the number of updates and β is the behavioral policy representing either a replay buffer (online RL) or a fixed dataset (offline RL).

1080

1081

Algorithm 2 Intention-Conditioned Flow Occupancy Model (fine-tuning).

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

- 1: **Input** The intention encoder p_ϕ , the vector field v_θ , the target vector field $v_{\bar{\theta}}$, the reward predictor r_η , the critic Q_ψ , the policy π_ω (random initialization or initialized using π_ω from Alg. 1), and the reward-labeled dataset D_{reward} .
- 2: **for** each iteration **do**
- 3: Sample a batch of $\{(s, a, r, s', a') \sim D_{\text{reward}}\}$.
- 4: Sample a batch of $\{\epsilon \sim \mathcal{N}(0, I)\}$ and a batch of $\{t \sim \text{UNIF}([0, 1])\}$.
- 5: Sample prior intentions $\{z \sim p(z)\}$.
- 6: Sample a batch of $\{(\epsilon^{(1)}, \dots, \epsilon^{(N)}) \sim (\mathcal{N}(0, I), \dots, \mathcal{N}(0, I))\}$.
 \triangleright SARSA flow occupancy model loss and intention encoder loss.
- 7: $\mathcal{L}_{\text{ELBO}}(\theta, \psi)$ as in Alg. 1.
 \triangleright Reward predictor loss.
- 8: $\mathcal{L}_{\text{Reward}}(\eta) \leftarrow \mathbb{E}_{(s, r)} [(r_\eta(s) - r)^2]$.
 \triangleright Critic loss.
- 9: $s_f^{(i)} \leftarrow \text{EulerMethod}(v_\theta, \epsilon^{(i)}, s, a, z)$ (Alg. 3) for each $(s, a, z, \epsilon^{(i)})$.
- 10: $Q_z(s, a) \leftarrow \frac{1}{(1-\gamma)N} \sum_{i=1}^N r_\eta(s_f^{(i)})$.
 \triangleright Eq. 6
- 11: $\mathcal{L}_{\text{Critic}}(\psi) \leftarrow \mathbb{E}_{(s, a, z, s_f^{(1)}, \dots, s_f^{(N)})} [L_2^\mu(Q_z(s, a) - Q_\psi(s, a))]$.
 \triangleright Eq. 7
- 12: $\mathcal{L}_{\text{Actor}}(\omega) \leftarrow -\mathbb{E}_{(s, a), a^\pi \sim \pi_\omega(a^\pi | s)} [Q_\psi(s, a^\pi) + \alpha \log \pi_\omega(a | s)]$.
 \triangleright Eq. 8
- 13: Update the vector field θ and the intention encoder ϕ by minimizing $\mathcal{L}_{\text{ELBO}}(\theta, \phi)$.
- 14: Update the reward predictor η , the critic ψ , and the policy ω by minimizing $\mathcal{L}_{\text{Reward}}(\eta)$, $\mathcal{L}_{\text{Critic}}(\psi)$, and $\mathcal{L}_{\text{Actor}}(\omega)$ respectively.
- 15: Update the target vector field $\bar{\theta}$ using an exponential moving average of θ .
- 16: **Return** $v_\theta, p_\phi, r_\eta, Q_\psi$, and π_ω .

1109

1110

1111

1112

1113

1114

1115

A.2 FLOW MATCHING

The goal of flow matching methods is to transform a simple noise distribution (e.g., a d -dimensional standard Gaussian) into a target distribution $p_{\mathcal{X}}$ over some space $\mathcal{X} \subset \mathbb{R}^d$ that we want to approximate. Specifically, flow matching uses a time-dependent vector field $v : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ to construct a time-dependent diffeomorphic flow $\phi : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ (Lipman et al., 2023; 2024) that realizes the transformation from a single noise ϵ to a generative sample \hat{x} , following the ODE

$$\frac{d}{dt} \phi(t, \epsilon) = v(t, \phi(t, \epsilon)), \quad \phi(0, \epsilon) = \epsilon, \quad \phi(1, \epsilon) = \hat{x}. \quad (9)$$

1116

1117

1118

We will use t to denote a time step for flow matching and sample the noise ϵ from a standard Gaussian distribution $\mathcal{N}(0, I)$ throughout our discussions.⁴ Prior work has proposed various formulations for learning the vector field (Lipman et al., 2023; Campbell et al., 2024; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023) and we adopt the simplest flow matching objective building upon optimal transport (Liu et al., 2023) and conditional flow matching (CFM) (Lipman et al., 2023),

$$\mathcal{L}_{\text{CFM}}(v) = \mathbb{E}_{\substack{t \sim \text{UNIF}([0, 1]), \\ x \sim p_{\mathcal{X}}(x), \epsilon \sim \mathcal{N}(0, I)}} [\|v(t, x^t) - (x - \epsilon)\|_2^2], \quad (10)$$

1124

1125

1126

where $\text{UNIF}([0, 1])$ is the uniform distribution over the unit interval and $x^t = tx + (1 - t)\epsilon$ is a linear interpolation between the ground-truth sample x and the Gaussian noise ϵ . Importantly, we can generate a sample from the vector field v by numerically solving the ODE (Eq. 9). We will use the Euler method (Alg. 3) as our ODE solver following prior practice (Grathwohl et al., 2019; Chen et al., 2018; Lipman et al., 2023; Liu et al., 2023; Park et al., 2025b; Frans et al., 2025).

1132

1133

⁴In theory, the noise can be drawn from any distribution, not necessarily limited to a Gaussian (Liu et al., 2023).

1134 A.3 TEMPORAL DIFFERENCE FLOWS
 1135

1136 Given a policy π , prior work (Farebrother et al., 2025) models the occupancy measure p_γ^π by
 1137 optimizing the vector field $v : [0, 1] \times \mathcal{S} \times \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ using the following loss:

$$\begin{aligned} \mathcal{L}_{\text{TD flow}}(v) &= (1 - \gamma)\mathcal{L}_{\text{TD current flow}}(v) + \gamma\mathcal{L}_{\text{TD future flow}}(v) \\ \mathcal{L}_{\text{TD current flow}}(v) &= \mathbb{E}_{t \sim \text{UNIF}([0,1]), \epsilon \sim \mathcal{N}(0, I), (s, a) \sim p^\beta(s, a)} [\|v(t, s^t, s, a) - (s - \epsilon)\|_2^2] \\ \mathcal{L}_{\text{TD future flow}}(v) &= \mathbb{E}_{\substack{t \sim \text{UNIF}([0,1]), \epsilon \sim \mathcal{N}(0, I), \\ (s, a, s') \sim p^\beta(s, a, s'), a' \sim \pi(a'|s')}} [\|v(t, \bar{s}_f^t, s, a) - \bar{v}(t, \bar{s}_f^t, s', a')\|_2^2], \end{aligned} \quad (11)$$

1144 where $p^\beta(s, a)$ and $p^\beta(s, a, s')$ denote the joint distribution of transitions, $s^t = ts + (1 - t)\epsilon$ is a
 1145 linear interpolation between the current state s and the noise ϵ , and \bar{v} denotes an exponential moving
 1146 average of historical v over iterations (a target vector field) (Grill et al., 2020; Mnih et al., 2015;
 1147 Caron et al., 2021). Of particular note is that we obtain a target future state \bar{s}_f by applying the Euler
 1148 method (Alg. 3) to \bar{v} at the next state-action pair (s', a') , where a' is sampled from the target policy π
 1149 of interest, and the noisy future state $\bar{s}_f^t = t\bar{s}_f + (1 - t)\epsilon$ is a linear interpolation between this future
 1150 state \bar{s}_f and the noise ϵ . Intuitively, minimizing $\mathcal{L}_{\text{TD current flow}}$ reconstructs the distribution of current
 1151 state s , while minimizing $\mathcal{L}_{\text{TD future flow}}$ bootstraps the vector field v at a noisy target future state \bar{s}_f^t ,
 1152 similar to Q-learning (Watkins & Dayan, 1992). Choosing the target policy π to be the same as the
 1153 behavioral policy β , we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing
 1154 the SARSA flows. We call the loss in Eq. 11 the TD flow loss⁵ and use the SARSA variant of it to
 1155 learn generative occupancy models.

1156 B FURTHER DISCUSSIONS ON THE PROBLEM SETTING
 1157

1158 B.1 THE CONSISTENCY ASSUMPTION ON INTENTIONS
 1159

1160 We now discuss the reason for making the consistency assumption (Assumption 1) on latent intentions.
 1161 Since we use a heterogeneous behavioral policy to collect the unlabeled dataset, each unknown user
 1162 intention indexed their own behavioral policy $\beta : \mathcal{S} \times \mathcal{Z} \rightarrow \Delta(\mathcal{A})$. The key observation is that
 1163 the occupancy measure of each intention-conditioned behavioral policy follows its own Bellman
 1164 equations (Similar to Eq. 1):

$$p_\gamma^\beta(s_f | s, a, \textcolor{brown}{z}) = (1 - \gamma)\delta_s(s_f) + \gamma \mathbb{E}_{\substack{s' \sim p(s'|s, a), \\ a' \sim \beta(a'|s', \textcolor{brown}{z})}} [p_\gamma^\beta(s_f | s', a', \textcolor{brown}{z})],$$

1165 suggesting that the same latent z propagates through the transitions with the same underlying user
 1166 intentions. Importantly, this propagation requires using a TD loss to estimate the behavioral occupancy
 1167 measure, which aligns with the goal of our SARSA flow-matching losses (Eq. 5). We note that
 1168 prior work (Touati & Ollivier, 2021) also adapts the same formulation of the intention-conditioned
 1169 occupancy measure for zero-shot RL.

1170 B.2 DISTINCTIONS FROM META RL AND MULTI-TASK RL
 1171

1172 Our problem setting is conceptually similar to meta RL (Duan et al., 2016; Rakelly et al., 2019;
 1173 Pong et al., 2022) with two key distinctions. First, offline meta RL methods typically have access to
 1174 explicit task descriptions (e.g., a one-hot task indicator) together with task-specific datasets. These
 1175 descriptions and datasets induce a clear clustering of transitions. In contrast, our method must infer
 1176 this structure from a heterogeneous dataset in an unsupervised manner. Second, offline meta RL
 1177 trains on reward-labeled data during the meta-training phase, where task-specific rewards provide
 1178 supervision for policy learning. In contrast, during pre-training, our method learns a generative model
 1179 that predicts future states from inferred intentions without using any task-specific reward signals.

1180 Similar to the distinctions between our setting and offline meta RL problems, our method does *not*
 1181 fall into the multi-task RL category (Sodhani et al., 2021; Yu et al., 2020). During pre-training, (1)
 1182 InFOM does not have access to task descriptions or task-specific datasets, and (2) it does not use any
 1183 supervision from task-specific reward signals. Instead, InFOM pre-trains a generative, multi-step
 1184 transition model that facilitates value estimation for downstream tasks.

1185 ⁵The TD flow loss is called the TD²-CFM loss in Farebrother et al. (2025) and we rename it for simplicity.

1188 C THEORETICAL ANALYSES
1189

1190 C.1 THE EVIDENCE LOWER BOUND AND ITS CONNECTION WITH AN INFORMATION
1191 BOTTLENECK
1192

1193 We first derive the evidence lower bound for optimizing the latent variable model and then show its
1194 connection with an information bottleneck. Given the unlabeled dataset D , we want to maximize
1195 the likelihood of consecutive transitions (s, a, s', a') and a future state s_f sampled from the same
1196 trajectory following the behavioral joint distribution $p^\beta(s, a, s_f, s', a') = p^\beta(s)\beta(a | s)p_\gamma^\beta(s_f |$
1197 $s, a)p(s' | s, a)\beta(a' | s')$. We use (s', a') to encode the intention z by the encoder $p_e(z | s, a)$ and
1198 (s, a, s_f, z) to learn the occupancy models $q_d(s_f | s, a, z)$, employing an ELBO of the likelihood of
1199 the prior data:

$$\begin{aligned}
& \mathbb{E}_{p^\beta(s, a, s_f)} [\log q_d(s_f | s, a)] \\
&= \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\log q_d(s_f | s, a)] \\
&= \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\log \mathbb{E}_{p(z)} [q_d(s_f | s, a, z)]] \\
&\stackrel{(a)}{=} \mathbb{E}_{p^\beta(s, a, s_f, s', a')} \left[\log \mathbb{E}_{p(z)} \left[q_d(s_f | s, a, z) \frac{p_e(z | s', a')}{p_e(z | s', a')} \right] \right] \\
&\stackrel{(b)}{\geq} \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\mathbb{E}_{p_e(z | s', a')} [\log q_d(s_f | s, a, z)] - D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] \\
&\stackrel{(c)}{\geq} \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\mathbb{E}_{p_e(z | s', a')} [\log q_d(s_f | s, a, z)] - \lambda D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] \\
&= \text{ELBO}(p_e, q_d),
\end{aligned}$$

1212 where in (a) we introduce the amortized variational encoder $p_e(z | s', a')$, in (b) we apply the Jensen's
1213 inequality (Durrett, 2019), and in (c) we introduce a coefficient $\lambda \geq 1$ to control the strength of
1214 the KL divergence regularization. In practice, we can use any $\lambda \geq 0$ because rescaling the *input*
1215 (s, a, s_f) , similar to normalizing the range of images from $\{0, \dots, 255\}$ to $[0, 1]$ in the original
1216 VAE (Kingma & Welling, 2013), preserves the ELBO. Formally, following prior work (Higgins et al.,
1217 2017), maximizing this ELBO can also be interpreted as an optimization problem that simultaneously
1218 predicts future states while penalizing the intention encoder:

$$\max_{p_e, q_d} \mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\mathbb{E}_{p_e(z | s', a')} [\log q_d(s_f | s, a, z)]] \quad \text{s.t. } D_{\text{KL}}(p_e(z | s', a') \parallel p(z)) \leq \text{const.}$$

1219 Rewriting this constrained optimization problem as the Lagrangian produces
1220

$$\mathbb{E}_{p^\beta(s, a, s_f, s', a')} [\mathbb{E}_{p_e(z | s', a')} [\log q_d(s_f | s, a, z)] - \lambda D_{\text{KL}}(p_e(z | s', a') \parallel p(z))],$$

1221 where we introduce a coefficient $\lambda \geq 0$ to control the strength of the KL divergence regularization.
1222

1223 Alternatively, the constrained optimization problem can also be cast as a variational lower bound on
1224 an information bottleneck with the chain of random variables $(S', A') \rightarrow Z \rightarrow (S, A, S_f)$ (Tishby
1225 et al., 2000; Alemi et al., 2017; Saxe et al., 2018):

$$\begin{aligned}
& I^\beta(S, A, S_f; Z) - \lambda I^\beta(S', A'; Z) \\
&\stackrel{(a)}{=} I^\beta(S, A, S_f; Z) - \lambda \mathbb{E}_{p^\beta(s', a')} [D_{\text{KL}}(p_e(z | s', a') \parallel p_e(z))] \\
&\stackrel{(b)}{\geq} I^\beta(S, A, S_f; Z) - \lambda \mathbb{E}_{p^\beta(s', a')} [D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] \\
&\stackrel{(c)}{\geq} \mathbb{E}_{\substack{p^\beta(s, a, s_f, s', a') \\ p_e(z | s', a')}} [\log q_d(s, a, s_f | z)] - \lambda \mathbb{E}_{p^\beta(s', a')} [D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] + H^\beta(S, A, S_f) \\
&\stackrel{(d)}{\geq} \mathbb{E}_{\substack{p^\beta(s, a, s_f, s', a') \\ p_e(z | s', a')}} [\log q_d(s_f | s, a, z)] - \lambda \mathbb{E}_{p^\beta(s', a')} [D_{\text{KL}}(p_e(z | s', a') \parallel p(z))] + \text{const.}
\end{aligned}$$

1229 where in (a) we use the definition of $I^\beta(S', A'; Z)$ and $p_e(z)$ is the marginal distribution of latent
1230 intentions z defined as $p_e(z) = \int p^\beta(s', a') p_e(z | s', a') ds' da'$, in (b) we apply the non-negative
1231 property of the KL divergence $D_{\text{KL}}(p_e(z) \parallel p(z))$, in (c) we apply the standard variation lower
1232 bound of the mutual information (Barber & Agakov, 2004; Poole et al., 2019) to incorporate the
1233

decoder (occupancy models) $q_d(s, a, s_f | z)$, and in (d) we choose the variational decoder to satisfy $\log q_d(s, a, s_f | z) = \log p^\beta(s, a) + \log q_d(s_f | s, a, z)$ and consider the entropy $H^\beta(S, A, S_f)$ as a constant. Therefore, the lower bound in Eq. 3 can also be interpreted as maximizing the information bottleneck $I^\beta(S, A, S_f; Z) - \lambda I^\beta(S', A'; Z)$ with $\lambda \geq 0$.

C.2 INTUITIONS AND DISCUSSIONS ABOUT THE IMPLICIT GENERALIZED POLICY IMPROVEMENT

The intuition for the expectile distillation loss (Eq. 7) is that the scalar Q function $Q(\cdot, \cdot)$ is a *one-step* summary of the average reward at future states sampled from the flow occupancy models, while the expectile loss serves as a "softmax" operator over the entire latent intention space. Theoretically, this expectile loss is guaranteed to converge to the maximum over $p(z)$ when $\mu \rightarrow 1$ (See Sec. 4.4 in [Kostrikov et al. \(2022\)](#) for details). Therefore, given an infinite amount of samples ($N \rightarrow \infty$) and an expectile $\mu \rightarrow 1$, the Q converges to the greedy value functions:

$$Q^*(s, a) = \max_{z \sim p(z)} \frac{1}{(1 - \gamma)} \mathbb{E}_{q_d(s_f | s, a, z)} [r(s_f)].$$

If we further assume that the flow occupancy models are optimal, i.e., $q_d^*(s_f | s, a, z) = p^\beta(s_f | s, a, z)$, then the optimal Q corresponds to a greedy value function under the behavioral policy β :

$$Q^*(s, a) = \max_{z \sim p(z)} Q^\beta(s, a, z).$$

Unlike Q-learning, which converges to the optimal Q-function sequentially ([Watkins & Dayan, 1992](#); [Sutton et al., 1998](#)), the implicit GPI proposes a new policy that is strictly no worse than the set of policies that correspond to each Q_z in parallel (See Sec. 4.1 in [Barreto et al. \(2017\)](#) for further discussions). Unlike one-step policy improvement ([Wang et al., 2018](#); [Brandfonbrener et al., 2021](#); [Peters & Schaal, 2007](#); [Peters et al., 2010](#)), implicit GPI is able to converge to the optimal policy for a downstream task, assuming that the task-specific intention has been captured during pre-training.

C.3 ONE-STEP POLICY IMPROVEMENT WITH FLOW OCCUPANCY MODELS

The FOM + one-step PI variant performs one-step policy improvement using a flow occupancy model $q_d(s_f | s, a)$ that is *not* conditioned on latent intentions. This flow occupancy model captures the discounted state occupancy measure of the (average) behavioral policy. After training the flow occupancy model, FOM + one-step PI fits a Q function and extracts a behavioral-regularized policy:

$$\begin{aligned} Q &\leftarrow \arg \min_Q \frac{1}{1 - \gamma} \mathbb{E}_{(s, a) \sim p^\beta(s, a), s_f \sim q_d(s_f | s, a)} [(Q(s, a) - r(s_f))^2], \\ \pi &\leftarrow \arg \max_\pi \mathbb{E}_{(s, a) \sim p^\beta(s, a), a^\pi \sim \pi(a^\pi | s)} [Q(s, a^\pi) + \alpha \log \pi(a | s)]. \end{aligned}$$

Intuitively, the first objective fits the behavioral Q function based on the dual definition (Eq. 2), and the second objective trains a policy to maximize this behavioral Q function, invoking one-step policy improvement. While this simple objective sometimes achieves strong performance on some benchmark tasks ([Brandfonbrener et al., 2021](#); [Eysenbach et al., 2022](#)), it does not guarantee convergence to the optimal policy due to the use of a behavioral value function.

D EXPERIMENTAL DETAILS

D.1 TASKS AND DATASETS

Our experiments use a suite of 36 state-based and 4 image-based control tasks taken from ExORL benchmarks [Yarats et al. \(2022\)](#) and OGBench task suite ([Park et al., 2025a](#)) (Fig. 2).

ExORL. We use 16 state-based tasks from the ExORL ([Yarats et al., 2022](#)) benchmarks based on the DeepMind Control Suite ([Tassa et al., 2018](#)). These tasks involve controlling four robots (cheetah, walker, quadruped, and jaco) to achieve different locomotion behaviors. For each domain, the specific tasks are: cheetah {run, run backward, walk, walk backward}, walker

1296 {walk, run, stand, flip}, quadruped {run, jump, stand, walk}, jaco {reach top
1297 left, reach top right, reach bottom left, reach bottom right}. For all tasks
1298 in cheetah, walker, and quadruped, both the episode length and the maximum return are
1299 1000. For all tasks in jaco, both the episode length and the maximum return are 250. Following
1300 prior work (Park et al., 2024b), we multiply the return of jaco tasks by 4 to match other ExORL
1301 tasks during aggregation.

1302 Following the prior work (Touati et al., 2023; Park et al., 2024b; Kim et al., 2024), we will use 5M
1303 unlabeled transitions collected by some exploration methods (e.g., RND (Burda et al., 2019)) for
1304 pre-training, and another 500K reward-labeled transitions collected by the same exploratory policy
1305 for fine-tuning. The fine-tuning datasets are labeled with task-specific dense rewards (Yarats et al.,
1306 2022), except in the jaco domains, where the reward signals are sparse.
1307

1308 **OGBench.** We use 20 state-based manipulation tasks from four domains (cube single, cube
1309 double, scene, and puzzle 4x4) in the OGBench task suite Park et al. (2025a), where the
1310 goal is to control a simulated robot arm to rearrange various objects. For each domain, the specific
1311 tasks are: cube single {task 1 (pick and place cube to left), task 2 (pick and place cube to
1312 front), task 3 (pick and place cube to back), task 4 (pick and place cube diagonally), task 5
1313 (pick and place cube off-diagonally)}, cube double {task 1 (pick and place one cube), task
1314 2 (pick and place two cubes to right), task 3 (pick and place two cubes off-diagonally), task
1315 4 (swap cubes), task 5 (stack cubes)}, scene {task 1 (open drawer and window), task 2
1316 (close and lock drawer and window), task 3 (open drawer, close window, and pick and place cube
1317 to right), task 4 (put cube in drawer), task 5 (fetch cube from drawer and close window)},
1318 puzzle 4x4 {task 1 (all red to all blue), task 2 (all blue to central red), task 3 (two blue
1319 to mix), task 4 (central red to all red), task 5 (mix to all red)}. Note that some of these tasks,
1320 e.g., cube double task 5 (stack cubes) and scene task 4 (put cube in drawer), involve
1321 interacting with the environment in a specific order and thus require long-horizon temporal reasoning.
1322 For all tasks in cube single, cube double, and scene, the maximum episode length is 400.
1323 For all tasks in puzzle 4x4, the maximum episode length is 800. We also use 4 image-based tasks
1324 in the OGBench task suite. Specifically, we consider visual cube single task 1, visual
1325 cube double task 1, visual scene task 1, and visual puzzle 4x4 task 1
1326 from each domain respectively. The observations are $64 \times 64 \times 3$ RGB images. These tasks are
1327 challenging because the agent needs to reason from pixels directly. All the manipulation tasks from
1328 OGBench are originally designed for evaluating goal-conditioned RL algorithms (Park et al., 2025a).
1329

1330 For both state-based and image-based tasks from OGBench, we will use 1M unlabeled transitions
1331 collected by a non-Markovian expert policy with temporally correlated noise (the play datasets) for
1332 pre-training, and another 500K reward-labeled transitions collected by the same noisy expert policy
1333 for fine-tuning. Unlike the ExORL benchmarks, the fine-tuning datasets for OGBench tasks are
1334 relabeled with *semi-sparse* rewards (Park et al., 2025b), providing less supervision for the algorithm.
1335

1336 D.2 BASELINES

1337 We compare InFOM with eight baselines across five categories of prior methods, focusing on
1338 different strategies for pre-training and fine-tuning in RL. First, implicit Q-Learning (IQL) (Kostrikov
1339 et al., 2022) and revisited behavior-regularized actor-critic (ReBRAC) (Tarasov et al., 2023a) are
1340 state-of-the-art offline RL algorithms based on the standard actor-critic framework (Appendix A.1).
1341 Second, we compare to a variant of ReBRAC learning on top of representations pre-trained on
1342 the unlabeled datasets. We chose an off-the-shelf self-supervised learning objective in vision tasks
1343 called self-distillation with no labels (DINO) (Caron et al., 2021) as our representation learning loss
1344 and name the resulting baseline DINO + ReBRAC. Third, our next baseline, model-based policy
1345 optimization (MBPO) (Janner et al., 2019), pre-trains a one-step model to predict transitions in the
1346 environment, similar to the next token prediction in language models (Radford et al., 2018). The
1347 one-step model is then used to augment the datasets for downstream policy optimization. We will
1348 again use ReBRAC to extract the policy (MBPO + ReBRAC). Fourth, we also include comparisons
1349 against the InfoNCE variant of contrastive RL (Eysenbach et al., 2019) and temporal difference
InfoNCE (Zheng et al., 2024), which pre-train the discounted state occupancy measure using Monte
Carlo or temporal difference contrastive losses. While our method fits generative occupancy models,
These two approaches predict the ratio of occupancy measures over some marginal densities serving

Table 1: Common hyperparameters for our method and the baselines.

Hyperparameter	Value
learning rate	3×10^{-4}
optimizer	Adam (Kingma, 2014)
pre-training gradient steps	1×10^6 for state-based tasks, 2.5×10^5 for image-based tasks
fine-tuning gradient steps	5×10^5 for state-based tasks, 1×10^5 for image-based tasks
batch size	256
MLP hidden layer sizes	(512, 512, 512, 512)
MLP activation function	GELU (Hendrycks & Gimpel, 2016)
discount factor γ	0.99
target network update coefficient	5×10^{-3}
double Q aggregation	min
policy update frequency in fine-tuning	1/4
image encoder	small IMPALA encoder (Espeholt et al., 2018 ; Park et al., 2025b)
image augmentation method	random cropping
image augmentation probability	1.0 for DINO + ReBRAC, 0.5 for all other methods
image frame stack	3

as the discriminative counterparts. After pre-training the ratio predictors, importance sampling is required to recover the Q function (CRL + IS & TD InfoNCE + IS) (Mazoure et al., 2023; Zheng et al., 2024), enabling policy maximization. Fifth, our final set of baselines are prior unsupervised RL methods that pre-train a set of latent intentions and intention-conditioned policies using forward-backward representations (Touati & Ollivier, 2021) or a Hilbert space (Park et al., 2024b). Given a downstream task, these methods first infer the corresponding intention in a zero-shot manner and then fine-tune the policy using offline RL (Kim et al., 2024), differing from the implicit GPI as in our method. We will use IQL as the fine-tuning algorithm and call the resulting methods FB + IQL and HILP + IQL. For image-based tasks, we selectively compare to four baselines: ReBRAC, CRL + IS, DINO + ReBRAC, and FB + IQL.

D.3 EVALUATION PROTOCOLS

We compare the performance of InFOM against the eight baselines (Sec. 5.1) after first pre-training each method for 1M gradient steps (250K gradient steps for image-based tasks) and then fine-tuning for 500K gradient steps (100K gradient steps for image-based tasks). We measure the episode return for tasks from ExORL benchmarks and the success rate for tasks from the OGBench task suite. For OGBench tasks, the algorithms still use the semi-sparse reward instead of the success rate for training. Following prior practice (Park et al., 2025b; Tarasov et al., 2023b), we do *not* report the best performance during fine-tuning and report the evaluation results averaged over 400K, 450K, and 500K gradient steps instead. For image-based tasks, we report the evaluation results averaged over 50K, 75K, and 100K gradient steps during fine-tuning. For evaluating the performance of different methods throughout the entire fine-tuning process, we defer the details to specific figures (e.g., Fig. 10 & 9).

D.4 IMPLEMENTATIONS AND HYPERPARAMETERS

In this section, we discuss the implementation details and hyperparameters for InFOM and the eight baselines. Whenever possible, we use the same set of hyperparameters for all methods (Table 1) across all tasks, including learning rate, network architecture, batch size, image encoder, etc. Of particular note is that we use asynchronous policy training (Zhou et al., 2025), where we update the policy 4 times less frequently than other models during fine-tuning. For specific hyperparameters of each method, we tune them on the following tasks from each domain and use one set of hyperparameters for every task in that domain. For image-based tasks, we tune hyperparameters for each task individually.

- cheetah: cheetah run
- walker: walker walk
- quadruped: quadruped jump

1404 **Table 2: Hyperparameters for InFOM.** See Appendix D.4 for descriptions of each hyperparameter.
1405

1406	Hyperparameter	Value
1408	latent intention dimension d	See Table 3
1409	number of steps for the Euler method T	10
1410	number of future states N	16
1411	normalize the Q loss term in $\mathcal{L}(\pi)$ (Eq. 8)	No
1412	expctile μ	See Table 3
1413	KL divergence regularization coefficient λ	See Table 3
1414	behavioral cloning regularization coefficient α	See Table 3

1416 **Table 3: Domain-specific hyperparameters for our method and the baselines.** We individually tune these
1417 hyperparameters for each domain and use the same set of hyperparameters for tasks in the same domain. See
1418 Appendix D.4 for tasks used to tune these hyperparameters and descriptions of each hyperparameter. “-” indicates
1419 that the hyperparameter does not exist.

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457	InFOM (Ours)				IQL		ReBRAC		DINO + ReBRAC		MBPO + ReBRAC		CRL + IS		TD InfoNCE + IS		FB + IQL		HILP + IQL	
Domain or Task	d	μ	λ	α	α	α_{actor}	α_{critic}	κ_{student}	$N_{\text{imaginary}}$	$H_{\text{imaginary}}$	α	α	α	α	α_{repr}	α_{AWR}	α			
cheetah	128	0.9	0.05	0.3	1	0.1	0.1	0.1	128	1	0.03	0.003	1	1	1					
walker	512	0.9	0.1	0.3	1	10	0.1	0.1	128	1	0.03	0.03	1	10	10					
quadruped	512	0.9	0.005	0.3	10	1	1	0.1	128	1	0.03	0.03	10	1	10					
jaco	512	0.9	0.2	0.1	0.1	0.1	0.1	0.1	128	1	0.003	0.03	1	1	1					
cube single	512	0.95	0.05	30	1	1	1	0.04	256	2	30	30	10	1	1					
cube double	128	0.9	0.025	30	1	1	1	0.04	256	2	30	30	1	10	1					
scene	128	0.99	0.2	300	1	1	1	0.1	256	2	3	3	10	10	1					
puzzle 4x4	128	0.95	0.1	300	10	0.1	0.1	0.1	256	2	3	3	10	10	1					
visual cube single task 1	512	0.95	0.025	30	-	1	0	0.1	-	-	30	-	10	1	-					
visual cube double task 1	128	0.9	0.01	30	-	0.1	0	0.1	-	-	30	-	10	1	-					
visual scene task 1	128	0.99	0.1	300	-	0.1	0.01	0.1	-	-	3	-	10	10	-					
visual puzzle 4x4 task 1	128	0.95	0.1	300	-	0.1	0.01	0.1	-	-	3	-	10	10	-					

- jaco: jaco reach top left
- cube single: cube single task 2
- cube double: cube double task 2
- scene: scene task 2
- puzzle 4x4: puzzle 4x4 task 4

InFOM. InFOM consists of two main components for pre-training: the intention encoder and the flow occupancy models. First, we use a Gaussian distribution conditioned on the next state-action pair as the intention encoding distribution. Following prior work (Kingma & Welling, 2013; Alemi et al., 2017), we model the intention encoder as a multilayer perceptron (MLP) that takes the next state-action pair (s', a') as input and outputs two heads representing the mean and the (log) standard deviation of the Gaussian. We apply layer normalization to the intention encoder to stabilize optimization. We use the reparameterization trick (Kingma & Welling, 2013) to backpropagate the gradients from the flow-matching loss and the KL divergence regularization (Eq. 4) into the intention encoder. Our initial experiments suggest that the dimension of the latent intention space d is an important hyperparameter, and we sweep over $\{64, 128, 256, 512\}$ and find that $d = 512$ is sufficient for most ExORL tasks and $d = 128$ is generally good enough for all OGBench tasks. For the coefficient of the KL divergence regularization λ , we sweep over $\{2.0, 1.0, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005\}$ to find the best λ for each domain. Second, we use flow-matching vector fields to model the flow occupancy models. The vector field is an MLP that takes in a noisy future state s_f^t , a state-action pair (s, a) , and a latent intention z , and outputs the vector field with the same dimension as the state. We apply layer normalization to the vector field to stabilize optimization. As mentioned in Sec. 3, we use flow-matching objectives based on optimal transport (linear path) and sample the time step t from the uniform distribution over the unit interval. Following prior work (Park et al., 2025b), we use a fixed $T = 10$ steps (step size = 0.1) for the Euler method and do not apply a sinusoidal embedding for the time. To make a fair comparison with other baselines, we also pre-train a behavioral cloning policy that serves as initialization for fine-tuning.

For fine-tuning, InFOM learns three components: the reward predictor, the critic, and the policy, while fine-tuning the intention encoder and the flow occupancy models. The reward predictor is an

1458 MLP that predicts the scalar reward of a state trained using mean squared error. We apply layer
1459 normalization to the reward predictor to stabilize learning. The critic is an MLP that predicts double
1460 Q values (Van Hasselt et al., 2016; Fujimoto et al., 2018) of a state-action pair, without conditioning
1461 on the latent intention. We apply layer normalization to the critic to stabilize learning. We train the
1462 critic using the expectile distillation loss (Eq. 7) and sweep the expectile over $\{0.9, 0.95, 0.99\}$ to
1463 find the best μ for each domain. We use $N = 16$ future states sampled from the flow occupancy
1464 models to compute the average reward, which we find to be sufficient. We use the minimum of
1465 the double Q predictions to prevent overestimation. The policy is an MLP that outputs a Gaussian
1466 distribution with a unit standard deviation. In our initial experiments, we find that the behavioral
1467 cloning coefficient α in Eq. 8 is important, and we sweep over $\{300, 30, 3, 0.3\}$ to find the best α for
1468 each domain. Following prior practice (Park et al., 2025b), we do not normalize the Q loss term in
1469 the actor loss $\mathcal{L}(\pi)$ (Eq. 8) as in Fujimoto & Gu (2021). Other choices of the policy network include
1470 the diffusion model (Ren et al., 2025; Wang et al., 2023) and the flow-matching model (Park et al.,
1471 2025b), and we leave investigating these policy networks to future work.

1472 For image-based tasks, following prior work (Park et al., 2025b), we use a smaller variant of the
1473 IMPALA encoder (Espeholt et al., 2018) and apply random cropping augmentation with a probability
1474 of 0.5. We also apply frame stacking with three images. Table 2 and Table 3 summarize the
1475 hyperparameters for InFOM.

1476 **IQL and ReBRAC.** We reuse the IQL (Kostrikov et al., 2022) implementation and the Re-
1477 BRAC (Tarasov et al., 2023a) implementation from Park et al. (2025b). Since learning a critic
1478 requires reward-labeled datasets or relabeling rewards for unlabeled datasets (Yu et al., 2022), we
1479 simply pre-train a behavioral cloning policy. During the fine-tuning, we use the behavioral cloning
1480 policy as initialization and train a critic from scratch using the TD error (Kostrikov et al., 2022;
1481 Fujimoto & Gu, 2021; Tarasov et al., 2023a). Following prior work (Park et al., 2025b), we use the
1482 same expectile value 0.9 for IQL on all tasks, and sweep over $\{100, 10, 1, 0.1, 0.01\}$ to find the best
1483 AWR inverse temperature α for each domain. For ReBRAC, we tune the behavioral cloning (BC)
1484 regularization coefficients for the actor and the critic separately. We use the range $\{100, 10, 1, 0.1\}$
1485 to search for the best actor BC coefficient α_{actor} and use the range $\{100, 10, 1, 0.1, 0\}$ to search for
1486 the best critic BC coefficient α_{critic} . We use the default values for other hyperparameters following
1487 the implementation from Park et al. (2025b). See Table 3 for domain-specific hyperparameters.

1488 **DINO + ReBRAC.** We implement DINO on top of ReBRAC. DINO (Caron et al., 2021) learns a
1489 state encoder using two augmentations of the same state. For state-based tasks, the state encoder is
1490 an MLP that outputs representations. We apply two clipped Gaussian noises centered at zero to the
1491 same state to obtain those augmentations. The standard deviation of the Gaussian noise is set to 0.2,
1492 and we clip the noise into $[-0.2, 0.2]$ on all domains. For image-based tasks, the state encoder is the
1493 small IMPALA encoder that also outputs representations. We apply two different random cropings
1494 to the same image observation to obtain those augmentations. We sweep over $\{0.01, 0.04, 0.1, 0.4\}$
1495 for the temperature for student representations κ_{student} and use a fixed temperature 0.04 for teacher
1496 representations on all domains. We use a representation space with 512 dimensions. We update
1497 the target representation centroid with a fixed ratio 0.1. During pre-training, we learns the DINO
1498 representations along with a behavioral cloning policy. During fine-tuning, we learn the actor and
1499 the critic using ReBRAC on top of DINO representations, while continuing to fine-tune those DINO
1500 representations. We use the same BC coefficients α_{actor} and α_{critic} as in ReBRAC. For image-based
1501 tasks, we apply random cropping to the same image twice with a probability of 1.0 and use those two
1502 augmentations to compute the teacher and the student representations. See Table 3 for domain-specific
1503 temperatures for student representations.

1504 **MBPO + ReBRAC.** We implement MBPO (Janner et al., 2019) on top of ReBRAC and only
1505 consider this baseline for state-based tasks. MBPO learns a one-step transition MLP to predict the
1506 residual between the next state s' and the current state s conditioned on the current state-action
1507 pair (s, a) . We pre-train the one-step model with a behavioral cloning policy. During fine-tuning,
1508 we use the model with a learned reward predictor to collect imaginary rollouts. We *only* use these
1509 imaginary rollouts to learn the actor and the critic. We sweep over $\{64, 128, 256\}$ for the number of
1510 imaginary rollouts to collect for each gradient step $N_{\text{imaginary}}$ and sweep over $\{1, 2, 4\}$ for the number
1511 of steps in each rollout $H_{\text{imaginary}}$. We use the same BC coefficient as in ReBRAC. See Table 3 for the
1512 domain-specific number of imaginary rollouts and number of steps in each rollout.

1512 **CRL + IS and TD InfoNCE + IS.** We mostly reuse the CRL (Eysenbach et al., 2022) implement-
1513 ation based on the InfoNCE loss from Park et al. (2025a) and adapt it to our setting by adding the
1514 important sampling component. We implement TD InfoNCE by adapting the official implementa-
1515 tions (Zheng et al., 2024). For both methods, we pre-train the classifiers that predict the ratio between
1516 the occupancy measures and the marginal densities over future states with a behavioral cloning policy.
1517 We use the SARSA variant of TD InfoNCE during pre-training. After pre-training the classifiers, we
1518 learn a reward predictor and apply importance sampling weights predicted by the classifiers to a set of
1519 future states sampled from the fine-tuning datasets to estimate Q . This Q estimation then drives policy
1520 optimization. We use a single future state from the fine-tuning dataset to construct the importance
1521 sampling estimation, which is sufficient. We use 512-dimensional contrastive representations. We
1522 sweep over $\{300, 30, 3, 0.3, 0.03\}$ for the BC coefficient α (Table 3).
1523

1524 **FB + IQL and HILP + IQL.** We implement FB (Touati & Ollivier, 2021) and HILP (Park et al.,
1525 2024b) by adapting the FB implementation from Jeen et al. (2024) and the HILP implementation
1526 from Kim et al. (2024). During pre-training, for FB, we pre-train the forward-backward repre-
1527 sentations and the intention-conditioned policies in an actor-critic manner. We use a coefficient
1528 1 for the orthonormality regularization of the backward representations. We use 512-dimensional
1529 forward-backward representations. We sample the latent intentions for pre-training from either a
1530 standard Gaussian distribution (with probability 0.5) or the backward representations for a batch of
1531 states (with probability 0.5), normalizing those latent intentions to length $\sqrt{512}$. We sweep over
1532 $\{100, 10, 1, 0.1\}$ for the BC coefficient α_{repr} . For HILP, we pre-train the Hilbert representations ϕ and
1533 Hilbert foundation policies using an actor-critic framework as well. We use implicit value learning to
1534 learn the Hilbert representations following implementations from Park et al. (2024a; 2025a). We set
1535 the expectile to 0.9 for all domains. We sweep over $\{100, 10, 1, 0.1\}$ to find the best AWR inverse
1536 temperature α . We also use a 512-dimensional Hilbert representation space. To construct the intrinsic
1537 rewards, we first sample the latent intention z from a standard Gaussian, normalizing them to length
1538 $\sqrt{512}$, and then use the representation of the next state $\phi(s')$ and the representation of the current
1539 state $\phi(s)$ to compute the intrinsic reward $(\phi(s') - \phi(s))^\top z$.
1540

1541 During fine-tuning, we first infer a task-specific backward representation or a Hilbert representation
1542 using a small amount of transitions (10K) from the fine-tuning datasets, and then invoke IQL to
1543 learn the critic and the actor using downstream rewards conditioned on the inferred representations.
1544 For FB, we sweep over $\{100, 10, 1, 0.1\}$ for the AWR inverse temperature α_{AWR} for IQL. For HILP,
1545 we reuse the same AWR inverse temperature in representation learning for IQL. See Table 3 for
1546 domain-specific BC coefficients and AWR inverse temperatures.
1547

1548 E ADDITIONAL VISUALIZATIONS OF LATENT INTENTIONS

1549 We include additional visualization of latent intentions on quadruped-jump in Fig. 6.
1550

1551 F ADDITIONAL EXPERIMENTS

1552 F.1 EVALUATION ON ROBOTICS BENCHMARKS

1553 To further study the pre-training and fine-tuning effects of our method on realistic datasets. Specifi-
1554 cally, we choose the RT-1 dataset (Brohan et al., 2022), which contains 73499 episodes of transitions.
1555 This dataset was collected by commanding a Google robot to pick, place, and move 17 objects in
1556 the Google micro-kitchens, covering a diverse set of intentions. Since collecting distinct robotics
1557 datasets for pre-training and fine-tuning is difficult, we use the entire dataset as both the reward-
1558 free pre-training dataset and the reward-labeled fine-tuning dataset. For the evaluation task, we
1559 use google robot pick coke can from the SimplerEnv (Li et al., 2024), which contains a
1560 suite of simulation tasks that efficiently and informatively complement real-world evaluations of the
1561 Google robot.
1562

1563 We compare against two baselines from our experiments (ReBRAC and DINO + ReBRAC) due to
1564 computational constraints, and also include a behavioral cloning (BC) baseline for reference. Our
1565 initial experiments indicate that all the algorithms (except DINO + ReBRAC) perform poorly when
1566 trained end-to-end from pixels directly. Following prior practice in latent flow matching (Rombach

1566 **Table 4: Evaluation on ExORL and OGBench benchmarks.** Following OGBench (Park et al., 2025a), we
1567 bold values at and above 95% of the best performance for each task.

1568

1569

Task	InFOM (Ours)	IQL	ReBRAC	DINO + ReBRAC	MBPO + ReBRAC	CRL + IS	TD InfoNCE + IS	FB + IQL	HILP + IQL
cheetah run	97.6 ± 7.8	80.0 ± 8.4	97.2 ± 12.9	87.2 ± 8.6	104.7 ± 2.4	73.3 ± 6.7	68.2 ± 8.9	83.3 ± 10.9	90.3 ± 1.9
cheetah run backward	104.7 ± 7.3	77.0 ± 12.6	84.9 ± 3.7	67.1 ± 6.4	87.0 ± 4.8	74.7 ± 8.1	74.3 ± 17.1	67.3 ± 7.0	64.4 ± 6.4
cheetah walk	254.8 ± 158.6	357.9 ± 16.4	443.4 ± 15.3	383.5 ± 10.3	447.4 ± 12.7	327.4 ± 38.7	336.7 ± 22.1	346.5 ± 24.3	366.8 ± 6.9
cheetah walk backward	251.8 ± 116.9	303.7 ± 12.6	403.0 ± 16.1	318.4 ± 23.0	398.6 ± 16.0	330.2 ± 8.5	326.3 ± 45.1	298.0 ± 22.8	318.1 ± 11.4
walker walk	467.3 ± 82.1	208.6 ± 3.7	208.1 ± 5.8	228.0 ± 3.7	327.6 ± 4.5	213.3 ± 7.3	212.2 ± 13.2	225.3 ± 6.7	225.4 ± 3.7
walker run	116.3 ± 15.3	92.4 ± 0.4	97.8 ± 1.2	98.5 ± 1.0	107.6 ± 1.2	91.5 ± 3.2	91.0 ± 3.7	97.4 ± 1.2	97.4 ± 2.2
walker stand	581.2 ± 72.1	409.1 ± 2.3	460.6 ± 1.1	453.0 ± 3.1	458.1 ± 2.5	409.0 ± 7.5	397.2 ± 6.0	446.8 ± 7.1	443.3 ± 3.8
walker flip	358.8 ± 10.3	260.3 ± 2.8	344.6 ± 2.7	320.3 ± 4.3	341.8 ± 3.7	255.0 ± 8.4	231.6 ± 6.9	287.0 ± 3.1	280.7 ± 5.4
quadruped run	341.8 ± 41.2	358.0 ± 6.2	343.0 ± 2.6	344.7 ± 2.9	395.1 ± 2.6	323.4 ± 2.9	222.1 ± 39.7	367.0 ± 3.8	371.1 ± 11.5
quadruped jump	626.0 ± 6.8	628.5 ± 7.8	605.2 ± 7.8	573.0 ± 9.6	666.9 ± 3.4	576.7 ± 13.7	421.4 ± 93.4	639.4 ± 8.9	626.5 ± 14.5
quadruped stand	718.3 ± 18.7	714.2 ± 9.8	688.6 ± 5.0	663.2 ± 8.3	703.7 ± 3.6	653.1 ± 8.4	457.1 ± 47.7	728.9 ± 11.5	715.6 ± 13.9
quadruped walk	360.7 ± 7.9	375.1 ± 3.7	343.5 ± 7.1	391.4 ± 7.2	390.0 ± 5.7	309.6 ± 9.6	243.1 ± 29.2	388.9 ± 7.0	393.4 ± 3.4
jaco reach top left	742.5 ± 43.7	74.7 ± 19.6	59.0 ± 4.9	17.5 ± 3.8	60.1 ± 6.2	29.1 ± 4.7	31.5 ± 3.0	25.0 ± 11.4	40.4 ± 11.5
jaco reach top right	687.5 ± 46.7	40.6 ± 14.0	38.0 ± 13.1	11.0 ± 4.1	52.5 ± 10.8	21.4 ± 6.5	25.5 ± 10.3	16.2 ± 3.2	25.1 ± 9.6
jaco reach bottom left	746.7 ± 12.6	77.1 ± 12.5	44.5 ± 4.0	13.7 ± 2.8	43.4 ± 4.6	19.8 ± 8.8	26.6 ± 5.9	19.8 ± 4.0	27.8 ± 4.6
jaco reach bottom right	733.0 ± 19.6	78.7 ± 19.1	41.4 ± 5.0	8.3 ± 2.8	34.0 ± 6.0	19.6 ± 2.0	25.4 ± 5.7	12.4 ± 2.7	24.7 ± 3.9
cube single task 1	92.5 ± 4.0	53.0 ± 8.7	67.3 ± 14.2	1.8 ± 1.0	77.8 ± 11.7	10.1 ± 2.7	13.8 ± 3.8	17.7 ± 8.8	32.9 ± 9.2
cube single task 2	78.4 ± 12.3	51.7 ± 15.1	93.7 ± 3.5	1.2 ± 0.6	94.2 ± 2.0	3.7 ± 2.8	8.5 ± 5.6	16.7 ± 8.6	26.5 ± 15.4
cube single task 3	56.4 ± 36.9	41.5 ± 5.3	94.8 ± 0.8	1.5 ± 1.4	93.1 ± 4.7	12.5 ± 3.2	11.7 ± 7.4	16.0 ± 12.2	35.5 ± 14.7
cube single task 4	91.5 ± 14.2	42.2 ± 8.3	89.5 ± 3.6	0.5 ± 1.0	88.7 ± 4.7	1.7 ± 1.7	3.3 ± 3.0	18.7 ± 9.9	36.4 ± 14.9
cube single task 5	70.0 ± 39.1	33.7 ± 12.9	83.3 ± 6.8	0.5 ± 0.6	87.8 ± 2.7	4.3 ± 2.2	4.0 ± 3.2	14.2 ± 12.0	18.5 ± 5.6
cube double task 1	29.3 ± 10.5	17.8 ± 9.6	2.2 ± 1.7	0.0 ± 0.0	2.7 ± 1.1	4.1 ± 1.9	6.7 ± 2.7	0.2 ± 0.3	0.7 ± 1.1
cube double task 2	12.5 ± 10.7	1.3 ± 1.2	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
cube double task 3	11.6 ± 8.3	0.3 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
cube double task 4	0.3 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
cube double task 5	2.8 ± 4.6	1.5 ± 1.0	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.7	0.2 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
scene task 1	97.8 ± 1.0	66.5 ± 13.1	47.7 ± 7.2	26.7 ± 4.3	35.3 ± 7.7	17.5 ± 5.1	21.0 ± 4.3	12.3 ± 11.3	8.8 ± 3.0
scene task 2	15.6 ± 3.4	2.5 ± 1.5	7.8 ± 4.9	1.3 ± 0.0	5.6 ± 5.6	2.3 ± 0.7	1.7 ± 1.3	1.5 ± 1.8	1.2 ± 1.7
scene task 3	43.5 ± 2.8	0.7 ± 0.5	1.7 ± 1.1	0.2 ± 0.3	2.4 ± 0.8	0.8 ± 0.3	0.5 ± 1.0	0.0 ± 0.0	0.0 ± 0.0
scene task 4	1.0 ± 0.7	0.2 ± 0.3	2.8 ± 0.8	0.2 ± 0.3	2.0 ± 1.3	1.2 ± 1.4	0.7 ± 1.3	0.2 ± 0.3	0.0 ± 0.0
scene task 5	0.3 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
puzzle 4x4 task 1	24.2 ± 14.4	2.3 ± 2.3	12.8 ± 3.1	0.3 ± 0.7	16.9 ± 1.4	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.3	0.3 ± 0.6
puzzle 4x4 task 2	14.5 ± 9.4	0.5 ± 0.6	0.5 ± 0.6	0.0 ± 0.0	0.2 ± 0.4	0.3 ± 0.4	0.0 ± 0.0	0.2 ± 0.3	0.4 ± 0.6
puzzle 4x4 task 3	26.3 ± 13.4	1.0 ± 0.9	5.0 ± 2.7	0.0 ± 0.0	5.1 ± 2.8	0.3 ± 0.4	0.0 ± 0.0	0.2 ± 0.3	0.1 ± 0.3
puzzle 4x4 task 4	12.0 ± 7.1	0.3 ± 0.7	0.8 ± 0.8	0.0 ± 0.0	0.4 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.3	0.1 ± 0.3
puzzle 4x4 task 5	12.3 ± 6.2	0.7 ± 0.8	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.5 ± 0.6	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.3
visual cube single task 1	52.1 ± 20.8	-	10.6 ± 7.2	15.3 ± 14.6	-	12.0 ± 5.6	-	31.0 ± 15.0	-
visual cube double task 1	11.2 ± 9.2	-	0.0 ± 0.0	5.0 ± 2.0	-	5.0 ± 3.6	-	1.3 ± 1.5	-
visual scene task 1	72.4 ± 17.7	-	32.0 ± 13.0	26.0 ± 17.2	-	9.0 ± 6.6	-	74.7 ± 22.2	-
visual puzzle 4x4 task 1	6.0 ± 3.2	-	0.0 ± 0.0	0.0 ± 0.0	-	0.0 ± 0.0	-	0.0 ± 0.0	-

1590

1591

1592

1613 Figure 6: Visualization of latent intentions on quadruped-jump.
1614
1615
1616

1617 et al., 2022; Dao et al., 2023), we therefore pre-train a β -VAE (Higgins et al., 2017) to encode images
1618 into a latent embedding space and then learn algorithms on top of those embeddings. For DINO +
1619 ReBRAC, we directly use the image representations learned by DINO to train the actor and the critic.
We report means and standard deviations of success rates over 4 random seeds.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 7: Evaluation on robotics datasets. InFOM outperforms the best baseline by 34% when trained on top of embeddings from a fixed image encoder. See Appendix F.1 for details.

Figure 8: Comparison to prior intention encoding mechanisms after pre-training. We compare InFOM to prior intention encoding mechanisms based on unsupervised skill discovery (HILP (Park et al., 2024b)) or successor feature learning (FB (Touati & Ollivier, 2021)) after pre-training. FB + FOM is equivalent to TD flows with GPI in Farebrother et al. (2025). InFOM achieves lower prediction errors on both tasks.

Results in Fig. 7 suggest that InFOM outperforms the best baseline by 34% when trained on top of embeddings from a fixed image encoder, indicating that our method can effectively fine-tune on challenging, realistic datasets with overlapping intentions.

F.2 VARIATIONAL INTENTION INFERENCE IS SIMPLE AND PERFORMANT

We now conduct experiments ablating a key component in our method: the variational intention encoder. To investigate whether this framework induces a simple and performant way to infer diverse user intentions from an unlabeled dataset, we compare it to various intention encoding mechanisms proposed by prior methods. Specifically, we consider replacing the variational intention encoder with either (1) a set of Hilbert representations and Hilbert foundation policies (Park et al., 2024b) (HILP + FOM) or (2) a set of forward-backward representations and representation-conditioned policies (Touati & Ollivier, 2021) (FB + FOM), and then pre-training the flow occupancy models conditioned on these two sets of representations. Note that FB + FOM is equivalent to TD flows with GPI in Farebrother et al. (2025).

We first compare the future state predictions from InFOM against HILP + FOM and FB + FOM on two ExORL tasks (quadruped jump and scene task 1) after pre-training. Specifically, we compute the pairwise mean squared error (MSE) between predicted future states and ground-truth future states along a trajectory. We first sample 100 trajectories from the pre-training datasets, and then, for each trajectory, we sample 400 future states from InFOM and the two baselines starting from the same initial (s, a) pair. We compute the pairwise MSE between each sampled future state and the corresponding sequence of ground-truth future states within the same trajectory. The prediction error is reported as the pairwise MSE averaged over all transitions in the 100 trajectories and the 400 sampled future states. Results in Fig. 8 show that InFOM achieves lower prediction errors than two FOM baselines.

We then compare the performance of InFOM against HILP + FOM and FB + FOM after fine-tuning. We choose two tasks in the ExORL benchmarks (walker flip and quadruped jump) and another two tasks taken from the OGBench benchmarks (cube double task 1 and scene task 1), following the same evaluation protocols as in Appendix D.3. Results in Fig. 9 indicate that InFOM can outperform prior intention encoding methods on 3 of 4 tasks, while being simpler. Both HILP and FB capture intentions with full unsupervised RL objectives based on an actor-critic backbone. In contrast, we capture intentions by simply training an intention encoder based on a latent

1674
1675
1676
1677
1678
1679
1680
1681 **Figure 9: Comparison to prior intention encoding**
1682 **mechanisms after fine-tuning.** We compare InFOM
1683 to prior intention encoding mechanisms based after
1684 fine-tuning. We observe that InFOM outperforms prior
1685 methods on 3 out of the 4 tasks.
1686
1687
1688

1689 variable model over adjacent transitions, without relying on a potentially complicated offline RL
1690 procedure (Tarasov et al., 2023b; Park et al., 2024a).

1692 F.3 FLOW OCCUPANCY MODELS ENABLE FASTER POLICY LEARNING

1694 We then investigate whether the proposed method leads to faster policy learning on downstream
1695 tasks. We answer this question by an ablation study with a high evaluation frequency, analyzing the
1696 performance of various methods throughout the entire fine-tuning phase every 2K gradient steps.
1697 We compare InFOM to prior methods on two ExORL tasks (cheetah run and quadruped
1698 jump), including ReBRAC, CRL + IS, DINO + ReBRAC, MBPO + ReBRAC, and FB + IQL
1699 (See Appendix D.2 for details of these baselines). We choose these baselines because they perform
1700 similarly to our method, helping to prevent counterfactual errors derived from the performance
1701 deviation when comparing convergence speed.

1702 We compare different algorithms by plotting the returns at each evaluation step, with the shaded
1703 regions indicating one standard deviation. As shown in Fig. 10, InFOM converges faster than prior
1704 methods that only pre-train behavioral cloning policies (ReBRAC) or self-supervised state represen-
1705 tations (DINO + ReBRAC), demonstrating the effectiveness of extracting temporal information. The
1706 observation that methods utilizing a one-step transition model (MBPO + ReBRAC) or a future state
1707 classifier (CRL + IS) learn more slowly than our method highlights the importance of predicting
1708 long-horizon future events using expressive generative models. Additionally, our flow occupancy
1709 models extract rich latent intentions from the unlabeled datasets, resulting in adaptation speed similar
1710 to the prior zero-short RL method (FB + IQL).

1712 F.4 LEARNING WITH DISCRETE INTENTIONS

1714 The choice of the prior over latent variables $p(z)$ is still an open question in the literature. Prior
1715 work has used a standard Gaussian distribution (Frans et al., 2024), a uniform von Mises–Fisher
1716 distribution Park et al. (2024b); Touati & Ollivier (2021); Zheng et al. (2025), a continuous uniform
1717 distribution (Sharma et al., 2019), and a discrete uniform distribution (Eysenbach et al., 2019).

1719 To further investigate the effect of using a discrete set of latent intentions for InFOM, we run additional
1720 ablation experiments. We selected a set of discrete latent embeddings $\mathcal{Z} = \{z_1, \dots, z_K\}$ (a lookup
1721 table with $K = 256$), and used a vector quantization (VQ) loss to learn those embeddings together
1722 with InFOM as in VQ-VAE (Van Den Oord et al., 2017). Specifically, given a consecutive transition
1723 (s, a, z, s', a') , the flow-based intention decoder $q_d(z | s, a)$ remains the same, while the intention
1724 encoder $p_e(z | s', a')$ can now be decomposed into two components: (1) the deterministic encoder
1725 $p_{\text{enc}} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ and the quantizer $p_{\text{quant}} : \mathbb{R}^d \rightarrow \mathcal{Z}$. The role of the quantizer is to query the
1726 closest discrete latent intentions from the encoder outputs using the nearest neighbor,

$$p_{\text{quant}}(p_{\text{enc}}(s', a')) = z_k, \quad \text{where } k = \operatorname{argmin}_{i=1, \dots, K} \|p_{\text{enc}}(s', a') - z_i\|_2.$$

Figure 11: Using discrete intentions slightly decreases InFOM’s performance on ExORL tasks (−11%), while drastically decreasing the mean success rate of InFOM on OGBench tasks (−78%).

Figure 12: Using the posterior $q_d(z | s', a')$ to sample the latents does not significantly change the performance of InFOM (+7%), suggesting that our method is robust against unseen latents. We choose to use the prior $p(z)$ for sampling latents to estimate Q_z throughout our experiments.

Using this quantizer, we replace the surrogate objective in Eq. 4 with the following SARSA flow loss with a vector quantization loss:

$$\begin{aligned} \mathcal{L}_{\text{SARSA flow}}(p_{\text{enc}}, p_{\text{quant}}, q_d) + \mathcal{L}_{\text{VQ}}(p_{\text{enc}}, p_{\text{quant}}, q_d), \\ \mathcal{L}_{\text{VQ}}(p_{\text{enc}}, p_{\text{quant}}, q_d) = \mathbb{E}_{p^{\beta}(s', a')} [\| [p_{\text{enc}}(s', a')]_{\text{sg}} - z_k(s', a') \|_2^2] \\ + \lambda \mathbb{E}_{p^{\beta}(s', a')} [\| p_{\text{enc}}(s', a') - [z_k(s', a')]_{\text{sg}} \|_2^2], \end{aligned}$$

where $[\cdot]_{\text{sg}}$ denotes the stop gradient operator, and we use straight-through gradients (Bengio et al., 2013) to optimize the SARSA flow loss. During fine-tuning, we use all the discrete latents $\{z_1, \dots, z_K\}$ to construct intention-conditioned Q_z estimations (Eq. 6) and distill them into the critic Q as in Eq. 7.

We conducted ablation experiments on two ExORL tasks (walker flip and quadruped jump) and two OGBench tasks (cube single task 2 and cube double task 1) and report performances aggregated over 8 random seeds. Results in Fig. 11 suggest that using discrete intentions slightly decreases InFOM’s performance on ExORL tasks (−11%), while drastically decreasing the mean success rate of InFOM on OGBench tasks (−78%). These results indicate that using a continuous latent space generally leads to better performance in our experiments.

F.5 FINE-TUNING WITH POSTERIOR INTENTIONS

In Sec. 4.4, when estimating the intention-conditioned Q_z for a specific task, we have already sampled the latent z from the prior $p(z)$ instead of the posterior $q_d(z | s', a')$. Sampling from the prior, in general, increases the possibility of drawing out-of-distribution latents. We hypothesize that InFOM can generalize over unseen latents on different (s, a) pairs. To quantitatively test this hypothesis, we conduct additional ablation experiments to study the effect of estimating intention-conditioned Q_z using in-distribution latents on the final performance of InFOM. Specifically, we replace the distillation loss in Eq. 7 with a variant that samples z from the posterior $q_d(z | s', a')$:

$$\tilde{\mathcal{L}}(Q) = \mathbb{E}_{(s, a, s', a') \sim p^{\beta}(s, a, s', a'), z \sim q_d(z | s', a')} [L_2^{\mu}(Q_z(s, a) - Q(s, a))].$$

We choose to conduct ablation experiments on two ExORL tasks (walker flip and quadruped jump) and two OGBench tasks (cube double task 1 and scene task 1), aggregating the return and the success rate over 8 random seeds. Results in Fig. 12 indicate that using the posterior to sample the latents for each Q_z does not significantly change the performance of InFOM (+7%). Conversely, these results suggest that InFOM is robust against unseen latents for different (s, a) pairs and using the prior $p(z)$ to sample latents provides sufficient learning signals to drive fine-tuning. We choose to use the prior $p(z)$ for sampling latents to estimate Q_z throughout our experiments.

F.6 LEARNING WITH SPARSE REWARDS IS CHALLENGING

We hypothesize that the sparse reward function on jaco tasks explains the performance gap between InFOM and baselines. To test this hypothesis, we conduct ablation experiments on jaco reach top left and jaco reach bottom right, studying whether using dense rewards will mitigate the performance gap. Specifically, the dense reward function is defined as $r(s, g) = -\|s - g\|_2$

Figure 14: The behavioral cloning regularization in the policy loss is a key component of InFOM.

Figure 15: The diversity of the pre-training datasets has a positive correlation with their sizes.

with g as the target position. To make a fair comparison, we fine-tune the ReBRAC baseline on variants of those two `jaco` tasks with dense reward functions, measuring the performance in the original environments. We report returns across 8 random seeds.

Results in Fig. 13 highlight that using a dense reward function results in $3.6\times$ smaller performance gap, suggesting that the original sparse reward function imposes challenges for learning on `jaco` tasks. We note that Yarats et al. (2022) has also included consistent evidence for this observation, where TD3 + BC (the base algorithm for ReBRAC) performed poorly on the `jaco` domain (Fig. 9 of Yarats et al. (2022)).

F.7 IMPORTANCE OF THE BEHAVIORAL CLONING REGULARIZATION

To study the effect of the BC regularizer (Eq. 8), we conduct experiments comparing a variant of InFOM without the behavioral cloning regularization coefficient ($\alpha = 0$) to our full algorithm with domain-dependent α values (Table 2). We select the same ExORL and OGBench tasks as in Fig. 5 (walker flip, quadruped jump, cube double task 1, and scene task 1) and report the means and standard deviations of performance over 8 random seeds after fine-tuning. Results in Fig. 14 suggest that behavioral cloning regularization ($\alpha > 0$) in the policy loss is a key component of our algorithm.

F.8 DIVERSITY OF THE PRE-TRAINING DATASETS

To quantify the diversity of the pre-training dataset, we conduct a statistical analysis on the datasets for two ExORL tasks (`cheetah run` and `quadruped jump`), analyzing the relationship between the size of the dataset and the diversity of the dataset. Following prior work (Park et al., 2023b), we discretize the continuous state space as a high-dimensional grid (up to 10^{-2}) and use the number of unique grid points covered by the dataset to measure the diversity. Results in Fig. 15 show that increasing the dataset size induces a higher diversity in the pre-training datasets, with an average correlation coefficient of 0.76 over those two tasks. Thus, we can study the effect of diverse pre-training datasets on InFOM’s performance by varying the pre-training dataset size.

F.9 THE EFFECT OF DATASET SIZES

Pre-training dataset size. Since we aim to predict temporally distant future states from heterogeneous data (Sec. 4.1), InFOM implicitly requires a sufficiently diverse dataset for effective pre-training. To study the relationship between the size of pre-training datasets and the performance of our algorithm, we conduct ablation experiments varying the pre-training dataset size in $\{1K, 10K, 100K, 500K, 1M\}$. We compare the performances of InFOM on two ExORL tasks

Figure 13: **Reward function structure can impose challenges.** The baseline ReBRAC achieves $3.6\times$ higher performance on variants of `jaco` tasks with a dense reward function.

1843 **Figure 16: The effect of pre-training dataset size on**
1844 **InFOM.** Increasing pre-training dataset sizes boosts
1845 the final performances of InFOM.

1854 **Figure 17: The effect of fine-tuning dataset size on**
1855 **InFOM.** Increasing the fine-tuning dataset size yields
1856 consistent improvements in success rates.

(cheetah run and quadruped jump) after fine-tuning on the same reward-labeled dataset. We report results across 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results in Fig. 16 indicate that larger pre-training datasets yield higher returns on these tasks. We conjecture that pre-training InFOM on a diverse, reward-free dataset reduces the possibility of sampling out-of-distribution (unseen) intentions, resulting in a higher final performance.

Fine-tuning dataset size. We also conduct ablation experiments studying the effect of fine-tuning dataset sizes. Specifically, we select two OGBench tasks (cube single task 2 and puzzle 4x4 task 1) and vary the size of the fine-tuning datasets in {5K, 10K, 25K, 50K, 100K, 250K, 500K}. Again, we aggregate the performance of InFOM over 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results Fig. 17 show that increasing the fine-tuning dataset size (within the chosen range) yields consistent improvements in success rates on the OGBench tasks. Our explanation for these observations is that the size of the fine-tuning dataset affects the accuracy of the reward prediction.

1863 F.10 FINE-TUNING ON SUBOPTIMAL DATASETS

1865 We hypothesize that using highly suboptimal fine-tuning datasets will decrease the downstream
1866 performance of InFOM. To study the effect of fine-tuning on suboptimal datasets, we conduct
1867 ablation experiments on two ExORL tasks (cheetah run and quadruped jump) because they
1868 have dense reward functions and can still produce diverse rewards. To construct suboptimal datasets,
1869 we use the reward quantile to filter each transition in the 10^6 ExORL dataset collected by RND (see
1870 Appendix D.1 for details) and then sample 5×10^5 reward-labeled transitions from the remaining
1871 transitions. After constructing these suboptimal datasets, we use them to fine-tune InFOM. Results
1872 in Fig. 18 indicate that fine-tuning InFOM on highly suboptimal datasets (0.2 reward quantile)
1873 achieved only 9% performance of the original InFOM, while using datasets with 0.8 reward quantile
1874 can already achieve 85% performance of the original InFOM. These results suggest that using a
1875 sufficiently optimal dataset is important for improving the fine-tuning performance.

1876 F.11 THE SUFFICIENT NUMBER OF FUTURE STATES IN THE Q ESTIMATION

1878 Since we use MC future states from the InFOM to estimate the intention-conditioned Q_z (Eq. 6),
1879 it is possible that the model produces unrealistic future states. Thus, the number of future states
1880 N affects the accuracy and variance of the Q value estimation (Eq. 6). To investigate the effect of
1881 N , we conduct ablation studies on a total of 8 tasks, with 4 tasks from the ExORL benchmarks
1882 (cheetah walk, walker walk, walker flip, and quadruped jump) and 4 tasks from
1883 the OGBench benchmarks (cube double task 3, puzzle 4x4 task 1, cube double
1884 task 1, and scene task 1). Below, we report returns and success rates after fine-tuning,
1885 aggregating the results over 8 random seeds.

1886 Fig. 19 suggests that, in cheetah walk and puzzle 4x4 task 1, increasing the number
1887 of flow future states yields better performance with consistent variance. In walker walk and
1888 cube double task 3, a larger N does mitigate the high variance in Q_z , at the cost of increasing
1889 computation. Taken together, these results indicate that a sufficiently large number of flow future
states used in Q_z achieves more accurate estimation of Q values, while reducing the variance. In

Figure 18: **Fine-tuning on suboptimal datasets.** Fine-tuning on highly suboptimal datasets (0.2 reward quantile) decreased the performance of InFOM, while using a sufficiently optimal (0.8 reward quantile) dataset can already retain the performance.

Figure 19: **Using a sufficient number of flow future states is important.** Increasing the number of flow future states (N) in the Q_z estimate boosts the accuracy while reducing variance, resulting in higher final performances of InFOM. We choose $N = 16$ as a balance between the accuracy, variance, and computational constraints in our experiments.

contrast, a smaller number of N potentially yields errors in Q_z from unrealistic future states, resulting in high variance. In practice, our choice of $N = 16$ is a balance between the accuracy, variance, and computational constraints of the estimator.

F.12 ADDITIONAL HYPERPARAMETER ABLATIONS

We conduct additional ablation experiments on walker flip, quadruped jump, cube double task 1, and scene task 1 to study the effect of some key hyperparameters in InFOM (Table 2). Following the same evaluation protocols as in Appendix D.3, we report means and standard deviations across eight random seeds after fine-tuning each variant.

As shown in Fig. 20a, our algorithm is sensitive to the latent intention dimension d . Additionally, the effect of the number of steps for the Euler method T (Fig. 20b) saturates after increasing it to a certain threshold ($T = 10$), suggesting the usage of a common value for all tasks.

Results in Fig. 20c, Fig. 20d, and Fig. 20e suggest that the expectile μ can affect the performance on ExORL tasks, while having minor effects on OGBench tasks. Importantly, the KL divergence regularization coefficient λ and the behavioral cloning regularization coefficient α are crucial hyperparameters for InFOM, where domain-specific hyperparameter tuning is required. As discussed in Appendix D.4, we generally select one task from each domain to sweep hyperparameters and then use one set of hyperparameters for every task in that domain.

Figure 20: **Hyperparameter ablations.** We conduct ablations to study the effect of key hyperparameters of InFOM as listed in Table 2 on walker flip, quadruped jump, cube double task 1, and scene task 1.