
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

INTENTION-CONDITIONED
FLOW OCCUPANCY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale pre-training has fundamentally changed how machine learning research
is done today: large foundation models are trained once, and then can be used
by anyone in the community (including those without data or compute resources
to train a model from scratch) to adapt and fine-tune to specific tasks. Applying
this same framework to reinforcement learning (RL) is appealing because it of-
fers compelling avenues for addressing core challenges in RL, including sample
efficiency and robustness. However, there remains a fundamental challenge to
pre-train large models in the context of RL: actions have long-term dependencies,
so training a foundation model that reasons across time is important. Recent ad-
vances in generative AI have provided new tools for modeling highly complex
distributions. In this paper, we build a probabilistic model to predict which states
an agent will visit in the temporally distant future (i.e., an occupancy measure)
using flow matching. As large datasets are often constructed by many distinct
users performing distinct tasks, we include in our model a latent variable capturing
the user intention. This intention increases the expressivity of our model, and
enables adaptation with generalized policy improvement. We call our proposed
method intention-conditioned flow occupancy models (InFOM). Comparing
with alternative methods for pre-training, our experiments on 36 state-based and
4 image-based benchmark tasks demonstrate that the proposed method achieves
1.8× median improvement in returns and increases success rates by 36%.

1 INTRODUCTION

Figure 1: InFOM is a latent variable model for pre-
training and fine-tuning in reinforcement learning. (Left)
The datasets are collected by users performing distinct
tasks. (Center) We encode intentions by maximizing
an evidence lower bound of data likelihood, (Right)
enabling intention-aware future prediction using flow
matching. See Sec. 4 for details.

Many of the recent celebrated successes of ma-
chine learning have been enabled by training
large foundation models on vast datasets, and
then adapting those models to downstream tasks.
Examples include today’s chatbots (e.g., Gem-
ini (Team et al., 2023) and ChatGPT (Achiam
et al., 2023)) and generalist robotic systems (e.g.,
π0 (Black et al., 2024) and Octo (Team et al.,
2024)). This pre-training-fine-tuning paradigm
has been wildly successful in fields ranging from
computer vision to natural language process-
ing (Devlin et al., 2019; Brown et al., 2020;
Touvron et al., 2023; Zhai et al., 2023; Radford
et al., 2021; He et al., 2022; Ouyang et al., 2022;
Lu et al., 2019), yet harnessing it in the context
of reinforcement learning (RL) remains an open
problem. What fundamentally makes the RL problem difficult is reasoning about time and intention—
an effective RL agent must reason about the long-term effect of actions taken now, and must recognize
that the data observed are often collected by distinct users performing multiple tasks. However,
current attempts to build foundation models for RL often neglect these two important bits, often
focusing on predicting the actions in the pre-training dataset instead (Team et al., 2024; O’Neill et al.,
2024; Walke et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The closest attempts to building RL algorithms that capture temporal bits are those based on world
models (Ding et al., 2024; Hafner et al., 2023; Mendonca et al., 2021) and those based on occupancy
models (Janner et al., 2020; Blier et al., 2021; Zheng et al., 2024; Farebrother et al., 2025).1 World
models can achieve great performance in sample efficiency (Janner et al., 2019) and generalize
to diverse tasks (Hafner et al., 2023; Mendonca et al., 2021), although their capacity to perform
long-horizon reasoning remains limited because of compounding errors (Talvitie, 2014; Janner et al.,
2019; Lambert et al., 2022). Occupancy models (Dayan, 1993) and variants that enable scaling to
high-dimensional tasks can also achieve great performance in predicting future events (Sikchi et al.,
2024; Barreto et al., 2018; Zheng et al., 2024; 2025; Farebrother et al., 2025), but are typically hard
to train and ignore user intentions. Recent advances in generative AI (e.g., flow-matching (Lipman
et al., 2024; 2023; Liu et al., 2023) and diffusion (Ho et al., 2020; Song et al., 2021) models) enable
modeling complex distributions taking various inputs, providing new tools for constructing occupancy
models that depend on intentions.

In this paper, we propose a framework (Fig. 1) for pre-training in RL that simultaneously learns a
probabilistic model to capture bits about time and intention. Building upon prior work on variational
inference (Kingma & Welling, 2013; Alemi et al., 2017) and successor representations (Janner
et al., 2020; Touati & Ollivier, 2021; Barreto et al., 2017; Zheng et al., 2024; Farebrother et al.,
2025), we learn latent variable models of temporally distant future states, enabling intention-aware
prediction. Building upon prior work on generative modeling, we use an expressive flow matching
method (Farebrother et al., 2025) to train occupancy models, enabling highly flexible modeling of
occupancy measures. We call the resulting algorithm intention-conditioned flow occupancy models
(InFOM). Experiments on 36 state-based and 4 image-based benchmark tasks show that InFOM
outperforms alternative methods for pre-training and fine-tuning by 1.8× median improvement in
returns and 36% improvement in success rates. Additional experiments demonstrate that our latent
variable model is capable of inferring underlying user intentions (Sec. 5.2) and enables efficient
policy extraction (Sec. 5.3).

2 RELATED WORK

Offline unsupervised RL. The goal of offline unsupervised RL is to pre-train policies, value functions,
or models from an unlabeled (reward-free) dataset to enable efficient learning of downstream tasks.
Prior work has proposed diverse offline unsupervised RL approaches based on unsupervised skill
learning (Touati & Ollivier, 2021; Frans et al., 2024; Park et al., 2024b; Kim et al., 2024; Hu et al.,
2023), offline goal-conditioned RL (Eysenbach et al., 2019; 2022; Valieva & Banerjee, 2024; Park
et al., 2023a; Zheng et al., 2024; Park et al., 2025a), and model-based RL (Mendonca et al., 2021;
Mazzaglia et al., 2022). Among these categories, our method is conceptually related to offline
unsupervised skill learning approaches (Park et al., 2024b; Touati et al., 2023), which also learns a
model that predictions intention. However, our approach differs in that it does not learn multiple
skills during pre-training. in that we also learn a set of latent intentions that capture diverse behavioral
modes in the dataset. Our work is complementary to a large body of prior work on using behavioral
cloning for pretraining (O’Neill et al., 2024; Team et al., 2024), demonstrating that there are significant
additional gains in performance that can be achieved by modeling intentions and occupancy measures
simultaneously.

Unsupervised representation learning for RL. Another way to leverage an unlabeled offline dataset
is to learn representations that facilitate subsequent downstream task learning. Some works adapt
existing representation learning techniques from computer vision, such as contrastive learning (He
et al., 2020; Parisi et al., 2022; Nair et al., 2023) and masked autoencoding (He et al., 2022; Xiao et al.,
2022). Others design specific methods for RL, including self-predictive representations (Schwarzer
et al., 2020; Ni et al., 2024) and temporal distance learning (Sermanet et al., 2018; Ma et al., 2023;
Mazoure et al., 2023). Those learned representations are typically used as inputs for policy and value
networks. The key challenge with these representation learning methods is that it is often (Laskin
et al., 2020), though not always (Zhang et al., 2021), unclear whether the learned representations
will facilitate policy adaptation. In our experiments, we demonstrate that learning occupancy models
enables faster policy learning.

1We will use “successor representations,” “occupancy measures,” and “occupancy models” interchangeably.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

RL with generative models. Modern generative models have been widely adopted to solve RL
problems. Prior work has employed autoregressive models (Vaswani et al., 2017), iterative gen-
erative models (e.g., denoising diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020) and flow
matching (Liu et al., 2023; Lipman et al., 2023; 2024)), or autoencoders (Kingma & Welling, 2013)
to model trajectories (Chen et al., 2021; Janner et al., 2021; 2022; Ajay et al., 2023), environment
dynamics (Ding et al., 2024; Alonso et al., 2024), skills (Ajay et al., 2021; Pertsch et al., 2021; Frans
et al., 2024), and policies (Wang et al., 2023; Hansen-Estruch et al., 2023; Park et al., 2025b). We
employ a state-of-the-art flow-matching objective (Farebrother et al., 2025) to model discounted state
occupancy measures.

Successor representations and successor features. Prior work has used successor representa-
tions (Dayan, 1993) and successor features (Barreto et al., 2017) for transfer learning (Barreto et al.,
2017; 2018; Borsa et al., 2018; Nemecek & Parr, 2021; Kim et al., 2022), unsupervised RL (Machado
et al., 2017; Hansen et al., 2019; Ghosh et al., 2023; Touati et al., 2023; Park et al., 2024b; 2023b;
Chen et al., 2023; Zheng et al., 2025; Jain et al., 2023; Zhu et al., 2024), and goal-conditioned
RL (Eysenbach et al., 2020; 2022; Zheng et al., 2024). Our method is closely related to prior methods
that learn successor representations with generative models (Janner et al., 2020; Thakoor et al., 2022;
Tomar et al., 2024; Farebrother et al., 2025). In particular, the most closely related to ours is the prior
work by Farebrother et al. (2025), which also uses flow-matching to model the occupancy measures
and partly employs the generalized policy improvement (GPI) for policy extraction. Unlike Fare-
brother et al. (2025), which uses forward-backward representations to capture behavioral intentions
and perform GPI over a finite set of intentions, our method employs a latent variable model to learn
intentions (Sec. 4.2) and uses an expectile loss to perform implicit GPI (Sec. 4.4). We empirically
show that these choices lead to higher returns and success rates (Sec. 5.1, Sec. 5.3).

3 PRELIMINARIES

We consider a Markov decision process (MDP) (Sutton et al., 1998) defined by a state space S, an
action space A, an initial state distribution ρ ∈ ∆(S), a reward function r : S → R, a discount factor
γ ∈ [0, 1), and a transition distribution p : S ×A → ∆(S), where ∆(·) denotes the set of all possible
probability distributions over a space. We will use h to denote a time step in the MDP and assume
the reward function only depends on the state at the current time step rh ≜ r(sh) without loss of
generality (Tomar et al., 2024; Frans et al., 2024; Thakoor et al., 2022). In Appendix A.1, we briefly
review the definition of value functions and the actor-critic framework in RL.

Occupancy measures. Alternatively, one can summarize the stochasticity over trajectories into
the discounted state occupancy measure (Dayan, 1993; Eysenbach et al., 2022; Janner et al., 2020;
Touati & Ollivier, 2021; Zheng et al., 2024; Myers et al., 2024; Blier et al., 2021) that quantifies
the discounted visitation frequency of different states under the policy π. Prior work (Dayan, 1993;
Janner et al., 2020; Touati & Ollivier, 2021; Zheng et al., 2024) has shown that the discounted state
occupancy measure follows a Bellman equation backing up the probability density at the current time
step and the future time steps:

pπγ (sf | s, a) = (1− γ)δs(sf) + γEs′∼p(s′|s,a),
a′∼π(a′|s′)

[
pπγ (sf | s′, a′)

]
, (1)

where δs(·) denotes the Dirac delta measure centered at s.2 The discounted state occupancy measure
allows us to rewrite the Q-function as a linear function of rewards (Barreto et al., 2017; Touati &
Ollivier, 2021; Zheng et al., 2024; Sikchi et al., 2024):

Qπ(s, a) =
1

1− γ
Esf∼pπγ (sf |s,a) [r(sf)] . (2)

The alternative (dual (Sikchi et al., 2024)) definition of Q-function (Eq. 2) allows us to cast the policy
evaluation step as first learning a generative model pγ(sf | s, a) to simulate the discounted state
occupancy measure of πk and then regressing the estimator Q towards the average reward at states
sampled from pγ (Toussaint & Storkey, 2006; Tomar et al., 2024; Thakoor et al., 2022; Zheng et al.,
2024). See Sec. 4.4 for detailed formulation.

2The recursive relationship in Eq. 1 starts from the current time step (Eysenbach et al., 2022; Touati &
Ollivier, 2021) instead of the next time step as in some prior approaches (Janner et al., 2020; Zheng et al., 2024;
Thakoor et al., 2022).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Flow matching and TD flows. Flow matching (Lipman et al., 2023; 2024; Liu et al., 2023; Albergo
& Vanden-Eijnden, 2023) refers to a family of generative models based on ordinary differential
equations (ODEs), which are close cousins of denoising diffusion models (Sohl-Dickstein et al.,
2015; Song et al., 2021; Ho et al., 2020), which instead solve a stochastic differential equation (SDE).
The deterministic nature of ODEs equips flow-matching methods with simpler learning objectives
and faster inference speed than denoising diffusion models (Lipman et al., 2023; 2024; Park et al.,
2025b). In Appendix A.2, we discuss the problem setting and the standard learning objective for flow
matching.

In the context of RL, prior work has used flow matching to estimate the discounted state occupancy
measure (Farebrother et al., 2025) by incorporating the Bellman equation (Eq. 1) into the condi-
tional flow matching loss (Eq. 10), resulting in a temporal difference flow matching procedure (TD
flows) (Farebrother et al., 2025). In Appendix A.3, we discuss the detailed formulations of the TD
flow objective for a target policy π. Choosing the target policy π to be the same as the behavioral
policy β, we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing the SARSA
flows. We will use the SARSA variant of the TD flow objective to learn our generative occupancy
models in Sec. 4.3.

4 INTENTION-CONDITIONED FLOW OCCUPANCY MODELS

In this section, we will introduce our method for pre-training and fine-tuning in RL. After formalizing
the problem setting, we will dive into the latent variable model for pre-training an intention encoder
and flow occupancy model. After pre-training the occupancy models, our method will extract polices
for solving different tasks by invoking a generalized policy improvement procedure (Barreto et al.,
2017). We refer to our method as intention-conditioned flow occupancy models (InFOM).

4.1 PROBLEM SETTING

We consider learning with purely offline datasets, where an unlabeled (reward-free) dataset of
transitions D = {(s, a, s′, a′)} collected by the behavioral policy β is provided for pre-training and
a reward-labeled dataset Dreward = {(s, a, r)} collected by some other policy β̃ on a downstream
task is used for fine-tuning. Importantly, the behavioral policy β used to collect D can consist of a
mixture of policies used by different users to complete distinct tasks. We will call this heterogeneous
structure of the unlabeled datasets “intentions,” which are latent vectors zs in some latent space Z .
In practice, these intentions can refer to desired goal images or language instructions that index the
behavioral policy β = {β(· | ·, z) : z ∈ Z}. Because these latent intentions are unobserved to the
pre-training algorithm, we want to infer them as a latent random variable Z from the offline dataset,
similar to prior work (Hausman et al., 2017; Li et al., 2017; Henderson et al., 2017). In Appendix B.2,
we include discussions distinguishing our problem setting from meta RL and multi-task RL problems.

During pre-training, our method exploits the heterogeneous structure of the unlabeled dataset and
extracts actionable information by (1) inferring intentions of the data collection policy and (2)
learning occupancy models to predict long-horizon future states based on those intentions (Sec. 4.2
& 4.3). During fine-tuning, we first recover a set of intention-conditioned Q functions by regressing
towards average rewards at future states generated by the occupancy models, and then extract a policy
to maximize task-specific discounted cumulative returns (Sec. 4.4). Our method builds upon an
assumption regarding the consistency of latent intentions.
Assumption 1 (Consistency). The unlabeled dataset D for pre-training is obtained by executing a
behavioral policy following a mixture of unknown intentions z ∈ Z . We assume that consecutive
transitions (s, a) and (s′, a′) share the same intention.

The consistency of intentions across transitions enables both intention inference using two sets of
transitions and dynamic programming over trajectory segments. See Appendix B.1 for justifications
of this assumption.

4.2 VARIATIONAL INTENTION INFERENCE

The goal of our pre-training framework is to learn a latent variable model that capture both long-
horizon temporal information and unknown user intentions in the unlabeled datasets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

This part of our method aims to infer the intention z based on consecutive transitions (s, a, s′, a′)
using the encoder pe(z | s′, a′) and predict the occupancy measures of a future state sf using the
occupancy models qd(sf | s, a, z). We want to maximize the likelihood of observing a future state
sf starting from a state-action pair (s, a) (amortized variational inference (Kingma & Welling, 2013;
Margossian & Blei, 2024)), both sampled from the unlabeled dataset D following the joint behavioral
distribution pβ(s, a, sf) = pβ(s, a)pβ(sf | s, a):

max
qd

Epβ(s,a,sf) [log qd(sf | s, a)]

≥ max
pe,qd

Epβ(s,a,sf ,s′,a′)
[
Epe(z|s′,a′) [log qd(sf | s, a, z)]− λDKL(pe(z | s′, a′) ∥ p(z))

]
, (3)

where p(z) = N (0, I) denotes an uninformative standard Gaussian prior over intentions and λ
denotes the coefficient that controls the strength of the KL divergence regularization. We defer
the full derivation of the evidence lower bound (ELBO) L(pe, qd) to Appendix C.1. Inferring the
intention z from the next transition (s′, a′) follows from our consistency assumption (Assump. 1),
and is important for avoiding overfitting (Frans et al., 2024). Importantly, pe and qd are optimized
jointly with this objective. One way of understanding this ELBO is as maximizing an information
bottleneck with the chain of random variables (S′, A′)→ Z → (S,A, Sf). See Appendix C.1 for
the connection.

We use flow matching to reconstruct the discounted state occupancy measure rather than maximizing
the likelihood directly, resulting in minimizing a surrogate objective:

min
pe,qd
LFlow(qd, pe) + λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] . (4)

We use LFlow to denote a placeholder for the flow matching loss and will instantiate this loss for the
flow occupancy models qd next.

4.3 PREDICTING THE FUTURE VIA SARSA FLOWS

We now present the objective used to learn the flow occupancy models, where we first introduce some
motivations and desiderata and then specify the actual loss. Given an unlabeled dataset D and an
intention encoder pe(z | s′, a′), the goal is to learn a generative occupancy model qd(sf | s, a, z)
that approximates the discounted state occupancy measure of the behavioral policy conditioned on
different intentions, i.e., qd(sf | s, a, z) ≈ pβ(sf | s, a, z). We will use vd : [0, 1]×S×S×A×Z →
S to denote the time-dependent vector field that corresponds to qd. There are two desired properties
of the learned occupancy models: (1) distributing the peak probability density to multiple sf , i.e.,
modeling multimodal structure, and (2) stitching together trajectory segments that share some
transitions in the dataset, i.e., enabling combinatorial generalization. The first property motivates us
to use an expressive flow-matching model (Lipman et al., 2024), while the second property motivates
us to learn those occupancy models using temporal difference approaches (Janner et al., 2020; Tomar
et al., 2024; Farebrother et al., 2025). Prior work (Farebrother et al., 2025) has derived the TD version
of the regular (Monte Carlo) flow matching loss (Eq. 10) that incorporates the Bellman backup into
the flow matching procedure, showing the superiority in sample efficiency and the capability of
dynamic programming. We will adopt the same idea and use the SARSA variant of the TD flow loss
(Eq. 11) to learn our intention-conditioned flow occupancy models:

LSARSA flow(vd, pe) = (1− γ)LSARSA current flow(vd, pe) + γLSARSA future flow(vd, pe), (5)

LSARSA current flow(vd, pe) = E(s,a,s′,a′)∼pβ(s,a,s′,a′),
z∼pe(z|s′,a′),

t∼UNIF([0,1]),ϵ∼N (0,I)

[
∥v(t, st, s, a, z)− (s− ϵ)∥22

]
,

LSARSA future flow(vd, pe) = E(s,a,s′,a′)∼pβ(s,a,s′,a′),
z∼pe(z|s′,a′),

t∼UNIF([0,1]),ϵ∼N (0,I)

[
∥vd(t, s̄tf , s, a, z)− v̄d(t, s̄tf , s′, a′, z)∥22

]
.

Importantly, incorporating the information from latent intentions into the flow occupancy models
allows us to (1) use the simpler and more stable SARSA bootstrap instead of the Q-learning style
bootstrap (Eq. 11) on large datasets, (2) generalize over latent intentions, avoiding counterfactual
errors. Sec. 5.2 visualizes the latent intentions, and Appendix F.2 contains additional experiments.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4.4 GENERATIVE VALUE ESTIMATION AND IMPLICIT GENERALIZED POLICY IMPROVEMENT

We next discuss the fine-tuning process in our algorithm. Our fine-tuning method builds on the
dual perspective of value estimation introduced in the preliminaries (Eq. 2). We first estimate a set
of intention-conditioned Q functions using regression and then use those intention-conditioned Q
functions to extract a policy, utilizing generalized policy improvement (GPI) (Barreto et al., 2017).
The key idea of GPI is that, in addition to taking the maximum over the actions, we can also take the
maximum over the intentions. In our setting, the number of intentions is infinite—one for every choice
of continuous z. Thus, taking the maximum over the intentions is both nontrivial and susceptible to
instability (Sec. 5.3). We address this issue by replacing the greedy “max” with an upper expectile
loss, resulting in an implicit generalized policy improvement procedure.

Generative value estimation. Given a reward-labeled dataset Dreward and the pre-trained flow occu-
pancy models qd, we can estimate intention-conditioned Q values for a downstream task. Specifically,
for a fixed latent intention z ∈ Z , we first sample a set of N future states from the flow occupancy
models, s(1)f , · · · , s(N)

f : s
(i)
f ∼ qd(sf | s, a, z), and then constructs a Monte Carlo (MC) estimation

of the Q function using those generative samples:3

Qz(s, a) =
1

(1− γ)N

N∑
i=1

r
(
s
(i)
f

)
, s

(i)
f ∼ qd(sf | s, a, z), (6)

where r(·) is the reward function or a learned reward predictor. Importantly, the choice of the number
of future states N affects the accuracy and variance of our Q estimate. Ablation experiments in
Appendix F.7 indicate that N = 16 works effectively in our experiments.

Implicit generalized policy improvement. We can then use those MC estimation of Q functions to
learn a policy by invoking the generalized policy improvement. The naive GPI requires sampling
a finite set of latent intentions from the prior distribution p(z),4 z(1), · · · , z(M) : z(j) ∼ p(z) and
greedily choose one Qz to update the policy:

argmax
π

E
s∼pβ̃(s), a∼π(a|s)

z(1),··· ,z(M): z(j)∼p(z)

[
max
z(j)

Qz(j)(s, a)

]
.

Despite its simplicity, the naive GPI suffers from two main disadvantages. First, using the maximum
Q over a finite set of latent intentions to approximate the maximum Q over an infinite number of
intentions results in local optima. Second, when we take gradients of this objective with respect to
the policy, the chain rule gives one term involving ∇aqd(sf |s, a, z). Thus, computing the gradients
requires differentiating through the ODE solver (backpropagating through time (Park et al., 2025b)),
which is unstable. We address these challenges by learning an explicit scalar Q function to distill the
MC estimation of intention-conditioned Q functions. This approach is appealing because gradients of
the Q function no longer backpropagate through the ODE solver. We also replace the “max” over
a finite set of intention-conditioned Q functions with an upper expectile loss Lµ2 (Kostrikov et al.,
2022), resulting in the following critic loss

L(Q) = E(s,a)∼pβ̃(s,a), z∼p(z) [L
µ
2 (Qz(s, a)−Q(s, a))] , (7)

where Lµ2 (x) = |µ − 1(x < 0)|x2 and µ ∈ [0.5, 1). After distilling the intention-conditioned Q
functions into a single function, we can extract the policy by selecting actions to maximize Q with a
behavioral cloning regularization (Fujimoto & Gu, 2021) using the actor loss

L(π) = −E(s,a)∼pβ̃(s,a),aπ∼π(aπ|s)[Q(s, aπ) + α log π(a | s)], (8)

where α controls the regularization strength. We use the behavioral cloning regularization to both
reduce errors from sampling out-of-distribution (OOD) actions (Kumar et al., 2020; Fujimoto & Gu,
2021) and mitigate error propagations through overestimated Qz values. Alation experiments in
Appendix F.5 & F.8 show that this behavioral cloning regularization is important for extracting the
policy. Taken together, we call the expectile Q distillation step (Eq. 7) and the policy optimization

3We omit the dependency of Qz on s
(1)
f , · · · , s(N)

f to simplify notations.
4We choose to sample from the prior p(z) because of the KL divergence in L(pe, qd), resembling drawing

random samples from a variational auto-encoder (Kingma & Welling, 2013).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

cheetah walker quadruped jaco cube single cube double scene puzzle 4x4

Figure 2: Domains for evaluation. (Left) ExORL domains (16 state-based tasks). (Right) OGBench domains
(20 state-based tasks and 4 image-based tasks).

cheetah walker quadruped jaco
0

200

400

600

800

re
tu

rn

InFOM (Ours)
IQL
ReBRAC

DINO + ReBRAC
MBPO + ReBRAC
CRL + IS

TD InfoNCE + IS
FB + IQL
HILP + IQL

(a) 16 state-based ExORL tasks from Yarats et al. (2022).
We average over 4 tasks for each domain.

cube single cube double scene puzzle 4x4 visual tasks
0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

InFOM (Ours)
IQL
ReBRAC

DINO + ReBRAC
MBPO + ReBRAC
CRL + IS

TD InfoNCE + IS
FB + IQL
HILP + IQL

(b) 20 state-based and 4 image-based OGBench tasks
from Park et al. (2025a). We average over 5 tasks for
each state-based domain and average over 4 visual tasks.

Figure 3: Evaluation on ExORL and OGBench tasks. We compare InFOM against prior methods that
utilize various learning paradigms on task-agnostic pre-training and task-specific fine-tuning. InFOM performs
similarly to, if not better than, prior methods on 7 out of the 9 domains, including the most challenging visual
tasks. We report means and standard deviations over 8 random seeds (4 random seeds for image-based tasks)
with error bars indicating one standard deviation. See Table 4 for full results.

step (Eq. 8) implicit generalized policy improvement (implicit GPI). In Appendix C.2, we discuss the
intuition and theoretical soundness of the implicit GPI.

Algorithm summary. We use neural networks to parameterize the intention encoder pϕ, the vector
field of the occupancy models vθ, the reward predictor rη, the critic Qψ, and the policy πω. We
consider two stages: pre-training and fine-tuning. In Alg. 1, we summarize the pre-training process
of InFOM. InFOM pre-trains (1) the vector field vθ using the SARSA flow loss (Eq. 5) and (2) the
intention encoder pϕ using the ELBO (Eq. 3). Alg. 2 shows the pseudocode of InFOM for fine-tuning.
InFOM mainly learns (1) the reward predictor rη via simple regression, (2) the critic Qψ using
expectile distillation (Eq. 7), and (3) the policy πω by conservatively maximizing the Q (Eq. 8). The
open-source implementation is available in the supplementary materials.

5 EXPERIMENTS

Our experiments start with comparing InFOM to prior methods that first pre-train on reward-free
datasets and then fine-tune on reward-labeled datasets, measuring the performance on downstream
tasks. We then study the two main components of our method: the variational intention encoder
and the implicit GPI policy extraction strategy. Visualizations of the latent intention inferred by
our variational intention encoder show alignment with the underlying ground-truth intentions. Our
ablation experiments reveal the effect of the implicit GPI policy extraction strategy. We also include
additional experiments showing InFOM enables faster policy learning during fine-tuning in Ap-
pendix F.3. Our algorithm is robust to various choice of hyperparameters (Appendix F.8). Following
prior work (Park et al., 2025b), all experiments report means and standard deviations across 8 random
seeds for state-based tasks and 4 random seeds for image-based tasks.

5.1 COMPARING TO PRIOR PRE-TRAINING AND FINE-TUNING METHODS

Our experiments study whether the proposed method (InFOM), which captures actionable information
conditioned on user intentions from unlabeled datasets, enables effective pre-training and fine-tuning.
We select 36 state-based and 4 image-based tasks across diverse robotic navigation and manipula-
tion domains and compare against 8 baselines. The models pre-trained by those methods include
behavioral cloning policies (Kostrikov et al., 2022; Tarasov et al., 2023a), transition models (Janner

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

time

t-SNE dim 0

t-S
NE

 d
im

 1

FB FOM

t-SNE dim 0

HILP FOM

pick place
t-SNE dim 0

InFOM

Figure 4: Visualization of latent intentions. (Top) The optimal policy picks up the blue block from the left
and places it on the right. (Bottom) Using t-SNE (Maaten & Hinton, 2008), we visualize the latent intentions
inferred by the variational intention encoder in InFOM, comparing against latent representations inferred by
HILP and FB for learning FOMs. The predictions from InFOM align with the underlying intentions. See Sec. 5.2
for details and Appendix E for more visualizations.

et al., 2019), representations (Caron et al., 2021), discriminative classifiers that predict occupancy
measures (Eysenbach et al., 2022; Zheng et al., 2024), and latent skills (Touati & Ollivier, 2021; Park
et al., 2024b). We defer the detailed discussions about benchmarks and datasets to Appendix D.1 and
the rationale for choosing different baselines to Appendix D.2. Whenever possible, we use the same
hyperparameters for all methods (Table 1). See Appendix D.3 for details of the evaluation protocol
and Appendix D.4 for implementations and hyperparameters of each method.

We report results in Fig. 3, aggregating over four tasks in each domain of ExORL and five tasks in
each domain of OGBench, and present the full results in Table 4. These results show that InFOM
matches or surpasses all baselines on six out of eight domains. On ExORL benchmarks, all methods
perform similarly on the two easier domains (cheetah and quadruped), while InFOM is able to
obtain 20× improvement on jaco, where baselines only make trivial progress (Table 4). We suspect
the outsized improvement on the jaco task is because of the high-dimensional state space (twice
that of the other ExORL tasks (Yarats et al., 2022)) and because it has sparse rewards; Appendix
Fig. 10 supports this hypothesis by showing that the ReBRAC baseline achieves significantly higher
returns when using dense rewards. On those more challenging state-based manipulation tasks from
OGBench, we find a marked difference between baselines and InFOM; our method achieves 36%
higher success rate over the best performing baseline. In addition, InFOM is able to outperform the
best baseline by 31% using RGB images as input directly (visual tasks). We hypothesize that
the baselines fail to solve these more challenging tasks because of the semi-sparse reward functions.
In contrast, our method can explore different regions of the state space using the different intentions,
thereby addressing the challenge of reward sparsity. We conjecture that the variance of InFOM
across seeds in some experiments (e.g., cheetah, cube single, and puzzle 4x4) reflects
stochasticity in the MC Q estimates (Eq. 6), which might be mitigated by increasing the number of
sampled future states (See Appendix F.7). In Appendix F.1, we compare InFOM against selective
baselines on real robotics datasets, showing 34% improvement.

5.2 VISUALIZING LATENT INTENTIONS

Our next experiment studies the intention encoder in our algorithm. To investigate whether the
proposed method discovers distinct user intentions from an unlabeled dataset, we visualize latent
intentions inferred by our variational intention encoder. We include comparisons against two alterna-
tive intention encoding mechanisms proposed by prior methods. Specifically, we consider replacing
the variational intention encoder with either (1) a set of Hilbert representations (Park et al., 2024b) or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(2) a set of forward-backward representations (Touati & Ollivier, 2021), and then pre-training the
flow occupancy models (FOM) conditioned on these two sets of representations. We call these two
variants HILP + FOM and FB + FOM. Note that FB + FOM is equivalent to TD flows with GPI
in Farebrother et al. (2025). Using t-SNE (Maaten & Hinton, 2008), we visualize latent intentions
predicted by these three methods on cube double task 1 from the OGBench benchmarks.

Fig. 4 shows the optimal trajectory, where the manipulator picks the blue block from the left and
then places it on the right, and the visualizations. The 2D t-SNE visualizations indicate that both
FB + FOM and HILP + FOM infer mixed latent intentions for “pick” and “place” behaviors, while
InFOM predicts a sequence of latent intentions with clear clustering. This result suggests that InFOM
is capable of inferring latent intentions that align with the underlying ground-truth intentions. See
Appendix E for more visualizations.

5.3 IMPORTANCE OF THE IMPLICIT GENERALIZED POLICY IMPROVEMENT

walker flip quadruped jump
0

400

800

re
tu

rn

InFOM (Ours)
InFOM + GPI
FOM + one-step PI

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 5: Comparison to alternative policy extrac-
tion strategies. We compare InFOM to alternative pol-
icy extraction strategies based on the standard general-
ized policy improvement or one-step policy improve-
ment. Our method is 44% more performant with 8×
smaller variance than the variant using the standard GPI.
See Sec. 5.3 for details.

Our final experiments study different approaches
for policy optimization. We hypothesize that
our proposed method is more efficient and ro-
bust than other policy extraction strategies. To
test this hypothesis, we conduct ablation exper-
iments on one task in the ExORL benchmarks
(quadruped jump) and another task taken
from the OGBench benchmarks (scene task
1), again following the evaluation protocols in
Appendix D.3. We compare two alternative
policy learning approaches in the fine-tuning
phase. First, we ablate the effect of the upper
expectile loss by comparing against the standard
GPI, which maximizes Q functions over a finite
set of intentions {z(1), · · · , z(M)}. We choose
M = 32 latent intentions to balance between performance and compute budget, and call this variant
InFOM + GPI. Second, we ablate the effect of the variational intention encoder by removing the
intention dependency in the flow occupancy models and extracting the policy via one-step policy
improvement (PI) (Wang et al., 2018; Brandfonbrener et al., 2021; Peters & Schaal, 2007; Peters et al.,
2010). We call this method FOM + one-step PI and defer the detailed formulation into Appendix C.3.

As shown in Fig. 5, InFOM achieves significantly higher returns and success rates than its variant
based on one-step policy improvement, suggesting the importance of inferring user intentions.
Compared with its GPI counterpart, our method is 44% more performant with 8× smaller variance
(the error bar indicates one standard deviation), demonstrating that the implicit GPI indeed performs
a relaxed maximization over intentions while maintaining robustness.

Additional experiments. In Appendix F.3, we include additional ablations showing that InFOM
enables faster policy learning. The dataset size ablations in Appendix F.6 show that using sufficient
pre-training and fine-tuning data is important. Our hyperparameter ablations can be found in
Appendix F.8.

6 CONCLUSION

In this work, we presented InFOM, a method that captures diverse intentions and their long-term
behaviors from an unstructured dataset, leveraging the expressivity of flow models. We empirically
showed that the intentions captured in flow occupancy models enable effective and efficient fine-
tuning, outperforming prior unsupervised pre-training approaches on diverse state- and image-based
domains.

Limitations. One limitation of InFOM is that our reduction from trajectories to consecutive state-
action pairs might not always accurately capture the original intentions in the trajectories. While
we empirically showed that this simple approach is sufficient to achieve strong performance on our
benchmark tasks, it can be further improved with alternative trajectory encoding techniques and data
collection strategies, which we leave for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

We implement InFOM and all baselines in the same codebase using JAX (Bradbury et al., 2018). Our
implementations build on top of OGBench’s and FQL’s implementations (Park et al., 2025a;b). We
include the common hyperparameters for all the methods in Appendix Table 1, the hyperparameters
for InFOM in Appendix Table 2 and Appendix Table 3, and the hyperparameters for baselines in
Appendix Table 3. All the experiments were run on a single NVIDIA A6000 GPU and can be
finished in 4 hours for state-based tasks and 12 hours for image-based tasks. We provide open-source
implementations of InFOM and all baselines in the supplementary materials.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
V69LGwJ0lIN.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=sP1fo2K9DFG.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=li7qeBbCR1t.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=HyxQzBceg.

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari. Advances in Neural
Information Processing Systems, 37:58757–58791, 2024.

David Barber and Felix Agakov. The im algorithm: a variational approach to information maximiza-
tion. Advances in neural information processing systems, 16(320):201, 2004.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In International Conference on Machine Learning, pp. 501–
510. PMLR, 2018.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint
arXiv:1812.07626, 2018.

10

https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=V69LGwJ0lIN
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=li7qeBbCR1t
https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
In International Conference on Machine Learning, pp. 5453–5512. PMLR, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Boyuan Chen, Chuning Zhu, Pulkit Agrawal, Kaiqing Zhang, and Abhishek Gupta. Self-supervised
reinforcement learning that transfers using random features. Advances in Neural Information
Processing Systems, 36:56411–56436, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5(4):613–624, 1993.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv e-prints,
pp. arXiv–2402, 2024.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=SJx63jRqFm.

11

http://github.com/jax-ml/jax
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=SJx63jRqFm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve
goals via recursive classification. arXiv preprint arXiv:2011.08909, 2020.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,
35:35603–35620, 2022.

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Remi Munos, Alessandro Lazaric, and Ahmed
Touati. Temporal difference flows. In ICLR 2025 Workshop on World Models: Understanding, Mod-
elling and Scaling, 2025. URL https://openreview.net/forum?id=nYL0pn3z3u.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Unsupervised zero-shot reinforcement
learning via functional reward encodings. In International Conference on Machine Learning, pp.
13927–13942. PMLR, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=OlzB6LnXcS.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Dibya Ghosh, Chethan Anand Bhateja, and Sergey Levine. Reinforcement learning from passive
data via latent intentions. In International Conference on Machine Learning, pp. 11321–11339.
PMLR, 2023.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph J Lim. Multi-modal
imitation learning from unstructured demonstrations using generative adversarial nets. Advances
in neural information processing systems, 30, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Peter Henderson, Wei-Di Chang, Pierre-Luc Bacon, David Meger, Joelle Pineau, and Doina Precup.
Optiongan: Learning joint reward-policy options using generative adversarial inverse reinforcement
learning. ArXiv, abs/1709.06683, 2017. URL https://api.semanticscholar.org/
CorpusID:7079525.

12

https://openreview.net/forum?id=nYL0pn3z3u
https://openreview.net/forum?id=OlzB6LnXcS
https://api.semanticscholar.org/CorpusID:7079525
https://api.semanticscholar.org/CorpusID:7079525

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017a.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017b. URL https://openreview.net/forum?id=Sy2fzU9gl.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction
via random intent priors. Advances in Neural Information Processing Systems, 36:51491–51514,
2023.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy exploration
using predecessor and successor representations. Advances in Neural Information Processing
Systems, 36:49991–50019, 2023.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: Generative temporal difference
learning for infinite-horizon prediction. Advances in neural information processing systems, 33:
1724–1735, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Scott Jeen, Tom Bewley, and Jonathan Cullen. Zero-shot reinforcement learning from low quality
data. Advances in Neural Information Processing Systems, 37:16894–16942, 2024.

Jaekyeom Kim, Seohong Park, and Gunhee Kim. Constrained gpi for zero-shot transfer in reinforce-
ment learning. Advances in Neural Information Processing Systems, 35:4585–4597, 2022.

Junsu Kim, Seohong Park, and Sergey Levine. Unsupervised-to-online reinforcement learning. arXiv
preprint arXiv:2408.14785, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Nathan Lambert, Kristofer Pister, and Roberto Calandra. Investigating compounding prediction errors
in learned dynamics models. arXiv preprint arXiv:2203.09637, 2022.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International conference on machine learning, pp. 5639–5650.
PMLR, 2020.

13

https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, et al. Evaluating real-world robot manipulation policies in
simulation. arXiv preprint arXiv:2405.05941, 2024.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. Advances in neural information processing systems, 30, 2017.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=XVjTT1nw5z.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. Advances in neural information processing systems,
32, 2019.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: Towards universal visual reward and representation via value-implicit pre-training.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=YJ7o2wetJ2.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Charles C Margossian and David M Blei. Amortized variational inference: When and why? In
Uncertainty in Artificial Intelligence, pp. 2434–2449. PMLR, 2024.

Bogdan Mazoure, Benjamin Eysenbach, Ofir Nachum, and Jonathan Tompson. Contrastive value
learning: Implicit models for simple offline RL. In 7th Annual Conference on Robot Learning,
2023. URL https://openreview.net/forum?id=oqOfLP6bJy.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreographer:
Learning and adapting skills in imagination. arXiv preprint arXiv:2211.13350, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. Advances in Neural Information Processing Systems, 34:
24379–24391, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learning
temporal distances: Contrastive successor features can provide a metric structure for decision-
making. In International Conference on Machine Learning, pp. 37076–37096. PMLR, 2024.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. In Conference on Robot Learning, pp. 892–909.
PMLR, 2023.

Mark Nemecek and Ronald Parr. Policy caches with successor features. In International Conference
on Machine Learning, pp. 8025–8033. PMLR, 2021.

14

https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=YJ7o2wetJ2
https://openreview.net/forum?id=YJ7o2wetJ2
https://openreview.net/forum?id=oqOfLP6bJy

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Mahajan,
and Pierre-Luc Bacon. Bridging state and history representations: Understanding self-predictive rl.
arXiv preprint arXiv:2401.08898, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The unsurprising
effectiveness of pre-trained vision models for control. In international conference on machine
learning, pp. 17359–17371. PMLR, 2022.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. Hiql: Offline goal-conditioned
rl with latent states as actions. Advances in Neural Information Processing Systems, 36:34866–
34891, 2023a.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. arXiv preprint arXiv:2310.08887, 2023b.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? arXiv preprint arXiv:2406.09329, 2024a.

Seohong Park, Tobias Kreiman, and Sergey Levine. Foundation policies with hilbert representations.
In International Conference on Machine Learning, pp. 39737–39761. PMLR, 2024b.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Representa-
tions, 2025a. URL https://openreview.net/forum?id=M992mjgKzI.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025b.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750, 2007.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
meta-reinforcement learning with online self-supervision. In International Conference on Machine
Learning, pp. 17811–17829. Pmlr, 2022.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International conference on machine learning, pp. 5171–5180.
PMLR, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

15

https://openreview.net/forum?id=M992mjgKzI

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha
Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy
optimization. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=mEpqHvbD2h.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Bren-
dan Daniel Tracey, and David Daniel Cox. On the information bottleneck theory of deep
learning. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=ry_WPG-A-.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 1134–1141. IEEE,
2018.

Harshit Sikchi, Qinqing Zheng, Amy Zhang, and Scott Niekum. Dual RL: Unification and new meth-
ods for reinforcement and imitation learning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=xt9Bu66rqv.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International conference on machine learning, pp. 9767–9779. PMLR,
2021.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Erik Talvitie. Model regularization for stable sample rollouts. In UAI, pp. 780–789, 2014.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36:11592–11620, 2023a.

16

https://openreview.net/forum?id=mEpqHvbD2h
https://openreview.net/forum?id=ry_WPG-A-
https://openreview.net/forum?id=ry_WPG-A-
https://openreview.net/forum?id=xt9Bu66rqv
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov. Corl:
Research-oriented deep offline reinforcement learning library. Advances in Neural Information
Processing Systems, 36:30997–31020, 2023b.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Shantanu Thakoor, Mark Rowland, Diana Borsa, Will Dabney, Rémi Munos, and André Barreto.
Generalised policy improvement with geometric policy composition. In International Conference
on Machine Learning, pp. 21272–21307. PMLR, 2022.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Manan Tomar, Philippe Hansen-Estruch, Philip Bachman, Alex Lamb, John Langford, Matthew E
Taylor, and Sergey Levine. Video occupancy models. arXiv preprint arXiv:2407.09533, 2024.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13–23, 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=MYEap_OcQI.

Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous state
markov decision processes. In Proceedings of the 23rd international conference on Machine
learning, pp. 945–952, 2006.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Khadichabonu Valieva and Bikramjit Banerjee. Quasimetric value functions with dense rewards.
arXiv preprint arXiv:2409.08724, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 31, 2018.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

17

https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=MYEap_OcQI
https://openreview.net/forum?id=AHvFDPi-FA

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. In ICLR 2022 Workshop on Generalizable Policy Learning in Physical
World, 2022. URL https://openreview.net/forum?id=Su-zh4a41Z5.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611–25635. PMLR, 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=-2FCwDKRREu.

Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive difference predictive
coding. The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=0akLDTFR9x.

Chongyi Zheng, Jens Tuyls, Joanne Peng, and Benjamin Eysenbach. Can a MISL fly? analysis
and ingredients for mutual information skill learning. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
xoIeVdFO7U.

Zhiyuan Zhou, Andy Peng, Qiyang Li, Sergey Levine, and Aviral Kumar. Efficient online re-
inforcement learning fine-tuning need not retain offline data. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=HN0CYZbAPw.

Chuning Zhu, Xinqi Wang, Tyler Han, Simon S Du, and Abhishek Gupta. Distributional successor
features enable zero-shot policy optimization. arXiv preprint arXiv:2403.06328, 2024.

18

https://openreview.net/forum?id=Su-zh4a41Z5
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=-2FCwDKRREu
https://openreview.net/forum?id=0akLDTFR9x
https://openreview.net/forum?id=0akLDTFR9x
https://openreview.net/forum?id=xoIeVdFO7U
https://openreview.net/forum?id=xoIeVdFO7U
https://openreview.net/forum?id=HN0CYZbAPw
https://openreview.net/forum?id=HN0CYZbAPw

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Algorithm 1 Intention-Conditioned Flow Occupancy Model (pre-training).

1: Input The intention encoder pϕ, the vector field vθ, the target vector field vθ̄, the policy πω , and
the reward-free dataset D.

2: for each iteration do
3: Sample a batch of {(s, a, s′, a′) ∼ D}.
4: Sample a batch of {ϵ ∼ N (0, I)} and a batch of {t ∼ UNIF([0, 1])}.
5: Encode intentions {z ∼ pϕ(z | s′, a′)} for each (s′, a′).

▽ SARSA flow occupancy model loss.
6: st ← (1− t)ϵ+ ts
7: s̄f ← EulerMethod(vθ̄, ϵ, s

′, a′, z), s̄tf ← (1− t)z + ts̄f .
8: LSARSA current flow(θ, ϕ)← E(s,a,z,t,ϵ,st)

[
∥vθ(t, st, s, a, z)− (s− z)∥22

]
.

9: LSARSA future flow(θ, ϕ)← E(s,a,z,t,ϵ,s̄tf)

[
∥vθ(t, s̄tf , s, a, z)− vθ̄(t, s̄tf , s′, a′, z)∥22

]
.

10: LSARSA flow(θ, ϕ)← (1− γ)Lcurrent(θ, ϕ) + γLfuture(θ, ϕ).
▽ Intention encoder loss.

11: LELBO(θ, ϕ)← LSARSA flow(θ, ϕ) + λE(s′,a′) [DKL (pϕ(z | s′, a′) ∥ N (0, I))].
▽ (Optional) Behavioral cloning loss.

12: LBC(ω)← −E(s,a) [log πω(a | s)].
13: Update the vector field θ and the intention encoder ϕ by minimizing LELBO(θ, ϕ).
14: Update the policy ω by minimizing LBC(ω).
15: Update the target vector field θ̄ using an exponential moving average of θ.
16: Return vθ, pϕ, and πω .

A PRELIMINARIES

A.1 VALUE FUNCTIONS AND THE ACTOR-CRITIC FRAMEWORK

Algorithm 3 Euler method for solving the flow
ODE (Eq. 9).

1: Input The vector field v and the noise ϵ. (Op-
tional) The number of steps T with default
T = 10.

2: Initialize t = 0 and xt = ϵ
3: for each step t = 0, 1, · · · , T − 1 do
4: xt+1 ← xt + v(t/T, xt)/T

5: Return x̂ = xT

The goal of RL is to learn a policy π : S →
∆(A) that maximizes the expected discounted
return J(π) = Eτ∼π(τ)

[∑∞
h=0 γ

hrh
]
, where τ

is a trajectory sampled by the policy. We will
use β : S → ∆(A) to denote the behavioral pol-
icy. Given a policy π, we measure the expected
discounted return starting from a state-action
pair (s, a) and a state s as the (unnormalized)
Q-function and the value function, respectively:

Qπ(s, a) = Eτ∼π(τ)

[∞∑
h=0

γhrh

∣∣∣∣∣ s0 = s, a0 = a

]
, V π(s) = Ea∼π(a|s) [Qπ(s, a)] .

Prior actor-critic methods (Schulman et al., 2015; 2017; Haarnoja et al., 2018; Fujimoto et al., 2018;
Kumar et al., 2020; Fujimoto & Gu, 2021) typically maximize the RL objective J(π) by (1) learning
an estimate Q of Qπ via the temporal difference (TD) loss (policy evaluation) and then (2) improving
the policy π by selecting actions that maximizes Q (policy improvement):

Qk+1 ← argmax
Q

E(s,a,r,s′)∼pβ(s,a,r,s′),a′∼πk(a′|s′)

[(
Q(s, a)− (r + γQk(s′, a′))

)2]
πk+1 ← argmax

π
Es∼pβ(s),a∼π(a|s)

[
Qk+1(s, a)

]
,

where k indicates the number of updates and β is the behavioral policy representing either a replay
buffer (online RL) or a fixed dataset (offline RL).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Algorithm 2 Intention-Conditioned Flow Occupancy Model (fine-tuning).

1: Input The intention encoder pϕ, the vector field vθ, the target vector field vθ̄, the reward predictor
rη , the critic Qψ , the policy πω , and the reward-labeled dataset Dreward.

2: for each iteration do
3: Sample a batch of {(s, a, r, s′, a′) ∼ Dreward}.
4: Sample a batch of {ϵ ∼ N (0, I)} and a batch of {t ∼ UNIF([0, 1])}.
5: Sample prior intentions {z ∼ p(z)}.
6: Sample a batch of {(ϵ(1), · · · , ϵ(N)) ∼ (N (0, I), · · · ,N (0, I))}.

▽ SARSA flow occupancy model loss and intention encoder loss.
7: LELBO(θ, ψ) as in Alg. 1.

▽ Reward predictor loss.
8: LReward(η)← E(s,r)

[
(rη(s)− r)2

]
.

▽ Critic loss.
9: s

(i)
f ← EulerMethod(vθ, ϵ(i), s, a, z) (Alg. 3) for each (s, a, z, ϵ(i)).

10: Qz (s, a)← 1
(1−γ)N

∑N
i=1 rη

(
s
(i)
f

)
.

11: LCritic(ψ)← E(
s,a,z,s

(1)
f ,··· ,s(N)

f

) [Lµ2 (Qz (s, a)−Qϕ(s, a))].
▽ Actor loss.

12: LActor(ω)← −E(s,a),aπ∼πω(aπ|s) [Qψ(s, a
π) + α log πω(a | s)].

13: Update the vector field θ and the intention encoder ϕ by minimizing LELBO(θ, ϕ).
14: Update the reward predictor η, the critic ψ, and the policy ω by minimizing LReward(η),

LCritic(ψ), and LActor(ω) respectively.
15: Update the target vector field θ̄ using an exponential moving average of θ.
16: Return vθ, pϕ, rη , Qϕ, and πω .

A.2 FLOW MATCHING

The goal of flow matching methods is to transform a simple noise distribution (e.g., a d-dimensional
standard Gaussian) into a target distribution pX over some spaceX ⊂ Rd that we want to approximate.
Specifically, flow matching uses a time-dependent vector field v : [0, 1]× Rd → Rd to construct a
time-dependent diffeomorphic flow ϕ : [0, 1]× Rd → Rd (Lipman et al., 2023; 2024) that realizes
the transformation from a single noise ϵ to a generative sample x̂, following the ODE

d

dt
ϕ(t, ϵ) = v(t, ϕ(t, ϵ)), ϕ(0, ϵ) = ϵ, ϕ(1, ϵ) = x̂. (9)

We will use t to denote a time step for flow matching and sample the noise ϵ from a standard Gaussian
distribution N (0, I) throughout our discussions.5 Prior work has proposed various formulations for
learning the vector field (Lipman et al., 2023; Campbell et al., 2024; Liu et al., 2023; Albergo &
Vanden-Eijnden, 2023) and we adopt the simplest flow matching objective building upon optimal
transport (Liu et al., 2023) and conditional flow matching (CFM) (Lipman et al., 2023),

LCFM(v) = E t∼UNIF([0,1]),
x∼pX (x),ϵ∼N (0,I)

[
∥v(t, xt)− (x− ϵ)∥22

]
, (10)

where UNIF([0, 1]) is the uniform distribution over the unit interval and xt = tx + (1 − t)ϵ is a
linear interpolation between the ground-truth sample x and the Gaussian noise ϵ. Importantly, we can
generate a sample from the vector field v by numerically solving the ODE (Eq. 9). We will use the
Euler method (Alg. 3) as our ODE solver following prior practice (Liu et al., 2023; Park et al., 2025b;
Frans et al., 2025).

5In theory, the noise can be drawn from any distribution, not necessarily limited to a Gaussian (Liu et al.,
2023).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.3 TEMPORAL DIFFERENCE FLOWS

Given a policy π, prior work (Farebrother et al., 2025) models the occupancy measure pπγ by
optimizing the vector field v : [0, 1]× S × S ×A → S using the following loss:

LTD flow(v) = (1− γ)LTD current flow(v) + γLTD future flow(v) (11)

LTD current flow(v) = Et∼UNIF([0,1]),ϵ∼N (0,I),

(s,a)∼pβ(s,a)

[
∥v(t, st, s, a)− (s− ϵ)∥22

]
LTD future flow(v) = E t∼UNIF([0,1]),ϵ∼N (0,I),

(s,a,s′)∼pβ(s,a,s′),a′∼π(a′|s′)

[
∥v(t, s̄tf , s, a)− v̄(t, s̄tf , s′, a′)∥22

]
,

where pβ(s, a) and pβ(s, a, s′) denote the joint distribution of transitions, st = ts + (1 − t)ϵ is a
linear interpolation between the current state s and the noise ϵ, and v̄ denotes an exponential moving
average of historical v over iterations (a target vector field) (Grill et al., 2020; Mnih et al., 2015;
Caron et al., 2021). Of particular note is that we obtain a target future state s̄f by applying the Euler
method (Alg. 3) to v̄ at the next state-action pair (s′, a′), where a′ is sampled from the target policy π
of interest, and the noisy future state s̄tf = ts̄f + (1− t)ϵ is a linear interpolation between this future
state s̄f and the noise ϵ. Intuitively, minimizing LTD current flow reconstructs the distribution of current
state s, while minimizing LTD future flow bootstraps the vector field v at a noisy target future state s̄tf ,
similar to Q-learning (Watkins & Dayan, 1992). Choosing the target policy π to be the same as the
behavioral policy β, we obtain a SARSA (Rummery & Niranjan, 1994) variant of the loss optimizing
the SARSA flows. We call the loss in Eq. 11 the TD flow loss6 and use the SARSA variant of it to
learn generative occupancy models.

B FURTHER DISCUSSIONS ON THE PROBLEM SETTING

B.1 THE CONSISTENCY ASSUMPTION ON INTENTIONS

We now discuss the reason for making the consistency assumption (Assumption 1) on latent intentions.
Since we use a heterogeneous behavioral policy to collect the unlabeled dataset, each unknown user
intention indexed their own behavioral policy β : S × Z → ∆(A). The key observation is that
the occupancy measure of each intention-conditioned behavioral policy follows its own Bellman
equations (Similar to Eq. 1):

pβγ (sf | s, a, z) = (1− γ)δs(sf) + γEs′∼p(s′|s,a),
a′∼β(a′|s′,z)

[
pβγ (sf | s′, a′, z)

]
,

suggesting that the same latent z propagates through the transitions with the same underlying user
intentions. Importantly, this propagation requires using a TD loss to estimate the behavioral occupancy
measure, which aligns with the goal of our SARSA flow-matching losses (Eq. 5). We note that
prior work (Touati & Ollivier, 2021) also adapts the same formulation of the intention-conditioned
occupancy measure for zero-shot RL.

B.2 DISTINCTIONS FROM META RL AND MULTI-TASK RL

Our problem setting is conceptually similar to meta RL (Duan et al., 2016; Rakelly et al., 2019;
Pong et al., 2022) with two key distinctions. First, offline meta RL methods typically have access to
explicit task descriptions (e.g., a one-hot task indicator) together with task-specific datasets. These
descriptions and datasets induce a clear clustering of transitions. In contrast, our method must infer
this structure from a heterogeneous dataset in an unsupervised manner. Second, offline meta RL
trains on reward-labeled data during the meta-training phase, where task-specific rewards provide
supervision for policy learning. In contrast, during pre-training, our method learns a generative model
that predicts future states from inferred intentions without using any task-specific reward signals.

Similar to the distinctions between our setting and offline meta RL problems, our method does not
fall into the multi-task RL category (Sodhani et al., 2021; Yu et al., 2020). During pre-training, (1)
InFOM does not have access to task descriptions or task-specific datasets, and (2) it does not use any
supervision from task-specific reward signals. Instead, InFOM pre-trains a generative, multi-step
transition model that facilitates value estimation for downstream tasks.

6The TD flow loss is called the TD2-CFM loss in Farebrother et al. (2025) and we rename it for simplicity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

C THEORETICAL ANALYSES

C.1 THE EVIDENCE LOWER BOUND AND ITS CONNECTION WITH AN INFORMATION
BOTTLENECK

We first derive the evidence lower bound for optimizing the latent variable model and then show its
connection with an information bottleneck. Given the unlabeled dataset D, we want to maximize
the likelihood of consecutive transitions (s, a, s′, a′) and a future state sf sampled from the same
trajectory following the behavioral joint distribution pβ(s, a, sf , s′, a′) = pβ(s)β(a | s)pβγ (sf |
s, a)p(s′ | s, a)β(a′ | s′). We use (s′, a′) to encode the intention z by the encoder pe(z | s, a) and
(s, a, sf , z) to learn the occupancy models qd(sf | s, a, z), employing an ELBO of the likelihood of
the prior data:

Epβ(s,a,sf) [log qd(sf | s, a)]
= Epβ(s,a,sf ,s′,a′) [log qd(sf | s, a)]
= Epβ(s,a,sf ,s′,a′)

[
logEp(z) [qd(sf | s, a, z)]

]
(a)
= Epβ(s,a,sf ,s′,a′)

[
logEp(z)

[
qd(sf | s, a, z)

pe(z | s′, a′)
pe(z | s′, a′)

]]
(b)

≥ Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)]−DKL(pe(z | s′, a′) ∥ p(z)]
(c)

≥ Epβ(s,a,sf ,s′,a′)[Epe(z|s′,a′)[log qd(sf | s, a, z)]− λDKL(pe(z | s′, a′) ∥ p(z)]
= L(pe, qd).

where in (a) we introduce the amortized variational encoder pe(z | s′, a′), in (b) we apply the
Jensen’s inequality (Durrett, 2019), and in (c) we introduce a coefficient λ to control the strength
of the KL divergence regularization as in Higgins et al. (2017b). This ELBO can also be cast
as a variational lower bound on an information bottleneck with the chain of random variables
(S′, A′)→ Z → (S,A, Sf) (Tishby et al., 2000; Alemi et al., 2017; Saxe et al., 2018):

Iβ(S,A, Sf ;Z)− λIβ(S′, A′;Z)

(a)
= Iβ(S,A, Sf ;Z)− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ pe(z))]
(b)

≥ Iβ(S,A, Sf ;Z)− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))]
(c)

≥ Epβ(s,a,sf ,s′,a′)
pe(z|s′,a′)

[log qd(s, a, sf | z)]− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] +Hβ(S,A, Sf)

(d)

≥ Epβ(s,a,sf ,s′,a′)
pe(z|s′,a′)

[log qd(sf | s, a, z)]− λEpβ(s′,a′) [DKL(pe(z | s′, a′) ∥ p(z))] + const

= L(pe, qd) + const,

where in (a) we use the definition of Iβ(S′, A′;Z) and pe(z) is the marginal distribution of latent
intentions z defined as pe(z) =

∫
pβ(s′, a′)pe(z | s′, a′)ds′da′, in (b) we apply the non-negative

property of the KL divergence DKL(pe(z) ∥ p(z)), in (c) we apply the standard variation lower
bound of the mutual information (Barber & Agakov, 2004; Poole et al., 2019) to incorporate the
decoder (occupancy models) qd(s, a, sf | z), and in (d) we choose the variational decoder to satisfy
log qd(s, a, sf | z) = log pβ(s, a) + log qd(sf | s, a, z) and consider the entropy Hβ(S,A, Sf) as a
constant.

C.2 INTUTIONS AND DISCUSSIONS ABOUT THE IMPLICIT GENERALIZED POLICY
IMPROVEMENT

The intuition for the expectile distillation loss (Eq. 7) is that the scalar Q function Q(·, ·) is a one-step
summary of the average reward at future states sampled from the flow occupancy models, while the
expectile loss serves as a "softmax" operator over the entire latent intention space. Theoretically,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

this expectile loss is guaranteed to converge to the maximum over p(z) under mild assumptions
(See Sec. 4.4 in Kostrikov et al. (2022) for details). Therefore, given an infinite amount of samples
(N →∞) and an expectile µ→ 1, the Q converges to the greedy value functions:

Q⋆(s, a) = max
z∼p(z)

1

(1− γ)
Eqd(sf |s,a,z)[r(sf)].

If we further assume that the flow occupancy models are optimal, i.e., q⋆d(sf | s, a, z) = pβ(sf |
s, a, z), then the optimal Q corresponds to a greedy value function under the behavioral policy β:

Q⋆(s, a) = max
z∼p(z)

Qβ(s, a, z).

Unlike Q-learning, which converges to the optimal Q-function sequentially (Watkins & Dayan, 1992;
Sutton et al., 1998), the implicit GPI proposes a new policy that is strictly no worse than the set
of policies that correspond to each Qz in parallel (See Sec. 4.1 in Barreto et al. (2017) for further
discussions). Unlike one-step policy improvement (Wang et al., 2018; Brandfonbrener et al., 2021;
Peters & Schaal, 2007; Peters et al., 2010), implicit GPI is able to converge to the optimal policy for
a downstream task, assuming that the task-specific intention has been captured during pre-training.

C.3 ONE-STEP POLICY IMPROVEMENT WITH FLOW OCCUPANCY MODELS

The FOM + one-step PI variant performs one-step policy improvement using a flow occupancy
model qd(sf | s, a) that is not conditioned on latent intentions. This flow occupancy model captures
the discounted state occupancy measure of the (average) behavioral policy. After training the flow
occupancy model, FOM + one-step PI fits a Q function and extracts a behavioral-regularized policy:

Q← argmin
Q

1

1− γ
E(s,a)∼pβ̃(s,a),sf∼qd(sf |s,a)[(Q(s, a)− r(sf))2],

π ← argmax
π

E(s,a)∼pβ̃(s,a),aπ∼π(aπ|s) [Q(s, aπ) + α log π(a | s)] .

Intuitively, the first objective fits the behavioral Q function based on the dual definition (Eq. 2),
and the second objective trains a policy to maximize this behavioral Q function, invoking one-
step policy improvement. While this simple objective sometimes achieves strong performance on
some benchmark tasks (Brandfonbrener et al., 2021; Eysenbach et al., 2022), it does not guarantee
convergence to the optimal policy due to the use of a behavioral value function.

D EXPERIMENTAL DETAILS

D.1 TASKS AND DATASETS

Our experiments use a suite of 36 state-based and 4 image-based control tasks taken from ExORL
benchmarks Yarats et al. (2022) and OGBench task suite (Park et al., 2025a) (Fig. 2).

ExORL. We use 16 state-based tasks from the ExORL (Yarats et al., 2022) benchmarks based on the
DeepMind Control Suite (Tassa et al., 2018). These tasks involve controlling four robots (cheetah,
walker, quadruped, and jaco) to achieve different locomotion behaviors. For each domain,
the specific tasks are: cheetah {run, run backward, walk, walk backward}, walker
{walk, run, stand, flip}, quadruped {run, jump, stand, walk}, jaco {reach top
left, reach top right, reach bottom left, reach bottom right}. For all tasks
in cheetah, walker, and quadruped, both the episode length and the maximum return are
1000. For all tasks in jaco, both the episode length and the maximum return are 250. Following
prior work (Park et al., 2024b), we multiply the return of jaco tasks by 4 to match other ExORL
tasks during aggregation.

Following the prior work (Touati et al., 2023; Park et al., 2024b; Kim et al., 2024), we will use 5M
unlabeled transitions collected by some exploration methods (e.g., RND (Burda et al., 2019)) for
pre-training, and another 500K reward-labeled transitions collected by the same exploratory policy
for fine-tuning. The fine-tuning datasets are labeled with task-specific dense rewards (Yarats et al.,
2022), except in the jaco domains, where the reward signals are sparse.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

OGBench. We use 20 state-based manipulation tasks from four domains (cube single, cube
double, scene, and puzzle 4x4) in the OGBench task suite Park et al. (2025a), where the
goal is to control a simulated robot arm to rearrange various objects. For each domain, the specific
tasks are: cube single {task 1 (pick and place cube to left), task 2 (pick and place cube to
front), task 3 (pick and place cube to back), task 4 (pick and place cube diagonally), task 5
(pick and place cube off-diagonally)}, cube double {task 1 (pick and place one cube), task
2 (pick and place two cubes to right), task 3 (pick and place two cubes off-diagonally), task
4 (swap cubes), task 5 (stack cubes)}, scene {task 1 (open drawer and window), task 2
(close and lock drawer and window), task 3 (open drawer, close window, and pick and place cube
to right), task 4 (put cube in drawer), task 5 (fetch cube from drawer and close window)},
puzzle 4x4 {task 1 (all red to all blue), task 2 (all blue to central red), task 3 (two blue
to mix), task 4 (central red to all red), task 5 (mix to all red)}. Note that some of these tasks,
e.g., cube double task 5 (stack cubes) and scene task 4 (put cube in drawer), involve
interacting with the environment in a specific order and thus require long-horizon temporal reasoning.
For all tasks in cube single, cube double, and scene, the maximum episode length is 400.
For all tasks in puzzle 4x4, the maximum episode length is 800. We also use 4 image-based
tasks in the OGBench task suite. Specificallly, we consider visual cube single task 1,
visual cube double task 1, visual scene task 1, and visual puzzle 4x4
task 1 from each domain respectively. The observations are 64× 64× 3 RGB images. These tasks
are challenging because the agent needs to reason from pixels directly. All the manipulation tasks
from OGBench are originally designed for evaluating goal-conditioned RL algorithms (Park et al.,
2025a).

For both state-based and image-based tasks from OGBench, we will use 1M unlabeled transitions
collected by a non-Markovian expert policy with temporally correlated noise (the play datasets) for
pre-training, and another 500K reward-labeled transitions collected by the same noisy expert policy
for fine-tuning. Unlike the ExORL benchmarks, the fine-tuning datasets for OGBench tasks are
relabeled with semi-sparse rewards (Park et al., 2025b), providing less supervision for the algorithm.

D.2 BASELINES

We compare InFOM with eight baselines across five categories of prior methods focusing on different
strategies for pre-training and fine-tuning in RL. First, implicit Q-Learning (IQL) (Kostrikov et al.,
2022) and revisited behavior-regularized actor-critic (ReBRAC) (Tarasov et al., 2023a) are state-
of-the-art offline RL algorithms based on the standard actor-critic framework (Appendix A.1).
Second, we compare to a variant of ReBRAC learning on top of representations pre-trained on the
unlabeled datasets. We choose an off-the-shelf self-supervised learning objective in vision tasks
called self-distillation with no labels (DINO) (Caron et al., 2021) as our representation learning loss
and name the resulting baseline DINO + ReBRAC. Third, our next baseline, model-based policy
optimization (MBPO) (Janner et al., 2019), pre-trains a one-step model to predict transitions in the
environment, similar to the next token prediction in language models (Radford et al., 2018). The
one-step model is then used to augment the datasets for downstream policy optimization. We will
again use ReBRAC to extract the policy (MBPO + ReBRAC). Fourth, we also include comparisons
against the InfoNCE variant of contrastive RL (Eysenbach et al., 2019) and temporal difference
InfoNCE (Zheng et al., 2024), which pre-train the discounted state occupancy measure using monte
carlo or temporal difference contrastive losses. While our method fits generative occupancy models,
These two approaches predict the ratio of occupancy measures over some marginal densities serving
as the discriminative counterparts. After pre-training the ratio predictors, importance sampling is
required to recover the Q function (CRL + IS & TD InfoNCE + IS) (Mazoure et al., 2023; Zheng
et al., 2024), enabling policy maximization. Fifth, our final set of baselines are prior unsupervised
RL methods that pre-train a set of latent intentions and intention-conditioned policies using forward-
backward representations (Touati & Ollivier, 2021) or a Hilbert space (Park et al., 2024b). Given a
downstream task, these methods first infer the corresponding intention in a zero-shot manner and
then fine-tune the policy using offline RL (Kim et al., 2024), differing from the implicit GPI as in our
method. We will use IQL as the fine-tuning algorithm and call the resulting methods FB + IQL and
HILP + IQL. For image-based tasks, we selectively compare to four baselines ReBRAC, CRL + IS,
DINO + ReBRAC, and FB + IQL.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 1: Common hyperparameters for our method and the baselines.

Hyperparameter Value

learning rate 3× 10−4

optimizer Adam (Kingma, 2014)
pre-training gradient steps 1× 106 for state-based tasks, 2.5× 105 for image-based tasks
fine-tuning gradient steps 5× 105 for state-based tasks, 1× 105 for image-based tasks
batch size 256
MLP hidden layer sizes (512, 512, 512, 512)
MLP activation function GELU (Hendrycks & Gimpel, 2016)
discount factor γ 0.99
target network update coefficient 5× 10−3

double Q aggregation min
policy update frequency in fine-tuning 1/4
image encoder small IMPALA encoder (Espeholt et al., 2018; Park et al., 2025b)
image augmentation method random cropping
image augmentation probability 1.0 for DINO + ReBRAC, 0.5 for all other methods
image frame stack 3

Table 2: Hyperparameters for InFOM. See Appendix D.4 for descriptions of each hyperparameter.

Hyperparameter Value
latent intention dimension d See Table 3
number of steps for the Euler method T 10
number of future states N 16
normalize the Q loss term in L(π) (Eq. 8) No
expectile µ See Table 3
KL divergence regularization coefficient λ See Table 3
behavioral cloning regurlaization coefficient α See Table 3

D.3 EVALUATION PROTOCOLS

We compare the performance of InFOM against the eight baselines (Sec. 5.1) after first pre-training
each method for 1M gradient steps (250K gradient steps for image-based tasks) and then fine-tuning
for 500K gradient steps (100K gradient steps for image-based tasks). We measure the episode return
for tasks from ExORL benchmarks and the success rate for tasks from the OGBench task suite.
For OGBench tasks, the algorithms still use the semi-sparse reward instead of the success rate for
training. Following prior practice (Park et al., 2025b; Tarasov et al., 2023b), We do not report the
best performance during fine-tuning and report the evaluation results averaged over 400K, 450K, and
500K gradient steps instead. For image-based tasks, we report the evaluation results averaged over
50K, 75K, and 100K gradient steps during fine-tuning. For evaluating the performance of different
methods throughout the entire fine-tuning process, we defer the details into specific figures (e.g.,
Fig. 9 & 8).

D.4 IMPLEMENTATIONS AND HYPERPARAMETERS

In this section, we discuss the implementation details and hyperparameters for InFOM and the eight
baselines. Whenever possible, we use the same set of hyperparameters for all methods (Table 1) across
all tasks, including learning rate, network architecture, batch size, image encoder, etc. Of particular
note is that we use asynchronous policy training (Zhou et al., 2025), where we update the policy 4
times less frequently than other models during fine-tuning. For specific hyperparameters of each
method, we tune them on the following tasks from each domain and use one set of hyperparameters for
every task in that domain. For image-based tasks, we tune hyperparameters for each task individually.

• cheetah: cheetah run

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 3: Domain-specific hyperparameters for our method and the baselines. We individually tune these
hyperparameters for each domain and use the same set of hyperparameters for tasks in the same domain. See
Appendix D.4 for tasks used to tune these hyperparameters and descriptions of each hyperparameter. “-” indicates
that the hyperparameter does not exist.

InFOM (Ours) IQL ReBRAC DINO + ReBRAC MBPO + ReBRAC CRL + IS TD InfoNCE + IS FB + IQL HILP + IQL
Domain or Task d µ λ α α αactor αcritic κstudent Nimaginary Himaginary α α αrepr αAWR α

cheetah 128 0.9 0.05 0.3 1 0.1 0.1 0.1 128 1 0.03 0.003 1 1 1
walker 512 0.9 0.1 0.3 1 10 0.1 0.1 128 1 0.03 0.03 1 10 10
quadruped 512 0.9 0.005 0.3 10 1 1 0.1 128 1 0.03 0.03 10 1 10
jaco 512 0.9 0.2 0.1 0.1 0.1 0.1 0.1 128 1 0.003 0.03 1 1 1

cube single 512 0.95 0.05 30 1 1 1 0.04 256 2 30 30 10 1 1
cube double 128 0.9 0.025 30 1 1 1 0.04 256 2 30 30 1 10 1
scene 128 0.99 0.2 300 1 1 1 0.1 256 2 3 3 10 10 1
puzzle 4x4 128 0.95 0.1 300 10 0.1 0.1 0.1 256 2 3 3 10 10 1

visual cube single task 1 512 0.95 0.025 30 - 1 0 0.1 - - 30 - 10 1 -
visual cube double task 1 128 0.9 0.01 30 - 0.1 0 0.1 - - 30 - 10 1 -
visual scene task 1 128 0.99 0.1 300 - 0.1 0.01 0.1 - - 3 - 10 10 -
visual puzzle 4x4 task 1 128 0.95 0.1 300 - 0.1 0.01 0.1 - - 3 - 10 10 -

• walker: walker walk

• quadruped: quadruped jump

• jaco: jaco reach top left

• cube single: cube single task 2

• cube double: cube double task 2

• scene: scene task 2

• puzzle 4x4: puzzle 4x4 task 4

InFOM. InFOM consists of two main components for pre-training: the intention encoder and the
flow occupancy models. First, we use a Gaussian distribution conditioned on the next state-action
pair as the intention encoding distribution. Following prior work (Kingma & Welling, 2013; Alemi
et al., 2017), we model the intention encoder as a multilayer perceptron (MLP) that takes the next
state-action pair (s′, a′) as input and outputs two heads representing the mean and the (log) standard
deviation of the Gaussian. We apply layer normalization to the intention encoder to stabilize optimiza-
tion. We use the reparameterization trick (Kingma & Welling, 2013) to backpropagate the gradients
from the flow-matching loss and the KL divergence regularization (Eq. 4) into the intention encoder.
Our initial experiments suggest that the dimension of the latent intention space d is an important
hyperparameter and we sweep over {64, 128, 256, 512} and find that d = 512 is sufficient for most
ExORL tasks and d = 128 is generally good enough for all OGBench tasks. For the coefficient of the
KL divergence regularization λ, we sweep over {2.0, 1.0, 0.2, 0.1, 0.05, 0.025, 0.01, 0.005} to find
the best λ for each domain. Second, we use flow-matching vector fields to model the flow occupancy
models. The vector field is an MLP that takes in a noisy future state stf , a state-action pair (s, a),
and a latent intention z, and outputs the vector field with the same dimension as the state. We apply
layer normalization to the vector field to stabilize optimization. As mentioned in Sec. 3, we use
flow-matching objectives based on optimal transport (linear path) and sample the time step t from the
uniform distribution over the unit interval. Following prior work (Park et al., 2025b), we use a fixed
T = 10 steps (step size = 0.1) for the Euler method and do not apply a sinusoidal embedding for the
time. To make a fair comparison with other baselines, we also pre-train a behavioral cloning policy
that serves as initialization for fine-tuning.

For fine-tuning, InFOM learns three components: the reward predictor, the critic, and the policy,
while fine-tunes the intention encoder and the flow occupancy models. The reward predictor is an
MLP that predicts the scalar reward of a state trained using mean squared error. We apply layer
normalization to the reward predictor to stabilize learning. The critic is an MLP that predicts double
Q values (Van Hasselt et al., 2016; Fujimoto et al., 2018) of a state-action pair, without conditioned
on the latent intention. We apply layer normalization to the critic to stabilize learning. We train the
critic using the expectile distillation loss (Eq. 7) and sweep the expectile over {0.9, 0.95, 0.99} to
find the best µ for each domain. We use N = 16 future states sampled from the flow occupancy
models to compute the average reward, which we find to be sufficient. We use the minimum of
the double Q predictions to prevent overestimation. The policy is an MLP that outputs a Gaussian
distribution with a unit standard deviation. In our initial experiments, we find that the behavioral
cloning coefficient α in Eq. 8 is important and we sweep over {300, 30, 3, 0.3} to find the best α for

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

each domain. Following prior practice (Park et al., 2025b), we do not normalize the Q loss term in
the actor loss L(π) (Eq. 8) as in Fujimoto & Gu (2021). Other choices of the policy network include
the diffusion model (Ren et al., 2025; Wang et al., 2023) and the flow-matching model (Park et al.,
2025b), and we leave investigating these policy networks to future work.

For image-based tasks, following prior work (Park et al., 2025b), we use a smaller variant of the
IMPALA encoder (Espeholt et al., 2018) and apply random cropping augmentation with a probability
of 0.5. We also apply frame stacking with three images. Table 2 and Table 3 summarize the
hyperparameters for InFOM.

IQL and ReBRAC. We reuse the IQL (Kostrikov et al., 2022) implementation and the Re-
BRAC (Tarasov et al., 2023a) implementation from Park et al. (2025b). Since learning a critic
requires reward-labeled datasets or relabeling rewards for unlabeled datasets (Yu et al., 2022), we
simply pre-train a behavioral cloning policy. During the fine-tuning, we use the behavioral cloning
policy as initialization and trains a critic from scratch using the TD error (Kostrikov et al., 2022;
Fujimoto & Gu, 2021; Tarasov et al., 2023a). Following prior work (Park et al., 2025b), we use the
same expectile value 0.9 for IQL on all tasks, and sweep over {100, 10, 1, 0.1, 0.01} to find the best
AWR inverse temperature α for each domain. For ReBRAC, we tune the behavioral cloning (BC)
regularization coefficients for the actor and the critic separately. We use the range {100, 10, 1, 0.1}
to search for the best actor BC coefficient αactor and use the range {100, 10, 1, 0.1, 0} to search for
the best critic BC coefficient αcritic. We use the default values for other hyperparameters following
the implementation from Park et al. (2025b). See Table 3 for domain-specific hyperparameters.

DINO + ReBRAC. We implement DINO on top of ReBRAC. DINO (Caron et al., 2021) learns a
state encoder using two augmentations of the same state. For state-based tasks, the state encoder is
an MLP that outputs representations. We apply two clipped Gaussian noises centered at zero to the
same state to obtain those augmentations. The standard deviation of the Gaussian noise is set to 0.2
and we clip the noises into [−0.2, 0.2] on all domains. For image-based tasks, the state encoder is the
small IMPALA encoder also outputting representations. We apply two different random cropings
to the same image observation to obtain those augmentations. We sweep over {0.01, 0.04, 0.1, 0.4}
for the temperature for student representations κstudent and use a fixed temperature 0.04 for teacher
representations on all domains. We use a representation space with 512 dimensions. We update
the target representation centroid with a fixed ratio 0.1. During pre-training, we learns the DINO
representations along with a behavioral cloning policy. During fine-tuning, we learn the actor and
the critic using ReBRAC on top of DINO representations, while continuing to fine-tune those DINO
representations. We use the same BC coefficients αactor and αcritic as in ReBRAC. For image-based
tasks, we apply random cropping to the same image twice with a probability of 1.0 and use those two
augmentations to compute the teacher and the student representations. See Table 3 for domain-specific
temperatures for student representations.

MBPO + ReBRAC. We implement MBPO (Janner et al., 2019) on top of ReBRAC and only
consider this baseline for state-based tasks. MBPO learns a one-step transition MLP to predict the
residual between the next state s′ and the current state s conditioned on the current state-action
pair (s, a). We pre-train the one-step model with a behavioral cloning policy. During fine-tuning,
we use the model with a learned reward predictor to collect imaginary rollouts. We only use these
imaginary rollouts to learn the actor and the critic. We sweep over {64, 128, 256} for the number of
imaginary rollouts to collect for each gradient step Nimaginary and sweep over {1, 2, 4} for the number
of steps in each rollout Himaginary. We use the same BC coefficient as in ReBRAC. See Table 3 for the
domain-specific number of imaginary rollouts and number of steps in each rollout.

CRL + IS and TD InfoNCE + IS. We mostly reuse the CRL (Eysenbach et al., 2022) implemen-
tation based on the InfoNCE loss from Park et al. (2025a) and adapt it to our setting by adding the
important sampling component. We implement TD InfoNCE by adapting the official implementa-
tions (Zheng et al., 2024). For both methods, we pre-train the classifiers that predict the ratio between
the occupancy measures and the marginal densities over future states with a behavioral cloning policy.
We use the SARSA variant of TD InfoNCE during pre-training. After pre-training the classifiers, we
learn a reward predictor and apply importance sampling weights predicted by the classifiers to a set of
future states sampled from the fine-tuning datasets to estimateQ. This Q estimation then drives policy
optimization. We use a single future state from the fine-tuning dataset to construct the importance

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 4: Evaluation on ExORL and OGBench benchmarks. Following OGBench (Park et al., 2025a), we
bold values at and above 95% of the best performance for each task.

Task InFOM (Ours) IQL ReBRAC DINO + ReBRAC MBPO + ReBRAC CRL + IS TD InfoNCE + IS FB + IQL HILP + IQL

cheetah run 97.6± 7.8 80.0± 8.4 97.2± 12.9 87.2± 8.6 104.7± 2.4 73.3± 6.7 68.2± 8.9 83.3± 10.9 90.3± 1.9
cheetah run backward 104.7± 7.3 77.0± 12.6 84.9± 3.7 67.1± 6.4 87.0± 4.8 74.7± 8.1 74.3± 17.1 67.3± 7.0 64.4± 6.4
cheetah walk 254.8± 158.6 357.9± 16.4 443.4± 15.3 383.5± 10.3 447.4± 12.7 327.4± 38.7 336.7± 22.1 346.5± 24.3 366.8± 6.9
cheetah walk backward 251.8± 116.9 303.7± 12.6 403.0± 16.1 318.4± 23.0 398.6± 16.0 330.2± 8.5 326.3± 45.1 298.0± 22.8 318.1± 11.4
walker walk 467.3± 82.1 208.6± 3.7 208.1± 5.8 228.0± 3.7 327.6± 4.5 213.3± 7.8 212.2± 13.2 225.3± 6.7 225.4± 3.7
walker run 116.3± 15.3 92.4± 0.6 97.8± 1.2 98.5± 1.0 107.6± 1.2 91.5± 3.2 91.0± 3.7 97.4± 1.2 97.4± 2.2
walker stand 581.2± 72.1 409.1± 2.3 460.6± 1.1 453.0± 3.1 458.1± 2.5 409.0± 7.5 397.2± 6.0 446.8± 7.1 443.3± 3.8
walker flip 358.8± 10.3 260.3± 2.8 344.6± 2.7 320.3± 4.3 341.8± 3.7 255.0± 8.0 231.6± 6.9 287.0± 3.1 280.7± 5.4
quadruped run 341.8± 41.2 358.0± 6.2 343.0± 2.6 344.7± 2.9 395.1± 2.6 323.4± 2.9 222.1± 39.7 367.0± 3.8 371.1± 11.5
quadruped jump 626.0± 6.8 628.5± 7.8 605.2± 7.8 573.0± 9.6 666.9± 3.4 576.7± 13.7 421.4± 93.4 639.4± 8.9 626.5± 14.5
quadruped stand 718.3± 18.7 714.2± 9.8 688.6± 5.0 663.2± 8.3 703.7± 3.6 653.1± 8.4 457.1± 47.7 728.9± 11.5 715.6± 13.9
quadruped walk 360.7± 7.9 375.1± 3.7 343.5± 7.1 391.4± 7.2 390.0± 5.7 309.6± 9.6 243.1± 29.2 388.9± 7.0 393.4± 3.4
jaco reach top left 742.5± 43.7 74.7± 19.6 59.0± 4.9 17.5± 3.8 60.1± 6.2 29.1± 4.7 31.5± 3.0 25.0± 11.4 40.4± 11.5
jaco reach top right 687.5± 46.7 40.6± 14.0 38.0± 13.1 11.0± 4.1 52.5± 10.8 21.4± 6.5 25.5± 10.3 16.2± 3.2 25.1± 9.6
jaco reach bottom left 746.7± 12.6 77.1± 12.5 44.5± 4.0 13.7± 2.8 43.4± 4.6 19.8± 8.8 26.6± 5.9 19.8± 4.0 27.8± 4.6
jaco reach bottom right 733.0± 19.6 78.7± 19.1 41.4± 5.0 8.3± 2.8 34.0± 6.0 19.6± 2.0 25.4± 5.7 12.4± 2.7 24.7± 3.9

cube single task 1 92.5± 4.0 53.0± 8.7 67.3± 14.2 1.8± 1.0 77.8± 11.7 10.1± 2.7 13.8± 3.8 17.7± 8.8 32.9± 9.2
cube single task 2 78.4± 12.3 51.7± 15.1 93.7± 3.5 1.2± 0.6 94.2± 2.0 3.7± 2.8 8.5± 5.6 16.7± 8.6 26.5± 15.4
cube single task 3 56.4± 36.9 41.5± 5.3 94.8± 0.8 1.5± 1.4 93.1± 4.7 12.5± 3.2 11.7± 7.4 16.0± 12.2 35.5± 14.7
cube single task 4 91.5± 14.2 42.2± 8.3 89.5± 3.6 0.5± 1.0 88.7± 4.7 1.7± 1.7 3.3± 3.0 18.7± 9.9 36.4± 14.9
cube single task 5 70.0± 39.1 33.7± 12.9 83.3± 6.8 0.5± 0.6 87.8± 2.7 4.3± 2.2 4.0± 3.2 14.2± 12.0 18.5± 5.6
cube double task 1 29.3± 10.5 17.8± 9.6 2.2± 1.7 0.0± 0.0 2.7± 1.1 4.1± 1.9 6.7± 2.7 0.2± 0.3 0.7± 1.1
cube double task 2 12.5± 10.7 1.3± 1.2 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 3 11.6± 8.3 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 4 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
cube double task 5 2.8± 4.6 1.5± 1.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.3± 0.7 0.2± 0.3 0.0± 0.0 0.0± 0.0
scene task 1 97.8± 1.0 66.5± 13.1 47.7± 7.2 26.7± 4.3 35.3± 7.7 17.5± 5.1 21.0± 4.3 12.3± 11.3 8.8± 3.0
scene task 2 15.6± 3.4 2.5± 1.5 7.8± 4.9 1.3± 0.0 5.6± 5.6 2.3± 0.7 1.7± 1.3 1.5± 1.8 1.2± 1.7
scene task 3 43.5± 2.8 0.7± 0.5 1.7± 1.1 0.2± 0.3 2.4± 0.8 0.8± 0.3 0.5± 1.0 0.0± 0.0 0.0± 0.0
scene task 4 1.0± 0.7 0.2± 0.3 2.8± 0.8 0.2± 0.3 2.0± 1.3 1.2± 1.4 0.7± 1.3 0.2± 0.3 0.0± 0.0
scene task 5 0.3± 0.4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.3± 0.1 0.0± 0.0 0.0± 0.0 0.0± 0.0
puzzle 4x4 task 1 24.2± 14.4 2.3± 2.3 12.8± 3.1 0.3± 0.7 16.9± 1.4 0.0± 0.0 0.0± 0.0 0.2± 0.3 0.3± 0.6
puzzle 4x4 task 2 14.5± 9.4 0.5± 0.6 0.5± 0.6 0.0± 0.0 0.2± 0.4 0.3± 0.4 0.0± 0.0 0.2± 0.3 0.4± 0.6
puzzle 4x4 task 3 26.3± 13.4 1.0± 0.9 5.0± 2.7 0.0± 0.0 5.1± 2.8 0.3± 0.4 0.0± 0.0 0.2± 0.3 0.1± 0.3
puzzle 4x4 task 4 12.0± 7.1 0.3± 0.7 0.8± 0.8 0.0± 0.0 0.4± 0.4 0.0± 0.0 0.0± 0.0 0.2± 0.3 0.1± 0.3
puzzle 4x4 task 5 12.3± 6.2 0.7± 0.8 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.5± 0.6 0.0± 0.0 0.0± 0.0 0.1± 0.3

visual cube single task 1 52.1± 20.8 - 10.6± 7.2 15.3± 14.6 - 12.0± 5.6 - 31.0± 15.0 -
visual cube double task 1 11.2± 9.2 - 0.0± 0.0 5.0± 2.0 - 5.0± 3.6 - 1.3± 1.5 -
visual scene task 1 72.4± 17.7 - 32.0± 13.0 26.0± 17.2 - 9.0± 6.6 - 74.7± 22.2 -
visual puzzle 4x4 task 1 6.0± 3.2 - 0.0± 0.0 0.0± 0.0 - 0.0± 0.0 - 0.0± 0.0 -

sampling estimation, which is sufficient. We use 512 dimensional contrastive representations. We
sweep over {300, 30, 3, 0.3, 0.03} for the BC coefficient α (Table 3).

FB + IQL and HILP + IQL. We implement FB (Touati & Ollivier, 2021) and HILP (Park et al.,
2024b) by adapting the FB implementation from Jeen et al. (2024) and the HILP implementation
from Kim et al. (2024). During pre-training, for FB, we pre-train the forward-backward repre-
sentations and the intention-conditioned policies in an actor-critic manner. We use a coefficient
1 for the orthonormality regularization of the backward representations. We use 512 dimensional
forward-backward representations. We sample the latent intentions for pre-training from either a
standard Gaussian distribution (with probability 0.5) or the backward representations for a batch of
states (with probability 0.5), normalizing those latent intentions to length

√
512. We sweep over

{100, 10, 1, 0.1} for the BC coefficient αrepr. For HILP, we pre-train the Hilbert representations ϕ and
Hilbert foundation policies using an actor-critic framework as well. We use implicit value learning to
learn the Hilbert representations following implementations from Park et al. (2024a; 2025a). We set
the expectile to 0.9 for all domains. We sweep over {100, 10, 1, 0.1} to find the best AWR inverse
temperature α. We also use 512 dimensional Hilbert representation space. To construct the intrinsic
rewards, we first sample the latent intention z from a standard Gaussian, normalizing them to length√
512, and then use the representation of the next state ϕ(s′) and the representation of the current

state ϕ(s) to compute the intrinsic reward (ϕ(s′)− ϕ(s))⊤z.

During fine-tuning, we first infer a task-specific backward representation or a Hilbert representation
using a small amount of transitions (10K) from the fine-tuning datasets, and then invoke IQL to
learn the critic and the actor using downstream rewards conditioned on the inferred representations.
For FB, we sweep over {100, 10, 1, 0.1} for the AWR inverse temperature αAWR for IQL. For HILP,
we reuse the same AWR inverse temperature in representation learning for IQL. See Table 3 for
domain-specific BC coefficients and AWR inverse temperatures.

E ADDITIONAL VISUALIZATIONS OF LATENT INTENTIONS

We include additional visualization of latent intentions on quadruped-jump in Fig. 6.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

time

t-SNE dim 0

t-S
NE

 d
im

 1

FB FOM

t-SNE dim 0

HILP FOM

flip balance jump
t-SNE dim 0

InFOM

Figure 6: Visualization of latent intentions on quadruped-jump.

F ADDITIONAL EXPERIMENTS

F.1 EVALUATION ON ROBOTICS BENCHMARKS

google robot pick coke can
0.0

0.2

0.4

0.6

re
tu

rn

InFOM (Ours)
BC

ReBRAC
DINO + ReBRAC

Figure 7: Evaluation on robotics datasets. InFOM
outperforms the best baseline by 34% when trained on
top of embeddings from a fixed image encoder. See
Appendix F.1 for details.

To further study the pre-training and fine-tuning
effects of our method on realistic datasets.
Specifically, we choose the RT-1 dataset (Bro-
han et al., 2022), which contains 73499 episodes
of transitions. This dataset was collected by
commanding a Google robot to pick, place,
and move 17 objects in the Google micro-
kitchens, covering a diverse set of intentions.
Since collecting distinct robotics datasets for
pre-training and fine-tuning is difficult, we
use the entire dataset as both the reward-
free pre-training dataset and the reward-labeled
fine-tuning dataset. For the evaluation task,
we use google robot pick coke can
from the SimplerEnv (Li et al., 2024), which
contains a suite of simulation tasks that ef-
ficiently and informatively complement real-
world evaluations of the Google robot.

We compare against two baselines from our ex-
periments (ReBRAC and DINO + ReBRAC)
due to computational constraints, and also include a behavioral cloning (BC) baseline for reference.
Our initial experiments indicate that all the algorithms (except DINO + ReBRAC) perform poorly
when trained end-to-end from pixels directly. Following prior practice in latent flow matching (Rom-
bach et al., 2022; Dao et al., 2023), we therefore pre-train a β-VAE (Higgins et al., 2017a) to encode
images into a latent embedding space and then learn algorithms on top of those embeddings. For
DINO + ReBRAC, we directly use the image representations learned by DINO to train the actor and
the critic. We report means and standard deviations of success rates over 4 random seeds.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

walker flip quadruped jump
0

400

800

re
tu

rn

InFOM (Ours)
 FB + FOM
(TD flows + GPI)
HILP + FOM

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 8: Comparison to prior intention encoding
mechanisms. We compare InFOM to prior intention
encoding mechanisms based on unsupervised skill dis-
covery (HILP (Park et al., 2024b)) or successor feature
learning (FB (Touati & Ollivier, 2021)). FB + FOM is
equivalent to TD flows with GPI in Farebrother et al.
(2025). We observe that InFOM outperforms prior
methods on 3 out of the 4 tasks. See Appendix F.2 for
details.

0 1 2 3 4 5
fine-tuning steps 1e4

0

60

120

re
tu

rn

cheetah run

InFOM (Ours)
ReBRAC

CRL + IS
DINO + ReBRAC

MBPO + ReBRAC
FB + IQL

0 1 2 3 4 5
fine-tuning steps 1e4

0

400

800
quadruped jump

Figure 9: Convergence speed during fine-tuning.
On tasks where InFOM and baselines perform sim-
ilarly, our flow occupancy models enable faster
policy learning.

Results in Fig. 7 suggest that InFOM outperforms the best baseline by 34% when trained on top
of embeddings from a fixed image encoder, indicating that our method can effectively fine-tune on
challenging, realistic datasets with overlapping intentions.

F.2 VARIATIONAL INTENTION INFERENCE IS SIMPLE AND PERFORMANT

We now conduct experiments ablating a key component in our method: the variational intention
encoder. To investigate whether this framework induces a simple and performant way to infer diverse
user intentions from an unlabeled dataset, we compare it to various intention encoding mechanisms
proposed by prior methods. Specifically, we consider replacing the variational intention encoder
with either (1) a set of Hilbert representations and Hilbert foundation policies (Park et al., 2024b)
(HILP + FOM) or (2) a set of forward-backward representations and representation-conditioned
policies (Touati & Ollivier, 2021) (FB + FOM), and then pre-training the flow occupancy models con-
ditioned on these two sets of representations. Note that FB + FOM is equivalent to TD flows with GPI
in Farebrother et al. (2025). We choose two tasks in the ExORL benchmarks (walker flip and
quadruped jump) and another two tasks taken from the OGBench benchmarks (cube double
task 1 and scene task 1), following the same evaluation protocols as in Appendix D.3.

Results in Fig. 8 indicate that InFOM can outperform prior intention encoding methods on 3 of 4
tasks, while being simpler. Both HILP and FB capture intentions with full unsupervised RL objectives
based on an actor-critic backbone. In contrast, we capture intentions by simply training an intention
encoder based on a latent variable model over adjacent transitions, without relying on a potentially
complicated offline RL procedure (Tarasov et al., 2023b; Park et al., 2024a).

F.3 FLOW OCCUPANCY MODELS ENABLE FASTER POLICY LEARNING

We then investigate whether the proposed method leads to faster policy learning on downstream
tasks. We answer this question by an ablation study with a high evaluation frequency, analyzing the
performance of various methods throughout the entire fine-tuning phase every 2K gradient steps.
We compare InFOM to prior methods on two ExORL tasks (cheetah run and quadruped
jump), including ReBRAC, CRL + IS, DINO + ReBRAC, MBPO + ReBRAC, and FB + IQL
(See Appendix D.2 for details of these baselines). We choose these baselines because they perform
similarly to our method, helping to prevent counterfactual errors derived from the performance
deviation when comparing convergence speed.

We compare different algorithms by plotting the returns at each evaluation step, with the shaded
regions indicating one standard deviation. As shown in Fig. 9, InFOM converges faster than prior
methods that only pre-train behavioral cloning policies (ReBRAC) or self-supervised state represen-
tations (DINO + ReBRAC), demonstrating the effectiveness of extracting temporal information. The
observation that methods utilizing a one-step transition model (MBPO + ReBRAC) or a future state
classifier (CRL + IS) learn more slowly than our method highlights the importance of predicting
long-horizon future events using expressive generative models. Additionally, our flow occupancy

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1K 10K 100K 500K 1M
(Ours)

pre-training dataset sizes

0

60

120

re
tu

rn

cheetah run

1K 10K 100K 500K 1M
(Ours)

pre-training dataset sizes

0

300

600

quadruped jump

Figure 12: The effect of pre-training dataset size on
InFOM. Increasing pre-training dataset sizes boosts
the final performances of InFOM.

5K 10K 25K 50K 100K 250K 500K
(Ours)

fine-tuning dataset sizes

0.0

0.5

1.0

re
tu

rn

cube single task 2

5K 10K 25K 50K 100K 250K 500K
(Ours)

fine-tuning dataset sizes

0.0

0.2

0.4
puzzle 4x4 task 1

Figure 13: The effect of fine-tuning dataset size on
InFOM. Increasing the fine-tuning dataset size yields
consistent improvements in success rates.

models extract rich latent intentions from the unlabeled datasets, resulting in adaptation speed similar
to the prior zero-short RL method (FB + IQL).

F.4 LEARNING WITH SPARSE REWARDS IS CHALLENGING

jaco reach
top left

jaco reach
bottom right

0

400

800

re
tu

rn
ReBRAC
ReBRAC + dense reward
InFOM (Ours)

Figure 10: Reward function structure can impose
challenges. The baseline ReBRAC achieves 3.6×
higher performance on variants of jaco tasks with a
dense reward function.

We hypothesize that the sparse reward func-
tion on jaco tasks explains the performance
gap between InFOM and baselines. To
test this hypothesis, we conduct ablation
experiments on jaco reach top left
and jaco reach bottom right, study-
ing whether using dense rewards will mitigate
the performance gap. Specifically, the dense re-
ward function is defined as r(s, g) = −∥s−g∥2
with g as the target position. To make a fair
comparison, we fine-tune the ReBRAC baseline
on variants of those two jaco tasks with dense
reward functions, measuring the performance
in the original environments. We report returns
across 8 random seeds.

Results in Fig. 10 highlight that using a dense
reward function results in 3.6× smaller perfor-
mance gap, suggesting that the original sparse
reward function imposes challenges for learning
on jaco tasks. We note that Yarats et al. (2022) has also included consistent evidence for this
observation, where TD3 + BC (the base algorithm for ReBRAC) performed poorly on the jaco
domain (Fig. 9 of Yarats et al. (2022)).

F.5 IMPORTANCE OF THE BEHAVIORAL CLONING REGULARIZATION

walker flip quadruped jump
0

400

800

re
tu

rn

InFOM w/o BC
InFOM (Ours)

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

Figure 11: The behavioral cloning regularization in the
policy loss is a key component of InFOM.

To study the effect of the BC regularizer (Eq. 8),
we conduct experiments comparing a variant of
InFOM without the behavioral cloning regular-
ization coefficient (α = 0) to our full algorithm
with domain-dependent α values (Table 2). We
select the same ExORL and OGBench tasks
as in Fig. 5 (walker flip, quadruped
jump, cube double task 1, and scene
task 1) and report the means and standard de-
viations of performance over 8 random seeds
after fine-tuning. Results in Fig. 11 suggest that
behavioral cloning regularization (α > 0) in the policy loss is a key component of our algorithm.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1 4 8 16
(Ours)

32

number of flow future states (N)

0

200

400

600
re

tu
rn

ExORL tasks

cheetah walk
walker walk

walker flip
quadruped jump

1 4 8 16
(Ours)

32

number of flow future states (N)

0.0

0.5

1.0

su
cc

es
s r

at
e

OGBench tasks

cube double task 1
cube double task 3

puzzle 4x4 task 1
scene task 1

Figure 14: Using a sufficient number of flow future states is important. Increasing the number of flow future
states (N) in the Qz estimate boosts the accuracy while reducing variance, resulting in higher final performances
of InFOM. We choose N = 16 as a balance between the accuracy, variance, and computational constraints in
our experiments.

F.6 THE EFFECT OF DATASET SIZES

Pre-training dataset size. Since we aim to predict temporally distant future states from het-
erogeneous data (Sec. 4.1), InFOM implicitly requires a sufficiently diverse dataset for effective
pre-training. To study the relationship between the size of pre-training datasets and the perfor-
mance of our algorithm, we conduct ablation experiments varying the pre-training dataset size
in {1K, 10K, 100K, 500K, 1M}. We compare the performances of InFOM on two ExORL tasks
(cheetah run and quadruped jump) after fine-tuning on the same reward-labeled dataset. We
report results across 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results in Fig. 12 indicate that larger pre-training datasets yield higher returns on these tasks. We
conjecture that pre-training InFOM on a diverse, reward-free dataset reduces sampling of out-of-
distribution future states when estimating Qz (Eq. 6) during fine-tuning, resulting in a higher final
performance.

Fine-tuning dataset size. We also conduct ablation experiments studying the effect of
fine-tuning dataset sizes. Specifically, we select two OGBench tasks (cube single task 2
and puzzle 4x4 task 1) and vary the size of the fine-tuning datasets in
{5K, 10K, 25K, 50K, 100K, 250K, 500K}. Again, we aggregate the performance of InFOM
over 8 random seeds, following the same evaluation protocol in Appendix D.3.

Results Fig. 13 show that increasing the fine-tuning dataset size (within the chosen range) yields con-
sistent improvements in success rates on the OGBench tasks. Our explanation for these observations
is that the size of the fine-tuning dataset affects the accuracy of the reward prediction.

F.7 THE SUFFICIENT NUMBER OF FUTURE STATES IN THE Q ESTIMATION

Since we use MC future states from the InFOM, intuitively, the number of future states N af-
fects the accuracy and variance of the Q value estimation (Eq. 6). To investigate the effect of
N , we conduct ablation studies on a total of 8 tasks, with 4 tasks from the ExORL benchmarks
(cheetah walk, walker walk, walker flip, and quadruped jump) and 4 tasks from
the OGBench benchmarks (cube double task 3, puzzle 4x4 task 1, cube double
task 1, and scene task 1). Below, we report returns and success rates after fine-tuning,
aggregating the results over 8 random seeds.

To further investigate how N affects performance on various tasks, we conduct ablation studies on a
total of 8 tasks, with two more ExORL tasks (walker flip and quadruped jump) and two

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

walker flip quadruped jump
0

400

800

re
tu

rn

d = 64
d = 128

d = 256
d = 512 (Ours)

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

d = 64
d = 128

d = 256
d = 512 (Ours)

(a) Latent dimension d

walker flip quadruped jump
0

400

800

re
tu

rn

T = 1
T = 5

T = 10 (Ours)
T = 20

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

T = 1
T = 5

T = 10 (Ours)
T = 20

(b) Number of steps for the Euler method T

walker flip quadruped jump
0

400

800

re
tu

rn

= 0.9 (Ours)
= 0.95

= 0.99

cube double task 1 scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

= 0.9
= 0.95

= 0.99 (Ours)

(c) Expectile µ

walker flip
0

300

600

re
tu

rn

= 0.01
= 0.05 (Ours)

= 0.1
= 1

quadruped jump
0

400

800

re
tu

rn

= 0.005 (Ours)
= 0.01

= 0.05
= 0.1

scene task 1
0.0

0.3

0.6

su
cc

es
s r

at
e

= 0.01
= 0.025 (Ours)
= 0.05

= 0.1
= 1

scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

= 0.05
= 0.1
= 0.2 (Ours)

= 1
= 2

(d) KL divergence regularization coefficient λ

walker flip
0

300

600

re
tu

rn

= 0.3 (Ours)
= 3

= 30
= 300

quadruped jump
0

400

800

re
tu

rn

= 0.3 (Ours)
= 3

= 30
= 300

cube double task 1
0.0

0.3

0.6

su
cc

es
s r

at
e

= 0.3
= 3

= 30 (Ours)
= 300

scene task 1
0.0

0.5

1.0

su
cc

es
s r

at
e

= 0.3
= 3

= 30
= 300 (Ours)

(e) Behavioral cloning regularization coefficient α

Figure 15: Hyperparameter ablations. We conduct ablations to study the effect of key hyper-
paramters of InFOM as listed in Table 2 on walker flip, quadruped jump, cube double
task 1, and scene task 1.

more OGBench tasks (cube double task 1 and scene task 1). Below, we report returns
and success rates together with the results in the initial responses.

Fig 14 suggests that, in cheetah walk and puzzle 4x4 task 1, increasing the number
of flow future states yields better performance with consistent variance. In walker walk and
cube double task 3, a largerN does mitigate the high variance inQz , at the cost of increasing
computation. Taken together, these results indicate that a sufficiently large number of flow future
states used in Qz achieve more accurate estimates of Q values, while reducing the variance. In
practice, our choice of N = 16 is a balance between the accuracy, variance, and computational
constraints of the estimator.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

F.8 ADDITIONAL HYPERPARAMETER ABLATIONS

We conduct additional ablation experiments on walker flip, quadruped jump, cube
double task 1, and scene task 1 to study the effect of some key hyperparameters in In-
FOM (Table 2). Following the same evaluation protocols as in Appendix D.3, we report means and
standard deviations across eight random seeds after fine-tuning each variant.

As shown in Fig. 15a, our algorithm is sensitive to the latent intention dimension d. Additionally,
the effect of the number of steps for the Euler method T (Fig. 15b) saturates after increasing it to a
certain threshold (T = 10), suggesting the usage of a common value for all tasks.

Results in Fig. 15c, Fig. 15d, and Fig. 15e suggest that the expectile µ can affect the performance
on ExORL tasks, while having minor effects on OGBench tasks. Importantly, the KL divergence
regularization coefficient λ and the behavioral cloning regularization coefficient α are crucial hyper-
parameters for InFOM, where domain-specific hyperparameter tuning is required. As discussed in
Appendix D.4, we generally select one task from each domain to sweep hyperparameters and then
use one set of hyperparameters for every task in that domain.

34

	Introduction
	Related work
	Preliminaries
	Intention-conditioned flow occupancy models
	Problem setting
	Variational intention inference
	Predicting the future via SARSA flows
	Generative value estimation and implicit generalized policy improvement

	Experiments
	Comparing to prior pre-training and fine-tuning methods
	Visualizing latent intentions
	Importance of the implicit generalized policy improvement

	Conclusion
	Preliminaries
	Value functions and the Actor-critic framework
	Flow matching
	Temporal difference flows

	Further discussions on the problem setting
	The consistency assumption on intentions
	Distinctions from Meta RL and Multi-task RL

	Theoretical analyses
	The evidence lower bound and its connection with an information bottleneck
	Intutions and discussions about the implicit generalized policy improvement
	One-step policy improvement with flow occupancy models

	Experimental details
	Tasks and datasets
	Baselines
	Evaluation protocols
	Implementations and hyperparameters

	Additional visualizations of latent intentions
	Additional Experiments
	Evaluation on robotics benchmarks
	Variational intention inference is simple and performant
	Flow occupancy models enable faster policy learning
	Learning with sparse rewards is challenging
	Importance of the behavioral cloning regularization
	The effect of dataset sizes
	The sufficient number of future states in the Q estimation
	Additional hyperparameter ablations

