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ABSTRACT

The widespread deployment of machine learning systems in critical real-world
decision-making applications has highlighted the urgent need for counterfactual
explainability methods that operate effectively. Global counterfactual explana-
tions, expressed as actions to offer recourse, aim to provide succinct explanations
and insights applicable to large population subgroups. Effectiveness is measured
by the fraction of the population that is provided recourse, ensuring that the ac-
tions benefit as many individuals as possible. Keeping the cost of actions low
ensures the proposed recourse actions remain practical and actionable. Limiting
the number of actions that provide global counterfactuals is essential to maxi-
mize interpretability. The primary challenge, therefore, is balancing these trade-
offs—maximizing effectiveness, minimizing cost, while maintaining a small num-
ber of actions. We introduce GLANCE, a versatile and adaptive framework, com-
prising two algorithms, that allows the careful balancing of the trade-offs among
the three key objectives, with the size objective functioning as a tunable parameter
to keep the actions few and easy to interpret. C-GLANCE employs a clustering
approach that considers both the feature space and the space of counterfactual ac-
tions, thereby accounting for the distribution of points in a way that aligns with the
structure of the model. T-GLANCE provides additional features to enhance flexi-
bility. It employs a tree-based approach, that allows users to specify split features,
to build a decision tree with a single counterfactual action at each node that can be
used as a subgroup policy. Our extensive experimental evaluation demonstrates
that our method consistently shows greater robustness and performance compared
to existing methods across various datasets and models.

1 INTRODUCTION

Machine learning models are increasingly deployed in critical domains such as loan approvals, hir-
ing, and healthcare. This widespread adoption has intensified the need for transparency and in-
terpretability in model decisions, requiring users to understand how their input features influence
the outcomes and how they might change them to achieve favorable outcomes, known as recourse
(Miller, 2019). Counterfactual explanations have gathered extensive attention for their suitability
for achieving algorithmic recourse (Karimi et al., 2020), their interpretability (Wachter et al., 2017),
actionability (Ustun et al., 2019), utility in fairness audits (Sharma et al., 2019; Kavouras et al.,
2023), etc. A counterfactual action, or simply an action, defines the specific feature changes needed
to convert an unfavorable decision into a favorable one.

Traditionally, counterfactual explanations refer to local explainability, being tied to a particular
negatively affected instance. However, in many real-world scenarios, global counterfactual explain-
ability is more useful, offering generalized explanations that apply across the affected population.
While a collection of all local counterfactuals could technically cover all affected individuals, this
approach sacrifices interpretability, which is central to global explainability.

Similar to past work (Rawal & Lakkaraju, 2020; Kanamori et al., 2022), we define Global Counter-
factual Explanations (GCE) as a small set of global actions that provide effective recourse for the
affected population. Any global counterfactual solution must meet three objectives as identified from
previous research: (1) be composed of a small number of actions to ensure interpretability (size),
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(a) Feature space (b) Action space

Figure 1: A toy example depicting two negative
instances x1, x2, and five actions: a1, a2 are the
optimal local actions for x1, x2; a3 is the opti-
mal GCE maximizing effectiveness; a4 and a5 are
actions along the optimal direction d as defined
in Ley et al. (2023) (a) The feature space, where
the line is the decision boundary. (b) The action
space, where l1, l2 depict the decision boundary
from the perspective of x1, x2, respectively.

(2) minimize the cost of implementing those ac-
tions (cost), and (3) offer recourse to as many
affected individuals as possible (effectiveness).

As noted by Branke (2008), the relationships
between multiple optimization objectives are
often complex, and aggregating them into a
single objective, which is common in practice
(Rawal & Lakkaraju, 2020), can be problematic
since they are typically non-commensurable.
Framing GCEs as multi-objective optimization,
allows us to explore the inherent trade-offs be-
tween effectiveness and cost, especially when
the solution size is constrained.

To understand this optimization problem, as-
sume a 2-d numerical feature space, and con-
sider the two affected instances x1, x2 depicted
in Figure 1a. Assume that recourse cost equals
the distance to the decision boundary, drawn as
a line in the figure. Observe that a1 (resp. a2) is
the local action that provides recourse for x1 (resp. x2) at minimum cost.

Further, consider the action space depicted in Figure 1b, where every action is represented as a point
(or equivalently a vector relative to the center o of the coordinate system). The blue l1 and red l2
lines represent the decision boundary seen from the perspectives of x1 and x2, respectively. The
blue line l1 separates the actions that provide recourse for x1 (any action on the outside, away from
o) from those that do not. Action a1 lies on l1, and is the closest point to o, and thus the min-cost
local action for x1. Similarly, the red line l2 concerns x2 and contains its min-cost action a2.

Consider now the problem of finding a single action GCE. To provide recourse for both x1 and x2,
we look for an action that lies outside both lines in Figure 1b. Among all such actions, a3 has the
minimum cost and thus is the optimal global action that maximizes effectiveness. If we trade off
effectiveness for cost, a2 is the optimal global action that minimizes cost, but has 50% effectiveness
(brings recourse to x2 but not to x1).

GCE gives rise to a different optimization problem than its local counterpart. Even if optimal local
actions are generated for each instance and a small subset is chosen as the global actions, this may
still result in a suboptimal GCE. In our example, the optimal global action a3 is not an optimal local
action for either x1 or x2; in fact, a3 can be viewed as a compromise between a1 and a2, the locally
optimal actions. Finding good GCEs requires a nuanced exploration of the action space.

In this work, we distinguish between two variants of GCE that differ in how they assign actions to
individuals. In implicit GCE, each individual chooses the best (i.e., min-cost) global action in GCE
to achieve (if possible) recourse (as in e.g., Ley et al., 2023). Implicit GCE is helpful when one
wishes to obtain a model-level understanding of recourse, or to select a global (horizontal) policy
to apply to the entire affected population. In explicit GCE, individuals are partitioned according
to their features and a single action applies to each partition (as in e.g., Rawal & Lakkaraju, 2020;
Kanamori et al., 2022). Explicit GCE provides a more interpretable summary as it associates actions
to partitions of the feature space, and can also be used to implement targeted policies to bring
recourse to subpopulations.

1.1 KEY CONTRIBUTIONS

Recognizing that both the effectiveness and the cost of actions depend on the individuals’ features
and the model’s decision boundary, we propose a novel clustering approach for GCEs that consid-
ers both feature and action spaces. Unlike previous claims that clustering is ineffective for global
counterfactuals (see e.g., Kanamori et al. (2022)), we are the first to propose the joint clustering in
feature and action spaces and demonstrate its effectiveness. We introduce GLANCE, a novel and
highly adaptable framework, that consists of two algorithms based on hierarchical clustering tech-
niques, C-GLANCE and T-GLANCE. GLANCE bridges local and global explanations by combining
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(a) (b) (c)

Figure 2: Intuition behind clustering approaches. (a) First, C-GLANCE generates diverse candidate
action from the centroids of feature-based clusters. (b) Then, C-GLANCE merges clusters based on
similarity in either the feature space or the possible recourse actions, grouping instances that may be
further apart but can be explained by similar actions. (c) An alternative where clusters are formed
solely based on the feature space may lead to suboptimal global actions—either high effectiveness
at a very high cost or low cost but very low effectiveness.

clustering with local counterfactual generation, offering a scalable and effective methodology for
GCEs. GLANCE balances actionable, minimal changes with interpretability through a tunable size
objective, ensuring practical and interpretable solutions.

C-GLANCE. We present C-GLANCE, a clustering-based approach for the implicit GCE problem
that returns s global actions. At a high level, C-GLANCE consists of two phases: candidate action
generation, and action selection.

To generate candidates, C-GLANCE first performs a fine-grained clustering of the individuals in the
feature space. For each cluster, C-GLANCE then discovers a few diverse actions that bring recourse
to the cluster centroid. The intuition here is that highly similar individuals are expected to have a
similar perspective of the decision boundary, and can thus achieve recourse through similar cost-
efficient actions. Figure 2a shows an example with four fine-grained clusters, where three diverse
actions are discovered from each centroid. Each action represents an alternate way to bring recourse
to cluster members, giving C-GLANCE the flexibility to later select among them.

At the end of the first phase, C-GLANCE has associated each cluster of individuals with a set of
actions. In the second phase, C-GLANCE iteratively merges such clusters until exactly s clusters
remain. Two clusters are merged if they either concern similar individuals or contain similar actions.
The intuition behind the former is similar to that of the candidate generation phase. The intuition
for the latter is that if similar actions bring recourse to them it should be easier to identify a common
low-cost, highly effective action, even though they are dissimilar feature-wise. Figure 2b shows an
example where the red individuals are grouped together either through affinity in the feature or in
the action space.

As discussed in (Kanamori et al., 2022), performing a coarse-grained clustering on feature space and
then assigning a single action per cluster leads to inadequate global actions, that suffer either in cost
or effectiveness. For example, in Figure 2c, individuals are clustered based on feature similarity and
a single action is selected per cluster. Because the blue cluster is associated with rather dissimilar
actions, choosing a single actions leads to a compromise in either effectiveness (as depicted) or cost.

T-GLANCE. Recognizing the need for explicit GCE, we present T-GLANCE, an algorithm em-
ploying a tree-based approach, similar to explainable clustering techniques (e.g., Moshkovitz et al.,
2020). This allows assigning actions to individuals while satisfying the transparency and consis-
tency properties required by Kanamori et al. (2022). T-GLANCE also allows users to select features
that define specific groups, to produce targeted GCEs. For the user’s facilitation, we also provide
suggestions based on the importance feature permutation score for selecting features to be used
in splits. T-GLANCE directly supports policymaking and audit scenarios—an application not ad-
dressed by existing methods. As shown in our experiments, T-GLANCE delivers competitive results,
outperforming previous tree-based methods while maintaining efficiency.

Experimental Evaluation. We perform a comprehensive evaluation across various datasets and
models, demonstrating that GLANCE consistently outperforms or matches state-of-the-art methods
in both cost and effectiveness while remaining computational efficiency. To facilitate comparison
in global counterfactual methods, we invoke Pareto dominance criteria from multiobjective opti-
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mization, further showcasing GLANCE’s stable, superior performance across diverse datasets and
models.

1.2 RELATED WORK

Counterfactual Explanations. There has been a plethora of work with an emphasis on counter-
factual explanations (Verma et al., 2020). An overview of methods on algorithmic recourse, which
provides explanations and recommendations to individuals impacted by automated decision-making
systems is presented by Karimi et al. (2020). These methods can be model-agnostic or model-
specific (e.g., for trees Carreira-Perpiñán & Hada, 2021), focus on properties like diversity (Mothilal
et al., 2020) or feasibility (Ustun et al., 2019)), global or local. While local counterfactuals are well
defined, global counterfactuals present challenges, as they must provide recourse for all individuals
within a specific group in the same manner while maintaining explainability and staying true to the
notion of local counterfactual, which focuses on minimal changes. Achieving this balance globally
presents significant difficulties.

Prior work does not make the distinction between explicit and implicit GCE. Regarding explicit
GCE, Rawal & Lakkaraju (2020) introduced AReS, a framework for global counterfactual expla-
nations, that jointly optimizes recourse correctness, coverage, and cost, providing an interpretable
summary of recourses, expressed in a two-level rule set. However, the AReS framework may fail to
cover the entire population. Ley et al. (2022) later improved the computational efficiency with Fast
AReS. In another direction, Kanamori et al. (2022) introduced CET, which partitions the space and
assigns an action to each part transparently and consistently. Although effective, its computational
complexity limits scalability.

Regarding implicit GCE, Warren et al. (2023) developed Group-CF, that generates counterfactuals
that seeks to maximize effectiveness, though it can result in higher costs. Ley et al. (2023) proposed
GLOBE-CE, where global counterfactual explainability is defined differently, as a small set of action
directions along which individuals can “move” to achieve recourse. Therefore, GLOBE-CE attacks
a different optimization problem than the one we study here. For the toy example in Figure 1, the
single direction that minimizes the total recourse cost for x1 and x2 is the direction d depicted in
Figure 1b. This direction contains actions a4 and a5 that bring recourse to x2 and x1, respectively,
with minimum cost along d. It is important to note that neither a4 nor a5 is optimal as a GCE (or
for local explainability). Even the set {a4, a5} is a suboptimal GCE—the set {a1, a2} dominates it
with equal size and effectiveness but lower total cost. In general, (1) directly translating the output
of GLOBE-CE into a GCE leads to numerous micro-actions (two in our example, but potentially as
many as the number of individuals), which reduces interpretability, (2) choosing a few actions along
the optimal directions may result in suboptimal GCEs (in our example, any single action along d
is dominated by a), and (3) since directions lack clear endpoints, they fail to specify the magnitude
of change required, leading to uncertainty for individuals seeking recourse and limiting real-world
applicability.

Other works include Carrizosa et al. (2024a;b), who use mixed-integer quadratic models for group-
level explanations, and Koo et al. (2020), who employ Lagrangian methods. Research has also
extended to generating global counterfactuals for graphs (Huang et al., 2023) and auditing subgroup
fairness (Kavouras et al., 2023).

Global Explainability. Many works in global explainability are related to our approach. For in-
stance, Chowdhury et al. (2022) summarize model logic by dividing the desired region of explana-
tion features into subspaces based on similar logic, referred to as equi-explanation maps. Similarly,
Lakkaraju et al. (2019) provides explanations for different subspaces characterized by specific fea-
tures. Their method also allows users to customize the model explanations by selecting features
of interest, akin to the flexibility offered by T-GLANCE. While these works share a conceptual
focus on subspace-based explanations, they differ fundamentally from ours in their ultimate goals
and outcomes. Both primarily aim to summarize model behavior or provide faithful subspace-level
explanations, whereas GLANCE seeks to generate actionable global counterfactual explanations tai-
lored to decision-making processes. Consequently, the direct comparison of these approaches with
T-GLANCE is not entirely applicable.

Other Related Work. Many clustering algorithms lead to clusters that are hard to explain. There is
a plethora of work on explainable or interpretable clustering, mainly using decision trees that under
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specific assumptions come with provable guarantees, including the works of Dasgupta et al. (2020);
Moshkovitz et al. (2020); Frost et al. (2020); Makarychev & Shan (2022); Bertsimas et al. (2021);
Laber & Murtinho (2021), etc. Another area of related work is multiobjective optimization and
Pareto optimality. We refer the reader to Branke (2008).

2 PROBLEM FORMULATION

We consider a black box binary classifier h : X → {−1, 1}, where the positive outcome is favorable
and the negative is unfavorable. We will focus on the set Xaff ⊆ X of adversely affected individu-
als, i.e., those who receive the unfavorable outcome. We denote as A the set of all possible actions
(which is potentially infinite), where an action a ∈ A is a set of changes to feature values, e.g.,
a = {country → US, education-num → +2}, which, when applied to an instance x ∈ Xaff , results
in a counterfactual instance x′ = a(x). Every action a has a cost, denoted as cost(a, x), and is
effective for an instance x if h(a(x)) = h(x′) = 1. Let C ⊆ A. The recourse cost rc(C, x) of an
instance x is the minimum cost incurred from an effective action in C:

rc(C, x) = min{cost(a, x)|a ∈ C : h(a(x)) = 1}

Let XC = {x ∈ Xaff |h(a(x)) = 1, a ∈ C} be the set of instances that flip their prediction using
one of the actions in C. Then the effectiveness, also known as coverage Ley et al. (2022), of C for
the affected instances Xaff is defined as the percentage of Xaff that managed to flip their prediction
using one of the actions in C:

eff(C,Xaff) =
|XC|
| Xaff |

,

The cost of C in Xaff is defined as the average recourse cost of the instances in Xaff :

avc(C,Xaff) =

∑
x∈XC

rc(C, x)

|XC|
.

Finally, let size(C) = |C| denote the cardinality of a set C.

As it is clear, multiple sets of actions can produce recourse for Xaff and the quality of such a set is a
factor of the three notions we introduced: effectiveness, cost, and size. An ideal global counterfac-
tual should maximize effectiveness while minimizing the cost and the size, based on the properties
that state-of-the-art works (Rawal & Lakkaraju, 2020; Kanamori et al., 2022; Ley et al., 2023; Huang
et al., 2023) have argued are essential. Formally, we define the global counterfactual explanation
problem as follows:

Problem 1 (Global Counterfactual Explanations (GCE)). Given a black box model h that classifies
the Xaff instances to the negative class, our goal is to find the set C ⊆ A,C ̸= ∅ that represents a
solution to the following multi-objective optimization:

minimize
(
size(C), − eff(C,Xaff), avc(C,Xaff)

)
The requirement for a small set of actions is to enhance the interpretability of the explanation. This
can also be expressed as a constraint to the set size we can afford. In this case, the third objective of
Problem 1 is replaced by the constraint size(C) ≤ s, where s is a small positive integer. For the rest
of the paper, we will use the following problem formulation:

Problem 2 (s-GCE). Given a black box model h that classifies the Xaff instances to the negative
class, our goal is to find the set C ⊆ A that represents a solution to the following bi-objective
optimization problem:

minimize
(
− eff(C,Xaff), avc(C,Xaff)

)
s.t. size(C) ≤ s

If the set of actions A is finite and explicitly given, s-CGE is NP-hard. For more details, we refer the
reader to Appendix A. For insights into how increasing the size impacts effectiveness and average
cost, and the importance of selecting actions to maintain a desirable balance, see Appendix B.
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Algorithm 1 C-GLANCE
Input: Xaff , m, k, s {Xaff := affected individuals , m := number of candidate actions to generate, k := initial number of clusters, s :=

number of global counterfactual actions}
Output: s global counterfactual actions

1: C ← cluster(Xaff , k) {Cluster Xaff into k initial clusters}
2: for c ∈ C do
3: ca(c)← actions(centroid(c),m) {For each cluster centroid generate m actions}
4: end for
5: while |C| > s do
6: {c1, c2} ← argmin{c1,c2}⊆C(d1(centroid(c1), centroid(c2))+d2(average(ca(c1)), average(ca(c2))))

{Find c1,c2 that minimize d1+d2}
7: C ← merge({c1, c2} ∈ C) {Merge c1,c2 into one cluster}
8: ca({c1, c2})← ca(c1) ∪ ca(c2) {Merge their action sets}
9: end while

10: return bca(ca(c)) for each c ∈ C {Return optimal action from each of the s clusters}

3 C-GLANCE

C-GLANCE (Algorithm 1) presents a clustering algorithm that follows an agglomerative approach.
The first step is to establish multiple small clusters and determine representative diverse actions
for each. The initial clusters will undergo merging, exploiting the notion of proximity in both the
original feature space and the action space, until no more than s clusters exist. Finally, a single
action will be extracted from each cluster with universal applicability across all instances. For the
time complexity analysis we refer the reader to Appendix C.

Algorithm Description. (1) Initial clusters and actions generation. The feature space is partitioned
into k clusters, by a clustering algorithm (e.g., k-means, line 1, alg. 1). We compute the centroid
of each cluster and generate m diverse counterfactual actions for each centroid (line 3, alg. 1),
employing any candidate counterfactual generation method (see Appendix G for the methods used
in the experimental evaluation). We aim to efficiently and effectively explore the action space by
generating actions from widely dispersed points within the feature space and guiding them in diverse
directions that cross the decision boundary.
(2) Merging. Similar to agglomerative clustering, our approach merges clusters with the goal of
maximizing intra-cluster similarity and minimizing inter-cluster similarity with respect to both the
feature and action spaces. Specifically, similarity is computed by a metric D, which is the sum
of two distances: d1 : Xaff ×Xaff → R, the distance between the centroids of each cluster, and
d2 : A × A → R, the distance between the average counterfactual actions of each cluster; other
formulations for d2 are also possible, e.g., Wasserstein distance. Thus, clusters are combined based
on both their feature proximity and the proximity of their respective actions. Until the desired
number s of clusters is reached, we merge (line 7, alg. 1) the two clusters that minimize the total
distance d1 + d2 (line 6, alg. 1). Merging two clusters means that their action sets are combined,
ensuring that the most effective actions for each cluster are retained (line 8, alg. 1).
(3) GCE extraction and optimality. For each of the s clusters, we extract a single candidate action,
and return the set of these s actions (line 10, alg. 1). Assuming that the action generation and
subsequent merging has succesfully grouped together individuals that can achieve recourse through
similar cost-efficient actions, in the final step we target effectiveness, selecting at each cluster the
optimal action, in terms of effectiveness, among those associated with the cluster.

Approach Strengths. C-GLANCE supports various clustering methods, cost metrics, and action
generation techniques making it adaptable to different applications. In the App. Table 13, we present
the results using various action generation methods, all of which lead to near-optimal solutions in
terms of the effectiveness-cost tradeoff. Additionally, C-GLANCE demonstrates speed, robustness,
and near-optimal solution quality across datasets, as shown in the experimental evaluation.

4 T-GLANCE

T-GLANCE (Algorithm 2) constructs a hierarchical partitionining of the feature space. Each parti-
tion level is derived by splitting one cell of the previous level partition along a feature, resulting in a
decision tree like structure akin to classification and regression trees (CART) (Breiman et al., 1984;
Bertsimas & Dunn, 2017). Each cell (whether an internal or leaf tree node) can be described as a
conjunction of feature predicates, and is associated with a single counterfactual action, providing
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Algorithm 2 T-GLANCE
Input: Xaff , m, s, D′. {Xaff := affected individuals, m :=number of candidate actions to generate, s := maximum number of leaf nodes,

D′, a subset of possible features}
Output: P {The tree and the actions assigned in each node.}
1: P0 ← {Xaff} {The partition associated with the root of the tree.}
2: Assign to P0 action a0 = bca(ca(P0),P0) {Generate actions ca(P0). a0 maximizes eq.(1)}
3: level← 0,nnodes ← 1, queue← P0

4: while nnodes + 1 ≤ s do
5: if queue = ∅ then
6: level← level + 1, queue← Plevel

7: end if
8: Pick A the first element in queue.
9: i← argmaxj∈D′ V (A, j) {Choose the split that maximizes the criterion of eq.(2).}

10: if V (A, i) ≥ 0 then
11: Split the cell A into cells Ai

k = {x|x ∈ A ∧ xi ∈ vi(k)}, k = 0, 1

12: Assign to Ai
k action ai

k = bca(ca(Ai
k), A

i
k) { Generate actions ca(Ai

k). ai
k maximizes eq.(1). }

13: queue← queue \ {A},Plevel+1 ← Plevel+1 ∪ {Ai
0, A

i
1}

14: else
15: queue← queue \ {A} {Do not split this node and continue to the next.}
16: end if
17: end while
18: Plevel+1 ← Plevel+1 ∪ queue

19: return Plevel+1 { Return the tree and the assigned actions.}

thus interpretable counterfactual explanations at multiple granularity levels. T-GLANCE decides to
split a cell if more effective actions can be found for the child cells. Splits are performed along a
user-provided subset of features. Once a feature is used to split a cell, it is not considered again for
further splits. As a result, the height of the tree is limited by the cardinality of the user-provided
feature subset. We next present the necessary definitions to introduce Algorithm 2. For the time
complexity analysis, please refer to Appendix C.

Definitions. A partition P of Rd is a family of sets {A1, . . . , Al} such that Aj ⊆ Rd, Aj ∩Ak = ∅
for all j, k ∈ [l] and

⋃s
j=1 Aj = Rd. Let P a partition of Xaff . Every element A of P is called a

cell of P or just a cell. Each cell can be further divided into two subcells Ai
0, A

i
1 with respect to

any direction i, defined as Ai
0 = {x ∈ A|xi ∈ vi(0)} and Ai

1 = {x ∈ A|xi ∈ vi(1)}, where vi(k)
represent the values that correspond to the specific split (e.g., 0 or 1 if it is a binary feature, specific
ranges for continuous features). Let ca(A) := actions(c,m) be the set of m generated actions
for the centroid c of the cell A. For simplicity, we will use bca(ca(A), A) to refer to the action in
ca(A) with the highest effectiveness. Formally,

bca(ca(A), A) = argmax
a∈ca(A)

{eff({a}, A)} (1)

We define a local version of the total effectiveness gain achieved by a specific portion split i to a
local cell A.

V (A, i) ≜ eff({bca(ca(A), A)}, A)− eff({bca(ca(Ai
k), A

i
k)}, Ai

k)

= eff({bca(ca(A), A)}, A)− 1

|k|
∑

k={0,1}

eff({bca(ca(Ai
k), A

i
k)}, Ai

k)
(2)

Algorithm Description. T-GLANCE selects a different direction for splitting at each iteration at
every cell in the current partition. Specifically, the algorithm begins with a single cluster containing
all affected instances and generates m diverse actions for the centroid, retaining the best action
according to the criterion in eq. (1) (lines 1–2, alg. 2). The root then is established as the first cell
A to be examined, and the possible splits are examined based on the actions that were generated for
each split (lines 8–9, alg. 2). For simplicity, we present the algorithm with binary splits (branching
factor of 2), though it can be generalized to accommodate any branching factor. We proceed with
the split that maximizes eq. (2), provided it yields a nonnegative value, and add the new cells as
nodes of the tree to be examined in the next repetitions (lines 10–13, alg. 2); otherwise the node is
not split. Importantly, the set of directions allowed for splitting is a subset of the features, provided
by the user, allowing for controlled and interpretable partitioning of the data.

Termination Criteria. This process continues until one of the following termination criteria occurs:
(1) a node has no remaining features to consider for splitting, (2) the maximum score of the actions
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from all remaining features is negative, or (3) the specified number of leaf nodes has been reached
(i.e., size constraints).

Approach Strengths. A key strength of T-GLANCE is its user-driven flexibility, allowing policy-
makers or auditors to select the features that determine tree partitioning. By allowing users to guide
the feature selection, T-GLANCE can adapt to specific policy needs or audit requirements, making
it highly customizable. T-GLANCE provides multi-level solutions, assigning a single optimal coun-
terfactual action to each tree node, ensuring transparency and consistency across decision-making
processes. This enables both high-level and granular solutions for additional user flexibility, in con-
tradiction with Kanamori et al. (2022), who optimize actions only at the leaf nodes. Additionally,
the method remains efficient, robust, and effective across various datasets and scenarios, as shown in
our evaluations, making it well-suited for real-world applications. Finally, unlike the stochastic local
search used by Kanamori et al. (2022), which may not converge (in about 20% of our experiments),
T-GLANCE guarantees a solution at every node.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETTING

Baselines. We compare GLANCE framework methods against state-of-the-art methods in Global
Counterfactual Explanations, specifically: AReS (using the Fast AReS implementation), CET,
GroupCF, and GLOBE-CE, all of which are constrained by a predefined action set size. Details on
the implementation used for each method can be found in Appendix F.

Datasets. We use four established benchmark datasets from previous research: COMPAS (Angwin
et al., 2016), German Credit (Dua & Graff, 2019), Default Credit (Yeh & Lien, 2009), and HELOC
(Brown et al., 2018). Additionally, we introduce the Adult dataset (Becker & Kohavi, 1996) for
further evaluation. Details on the datasets and their preprocessing can be found in Appendix D.

Models. We trained three different model types: XGBoost (XGB), Logistic Regression (LR), and
Deep Neural Network (DNN). Hyperparameters and training accuracy statistics are provided in
Appendix E. We used 5-fold cross-validation, to also evaluate the robustness of the results.

Recourse Cost. For computing recourse costs, we adhered to the guidelines established by Ley
et al. (2023).

Reproducibility. All experiments were conducted on an in-house server with cloud infrastructure
equipped with an Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz, 128 GB of RAM. No GPU
acceleration was utilized during these experiments. We provide the code for the reproducibility of
our experiments as supplementary material.

Running Time. In our experiments, GLOBE-CE and dGLOBE-CE were the fastest methods, con-
sistently delivering solutions within 20 seconds across all datasets and models. C-GLANCE and
T-GLANCE followed, typically completing in under 300 seconds, although T-GLANCE reached
up to 850 seconds in four cases. Other methods were slower, with Fast AReS ranging typically
between 150–400 seconds, and peaking at 1,400 seconds in some runs. The least computationally
efficient were Group-CF and CET, with maximum runtimes of 3,500 and 17,000 seconds, respec-
tively, and CET failed to solve the underlying optimization problem after 20 hours of runtime for the
Adult dataset across all models.

5.2 EXPERIMENTAL EVALUATION

Table 1 presents the summarized results of all competing methods. We compare C-GLANCE and
T-GLANCE against the five other competitors across five datasets and three models, resulting in
75 head-to-head comparisons for each method, totaling 150. However, since CET failed to solve
the underlying optimization problem for the Adult dataset across all models, the final count is 72
comparisons per GLANCE method. Furthermore, we perform additional evaluations by categorizing
the competitors into implicit and explicit methods. Specifically, C-GLANCE is evaluated against
implicit—Group-CF, GLOBE-CE, and dGLOBE-CE— resulting to 45 head-to-head comparisons.
Similarly, T-GLANCE is compared with explicit competitors — Fast AReS, CET— yielding 27
head-to-head comparisons. Recall that all reported results concern the s-GCE problem for s = 4;
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Table 1: Evaluating the effectiveness and average cost of T-GLANCE against explicit (Fast AReS,
CET) and C-GLANCE against implicit (Group-CF, GLOBE-CE, and dGLOBE-CE) GCE methods
for s-GCE problem with s = 4. s-GCE solutions with effectiveness below 80% (applicability
threshold) are highlighted in red. Non-robust GCEs, identified by either a standard deviation (std)
in effectiveness greater than 5% across folds or a std in cost greater than half the average cost, are
highlighted in blue.

MODELS ALGORITHMS DATASETS

ADULT COMPAS DEFAULT CREDIT GERMAN CREDIT HELOC
eff avc eff avc eff avc eff avc eff avc

DNN FAST ARES 12.39 ± 1.06 1.0 ± 0.0 55.0 ± 0.86 1.21 ± 0.09 18.88 ± 2.16 1.0 ± 0.0 52.39 ± 1.63 1.0 ± 0.0 12.19 ± 0.58 1.03 ± 0.05
CET NAN ± NAN NAN ± NAN 63.62 ± 10.35 0.96 ± 0.24 98.87 ± 0.62 6.32 ± 2.28 97.3 ± 2.46 1.58 ± 0.54 86.78 ± 10.62 8.67 ± 3.25
T-GLANCE 100.0 ± 0.0 4.43 ± 0.43 99.53 ± 0.22 2.62 ± 0.24 100.0 ± 0.0 1.48 ± 0.43 96.97 ± 3.48 1.59 ± 0.8 99.8 ± 0.24 10.9 ± 1.22

GROUP-CF 100.0 ± 0.0 10.08 ± 0.03 100.0 ± 0.0 4.48 ± 2.53 79.6 ± 20.79 1.53 ± 0.62 97.8 ± 4.4 1.85 ± 0.13 80.4 ± 10.17 3.09 ± 0.91
GLOBE-CE 99.92 ± 0.0 4.24 ± 0.42 100.0 ± 0.0 4.54 ± 3.31 76.94 ± 37.55 5.14 ± 0.35 93.31 ± 3.48 2.0 ± 1.55 42.72 ± 46.97 11.77 ± 15.87
DGLOBE-CE 99.92 ± 0.0 10.89 ± 1.37 100.0 ± 0.0 7.96 ± 3.91 87.38 ± 18.69 5.96 ± 4.14 97.36 ± 0.82 2.49 ± 0.27 99.96 ± 0.05 11.07 ± 8.6
C-GLANCE 100.0 ± 0.0 4.6 ± 0.73 100.0 ± 0.0 2.34 ± 0.43 100.0 ± 0.0 1.2 ± 0.4 95.31 ± 3.15 1.25 ± 0.33 99.94 ± 0.05 11.24 ± 1.37

LR FAST ARES 11.74 ± 2.4 1.0 ± 0.0 62.5 ± 1.82 1.24 ± 0.14 10.85 ± 5.45 1.07 ± 0.13 75.27 ± 2.96 1.0 ± 0.0 9.23 ± 1.24 1.12 ± 0.1
CET NAN ± NAN NAN ± NAN 73.18 ± 4.34 1.24 ± 0.15 100.0 ± 0.0 3.79 ± 1.31 96.5 ± 2.85 2.42 ± 0.24 100.0 ± 0.0 3.57 ± 1.48
T-GLANCE 100.0 ± 0.0 0.69 ± 0.01 99.79 ± 0.22 2.19 ± 0.1 100.0 ± 0.0 1.43 ± 0.36 99.58 ± 0.83 1.54 ± 0.32 100.0 ± 0.0 1.58 ± 0.37

GROUPCF 100.0 ± 0.0 1.71 ± 0.39 100.0 ± 0.0 3.97 ± 2.38 95.4 ± 9.2 1.94 ± 1.2 97.6 ± 2.94 9.34 ± 3.85 90.6 ± 3.93 2.4 ± 1.38
GLOBE-CE 99.92 ± 0.0 2.68 ± 0.17 95.74 ± 8.52 5.14 ± 3.77 99.94 ± 0.07 3.42 ± 1.99 57.09 ± 20.03 0.75 ± 1.04 99.9 ± 0.0 0.6 ± 0.54
DGLOBE-CE 99.92 ± 0.0 5.91 ± 0.93 100.0 ± 0.0 6.71 ± 0.23 99.94 ± 0.07 10.38 ± 7.76 69.89 ± 15.35 2.47 ± 0.23 99.9 ± 0.0 1.63 ± 0.35
C-GLANCE 100.0 ± 0.0 1.04 ± 0.07 100.0 ± 0.0 2.33 ± 0.38 100.0 ± 0.0 1.05 ± 0.11 100.0 ± 0.0 1.21 ± 0.06 100.0 ± 0.0 1.55 ± 0.54

XGB FAST ARES 6.13 ± 0.42 1.0 ± 0.0 59.83 ± 3.12 1.1 ± 0.05 31.86 ± 5.12 1.05 ± 0.04 51.27 ± 1.57 1.0 ± 0.0 8.49 ± 1.32 1.16 ± 0.13
CET NAN ± NAN NAN ± NAN 58.4 ± 9.3 1.06 ± 0.24 86.29 ± 9.94 4.5 ± 2.64 100.0 ± 0.0 2.73 ± 0.49 86.78 ± 6.7 12.51 ± 2.75
T-GLANCE 99.86 ± 0.14 1.8 ± 0.51 99.02 ± 0.93 2.6 ± 0.46 94.6 ± 3.13 2.75 ± 1.42 99.46 ± 1.08 1.33 ± 0.42 96.42 ± 2.45 24.85 ± 8.4

GROUPCF 96.8 ± 1.72 1.41 ± 0.54 100.0 ± 0.0 4.06 ± 2.1 95.2 ± 1.6 1.41 ± 0.64 100.0 ± 0.0 5.78 ± 4.11 78.4 ± 5.82 5.63 ± 1.93
GLOBE-CE 82.87 ± 12.14 30.1 ± 10.39 87.13 ± 11.14 9.75 ± 7.2 82.7 ± 7.26 20.82 ± 1.73 77.05 ± 11.26 1.14 ± 1.24 27.66 ± 5.06 12.52 ± 32.48
DGLOBE-CE 93.76 ± 1.98 64.76 ± 1.29 99.84 ± 0.31 12.46 ± 3.42 97.47 ± 0.82 42.58 ± 3.57 86.96 ± 9.79 2.66 ± 0.77 77.64 ± 11.51 128.0 ± 0.0
C-GLANCE 99.85 ± 0.12 5.98 ± 4.22 99.51 ± 0.46 2.96 ± 0.82 98.13 ± 1.05 3.68 ± 1.64 100.0 ± 0.0 1.06 ± 0.03 98.94 ± 0.66 19.99 ± 1.91

Appendix H presents an extensive experimental evaluation, including: additional and more de-
tailed results for s = 4; results for s = 8 for all methods and results under no size constraints
for GLOBE-CE; results utilizing different counterfactual generation methods.

Pareto Dominance. We summarize method performance by determining whether one solution dom-
inates another based on effectiveness and cost. Specifically, a solution C of s-GCE Pareto dominates
another solution C′ if it offers equal or better effectiveness and cost, and is strictly better in at least
one of these objectives. As shown in Table 2, C-GLANCE dominates other methods in 39 out of
72 cases (54%), while is dominated only once by dGLOBE-CE (in HELOC-DNN—cf. Table 1).
T-GLANCE dominates other methods in 30 out of 72 cases (41%), while it is dominated once by
Group-CF (in Default Credit-XGB) and once by CET (in German Credit-DNN). In the three cases
in which our method is dominated, the performance in terms of effectiveness is comparable. Overall,
the GLANCE methods dominate other solutions in almost half of the cases (48%) and are dominated
in only 2%.

Solution Practicality. In the prior Pareto-dominance evaluation (Table 2) we compare solutions
with optimal or near-optimal effectiveness to many solutions that exhibit unacceptable or unsatis-
factory effectiveness. These lower-performing solutions are impractical for GCE, as the goal is to
offer recourse to a large population segment. Solutions with low effectiveness fail to meet this goal,
limiting their applicability in real-world scenarios. A solution that leaves a significant percentage
of individuals without recourse undermines the very purpose of GCE, as noted by Ley et al. (2023).
It is also important to note that achieving low recourse costs is easier for smaller subpopulations,
especially those near the decision boundary, which explains the lower domination number when

Table 2: Pareto domination evaluation of solutions, for s-GCE problem with s = 4. The table reports
the rate (number of times over available comparisons) at which GLANCE methods dominate com-
petitors (listed in the DOMINATES column) and the rate at which GLANCE methods are dominated
by competitors (listed in the IS DOMINATED column).

C-GLANCE (IMPLICIT) T-GLANCE (EXPLICIT)

DOMINATES IS DOMINATED DOMINATES IS DOMINATED

FAST ARES (EXPLICIT) 1/15 0/15 1/15 0/15
CET (EXPLICIT) 6/12 0/12 5/12 1/12
GROUPCF (IMPLICIT) 9/15 0/15 6/15 1/15
GLOBE-CE (IMPLICIT) 11/15 0/15 9/15 0/15
DGLOBE-CE (IMPLICIT) 12/15 1/15 9/15 0/15

COMPETITORS (EXPLICIT) 6/27 1/27
COMPETITORS (IMPLICIT) 32/45 1/45
COMPETITORS (ALL) 39/72 1/72 30/72 2/72
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Table 3: Pareto domination evaluation of solutions, for s-GCE problem with s = 4, after applying
the eff > 80% threshold. The table reports the rate (number of times over available comparisons)
at which GLANCE methods dominate competitors (listed in the DOMINATES column) and the rate at
which GLANCE methods are dominated by competitors (listed in the IS DOMINATED column).

C-GLANCE (IMPLICIT) T-GLANCE (EXPLICIT)

DOMINATES IS DOMINATED DOMINATES IS DOMINATED

FAST ARES (EXPLICIT) 0/0 0/0 0/0 0/0
CET (EXPLICIT) 6/9 0/9 5/9 1/9
GROUPCF (IMPLICIT) 8/13 0/13 5/13 1/13
GLOBE-CE (IMPLICIT) 8/10 0/10 7/10 0/10
DGLOBE-CE (IMPLICIT) 10/13 1/13 7/13 0/13

COMPETITORS (EXPLICIT) 5/9 1/9
COMPETITORS (IMPLICIT) 26/36 1/36
COMPETITORS (ALL) 32/45 1/45 24/45 2/45

comparing with explicit methods. We consider a solution to be practical if it achieves effectiveness
of at least 80%. In Table 1, we highlight the impractical solutions in red. GLANCE methods never
return impractical solutions. In contrast, all the solutions returned by Fast AReS are deemed im-
practical, while the other methods return 2–5 impractical solutions each. Table 3 summarizes the
head-to-head comparisons only when considering practical solutions. GLANCE framework domi-
nates other methods in a much larger percentage—over 62% of the cases. It remains dominated in
the same three cases, maintaining the percentage of dominated cases at a low 3%.

Explicit-Implicit Evaluation. When evaluating our methods within their respective explicit or im-
plicit categories, C-GLANCE dominates other implicit methods in 71% of cases (32 out of 45),
compared to a 54% domination rate across all methods. When focusing solely on practical solu-
tions, this rate increases to 72% (26 out of 36). For T-GLANCE, the domination rate against explicit
methods is 22% (6 out of 27), lower than the 48% achieved when considering all methods. This
drop is attributed to the high number of impractical solutions provided by competing explicit meth-
ods. However, after removing impractical solutions, T-GLANCE dominates 56% of cases, slightly
higher than the 53% in head-to-head comparisons across all methods. Overall, the GLANCE frame-
work demonstrates strong performance, dominating 52% of cases within categories (69% when
considering only practical solutions) while keeping the percentage of dominated cases at a low 4%
(3% when considering only practical solutions).

Robustness. We expect methods to be robust, consistently generating highly effective and low-cost
GCEs across different data splits, which is crucial for real-world deployment. Without robustness,
recourse actions can vary significantly, undermining trust and leading to unfair outcomes, especially
in critical areas like healthcare or finance. Evaluating the stability of effectiveness and cost metrics
across different folds is key to determining the practical applicability of a counterfactual explanation
method. Standard deviation measures this stability. An effectiveness deviation above 5% indicates
an inconsistency in providing recourse, while a cost deviation exceeding half the average suggests
unpredictable, impractical actions. These fluctuations make a solution unreliable and we highlight
them in red in Table 1. Figure 3 visualizes Table’s 1 results, i.e., the effectiveness of each solution
vs. the cost (scaled to 0–1 values), along with their standard deviation. This figure provides a
clear comparison of the trade-offs between cost and effectiveness, underscoring the robustness and
consistency of the methods across different scenarios.

6 CONCLUSION

This paper introduces GLANCE, a robust and flexible framework for generating global counterfactual
explanations that effectively balances the trade-offs between effectiveness, cost, and interpretability.
An extensive experimental evaluation demonstrates that GLANCE constructs counterfactual expla-
nations that are more effective and cheaper than those produced by the state of the art under size
constraints.
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A HARDNESS

To analyze the complexity of the s-GCE problem, we suppose that the set of all actions is finite by
discretizing continuous features.
Theorem 3 (NP-hardness). The s-GCE problem is NP-hard.

Proof. We establish the NP-hardness of the s-GCE problem by reducing the well-known Max k-
Coverage problem to it.

The Max k-Coverage problem is defined as follows: Given a universe U of elements and a collection
of subsets S = {S1, S2, . . . , Sn} where each Si ⊆ U , along with an integer k, the goal is to select
at most k subsets from S such that the total number of covered elements is maximized.

To perform the reduction, we proceed by mapping each subset Si to an action ai in the s-GCE
problem:

• Actions and Subsets Correspondence: Each action ai corresponds to a subset Si of ele-
ments in U .

• Coverage Mapping: The effectiveness of an action ai in the s-GCE problem is defined as
the elements in Si.

• Ignoring Costs: We ignore the cost associated with actions in the s-GCE problem, focus-
ing solely on coverage.

Under this mapping, the objective of selecting at most k actions in the s-GCE problem to maximize
the coverage of elements aligns exactly with the objective of the Max k-Coverage problem.

Given that even the relaxed version of the s-GCE problem that ignores costs is NP-hard, identify-
ing the optimal solution for the s-GCE is computationally infeasible. Moreover, the action space,
although finite, may be too large to process efficiently. Therefore, our approach involves generating
a manageable subset A′ ⊆ A of actions before extracting the final s actions. In the next section, we
will introduce C-GLANCE, an efficient heuristic designed to solve the s-GCE problem.

B SIZE-COST AND SIZE-EFFECTIVENESS TRADE-OFFS

Let C be a set of actions. Let a new action a and the C′ = C ∪ {a}. We analyze how increasing the
size (size) of the solution, impacts the effectiveness (eff) and the average cost (avc).

Case 1 The new action does not flip any new instances.
In this scenario, the effectiveness remains the same.

• If the new action is cheaper than the current actions:
Some instances already receiving recourse from the current actions may now be ad-
dressed by the cheaper new action, reducing the average cost.

• If the new action is costlier than the current actions:
The current actions will continue to provide recourse for the instances they already
cover, leaving the average cost unchanged.

Case 2 The new action flips new instances.
In this scenario, the effectiveness increases, as more instances now receive recourse.

• If the cost of the new action is lower than the current average cost:
The new action provides recourse for additional instances at a lower cost, thereby
reducing the average cost.

• If the cost of the new action is higher than the current average cost:
The inclusion of the new action raises the average cost, as the costlier new instances
contribute positively to the total, increasing the average cost.

13
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This analysis highlights the trade-offs between size, effectiveness, and cost, emphasizing the im-
portance of carefully selecting new actions to achieve a desirable balance. Notably, achieving near-
optimal effectiveness (close to 100%) often requires adding actions that address outliers, which may
have higher costs. However, one of the strengths of our method is its ability to achieve near-optimal
effectiveness with relatively low average costs across most datasets.

C TIME COMPLEXITY ANALYSIS

Let n be the number of instances, k the initial number of clusters, s the number of global counter-
factual actions, m the number of candidate actions to generate, and d the number of features. Let
TCF (d,model) be the time of generating a single candidate counterfactual action and Tmodel be the
prediction time of the black-box model.

C.1 C-GLANCE

Let’s assume that k-means is used for the clustering and Iterations are the number of iterations
required for convergence. Then C-GLANCE time complexity is:

• Clustering (K-means): O(n · k · d · Iterations)
• Action Generation: O(k ·m · TCF (d,model))

• Merging Clusters: O
(
(k − s) · k2 · d+ (k − s) ·

(
n · d+m · (k − s) · d

))
– Finding pair of closest clusters:

* For one iteration: O(k2 · d)
* For all iterations: O((k − s) · k2 · d)

– Merging pair of closest clusters:
* For one iteration: O

(
n · d+m · (k − s) · d

)
* For all iterations: O

(
(k − s) · n · d+m · (k − s) · d

)
• Evaluation and selection of final actions: O(m · k · n · d+ n · Tmodel)

After simplifying common terms, the total complexity is:

O
(
n · k · d · Iterations + k ·m · TCF (d,model) + d · (k − s) · k2 + n · k ·m · (d+ Tmodel)

)

C.2 T-GLANCE

Let d′ ≤ d be the number of the selected features.

• Initial action assignment (root): O
(
m
(
TCF (d,model) + n · d+ n · Tmodel

))
• Tree construction: O

(
2d

′ · d′ ·m ·
(
n · (d+ Tmodel) + TCF (d,model)

))
– Search-and-split a single node: O

(
d′ ·m ·

(
n · (d+ Tmodel) + TCF (d,model)

))
* Brief Explanation: For every possible split, generate m actions on both children

and evaluate them. Given these, the rest (finding maximum effectiveness action,
computing V(A, i)) are much faster.

– Maximum number of nodes: O
(
2d

′
)

The total complexity is dominated of course by the tree construction term and is equal to:

O
(
2d

′
· d′ ·m ·

(
n · (d+ Tmodel) + TCF (d,model)

))

14
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D DATASETS & PREPROCESSING

We use five publicly available datasets as benchmarks. Our choice is based on their established use
in previous works. Table 4 summarizes the datasets’ information, including the number of instances,
the number of categorical and continuous features, the input dimensions (i.e., the number of con-
tinuous features plus the number of categorical after a preprocessing step using one-hot-encoding),
and the number of instances used for training and testing, evaluated using a 5-fold cross-validation
strategy. This approach illustrates the resilience of our method across various splits.

The dataset preprocessing follows the approach in Ley et al. (2023), using the publicly available
repository at https://github.com/danwley/GLOBE-CE/. For completeness, we also pro-
vide a short description of each dataset below.

Adult The Adult dataset (also known as “Census Income” dataset) is designed for the task of pre-
dicting whether an individual’s income exceeds $ 50K/yr, based on census data. The data as well as
more detailed information can be obtained at https://archive.ics.uci.edu/dataset/
2/adult.

For the preprocessing of this dataset, we first drop the “education-num” feature due to redundancy
with the “education” feature (which takes on string values). Next, we remove missing values and
map the class labels ‘<=50K’ and ‘>50K’ to 0 and 1, respectively. Additional minor transforma-
tions, mostly involving data types, are applied and can be reviewed in our source code.

COMPAS The COMPAS dataset (Correctional Offender Management Profiling for Alterna-
tive Sanctions) Angwin et al. (2016) is available at https://github.com/propublica/
compas-analysis/blob/master/compas-scores-two-years.csv. Detailed de-
scription and information on the dataset can be found at https://www.propublica.org/
article/how-we-analyzed-the-compas-recidivism-algorithm. It categorizes
recidivism risk based on several factors, including race.

For the preprocessing of this dataset, we drop the “days b screening arrest” feature, as it contains
missing values. We also turn jail-in and jail-out dates to durations and turn negative durations to
0. Some additional filters are taken from the COMPAS analysis by ProPublica. Finally, the target
variable’s values are transformed into the canonical 0 for the negative class and 1 for the positive
class.

German Credit The German Credit dataset Dua & Graff (2019) classifies people described
by a set of attributes as good or bad credit risks. A detailed description and the dataset can
be found in https://archive.ics.uci.edu/ml/datasets/statlog+(german+
credit+data).

The only preprocessing step we performed for this dataset was the transformation of the target
variable’s values into 0 - 1.

Default Credit The Default Credit dataset Yeh & Lien (2009) is designed to classify the risk
of default on customer payments, aiming to support the development and assessment of models
for predicting creditworthiness and the likelihood of loan default. It can be obtained at https:
//archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients.

To properly work with this dataset, we needed to drop the “ID” feature, since it holds no useful
information, and transform the target labels into the canonical 0 - 1 values.

HELOC The HELOC (Home Equity Line of Credit) dataset Brown et al. (2018) contains
anonymized information about home equity line of credit applications made by real home-
owners, classifying credit risk. It is available at https://community.fico.com/s/
explainable-machine-learning-challenge. All the features on this dataset are nu-
meric.

A substantial percentage of these features’ values are missing, so the main preprocessing step we
performed here was to remove rows where all values are missing, and then replace all remaining
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missing values with the median of the respective feature. Other than that, we only needed to trans-
form target labels to 0-1.

Table 4: Summary of the datasets used in our experiments. Specifically, we list the number of
instances, input dimensions (i.e., the number of continuous features plus the number of categori-
cal after the one-hot-encoding preprocessing step performed internally by the models), the number
of categorical and continuous features, and the number of instances used for training and testing,
evaluated using a 5-fold cross-validation strategy.

DATASET NO. INSTANCES INPUT DIM. CATEGORICAL CONTINUOUS TRAIN TEST

ADULT 30161 102 8 5 24128 6033
COMPAS 6172 15 4 2 4937 1235
DEFAULT CREDIT 30000 91 9 14 24000 6000
GERMAN CREDIT 1000 71 17 3 800 200
HELOC 9871 23 0 23 7896 1975

E MODELS AND HYPERPARAMETERS

In our experimental evaluation, we utilize three distinct models: XGBoost (XGB), Logistic Regres-
sion (LR), and Deep Neural Networks (DNNs). Following Ley et al. (2023), we maintain an 80:20
train-test split, but, instead of splitting once, we perform 5-fold cross-validation, using each fold as
a test set while training on the remaining four. The distinctive hyperparameters for each model are
described in detail in this section. Additionally, we showcase the performance metric (accuracy),
with all reported accuracies presented as the mean and standard deviation across the folds, providing
a standardized foundation for comparative analysis of our methodologies.

XGBoost (XGB) Implementation from the common xgboost1 library. Hyperparameter values
for each dataset and the model’s accuracy on the test set are shown in table 5.

Table 5: XGBoost Hyperparameter Configurations.

DATASET DEPTH ESTIMATORS γ, α, λ TEST ACCURACY

ADULT 6 100 0,0,1 86.62% ± 0.18%
COMPAS 4 100 1,0,1 67.95% ± 1.73%
DEFAULT CREDIT 10 200 2,4,1 81.35% ± 0.18%
GERMAN CREDIT 6 500 0,0,1 76.9% ± 0.86%
HELOC 6 100 4,4,1 72.97% ± 1.14%

Logistic Regression (LR) Implementation from the common sklearn2 library. Hyperparameter
values for each dataset and the model’s accuracy on the test set are shown in table 6.

Table 6: Logistic Regression Hyperparameter Configurations.

DATASET MAX ITER. CLASS WEIGHTS(0:1) TEST ACCURACY

ADULT 100 1:1 79.09% ± 0.12%
COMPAS 1000 1:1 66.69% ± 0.97%
DEFAULT CREDIT 1000 1:1 82.08% ± 0.19%
GERMAN CREDIT 1000 1:1 74.80% ± 1.91%
HELOC 3000 1:1 73.06% ± 0.96%

Deep Neural Network (DNN) Implementation using pytorch3 library. Hyperparameter values
for each dataset and the model’s accuracy on the test set are shown in table 7.

1https://xgboost.readthedocs.io/en/stable/
2https://scikit-learn.org/stable/modules/generated/sklearn.linear_

model.LogisticRegression.html
3https://pytorch.org/docs/stable/index.html
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Table 7: Deep Neural Network Hyperparameter Configurations.

DATASET HIDDEN LAYERS WIDTH TEST ACCURACY

ADULT [64, 32, 16] 84.13% ± 0.30%
COMPAS [64, 32, 16] 66.98% ± 1.27%
DEFAULT CREDIT [64, 32, 16, 8] 81.37% ± 0.13%
GERMAN CREDIT [8, 4] 71.3% ± 2.27%
HELOC [64, 32, 16, 8] 70.97% ± 0.54%

F COMPETING METHODS

GLOBE-CE. The GLOBE-CE method, introduced by Ley et al. (2023) was executed based on the
implementation available on their GitHub (https://github.com/danwley/GLOBE-CE).

Table 8: GLOBE-CE results without constraining the action set size

MODELS DATASETS

ADULT COMPAS DEFAULT CREDIT GERMAN CREDIT HELOC
eff avc size eff avc size eff avc size eff avc size eff avc size

DNN 100.0 ± 0.0 1.24 ± 0.06 322.4 100.0 ± 0.0 1.11 ± 0.6 186.2 98.9 ± 0.73 1.1 ± 0.04 18.4 95.69 ± 2.42 1.12 ± 0.09 4.2 84.32 ± 19.32 2.63 ± 1.03 224.8
LR 100.0 ± 0.0 1.2± 0.03 545.2 98.92 ± 8.52 1.41 ± 0.19 97.8 99.94 ± 0.07 1.08 ± 0.01 4.6 71.29 ± 14.27 1.05 ± 0.09 1.5 100.00 ± 0.0 0.44 ± 0.06 512.8
XGB 93.76 ± 0.91 4.28 ± 4.46 46.8 92.34 ± 8.87 1.22 ± 0.27 42.6 94.62 ± 2.85 1.05 ± 0.28 40.6 84.97 ± 10.46 1.17 ± 0.15 2.2 30.32 ± 4.07 2.11 ± 0.47 17

Additional results of GLOBE-CE can be found in Table 8. Here we do not constrain the set of
actions and we observe better performance, especially in terms of cost. However, these solutions do
not represent solutions for s-GCE problem, since the solution size can be up to an average of 545.2
actions using 5-fold cross-validation (in Adult-LR case).

dGLOBE-CE. The dGLOBE-CE method, introduced by Ley et al. (2023), was executed based on
the implementation available on their GitHub repository (https://github.com/danwley/
GLOBE-CE).

AReS. The AReS method, first introduced by Rawal & Lakkaraju (2020), was executed using the
enhanced Fast AReS version implemented by Ley et al. (2023). The code for this version was also
obtained from the same GitHub repository (https://github.com/danwley/GLOBE-CE).
We used the default hyperparameters provided in this implementation.

GroupCF. The GroupCF method, introduced by Warren et al. (2023), was implemented using
custom code due to some ambiguity in the instructions provided in the original GitHub repository
(https://github.com/e-delaney/group_cfe), which made the original implementa-
tion challenging to follow.

CET. The CET method, introduced by Kanamori et al. (2022), was executed using the original
implementation available on GitHub (https://github.com/kelicht/cet). We had to re-
place the solver they used for the MIP solved at each node of their tree. IBM CPLEX solver is
proprietary and we replaced it with the GUROBI solver, for which we had an available license. We
used the default hyperparameters provided in this implementation.

G CANDIDATE COUNTERFACTUAL ACTION GENERATORS

In this section, we outline the methods used to generate candidate counterfactual explanations and
present comparative results employing different generation methods. To demonstrate the modularity
of our framework, we developed and utilized various methods, showing that our approach is not tied
to a specific counterfactual generation technique. The comparative results of these experiments are
shown in Tables 13 and 14. For the results in Table 1 of the main paper and Table 10, DiCE (Mothilal
et al., 2020) was used to generate candidate counterfactuals.
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G.1 DICE

Detailed information on its methodology can be found in the corresponding paper by Mothilal et al.
(2020), and we encourage interested readers to refer to it for a deeper understanding.

For the scope of this paper, it suffices to say that DiCE offers a number of alternative algorithms
for finding local counterfactuals. In our experiments, we use the ‘random’ algorithm, which selects
features to change at random and tests whether the change results in a successful counterfactual.

The other algorithms were either unsuitable for a black-box setting (e.g., requiring gradients), com-
putationally inefficient (e.g., genetic algorithm), or failed to generate cost-efficient counterfactual
(e.g., KDTree) during our initial experimentation.

G.2 RANDOM SAMPLING

We developed a method called ‘Random Sampling’. To find counterfactuals for an affected instance,
this method iteratively modifies its features one at a time. The process begins by randomly altering
one feature at a time, generating multiple new candidate instances. Each modified instance is then
evaluated by querying the black-box model to determine whether it qualifies as a valid counterfac-
tual. The method proceeds to modify additional features, building a set of potential counterfactuals.

Key differences between our method and DiCE’s random approach include:

1. We focus on modifying only the top kf most important features (using permutation feature
importance), set to 3 in all experiments.

2. For categorical features, only the top kc most frequent categories among unaffected indi-
viduals are considered replacement candidates (set to 10 for all experiments).

3. We also introduce vectorization in certain operations, improving computational efficiency
over DiCE’s implementation.

G.3 NEAREST NEIGHBORS

This method is implemented by storing all unaffected individuals in memory. When queried to
provide k counterfactuals for an affected individual, it retrieves the k nearest neighbors from the set
of unaffected instances based on their proximity to the affected individual. This approach ensures
that the generated counterfactuals are valid and closely aligned with the original instance, improving
the relevance of the recommendations.

G.4 NEAREST NEIGHBORS SCALED

This algorithm closely resembles the ‘Nearest Neighbors’ one but introduces a key enhancement.
Rather than returning the k nearest neighbors, it performs a localized search along the multidimen-
sional line connecting the affected individual and any neighbor. We sample points along this line
segment, and if any are classified as positive by the model, they are returned instead, as they are
closer to the affected instance, potentially offering a more cost-efficient recourse.

H EXPERIMENTAL RESULTS

H.1 EXPERIMENTAL PROCEDURE

We evaluate our algorithms by comparing them with the following methods: Fast AReS by Ley
et al. (2022), CET by Kanamori et al. (2022), GroupCF by Warren et al. (2023), GLOBE-CE and
dGLOBE-CE by Ley et al. (2023).

All of the methods are constrained to solve s-GCE problem, with s = 4 and s = 8. These constraints
are applied differently depending on the method. In C-GLANCE and GroupCF, we configure the
resulting number clusters to match the target sizes. GLOBE-CE is constrained by a maximum of 4
or 8 scalars, while dGLOBE-CE is limited to 4 or 8 directions, with up to two scalars per direction.
Lastly, T-GLANCE and CET are constrained with a maximum of 4 or 8 leaves.
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In the main paper, we present summarized results for s = 4 in Table 1, with complementary results
for s = 8 in Table 10 of the following section. The summarized results include the effectiveness
and cost of each solution for all the dataset and model combinations. In Tables 15 to 19, we provide
detailed results for each model, adding runtime and the number of actions per dataset and method
alongside effectiveness and cost.

H.2 EXPERIMENTS FOR EFFECTIVENESS-COST TRADE-OFFS

As shown in Table 1, our methods significantly outperform CET and Fast AReS in terms of effec-
tiveness. Fast AReS fails to exceed 80% effectiveness in any case, and CET achieves near-optimal
effectiveness in less than half the cases, sometimes failing to find a solution altogether. These low ef-
fectiveness levels make fair comparisons challenging, as solving for a small subset of the population
is inherently easier.

To address this challenge, we demonstrate in Table 9 that by intentionally lowering our solutions’
effectiveness and selecting cost-efficient actions, our approach can still dominate other methods,
achieving both greater effectiveness and lower cost. This adaptability underscores the strength of
our methodology in maintaining superior performance even when optimizing for different trade-offs.

Our algorithm’s default strategy selects optimal solutions based on maximum effectiveness. How-
ever, it also supports alternative strategies, such as selecting the lowest-cost solution, the lowest-cost
solution above a specified effectiveness threshold, or the most effective solution below a specified
cost. For the experiments presented Table 9, we used the “lowest cost above a certain effectiveness
threshold” strategy in C-GLANCE, setting thresholds based on the effectiveness levels achieved by
other methods. This flexibility highlights the algorithm’s ability to align with various evaluation
scenarios and user-defined trade-offs.
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Figure 3: Comparison of effectiveness and average cost, normalized with the maximum cost
achieved in each dataset/model combination) for the solution of s-GCE with s = 4. Standard
deviations are represented by error bars. The red horizontal lines represent the eff > 80% threshold
for evaluating the practicality of the solutions.
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Table 9: Experiments when C-GLANCE effectiveness is intentionally reduced (provided as thresh-
old) to find dominating solutions toward the lower-effectiveness solutions of other methods.

MODELS CSOMPETITORS DATASETS

ADULT DEFAULT CREDIT HELOC
COMPETITOR eff COMPETITOR avc C-GLANCE eff C-GLANCE avc COMPETITOR eff COMPETITOR avc C-GLANCE eff C-GLANCE avc COMPETITOR eff COMPETITOR avc C-GLANCE eff C-GLANCE avc

DNN FAST ARES 12.39 ± 1.06 1.0 ± 0.0 26.59 ± 10.5 0.66 ± 0.23 18.88 ± 2.16 1.0 ± 0.0 21.54 ± 4.11 0.3 ± 0.1 12.19 ± 0.58 1.03 ± 0.05 21.32 ± 5.13 0.11 ± 0.11
CET NAN NAN NAN NAN 98.87 ± 0.62 6.32 ± 2.28 99.83 ± 0.1 0.82 ± 0.04 86.78 ± 10.62 8.67 ± 3.25 92.67 ± 4.69 3.52 ± 1.09
GROUPCF 100.0 ± 0.0 10.08 ± 0.03 100.0 ± 0.0 1.73 ± 0.06 79.6 ± 20.79 1.53 ± 0.62 81.44 ± 2.18 0.8 ± 0.08 80.4 ± 10.17 3.09 ± 0.91 82.31 ± 1.81 3.09 ± 0.9
GLOBE-CE 99.92 ± 0.0 4.24 ± 0.42 99.96 ± 0.01 1.71 ± 0.05 76.94 ± 37.55 5.14 ± 0.35 81.44 ± 2.18 0.8 ± 0.08 42.72 ± 46.97 11.77 ± 15.87 45.49 ± 2.1 1.19 ± 0.71
DGLOBE-CE 99.92 ± 0.0 10.89 ± 1.37 99.96 ± 0.01 1.71 ± 0.05 87.38 ± 18.69 5.96 ± 4.14 91.22 ± 3.87 0.81 ± 0.07 99.96 ± 0.05 11.07 ± 8.6 100.0 ± 0.0 4.22 ± 1.10

LR FAST ARES 11.74 ± 2.4 1.0 ± 0.0 57.91 ± 24.77 0.63 ± 0.26 10.85 ± 5.45 1.07 ± 0.13 65.14 ± 15.62 0.55 ± 0.11 9.23 ± 1.24 1.12 ± 0.1 71.55 ± 3.72 0.43 ± 0.04
CET NAN NAN NAN NAN 100.0 ± 0.0 3.79 ± 1.31 100.0 ± 0.0 0.73 ± 0.07 100.0 ± 0.0 3.57 ± 1.48 100.0 ± 0.0 0.72 ± 0.11
GROUPCF 100.0 ± 0.0 1.71 ± 0.39 100.0 ± 0.0 0.78 ± 0.06 95.4 ± 9.2 1.94 ± 1.2 99.05 ± 0.38 0.71 ± 0.07 90.6 ± 3.93 2.4 ± 1.38 95.18 ± 1.75 0.6 ± 0.08
GLOBE-CE 99.92 ± 0.0 2.68 ± 0.17 99.96 ± 0.02 0.78 ± 0.06 99.94 ± 0.07 3.42 ± 1.99 100.0 ± 0.0 0.73 ± 0.07 99.9 ± 0.0 0.6 ± 0.54 99.92 ± 0.04 0.7 ± 0.11
DGLOBE-CE 99.92 ± 0.0 5.91 ± 0.93 99.96 ± 0.02 0.78 ± 0.06 99.94 ± 0.07 10.38 ± 7.76 100.0 ± 0.0 0.73 ± 0.07 99.9 ± 0.0 1.63 ± 0.35 99.92 ± 0.04 0.7 ± 0.11

XGB FAST ARES 6.13 ± 0.42 1.0 ± 0.0 31.16 ± 8.02 0.66 ± 0.13 31.86 ± 5.12 1.05 ± 0.04 40.03 ± 7.82 0.13 ± 0.04 8.49 ± 1.32 1.16 ± 0.13 9.66 ± 1.12 0.4 ± 0.05
CET NAN NAN NAN NAN 86.29 ± 9.94 4.5 ± 2.64 89.31 ± 2.77 0.73 ± 0.06 86.78 ± 6.7 12.51 ± 2.75 90.72 ± 3.35 11.53 ± 2.94
GROUPCF 96.8 ± 1.72 1.41 ± 0.54 97.16 ± 0.41 0.81 ± 0.02 95.2 ± 1.6 1.41 ± 0.64 95.73 ± 0.18 1.01 ± 0.05 78.4 ± 5.82 5.63 ± 1.93 82.46 ± 6.55 8.45 ± 3.1
GLOBE-CE 82.87 ± 12.14 30.1 ± 10.39 94.04 ± 0.46 0.77 ± 0.01 82.7 ± 7.26 20.82 ± 1.73 83.77 ± 0.84 0.63 ± 0.08 27.66 ± 5.06 12.52 ± 32.48 28.64 ± 0.99 0.85 ± 0.19
DGLOBE-CE 93.76 ± 1.98 64.76 ± 1.29 94.04 ± 0.46 0.77 ± 0.01 97.47 ± 0.82 42.58 ± 3.57 97.64 ± 0.12 1.37 ± 0.25 77.64 ± 11.51 128.0 ± 0.0 82.46 ± 6.55 8.45 ± 3.1

H.3 RESULTS FOR S = 8

Table 10 presents the comparison of our methods, C-GLANCE and T-GLANCE, with other state-of-
the-art methods for a maximum of 8 actions. We distinguish the results of the explicit (T-GLANCE,
Fast AReS, CET) and implicit (C-GLANCE,Group-CF, GLOBE-CE, and dGLOBE-CE), how-
ever each of our methods can be compared to all competitor GCE methods, regardless of being
implicit or explicit. The results indicate that C-GLANCE and T-GLANCE demonstrate superior per-
formance in most cases, achieving nearly 100% effectiveness with minimal and stable costs across
all datasets and models. Exceptions are noted in the HELOC DNN and XGB experiments, where
all methods report higher costs due to the dataset’s numeric-only features. In contrast, Fast AReS
struggles significantly, particularly on the Adult dataset, showing effectiveness as low as 13.8% for
DNN, 12.51% for LR, and 7.19% for XGB, explaining its lower costs. Other methods, such as
GroupCF, CET, GLOBE-CE, and dGLOBE-CE, generally perform well in terms of effectiveness
but in almost all cases incur higher costs compared to C-GLANCE and T-GLANCE.

Table 10: Evaluating the effectiveness and average cost of T-GLANCE against explicit (Fast
AReS, CET) and C-GLANCE against implicit (Group-CF, GLOBE-CE, and dGLOBE-CE) GCE
methods for s-GCE problem with s = 8. GCE solutions with effectiveness below 80% are high-
lighted in red. Non-robust GCEs, identified by either a standard deviation (std) in effectiveness
greater than 5% across folds or a std in cost greater than half the average cost, are highlighted in
blue.

MODELS ALGORITHMS DATASETS

ADULT COMPAS DEFAULT CREDIT GERMAN CREDIT HELOC
eff avc eff avc eff avc eff avc eff avc

DNN FAST ARES 13.8 ± 0.92 1.0 ± 0.0 63.02 ± 1.58 1.11 ± 0.04 23.75 ± 1.81 1.02 ± 0.03 65.47 ± 2.2 1.0 ± 0.0 15.44 ± 1.91 1.05 ± 0.06
CET NAN ± NAN NAN ± NAN 74.66 ± 5.33 1.02 ± 0.07 98.53 ± 2.11 3.68 ± 1.46 100.0 ± 0.0 1.27 ± 0.37 99.36 ± 0.92 8.86 ± 2.99
T-GLANCE 100.0 ± 0.0 3.77 ± 0.27 99.65 ± 0.15 2.18 ± 0.15 100.0 ± 0.0 1.25 ± 0.38 96.65 ± 4.08 0.94 ± 0.3 99.78 ± 0.21 9.92 ± 1.83

GROUPCF 100.0 ± 0.0 11.54 ± 2.98 100.0 ± 0.0 5.65 ± 3.14 84.8 ± 13.23 2.15 ± 0.98 99.6 ± 0.8 2.49 ± 0.82 84.8 ± 12.32 1.98 ± 0.5
GLOBE-CE 100.0 ± 0.0 2.54 ± 0.14 100.0 ± 0.0 4.31 ± 2.84 93.25 ± 11.26 2.73 ± 0.85 95.37 ± 2.9 1.89 ± 0.38 45.49 ± 44.72 14.19 ± 14.14
DGLOBE-CE 100.0 ± 0.0 11.85 ± 1.53 100.0 ± 0.0 7.28 ± 1.25 99.95 ± 0.04 6.77 ± 3.67 98.09 ± 1.72 2.34 ± 0.17 100.0 ± 0.0 6.65 ± 0.15
C-GLANCE 100.0 ± 0.0 3.96 ± 0.56 100.0 ± 0.0 1.77 ± 0.16 100.0 ± 0.0 1.2 ± 0.4 96.43 ± 3.6 0.86 ± 0.18 99.98 ± 0.04 9.42 ± 2.22

LR FAST ARES 12.51 ± 2.44 1.0 ± 0.0 68.19 ± 0.6 1.03 ± 0.01 11.67 ± 6.18 1.04 ± 0.08 71.9 ± 2.65 1.0 ± 0.0 10.95 ± 1.73 1.11 ± 0.07
CET NAN ± NAN NAN ± NAN 82.51 ± 2.97 1.51 ± 0.23 100.0 ± 0.0 2.0 ± 1.36 98.75 ± 1.67 2.02 ± 0.33 100.0 ± 0.0 2.99 ± 1.3
T-GLANCE 100.0 ± 0.0 0.79 ± 0.16 99.71 ± 0.16 1.94 ± 0.11 100.0 ± 0.0 1.13 ± 0.18 99.55 ± 0.91 1.34 ± 0.22 100.0 ± 0.0 1.52 ± 0.32

GROUPCF 100.0 ± 0.0 2.33 ± 1.91 100.0 ± 0.0 4.67 ± 2.29 100.0 ± 0.0 3.98 ± 2.86 98.9 ± 1.65 10.56 ± 2.43 96.6 ± 1.96 1.98 ± 0.5
GLOBE-CE 100.0 ± 0.0 1.67 ± 0.11 97.74 ± 8.52 5.22 ± 3.3 99.94 ± 0.07 2.24 ± 0.98 58.42 ± 18.45 2.25 ± 0.33 99.9 ± 0.0 0.58 ± 0.5
DGLOBE-CE 100.0 ± 0.0 6.12 ± 0.64 100.0 ± 0.0 6.71 ± 0.23 99.94 ± 0.07 10.38 ± 7.76 69.89 ± 15.35 2.47 ± 0.23 99.9 ± 0.0 1.63 ± 0.35
C-GLANCE 100.0 ± 0.0 1.03 ± 0.07 100.0 ± 0.0 1.69 ± 0.06 100.0 ± 0.0 1.05 ± 0.11 100.0 ± 0.0 1.18 ± 0.05 100.0 ± 0.0 1.2 ± 0.12

XGB FAST ARES 7.19 ± 0.3 1.0 ± 0.0 66.07 ± 2.5 1.14 ± 0.1 36.88 ± 5.46 1.07 ± 0.06 68.88 ± 1.27 1.0 ± 0.0 11.22 ± 2.05 1.09 ± 0.09
CET NAN ± NAN NAN ± NAN 68.62 ± 15.67 1.3 ± 0.52 90.01 ± 10.44 2.61 ± 1.06 100.0 ± 0.0 2.18 ± 0.37 90.25 ± 2.51 12.99 ± 3.49
T-GLANCE 99.94 ± 0.04 1.65 ± 0.39 99.39 ± 0.26 2.41 ± 0.4 94.1 ± 3.57 1.85 ± 0.16 99.46 ± 1.08 1.07 ± 0.16 98.25 ± 1.85 18.75 ± 4.92

GROUPCF 99.4 ± 1.2 1.88 ± 1.36 100.0 ± 0.0 4.08 ± 2.15 97.8 ± 0.75 1.92 ± 1.33 100.0 ± 0.0 4.05 ± 2.55 81.4 ± 4.22 5.14 ± 1.46
GLOBE-CE 85.76 ± 9.11 13.48 ± 4.71 89.17 ± 11.09 9.78 ± 6.35 84.94 ± 6.59 11.21 ± 1.29 80.25 ± 9.62 2.51 ± 0.33 28.88 ± 4.71 12.51 ± 30.88
DGLOBE-CE 94.38 ± 2.01 62.37 ± 3.07 99.96 ± 0.08 9.17 ± 2.01 99.08 ± 0.66 28.73 ± 9.8 88.17 ± 8.2 2.64 ± 0.78 81.95 ± 10.38 128.0 ± 0.0
C-GLANCE 99.87 ± 0.09 3.85 ± 2.33 99.83 ± 0.24 2.06 ± 0.46 98.87 ± 0.59 2.14 ± 0.18 100.0 ± 0.0 1.02 ± 0.04 99.0 ± 0.55 16.65 ± 2.44

We repeat the experimental evaluation utilizing Pareto-dominance, now for s = 8. As shown in Ta-
ble 11 C-GLANCE dominates other methods in 39 out of 72 cases (54%) while is dominated once by
GLOBE-CE (in Adult-DNN—cf. Table 10) and once by dGLOBE-CE (in Heloc-DNN). T-GLANCE
dominates other methods in 34 out of 72 comparisons, and is dominated one by Group-CF (in
Default Credit-XGB) and once by CET (in German Credit-DNN). Overall, the GLANCE methods
dominate other solutions in almost half of the cases (48%) and are dominated in only 3%.

Table 12 summarizes the head-to-head comparisons only when considering practical solutions.
GLANCE framework dominates other methods in a much larger percentage—over 62% of the cases.
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Figure 4: Comparison of effectiveness and average cost, normalized with the maximum cost
achieved in each dataset/model combination) for the solution of s-GCE with s = 8. Standard
deviations are represented by error bars. The red horizontal lines represent the eff > 80% threshold
for evaluating the practicality of the solution.

Table 11: Pareto domination evaluation of solutions, for s-GCE problem with s = 8. This table
reports the rate (number of times over available comparisons) at which GLANCE methods domi-
nate competitors (listed in the DOMINATES column) and the rate at which GLANCE methods are
dominated by competitors (listed in the IS DOMINATED column).

C-CLANCE (IMPLICIT) T-CLANCE (EXPLICIT)

DOMINATES IS DOMINATED DOMINATES IS DOMINATED

FAST ARES (EXPLICIT) 1/15 0/15 2/15 0/15
CET (EXPLICIT) 6/12 0/12 5/12 0/12
GROUPCF (IMPLICIT) 9/15 0/15 7/15 0/15
GLOBE-CE (IMPLICIT) 12/15 1/15 11/15 1/15
DGLOBE-CE (IMPLICIT) 11/15 1/15 9/15 1/15

COMPETITORS (EXPLICIT) 7/27 0/27
COMPETITORS (IMPLICIT) 32/45 2/45
COMPETITORS (ALL) 39/72 2/72 34/72 2/72

Table 12: Pareto domination evaluation of solutions, for s-GCE problem with s = 8, after applying
the eff > 80% threshold. This table reports the rate (number of times over available comparisons)
at which GLANCE methods dominate competitors (listed in the DOMINATES column) and the rate at
which GLANCE methods are dominated by competitors (listed in the IS DOMINATED column).

C-CLANCE (IMPLICIT) T-CLANCE (EXPLICIT)

DOMINATES IS DOMINATED DOMINATES IS DOMINATED

FAST ARES (EXPLICIT) 0/0 0/0 0/0 0/0
CET (EXPLICIT) 6/10 0/10 5/10 0/10
GROUPCF (IMPLICIT) 9/15 0/15 7/15 0/15
GLOBE-CE (IMPLICIT) 10/12 1/12 9/12 1/12
DGLOBE-CE (IMPLICIT) 10/14 1/14 8/14 1/14

COMPETITORS (EXPLICIT) 5/10 0/10
COMPETITORS (IMPLICIT) 29/41 2/41
COMPETITORS (ALL) 35/51 2/51 29/51 2/51
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It remains dominated in the same four cases, maintaining the percentage of dominated cases at a low
4%.

Finally, when considering only implicit methods, C-GLANCE dominates competitor methods in
71% of cases (32 out of 45), compared to a 54% domination rate across all methods. When focusing
solely on practical solutions, this rate stays the same at 71 % (29 out of 41). For T-GLANCE, the
domination rate against explicit methods is 26% (7 out of 27), lower than the 47% achieved when
considering all methods. This drop is attributed to the high number of impractical solutions provided
by competing explicit methods. However, after removing impractical solutions, T-GLANCE domi-
nates 50% of cases, lower than the 57% in head-to-head comparisons across all methods. Overall,
the GLANCE framework demonstrates strong performance, dominating 54% of cases within cate-
gories (67% of cases when considering only practical solutions) while keeping the percentage of
dominated cases at a low 2% (4% when considering only practical solutions).

H.4 COMPERATIVE EVALUATION WITH DIFFERENT COUNTERFACTUAL GENERATION
METHODS

Table 13: Evaluation of the effectiveness and cost of C-GLANCE and T-GLANCE, utilizing different
candidate action generation methods for s-GCE when s = 4. The best metrics are shown in bold.

MODELS ALGORITHMS DATASETS

ADULT COMPAS DEFAULT CREDIT GERMAN CREDIT HELOC
eff avc eff avc eff avc eff avc eff avc

DNN C-GLANCE - DICE 100.0 ± 0.0 4.6 ± 0.73 100.0 ± 0.0 2.34 ± 0.43 100.0 ± 0.0 1.2 ± 0.4 99.46 ± 1.08 1.22 ± 0.41 99.94 ± 0.05 11.24 ± 1.37
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.0 6.04 ± 0.35 100.0 ± 0.0 2.27 ± 0.31 100.0 ± 0.0 4.07 ± 0.08 100.0 ± 0.0 4.9 ± 0.69 99.82 ± 0.15 20.18 ± 3.28
C-GLANCE - NEARESTNEIGHBORSSCALED 99.99 ± 0.03 5.04 ± 0.51 100.0 ± 0.0 1.74 ± 0.38 100.0 ± 0.0 3.02 ± 0.58 100.0 ± 0.0 2.1 ± 0.4 99.79 ± 0.3 18.88 ± 2.11
C-GLANCE - RANDOMSAMPLING 98.01 ± 0.66 2.03 ± 0.01 100.0 ± 0.0 2.08 ± 0.21 100.0 ± 0.0 1.0 ± 0.0 99.43 ± 1.14 1.0 ± 0.2 94.02 ± 4.28 2.53 ± 1.12

T-GLANCE - DICE 100.0 ± 0.0 4.43 ± 0.43 99.53 ± 0.22 2.62 ± 0.24 100.0 ± 0.0 1.48 ± 0.43 96.97 ± 3.48 1.59 ± 0.8 99.8 ± 0.24 10.9 ± 1.22
T-GLANCE - NEARESTNEIGHBORS 99.96 ± 0.08 9.4 ± 1.65 99.52 ± 0.29 2.71 ± 0.19 99.95 ± 0.06 4.13 ± 0.38 100.0 ± 0.0 8.54 ± 1.9 93.49 ± 2.03 17.71 ± 2.06
T-GLANCE - NEARESTNEIGHBORSSCALED 99.97 ± 0.04 5.92 ± 1.06 99.88 ± 0.16 2.47 ± 0.35 99.73 ± 0.37 3.22 ± 0.32 100.0 ± 0.0 2.35 ± 0.44 95.32 ± 1.19 18.97 ± 2.08
T-GLANCE - RANDOMSAMPLING 97.57 ± 0.36 2.91 ± 0.05 99.65 ± 0.08 2.28 ± 0.4 99.97 ± 0.05 1.0 ± 0.0 99.53 ± 0.93 1.06 ± 0.46 95.9 ± 1.85 6.45 ± 1.31

LR C-GLANCE - DICE 100.0 ± 0.0 1.04 ± 0.07 100.0 ± 0.0 2.33 ± 0.38 100.0 ± 0.0 1.05 ± 0.11 100.0 ± 0.0 1.21 ± 0.06 100.0 ± 0.0 1.55 ± 0.54
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.0 3.76 ± 0.96 100.0 ± 0.0 2.53 ± 0.32 100.0 ± 0.0 1.78 ± 0.39 100.0 ± 0.0 4.21 ± 0.56 99.94 ± 0.05 21.52 ± 1.33
C-GLANCE - NEARESTNEIGHBORSSCALED 100.0 ± 0.0 3.19 ± 0.51 100.0 ± 0.0 2.14 ± 0.15 100.0 ± 0.0 1.11 ± 0.14 100.0 ± 0.0 2.02 ± 0.27 99.94 ± 0.12 20.95 ± 3.47
C-GLANCE - RANDOMSAMPLING 100.0 ± 0.0 0.72 ± 0.12 100.0 ± 0.0 2.21 ± 0.2 99.94 ± 0.12 1.0 ± 0.0 100.0 ± 0.0 1.31 ± 0.15 100.0 ± 0.0 1.4 ± 0.27

T-GLANCE - DICE 100.0 ± 0.0 0.69 ± 0.01 99.79 ± 0.22 2.19 ± 0.1 100.0 ± 0.0 1.43 ± 0.36 99.58 ± 0.83 1.54 ± 0.32 100.0 ± 0.0 1.58 ± 0.37
T-GLANCE - NEARESTNEIGHBORS 99.92 ± 0.04 3.52 ± 1.37 99.79 ± 0.22 3.51 ± 0.19 100.0 ± 0.0 2.98 ± 0.28 100.0 ± 0.0 9.66 ± 1.55 99.31 ± 0.92 19.48 ± 2.53
T-GLANCE - NEARESTNEIGHBORSSCALED 98.64 ± 1.3 2.98 ± 0.88 99.83 ± 0.15 3.45 ± 0.25 100.0 ± 0.0 2.1 ± 0.18 100.0 ± 0.0 2.14 ± 0.26 99.54 ± 0.68 18.15 ± 2.02
T-GLANCE - RANDOMSAMPLING 100.0 ± 0.0 0.71 ± 0.12 99.71 ± 0.16 2.3 ± 0.28 99.97 ± 0.06 1.04 ± 0.07 98.71 ± 1.05 1.46 ± 0.25 100.0 ± 0.0 1.57 ± 0.66

XGB C-GLANCE - DICE 99.85 ± 0.12 5.98 ± 4.22 99.51 ± 0.46 2.96 ± 0.82 98.13 ± 1.05 3.68 ± 1.64 100.0 ± 0.0 1.05 ± 0.02 98.94 ± 0.66 19.99 ± 1.91
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.01 4.53 ± 0.56 99.6 ± 0.34 2.95 ± 0.58 100.0 ± 0.0 3.8 ± 0.44 100.0 ± 0.0 3.67 ± 0.58 99.51 ± 0.42 19.3 ± 2.66
C-GLANCE - NEARESTNEIGHBORSSCALED 99.98 ± 0.03 4.12 ± 0.31 99.44 ± 0.54 3.0 ± 0.33 100.0 ± 0.0 3.09 ± 0.42 100.0 ± 0.0 1.75 ± 0.2 99.68 ± 0.13 20.92 ± 3.96
C-GLANCE - RANDOMSAMPLING 99.85 ± 0.19 2.1 ± 0.19 99.88 ± 0.16 2.83 ± 0.76 91.52 ± 4.44 2.25 ± 1.06 100.0 ± 0.0 1.14 ± 0.07 82.75 ± 5.2 9.6 ± 1.84

T-GLANCE - DICE 99.86 ± 0.14 1.8 ± 0.51 99.02 ± 0.93 2.6 ± 0.46 94.6 ± 3.13 2.75 ± 1.42 99.46 ± 1.08 1.33 ± 0.42 96.42 ± 2.45 24.85 ± 8.4
T-GLANCE - NEARESTNEIGHBORS 99.87 ± 0.22 9.44 ± 1.71 98.99 ± 0.54 3.25 ± 0.33 100.0 ± 0.0 4.35 ± 0.47 100.0 ± 0.0 7.8 ± 1.26 94.94 ± 1.91 18.4 ± 1.41
T-GLANCE - NEARESTNEIGHBORSSCALED 99.68 ± 0.25 9.04 ± 1.75 99.24 ± 0.67 3.25 ± 0.41 100.0 ± 0.0 3.93 ± 0.53 100.0 ± 0.0 2.35 ± 0.36 96.07 ± 1.85 20.39 ± 1.69
T-GLANCE - RANDOMSAMPLING 99.61 ± 0.66 2.03 ± 0.3 98.67 ± 1.0 2.53 ± 0.34 87.04 ± 7.36 2.18 ± 1.65 99.33 ± 1.33 1.23 ± 0.21 79.63 ± 7.83 8.02 ± 1.43

Table 14: Evaluation of the effectiveness and cost of C-GLANCE and T-GLANCE, utilizing different
candidate action generation methods for s-GCE when s = 8. The best metrics are shown in bold.

MODELS ALGORITHMS DATASETS

ADULT COMPAS DEFAULT CREDIT GERMAN CREDIT HELOC
eff avc eff avc eff avc eff avc eff avc

DNN C-GLANCE - DICE 100.0 ± 0.0 3.96 ± 0.56 100.0 ± 0.0 1.77 ± 0.16 100.0 ± 0.0 1.2 ± 0.4 99.46 ± 1.08 0.78 ± 0.27 99.98 ± 0.04 9.42 ± 2.22
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.01 4.99 ± 0.62 100.0 ± 0.0 1.71 ± 0.18 100.0 ± 0.0 3.84 ± 0.26 100.0 ± 0.0 3.94 ± 0.39 99.75 ± 0.26 16.07 ± 1.32
C-GLANCE - NEARESTNEIGHBORSSCALED 100.0 ± 0.0 4.44 ± 0.15 100.0 ± 0.0 1.08 ± 0.08 100.0 ± 0.0 2.5 ± 0.24 100.0 ± 0.0 1.65 ± 0.14 99.71 ± 0.15 16.17 ± 1.72
C-GLANCE - RANDOMSAMPLING 95.36 ± 3.8 2.84 ± 0.8 100.0 ± 0.0 1.74 ± 0.22 99.82 ± 0.29 1.07 ± 0.14 100.0 ± 0.0 0.7 ± 0.18 98.55 ± 0.45 10.01 ± 0.53

T-GLANCE - DICE 100.0 ± 0.0 3.77 ± 0.27 99.65 ± 0.15 2.19 ± 0.15 100.0 ± 0.0 1.25 ± 0.38 96.65 ± 4.08 0.94 ± 0.3 99.78 ± 0.21 9.42 ± 1.83
T-GLANCE - NEARESTNEIGHBORS 99.95 ± 0.08 7.71 ± 1.11 99.79 ± 0.14 2.53 ± 0.17 100.0 ± 0.0 4.18 ± 0.29 100.0 ± 0.0 7.54 ± 0.97 96.48 ± 0.9 19.11 ± 1.76
T-GLANCE - NEARESTNEIGHBORSSCALED 99.81 ± 0.16 7.56 ± 1.74 99.88 ± 0.1 2.24 ± 0.39 99.97 ± 0.05 3.47 ± 0.72 100.0 ± 0.0 2.11 ± 0.57 97.48 ± 0.89 20.98 ± 1.93
T-GLANCE - RANDOMSAMPLING 96.76 ± 0.39 2.87 ± 0.06 99.58 ± 0.22 2.18 ± 0.45 100.0 ± 0.0 1.16 ± 0.31 100.0 ± 0.0 0.86 ± 0.38 96.76 ± 4.58 7.7 ± 2.89

LR C-GLANCE - DICE 100.0 ± 0.0 1.03 ± 0.07 100.0 ± 0.0 1.69 ± 0.06 100.0 ± 0.0 1.05 ± 0.11 100.0 ± 0.0 1.15 ± 0.03 100.0 ± 0.0 1.2 ± 0.12
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.0 3.22 ± 0.49 100.0 ± 0.0 1.9 ± 0.12 100.0 ± 0.0 1.39 ± 0.11 100.0 ± 0.0 3.98 ± 0.55 99.88 ± 0.14 17.3 ± 1.9
C-GLANCE - NEARESTNEIGHBORSSCALED 100.0 ± 0.0 2.96 ± 0.62 100.0 ± 0.0 1.81 ± 0.18 100.0 ± 0.0 1.01 ± 0.0 100.0 ± 0.0 1.7 ± 0.2 99.88 ± 0.15 17.39 ± 0.69
C-GLANCE - RANDOMSAMPLING 100.0 ± 0.0 0.67 ± 0.07 100.0 ± 0.0 1.78 ± 0.25 99.94 ± 0.12 1.0 ± 0.0 100.0 ± 0.0 1.19 ± 0.05 100.0 ± 0.0 1.19 ± 0.15

T-GLANCE - DICE 100.0 ± 0.0 0.69 ± 0.01 99.71 ± 0.16 1.94 ± 0.11 100.0 ± 0.0 1.13 ± 0.18 99.55 ± 0.91 1.34 ± 0.22 100.0 ± 0.0 1.52 ± 0.32
T-GLANCE - NEARESTNEIGHBORS 99.92 ± 0.04 3.52 ± 1.37 99.79 ± 0.22 3.51 ± 0.19 100.0 ± 0.0 2.98 ± 0.28 100.0 ± 0.0 7.47 ± 2.24 99.31 ± 0.92 19.48 ± 2.53
T-GLANCE - NEARESTNEIGHBORSSCALED 98.64 ± 1.3 2.98 ± 0.88 99.83 ± 0.15 3.45 ± 0.25 100.0 ± 0.0 2.1 ± 0.18 100.0 ± 0.0 1.82 ± 0.29 99.54 ± 0.68 18.15 ± 2.02
T-GLANCE - RANDOMSAMPLING 100.0 ± 0.0 0.63 ± 0.09 99.71 ± 0.16 2.46 ± 0.32 99.97 ± 0.06 1.02 ± 0.02 100.0 ± 0.0 1.27 ± 0.17 100.0 ± 0.0 1.62 ± 0.6

XGB C-GLANCE - DICE 99.87 ± 0.09 3.85 ± 2.33 99.83 ± 0.24 2.06 ± 0.46 98.87 ± 0.59 2.14 ± 0.18 100.0 ± 0.0 0.97 ± 0.08 99.0 ± 0.55 16.65 ± 2.44
C-GLANCE - NEARESTNEIGHBORS 100.0 ± 0.0 4.43 ± 0.55 99.6 ± 0.34 1.8 ± 0.16 100.0 ± 0.0 3.2 ± 0.45 100.0 ± 0.0 3.63 ± 0.58 99.49 ± 0.47 15.76 ± 1.71
C-GLANCE - NEARESTNEIGHBORSSCALED 99.98 ± 0.03 3.9 ± 0.41 99.48 ± 0.57 1.88 ± 0.09 100.0 ± 0.0 2.4 ± 0.31 100.0 ± 0.0 1.62 ± 0.13 99.72 ± 0.17 18.58 ± 1.88
C-GLANCE - RANDOMSAMPLING 99.76 ± 0.37 2.13 ± 0.17 99.84 ± 0.24 2.06 ± 0.21 93.86 ± 2.69 1.51 ± 0.52 100.0 ± 0.0 1.06 ± 0.1 84.76 ± 4.77 7.11 ± 1.13

T-GLANCE - DICE 99.94 ± 0.04 1.65 ± 0.39 99.39 ± 0.26 2.41 ± 0.4 94.1 ± 3.57 1.85 ± 0.16 99.46 ± 1.08 1.07 ± 0.16 98.25 ± 1.85 18.75 ± 4.92
T-GLANCE - NEARESTNEIGHBORS 99.87 ± 0.22 9.44 ± 1.71 98.99 ± 0.54 3.25 ± 0.33 100.0 ± 0.0 4.35 ± 0.47 100.0 ± 0.0 5.39 ± 1.33 94.94 ± 1.91 18.4 ± 1.41
T-GLANCE - NEARESTNEIGHBORSSCALED 99.68 ± 0.25 9.04 ± 1.75 99.24 ± 0.67 3.25 ± 0.41 100.0 ± 0.0 3.93 ± 0.53 100.0 ± 0.0 2.09 ± 0.28 96.07 ± 1.85 20.39 ± 1.69
T-GLANCE - RANDOMSAMPLING 99.67 ± 0.52 1.7 ± 0.57 98.3 ± 0.83 2.61 ± 0.48 87.39 ± 5.65 2.55 ± 1.29 99.33 ± 1.33 1.33 ± 0.57 79.59 ± 7.41 9.37 ± 1.06

Tables 13 and 14 present a comprehensive comparison of C-GLANCE and T-GLANCE utilizing the
counterfactual generation methods described in Appendix G, i.e., DiCE, NearestNeighbors, Near-
estNeighborsScaled, and RandomSampling, for the s-GCE problem with s = 4 and s = 8, respec-
tively. Across all datasets and models, both C-GLANCE and T-GLANCE consistently exhibit superb
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performance in terms of effectiveness, frequently achieving near 100%. Since the performance in
terms of effectiveness is comparable, we will focus on the cost our algorithms achieved under the
different generation methods. The best performance is observed with the RandomSampling method,
achieving the best results in 41 out of 60 cases. DiCE, which is regarded as state-of-the-art, fol-
lows, achieves the lowest cost in 15 out of 60 cases. NearestNeighbors and NearestNeighborsScaled
achieve the best cost in only 1 out of 60 and 3 out of 60 cases respectively. In general, C-GLANCE
and T-GLANCE, can demonstrate great performance under all action generation methods, maintain-
ing high effectiveness and low costs in almost all cases.

H.5 DETAILED RESULTS

Table 15: Detailed results for the solution of s-GCE (s = 4 and s = 8) for COMPAS dataset.
The table reports effectiveness, cost, size, and runtime, including their standard deviations for each
method.

METHOD / MODEL DNN LR XGB

eff avc size RUNTIME eff avc size RUNTIME eff avc size RUNTIME

FAST ARES-4 55.0 ± 0.86 1.21 ± 0.09 4 59.26 ± 26.71 62.5 ± 1.82 1.24 ± 0.14 4 11.52 ± 5.39 59.83 ± 3.12 1.1 ± 0.05 4 12.88 ± 5.5
CET - 4 63.62 ± 10.35 0.96 ± 0.24 7.0 1339.42 ± 247.04 73.18 ± 4.34 1.24 ± 0.15 4.0 663.22 ± 45.34 58.4 ± 9.3 1.06 ± 0.24 3.0 3280.17 ± 834.28
GROUPCF - 4 100.0 ± 0.0 4.48 ± 2.53 4 173.24 ± 2.53 100.0 ± 0.0 3.97 ± 2.38 4 45.04 ± 2.38 100.0 ± 0.0 4.06 ± 2.1 4 36.07 ± 2.1
GLOBE-CE - 4 100.0 ± 0.0 4.54 ± 3.31 3.0 1.09 ± 0.06 95.74 ± 8.52 5.14 ± 3.77 2.6 0.42 ± 0.01 87.13 ± 11.14 9.75 ± 7.2 1.6 1.06 ± 0.01
DGLOBE-CE - 4 100.0 ± 0.0 7.96 ± 3.91 3.4 1.55 ± 0.07 100.0 ± 0.0 6.71 ± 0.23 4.0 0.61 ± 0.01 99.84 ± 0.31 12.46 ± 3.42 3.4 1.53 ± 0.03
C-GLANCE-4 100.0 ± 0.0 2.34 ± 0.43 4.0 177.41 ± 0.0 100.0 ± 0.0 2.33 ± 0.38 4.0 82.09 ± 0.0 99.51 ± 0.46 2.96 ± 0.82 4.0 286.26 ± 0.0
T-GLANCE-4 99.53 ± 0.22 2.62 ± 0.24 3.0 72.01 ± 0.0 99.79 ± 0.22 2.19 ± 0.1 3.0 50.14 ± 0.0 99.02 ± 0.93 2.6 ± 0.46 3.0 156.0 ± 0.0

FAST ARES-8 63.02 ± 1.58 1.11 ± 0.04 8 65.84 ± 29.93 68.19 ± 0.6 1.03 ± 0.01 8 15.2 ± 6.9 66.07 ± 2.5 1.14 ± 0.1 8 17.69 ± 8.05
CET - 8 74.66 ± 5.33 1.02 ± 0.07 8.0 656.64 ± 119.51 82.51 ± 2.97 1.51 ± 0.23 6.0 442.76 ± 64.47 68.62 ± 15.67 1.3 ± 0.52 6.0 1787.18 ± 360.63
GROUPCF - 8 100.0 ± 0.0 5.65 ± 3.14 8 210.34 ± 3.68 100.0 ± 0.0 4.67 ± 2.29 8 48.53 ± 2.29 100.0 ± 0.0 4.08 ± 2.15 8 37.53 ± 2.15
GLOBE-CE - 8 100.0 ± 0.0 4.31 ± 2.84 6.8 1.06 ± 0.04 97.74 ± 8.52 5.22 ± 3.3 5.8 0.45 ± 0.02 89.17 ± 11.09 9.78 ± 6.35 3.8 1.08 ± 0.03
DGLOBE-CE - 8 100.0 ± 0.0 7.28 ± 1.25 6.8 2.3 ± 0.09 100.0 ± 0.0 6.71 ± 0.23 8.0 0.88 ± 0.01 99.96 ± 0.08 9.17 ± 2.01 5.6 2.23 ± 0.03
C-GLANCE-8 100.0 ± 0.0 1.77 ± 0.16 8.0 177.35 ± 0.0 100.0 ± 0.0 1.69 ± 0.06 8.0 84.11 ± 0.0 99.83 ± 0.24 2.06 ± 0.46 8.0 173.1 ± 0.0
T-GLANCE-8 99.65 ± 0.15 2.18 ± 0.15 4.0 21.48 ± 0.64 99.71 ± 0.16 1.94 ± 0.11 4.0 13.06 ± 0.46 99.39 ± 0.26 2.41 ± 0.4 4.0 40.05 ± 4.5

Table 15 presents a comparative analysis of all algorithms for the COMPAS dataset, revealing dis-
tinct performance patterns. CET and Fast AReS, both with 4 and 8 actions, show very low costs
across all models; however, this is largely attributable to their relatively low effectiveness scores.

Methods like GLOBE-CE, dGLOBE-CE display significantly higher effectiveness, mostly above
90% across all models, GroupCF yields perfect effectiveness of 100%. However, these methods
come with higher costs, indicating that increased effectiveness is often tied to a rise in cost.

On the other hand, C-GLANCE and T-GLANCEmethods consistently achieve near-perfect or perfect
effectiveness (∼ 100%) across all models while maintaining much lower costs. This balance of
high effectiveness and low cost makes C-GLANCE and T-GLANCE the optimal methods for the
COMPAS dataset.

Table 16: Detailed results for the solution of s-GCE (s = 4 and s = 8) for German Credit dataset.
The table reports effectiveness, cost, size, and runtime, including their standard deviations for each
method.

METHOD / MODEL DNN LR XGB

eff avc size RUNTIME eff avc size RUNTIME eff avc size RUNTIME

FAST ARES-4 52.39 ± 1.63 1.0 ± 0.0 4 119.34 ± 54.6 75.27 ± 2.96 1.0 ± 0.0 4 47.88 ± 23.06 51.27 ± 1.57 1.0 ± 0.0 4 55.01 ± 27.27
CET - 4 97.3 ± 2.46 1.58 ± 0.54 3.0 230.36 ± 47.15 96.5 ± 2.85 2.42 ± 0.24 3.0 237.17 ± 11.2 100.0 ± 0.0 2.73 ± 0.49 3.0 347.41 ± 30.21
GROUPCF - 4 97.8 ± 4.4 1.85 ± 0.13 4 25.54 ± 0.13 97.6 ± 2.94 9.34 ± 3.85 4 7.91 ± 3.85 100.0 ± 0.0 5.78 ± 4.11 4 5.87 ± 4.11
GLOBE-CE - 4 93.31 ± 3.48 2.0 ± 1.55 2.0 1.02 ± 0.01 57.09 ± 20.03 0.75 ± 1.04 1.0 0.44 ± 0.0 77.05 ± 11.26 1.14 ± 1.24 1.0 1.34 ± 0.03
DGLOBE-CE - 4 97.36 ± 0.82 2.49 ± 0.27 4.0 1.57 ± 0.01 69.89 ± 15.35 2.47 ± 0.23 3.2 0.7 ± 0.01 86.96 ± 9.79 2.66 ± 0.77 3.6 2.09 ± 0.04
C-GLANCE-4 95.31 ± 3.15 1.25 ± 0.33 4.0 78.45 ± 0.0 100.0 ± 0.0 1.21 ± 0.06 4.0 61.58 ± 0.0 100.0 ± 0.0 1.06 ± 0.03 4.0 67.36 ± 0.0
T-GLANCE-4 96.97 ± 3.48 1.59 ± 0.8 3.0 85.12 ± 0.0 99.58 ± 0.83 1.54 ± 0.32 3.0 75.64 ± 0.0 99.46 ± 1.08 1.33 ± 0.42 3.0 185.11 ± 0.0

FAST ARES-8 65.47 ± 2.2 1.0 ± 0.0 8 415.74 ± 175.82 71.9 ± 2.65 1.0 ± 0.0 8 59.8 ± 32.65 68.88 ± 1.27 1.0 ± 0.0 8 64.77 ± 29.67
CET - 8 100.0 ± 0.0 1.27 ± 0.37 1.0 142.29 ± 27.72 98.75 ± 1.67 2.02 ± 0.33 6.0 156.14 ± 15.7 100.0 ± 0.0 2.18 ± 0.37 5.0 239.2 ± 25.84
GROUPCF - 8 99.6 ± 0.8 2.49 ± 0.82 8 28.93 ± 0.82 98.9 ± 1.65 10.56± 2.43 8 15.6 ± 2.33 100.0 ± 0.0 4.05 ± 2.55 8 7.84 ± 2.55
GLOBE-CE - 8 95.37 ± 2.9 1.89 ± 0.38 2.0 1.03 ± 0.01 58.42 ± 18.45 2.25 ± 0.33 1.0 0.45 ± 0.0 80.25 ± 9.62 2.51 ± 0.33 1.0 1.36 ± 0.05
DGLOBE-CE - 8 98.09 ± 1.72 2.34 ± 0.17 7.8 2.34 ± 0.03 69.89 ± 15.35 2.47 ± 0.23 5.6 1.02 ± 0.04 88.17 ± 8.2 2.64 ± 0.78 6.2 3.06 ± 0.04
C-GLANCE-8 96.43 ± 3.6 0.86 ± 0.18 8.0 78.38 ± 0.0 100.0 ± 0.0 1.18 ± 0.05 8.0 63.1 ± 0.0 100.0 ± 0.0 1.02 ± 0.04 8.0 68.96 ± 0.0
T-GLANCE-8 96.65 ± 4.08 0.94 ± 0.3 4.0 32.19 ± 1.34 99.55 ± 0.91 1.34 ± 0.22 3.8 29.11 ± 1.18 99.46 ± 1.08 1.07 ± 0.16 3.8 68.67 ± 1.51

Table 16 presents a comparative analysis of all algorithms for the German Credit dataset. Fast
AReS remains the weakest method overall, continuing to exhibit poor effectiveness. Notably, while
CET incurs a slightly higher cost than on the COMPAS dataset, it achieves significantly greater ef-
fectiveness, and the increase in cost is quite reasonable. The GLOBE-CE and dGLOBE-CE methods
demonstrate mixed results. They perform relatively well under the DNN model, achieving effective-
ness scores above 90%, but their effectiveness declines when applied to the LR and XGB models. On
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the other hand, T-GLANCE and C-GLANCE continue to excel due to their robustness and consistent
high performance. These methods consistently reach near-perfect effectiveness (∼100%, and only
for DNN 95%-97%) across all models while maintaining very low costs. Notably, C-GLANCE-8
achieves the lowest cost of 0.86 under the DNN model, while still maintaining high effectiveness.

Table 17: Detailed results for the solution of s-GCE (s = 4 and s = 8) for Default Credit dataset.
The table reports effectiveness, cost, size, and runtime, including their standard deviations for each
method.

METHOD / MODEL DNN LR XGB

eff avc size RUNTIME eff avc size RUNTIME eff avc size RUNTIME

FAST ARES-4 18.88 ± 2.16 1.0 ± 0.0 4 789.48 ± 306.69 10.85 ± 5.45 1.07 ± 0.13 4 244.78 ± 128.93 31.86 ± 5.12 1.05 ± 0.04 4 226.08 ± 107.9
CET - 4 98.87 ± 0.62 6.32 ± 2.28 3.0 4404.58 ± 453.7 100.0 ± 0.0 3.79 ± 1.31 1.0 3711.21 ± 164.94 86.29 ± 9.94 4.5 ± 2.64 3.0 7982.05 ± 668.76
GROUPCF - 4 79.6 ± 20.79 1.53 ± 0.62 4 2415.7 ± 0.62 95.4 ± 9.2 1.94 ± 1.2 4 306.76 ± 1.2 95.2 ± 1.6 1.41 ± 0.64 4 991.53 ± 0.64
GLOBE-CE- 4 76.94 ± 37.55 5.14 ± 0.35 1.4 3.33 ± 0.2 99.94 ± 0.07 3.42 ± 1.99 1.6 1.76 ± 0.04 82.7 ± 7.26 20.82 ± 1.73 2.6 2.44 ± 0.05
DGLOBE-CE - 4 87.38 ± 18.69 5.96 ± 4.14 3.4 4.98 ± 0.21 99.94 ± 0.07 10.38 ± 7.76 1.2 2.54 ± 0.07 97.47 ± 0.82 42.58 ± 3.57 4.0 3.48 ± 0.09
C-GLANCE-4 100.0 ± 0.0 1.2 ± 0.4 4.0 290.89 ± 0.0 100.0 ± 0.0 1.05 ± 0.11 4.0 243.45 ± 0.0 98.13 ± 1.05 3.68 ± 1.64 4.0 319.45 ± 0.0
T-GLANCE-4 100.0 ± 0.0 1.48 ± 0.43 3.0 775.09 ± 0.0 100.0 ± 0.0 1.43 ± 0.36 3.0 876.08 ± 0.0 94.6 ± 3.13 2.75 ± 1.42 3.0 688.19 ± 0.0

FAST ARES-8 23.75 ± 1.81 1.02 ± 0.03 8 428.04 ± 199.29 11.67 ± 6.18 1.04 ± 0.08 8 272.64 ± 120.89 36.88 ± 5.46 1.07 ± 0.06 8 280.88 ± 135.37
CET - 8 98.53 ± 2.11 3.68 ± 1.46 4.0 2500.02 ± 328.94 100.0 ± 0.0 2.0 ± 1.36 2.0 1795.08 ± 182.55 90.01 ± 10.44 2.61 ± 1.06 5.0 5105.11 ± 923.27
GROUPCF - 8 84.8 ± 13.23 2.15 ± 0.98 8 2476.21 ± 0.82 100.0 ± 0.0 3.98 ± 2.86 8 279.86 ± 2.86 97.8 ± 0.75 1.92 ± 1.33 8 631.31 ± 1.33
GLOBE-CE - 8 93.25 ± 11.26 2.73 ± 0.85 3.6 3.49 ± 0.27 99.94 ± 0.07 2.24 ± 0.98 1.8 1.75 ± 0.05 84.94 ± 6.59 11.21 ± 1.29 5.2 2.47 ± 0.06
DGLOBE-CE - 8 99.95 ± 0.04 6.77 ± 3.67 4.8 6.79 ± 0.16 99.94 ± 0.07 10.38 ± 7.76 1.2 3.51 ± 0.07 99.08 ± 0.66 28.73 ± 9.8 8.0 5.05 ± 0.12
C-GLANCE-8 100.0 ± 0.0 1.2 ± 0.4 8.0 289.46 ± 0.0 100.0 ± 0.0 1.05 ± 0.11 8.0 226.96 ± 0.0 98.87 ± 0.59 2.14 ± 0.18 8.0 257.39 ± 0.0
T-GLANCE-8 100.0 ± 0.0 1.25 ± 0.38 3.8 177.22 ± 0.46 100.0 ± 0.0 1.13 ± 0.18 3.8 167.72 ± 7.88 94.1 ± 3.57 1.85 ± 0.16 4.0 191.86 ± 4.82

Table 17 provides a comparative analysis of all algorithms for the Default Credit dataset.
C-GLANCE and T-GLANCE methods exhibit perfect effectiveness scores across both the DNN and
LR models while maintaining the lowest costs, second only to Fast AReS, highlighting their su-
perior cost-effectiveness.

In the XGB model, GroupCF-4 dominates T-GLANCE-4 and achieves smaller cost compared to
C-GLANCE-4, which, however, has better performance in terms of effectiveness. Concerning the
case s = 8, GroupCF-8 has slightly better cost but worse effectiveness than C-GLANCE-8, and
slightly better effectiveness but worse cost than T-GLANCE-8. Overall, our methods ensure com-
petitive, robust and highly efficient performance.

Table 18: Detailed results for the solution of s-GCE (s = 4 and s = 8) for HELOC dataset. The table
reports effectiveness, cost, size, and runtime, including their standard deviations for each method.

METHOD / MODEL DNN LR XGB

eff avc size RUNTIME eff avc size RUNTIME eff avc size RUNTIME

FAST ARES-4 12.19 ± 0.58 1.03 ± 0.05 4 1562.21 ± 656.59 9.23 ± 1.24 1.12 ± 0.1 4 961.23 ± 541.41 8.49 ± 1.32 1.16 ± 0.13 4 963.0 ± 492.98
CET - 4 86.78 ± 10.62 8.67 ± 3.25 1.0 11090.16 ± 4597.13 100.0 ± 0.0 3.57 ± 1.48 2.0 2662.77 ± 739.88 86.78 ± 6.7 12.51 ± 2.75 2.0 17339.7 ± 1363.44
GROUPCF - 4 80.4 ± 10.17 3.09 ± 0.91 4 468.52 ± 0.91 90.6 ± 3.93 2.4 ± 1.38 4 209.26 ± 1.38 78.4 ± 5.82 5.63 ± 1.93 4 201.24 ± 1.93
GLOBE-CE - 4 42.72 ± 46.97 11.77 ± 15.87 1.4 1.43 ± 0.13 99.9 ± 0.0 0.6 ± 0.54 3.0 0.65 ± 0.06 27.66 ± 5.06 12.52 ± 32.48 2.4 1.18 ± 0.02
DGLOBE-CE - 4 99.96 ± 0.05 11.07 ± 8.6 2.0 2.2 ± 0.14 99.9 ± 0.0 1.63 ± 0.35 4.0 0.94 ± 0.05 77.64 ± 11.51 128.0 ± 0.0 4.0 1.77 ± 0.03
C-GLANCE-4 99.94 ± 0.05 11.24 ± 1.37 4.0 307.06 ± 0.0 100.0 ± 0.0 1.55 ± 0.54 4.0 214.6 ± 0.0 98.94 ± 0.66 19.99 ± 1.91 4.0 183.45 ± 0.0
T-GLANCE-4 99.8 ± 0.24 10.9 ± 1.22 3.0 135.37 ± 0.0 100.0 ± 0.0 1.58 ± 0.37 3.0 108.79 ± 0.0 96.42 ± 2.45 24.85 ± 8.4 3.0 72.95 ± 0.0

FAST ARES-8 15.44 ± 1.91 1.05 ± 0.06 8 1070.19 ± 558.28 10.95 ± 1.73 1.11 ± 0.07 8 901.3 ± 493.42 11.22 ± 2.05 1.09 ± 0.09 8 829.62 ± 420.35
CET - 8 99.36 ± 0.92 8.86 ± 2.99 4.0 6758.87 ± 3384.51 100.0 ± 0.0 2.99 ± 1.3 2.0 1628.08 ± 344.57 90.25 ± 2.51 12.99 ± 3.49 6.0 9108.94 ± 1624.21
GROUPCF - 8 84.8 ± 12.32 1.98 ± 0.5 8 501.45 ± 2.5 96.6 ± 1.96 1.98 ± 0.5 8 249.14 ± 0.5 81.4 ± 4.22 5.14 ± 1.46 8 197.68 ± 1.46
GLOBE-CE - 8 45.49 ± 44.72 14.19 ± 14.14 3.4 1.44 ± 0.02 99.9 ± 0.0 0.58 ± 0.5 7.0 0.64 ± 0.02 28.88 ± 4.71 12.51 ± 30.88 3.0 1.18 ± 0.02
DGLOBE-CE - 8 100.0 ± 0.0 6.65 ± 0.15 4.4 3.2 ± 0.22 99.9 ± 0.0 1.63 ± 0.35 8.0 1.35 ± 0.04 81.95 ± 10.38 128.0 ± 0.0 8.0 2.55 ± 0.04
C-GLANCE-8 99.98 ± 0.04 9.42 ± 2.22 8.0 301.47 ± 0.0 100.0 ± 0.0 1.2 ± 0.12 8.0 217.9 ± 0.0 99.0 ± 0.55 16.65 ± 2.44 8.0 182.83 ± 0.0
T-GLANCE-8 99.78 ± 0.21 9.92 ± 1.83 4.0 40.64 ± 0.43 100.0 ± 0.0 1.52 ± 0.32 3.0 39.0 ± 0.89 98.25 ± 1.85 18.75 ± 4.92 4.0 75.9 ± 0.8

Table 18 presents a comparative analysis of all algorithms for the Heloc dataset, which, due to its
exclusively numeric features, poses challenges in achieving low costs. Despite this complexity, the
methods T-GLANCE, C-GLANCE, and dGLOBE-CE stand out by delivering near-perfect or perfect
effectiveness in the DNN models, while T-GLANCE, C-GLANCE, dGLOBE-CE, and GLOBE-CE
excel in the LR models. dGLOBE-CE-8 provides the best combination of effectiveness and cost
for DNN, and GLOBE-CE-8 achieves the same for LR. For the XGB models, T-GLANCE and
C-GLANCE lead in effectiveness across all methods. Overall, our methods demonstrate strong and
consistent performance, unlike other methods, where results fluctuate considerably.

Table 19 presents a comparative analysis of all algorithms for the Adult dataset. The Fast AReS
method consistently performs poorly, achieving notably low effectiveness scores across all models.

It is also noteworthy that in the Adult dataset which is the largest of all in terms of instances and
dimensions, the CET method did not run properly due to exceedingly high runtimes or infeasibility
determined by the Gurobi optimizer. This is indicated by the “>20h or Infeasible (on Gurobi)” note
present in the runtime column for both CET-4 and CET-8 across all models.
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Table 19: Detailed results for the solution of s-GCE (s = 4 and s = 8) for Adult dataset. The table
reports effectiveness, cost, size, and runtime, including their standard deviations for each method.

METHOD / MODEL DNN LR XGB

eff avc size RUNTIME eff avc size RUNTIME eff avc size RUNTIME

FAST ARES - 4 12.39 ± 1.06 1.0 ± 0.0 4.0 266.51 ± 127.13 11.74 ± 2.4 1.0 ± 0.0 4.0 124.2 ± 57.64 6.13 ± 0.42 1.0 ± 0.0 4.0 108.66 ± 57.21
CET - 4 - - - >20H OR INFEASIBLE (ON GUROBI) - - - >20H OR INFEASIBLE (ON GUROBI) - - - >20H OR INFEASIBLE (ON GUROBI)
GROUPCF - 4 100.0 ± 0.0 10.08 ± 0.03 4.0 3224.75 ± 0.03 100.0 ± 0.0 1.71 ± 0.39 4.0 925.25 ± 0.39 96.8 ± 1.72 1.41 ± 0.54 4.0 596.57 ± 0.54
GLOBE-CE - 4 99.92 ± 0.0 4.24 ± 0.42 3.0 6.6 ± 0.22 99.92 ± 0.0 2.68 ± 0.17 3.0 6.48 ± 0.17 82.87 ± 12.14 30.1 ± 10.39 2.4 5.44 ± 0.18
DGLOBE-CE - 4 99.92 ± 0.0 10.89 ± 1.37 3.6 9.74 ± 0.21 99.92 ± 0.0 5.91 ± 0.93 4.0 9.36 ± 0.06 93.76 ± 1.98 64.76 ± 1.29 4.0 8.26 ± 0.14
C-GLANCE - 4 100.0 ± 0.0 4.6 ± 0.73 4.0 246.82 ± 0.0 100.0 ± 0.0 1.04 ± 0.07 4.0 194.83 ± 0.0 99.85 ± 0.12 5.98 ± 4.22 4.0 134.27 ± 0.0
T-GLANCE-4 100.0 ± 0.0 4.43 ± 0.43 3.0 410.47 ± 0.0 100.0 ± 0.0 0.69 ± 0.01 3.0 422.45 ± 0.0 99.86 ± 0.14 1.8 ± 0.51 3.0 334.14 ± 0.0

FAST ARES - 8 13.8 ± 0.92 1.0 ± 0.0 8.0 271.04 ± 126.28 12.51 ± 2.44 1.0 ± 0.0 8.0 157.94 ± 73.44 7.19 ± 0.3 1.0 ± 0.0 8.0 142.82 ± 67.84
CET - 8 - - - >20H OR INFEASIBLE (ON GUROBI) - - - >20H OR INFEASIBLE (ON GUROBI) - - - >20H OR INFEASIBLE (ON GUROBI)
GROUPCF - 8 100.0 ± 0.0 11.54 ± 2.98 8.0 3539.35 ± 2.98 100.0 ± 0.0 2.33 ± 1.91 8.0 872.1 ± 1.91 99.4 ± 1.2 1.88 ± 1.36 8.0 1705.8 ± 1.36
GLOBE-CE - 8 100.0 ± 0.0 2.54 ± 0.14 6.6 6.56 ± 0.18 100.0 ± 0.0 1.67 ± 0.11 7.0 6.41 ± 0.08 85.76 ± 9.11 13.48 ± 4.71 3.8 5.58 ± 0.11
DGLOBE-CE - 8 100.0 ± 0.0 11.85 ± 1.53 6.4 14.09 ± 0.4 100.0 ± 0.0 6.12 ± 0.64 8.0 13.57 ± 0.22 94.38 ± 2.01 62.37 ± 3.07 7.4 12.01 ± 0.33
C-GLANCE - 8 100.0 ± 0.0 3.96 ± 0.56 8.0 240.16 ± 0.0 100.0 ± 0.0 1.03 ± 0.07 8.0 179.43 ± 0.0 99.87 ± 0.09 3.85 ± 2.33 8.0 126.65 ± 0.0
T-GLANCE-8 100.0 ± 0.0 3.77 ± 0.27 4.0 119.66 ± 0.69 100.0 ± 0.0 0.79 ± 0.16 4.0 122.45 ± 0.63 99.94 ± 0.04 1.65 ± 0.39 4.0 128.22 ± 1.21

On the other hand, GroupCF, C-GLANCE, T-GLANCE, and GLOBE-CE methods all perform
notably well in terms of effectiveness. Under the DNN model, T-GLANCE-4 and T-GLANCE-8
achieve perfect effectiveness scores of 100%, with costs of 4.43 and 3.77, respectively. C-GLANCE-
4 and C-GLANCE-8 mirror this perfect effectiveness, also achieving 100% with similarly good cost
performance. Notably, GLOBE-CE-8 achieves the best cost performance under the DNN model with
an effectiveness score of 100% and a cost of 2.54.

In the LR model, T-GLANCE-4 and T-GLANCE-8 perform exceptionally well, achieving 100%
effectiveness with costs of 0.69 and 0.79, respectively. C-GLANCE also performs admirably,
with 100% effectiveness and costs 1.04 and 1.03. Similarly, in the XGB model, T-GLANCE-4,
T-GLANCE-8, C-GLANCE-4, and C-GLANCE-8 maintain high effectiveness scores of 99.86%,
99.94%, 99.85%, and 99.87%, with really good respective costs.

Upon evaluating the performance across the five datasets — COMPAS, German Credit, Default
Credit, HELOC, and Adult Income — it is evident that our methods, T-GLANCE and C-GLANCE,
consistently demonstrate concrete performance. They achieve near-perfect or perfect effectiveness
scores while maintaining low costs across different models, such as DNN, LR, and XGB. This
robustness and consistency underline their efficiency and practicality in handling diverse datasets
and complexities.

I A USER STUDY TO ASSESS HOW GLOBAL COUNTERFACTUAL
EXPLANATIONS ARE PERCEIVED

I.1 DESIGN

We have designed a user study, with the following goals.

• Assess (a) how different concepts for global counterfactual explainability are understood
and (b) which concepts are preferred by individuals who seek recourse.

• Assess (a) how different concepts for global counterfactual explainability are understood
and (b) which concepts are preferred by the system/model owner who seeks to provide
recourse to the affected population.

• Assess how people evaluate the trade-off between effectiveness and average recourse cost.

The user study has three parts, with each having a different goal.

I.1.1 THE VIEWPOINT OF INDIVIDUALS SEEKING RECOURSE

The study puts participants in the following hypothetical situation. “Consider a company that at the
end of the year gives a bonus to some of its employees. There are some employees that did not
receive the bonus. They would like to know what they can do differently so that they will receive a
bonus next year, i.e., they want to achieve recourse. They have the option to be involved in additional
projects to increase their chances of receiving the bonus. Working in an additional project, means
that their work hours will increase.”

The study then asks three questions.
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Q1 “ Suppose you’re an employee and have the option to be involved in one of these projects.

A. All employees working on Project A received a bonus. Among them, the average number of
additional working time per week was 5 hours.

B. All employees working on Project B received a bonus. No employee worked more than 8 addi-
tional hours per week.

Which project would you choose based on the information provided?”

The goal of Q1 is to understand which type of information people prefer. A is similar to the informa-
tion counterfactual directions (as in Ley et al. (2023)) provides, while B is similar to the information
counterfactual actions provide.

Q2 “Suppose you’re an employee and have the option to be involved in one of these projects.

C. 75% of the employees working on Project C received a bonus. Among them, the average number
of additional working time per week was 4 hours.

D. 75% of the employees working on Project D received a bonus. No employee worked more than
6 additional hours per week.

Which project would you choose based on the information provided?”

Q2 has the same goal with Q1, but it emphasizes that information comes with no guarantees.

Q3 “ Suppose you’re an employee and you consider working on Project E to increase your chances
of getting the bonus. There are three pieces of information about Project E.

Info-1. For employees working on Project E who received the bonus, the average number of addi-
tional working time per week was 5 hours.

Info-2. All employees working on Project E who logged at least 10 additional working hours re-
ceived the bonus.

Info-3. 60% of employees working on Project E who logged at least 5 additional working hours
received the bonus.

Rank the pieces of information from the most helpful to the least helpful.”

Q3 aims to understand which type of information people find most helpful. Info-1 is similar to the
information counterfactual directions provide, while Info-2 and Info-3 are similar to the information
counterfactual actions provide.

I.1.2 THE VIEWPOINT OF SYSTEM OWNERS SEEKING TO PROVIDE RECOURSE

This part puts the participants in the role of the system owner. “Assume you are the company CEO,
summarizing the benefits of project opportunities.

This year, two types of employees, x1 and x2, did not earn a bonus. These employee types differ in
how they allocate their work hours:

• x1 employees spend more time in the office and less in the field (i.e., outside the office).
• x2 employees spend more time in the field and less in the office.

The number of employees who did not earn a bonus is evenly split between these two groups.”

Then, with reference to Figure 5, the study provides this additional information. “Employee types
are represented as points on the office hours-field hours plane, shown in the left image. Projects are
depicted as directions on this plane, indicating the need for additional office and field hours. In some
cases, it is more intuitive to view projects from the perspective of the employee types, represented
as the origin o, as shown in the right image. ”

Then the user study asks two questions.

Q1 “There are three possible projects that employees can work on:
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Office Hours

Field Hours

Office Hours

Field Hours

No Bonus

Bonus

view from the perspective
of each employee type employee types ( ), projects ( ), and

project assignments ( )  on the office hours-field hours plane

Figure 5: Image used in the User Study to illustrate the concepts of employee types, projects, and
project placements.

A: The project requiring the least effort from any individual employee to receive the bonus.

B: The project requiring the least average effort across all employees to receive the bonus.

C: The project requiring the smallest maximum effort from any employee to receive the bonus.

The CEO must decide which project to promote to employees. Which one should it be?”

The goal of Q1 is to understand what kind of information system owners might find most helpful.
B is similar to the information counterfactual directions provide, while A and C are similar to the
information counterfactual actions provide.

Q2 “Consider the following three project placements. A placement refers to an assignment to a
project with fixed office and field hours. These placements are represented as vectors along the
project directions on the office hours-field hours plane.

a: Placement on Project A requiring the least effort from any employee to receive the bonus, i.e.,
200 hours (+200 field hours).

b: Placement on Project B requiring the least average effort across employees to receive the bonus,
i.e., 300 hours (+50 office hours, +250 field hours).

c: Placement on Project C requiring the least maximum effort from any employee to receive the
bonus, i.e., 400 hours (+150 office hours, +250 field hours).

The CEO must decide which project placement to offer to employees. Which one should it be?”

The goal of Q2 is to understand which action (project placement) system owners might prefer.
Action b is similar to the action one can extract from counterfactual directions, while b and c are
optimal GCE actions, with c in particular being the action with the minimum cost among those that
achieve perfect effectiveness (optimal solution to the 1-GCE problem).

I.1.3 EVALUATING THE TRADE-OFF BETWEEN EFFECTIVENESS AND AVERAGE RECOURSE
COST

In the last part, we ask participants to investigate the effectiveness and average recourse costs that
are achieved by different methods for global counterfactual explainability. We show them figures
like those in Figure 3, but anonymized and randomly permuted, and ask them to select the superior
method.

Specifically, we provide them with this information. “ In the following images, you will see the
evaluation of various algorithms that produce global recourse summaries for different ML models
applied on different datasets. A global recourse summary outlines a few actions that individuals can
take to achieve recourse, i.e., obtain a favorable outcome

Each algorithm is evaluated on two aspects:
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• Effectiveness: The percentage of the population for whom the algorithm provides recourse.
The higher (up to 100%) the effectiveness is, the better the algorithm.

• Average Cost: The average cost incurred by individuals who achieve recourse. The lower
(down to 0) the cost is, the better the algorithm.

The images display the effectiveness and average cost for an algorithm as a point with error bars;
the error bars denote the standard deviation across multiple evaluations. The closer a point is to the
top left corner, the better the algorithm.”

We then ask two types of questions for each figure, depicting either the four methods for implicit
GCE or the three methods for explicit GCE.

Q1 “Based on the evaluation results presented in the figure, rank the three/four algorithms from
best (1st position) to worst (3rd/4th position).”

Q2 “How many times (out of 15) is Algo 0/1/2/3 the better algorithm?”

These questions aim to understand how people combine the two aspects of effectiveness and average
cost to assess the quality of global counterfactual explanations.

I.2 RESULTS

Following the best practices outlined in Ley et al. (2023); Chowdhury et al. (2022), we recruited 40
participants consisting of (a) master’s students in a data science program who attended lectures on
machine learning explainability and (b) PhD students from various machine learning domains with
extensive knowledge of explainability. After excluding six participants due to inconsistent responses
to repeated questions and/or incomplete rankings, we analyzed the responses of the remaining 34
participants.

In the first part of the study, where participants assumed the role of individuals seeking recourse, we
find that participants prefer information conveyed through concrete counterfactual actions (similar
to GCEs produced by methods like ARES Rawal & Lakkaraju (2020) and this work) over counter-
factual directions represented by average-cost actions (akin to GCEs generated by GLOBE-CE Ley
et al. (2023)). Specifically, for Q1, 56% of participants preferred information tied to concrete actions
(project B) over average-cost actions (project A). This preference increased to 71% in Q2 when un-
certainty rose (effectiveness decreased from 100% to 75%). When asked to rank their preference
among three types of information in Q3, 62% of participants rated Info-1, which represents an opti-
mal solution to the 1-GCE problem (similar to action c in Figure 5), as the most helpful. Conversely,
41% ranked Info-2, which represents the average-cost action along the optimal direction as defined
in Ley et al. (2023) (similar to action b in Figure 5), as the least helpful. Additionally, Info-3, an-
other optimal solution to the 1-GCE problem (similar to action a in Figure 5), was considered more
helpful than Info-2.

In the second part of the study, where participants assumed the role of system owners aiming to
provide recourse to adversely affected individuals, we again found that participants preferred in-
formation conveyed through concrete counterfactual actions rather than counterfactual directions.
Specifically, when asked (Q1) to choose among three projects corresponding to directions A, B,
and C in Figure 5, 65% favored projects/directions A or C (both optimal 1-GCE solutions) over
project/direction B (aligned with the optimal direction as defined in Ley et al. (2023)), with C
emerging as the clear favorite, selected 50% of the time. A similar pattern was observed in project
placement decisions (Q2), involving actions a, b, and c in Figure 5, where 60% of participants
preferred the optimal actions a and c over the average-cost action b.

In the third part of the study, participants were asked to evaluate which method for global coun-
terfactual explanations is superior based on performance in terms of average cost and effectiveness.
We found that participants unanimously agree that the GLANCEmethods outperform others. Specif-
ically, in the first two questions, participants assessed explicit GCE methods (T-GLANCE, ARES,
CET). All participants (100%) identified T-GLANCE as the superior method, finding it outperformed
the others approximately 13.41 out of 15 times (as illustrated in Figure 4). In the next two questions,
participants evaluated implicit GCE methods (C-GLANCE, GLOBE-CE, dGLOBE-CE, GroupCF).
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Table 20: Local vs global counterfactuals

MODELS ALGORITHMS DATASETS

COMPAS GERMAN CREDIT
EFF AVC EFF AVC

DNN T-GLANCE 99.53 ± 0.22 2.62 ± 0.24 96.97 ± 3.48 1.59 ± 0.8
C-GLANCE 100.0 ± 0.0 2.34 ± 0.43 95.31 ± 3.15 1.25 ± 0.33
LOCAL 100.0 ± 0.0 2.75 ± 0.53 100.0 ± 0.0 4.74 ± 0.93

LR T-GLANCE 99.79 ± 0.22 2.19 ± 0.1 99.58 ± 0.83 1.54 ± 0.32
C-GLANCE 100.0 ± 0.0 2.33 ± 0.38 100.0 ± 0.0 1.21 ± 0.06
LOCAL 100.0 ± 0.0 2.73 ± 0.23 100.0 ± 0.0 4.9 ± 0.4

XGB T-GLANCE 99.02 ± 0.93 2.6 ± 0.46 99.46 ± 1.08 1.33 ± 0.42
C-GLANCE 99.51 ± 0.46 2.96 ± 0.82 100.0 ± 0.0 1.06 ± 0.03
LOCAL 100.0 ± 0.0 2.87 ± 0.27 100.0 ± 0.0 5.09 ± 0.33

Again, all participants (100%) selected C-GLANCE as the superior method, noting it outperformed
the others approximately 10.81 out of 15 times (as depicted in Figure 3).

J ADDRESSING POTENTIAL EDGE CASES IN RECOURSE ALGORITHMS

While the proposed algorithms are designed to provide robust and actionable recourse, certain edge
cases may pose challenges:

Highly nonlinear decision boundaries might cause the model’s decision boundary to vary signifi-
cantly across small regions, leading to oversimplified recourse suggestions. We address this issue
by using proximity-aware clustering and local counterfactual action generation to better approximate
the decision boundary, ensuring more accurate and actionable recommendations.

Sparse data regions or outlier points might result in unrealistic, infeasible, or overly tailored recourse
actions. To mitigate these challenges, we generate many clusters and diverse counterfactuals, en-
suring that feasible solutions are identified without being disproportionately influenced by outliers.
This approach enhances robustness and broad applicability.

Ambiguity in selecting the “optimal” action can arise when multiple actions have similar costs and
effectiveness, potentially leading to overly complex recourse suggestions. We resolve this by em-
ploying predefined criteria that prioritize actionable and interpretable solutions while maintaining a
balance between cost and effectiveness.

K LOCAL VS. GLOBAL COUNTERFACTUAL COSTS

To illustrate the challenges in defining optimal solutions for global counterfactual explanations, we
conducted an experiment comparing the cost of local counterfactuals to the global counterfactual
actions generated by our method. Using the Compas and German Credit datasets, we generated all
possible local counterfactuals for each instance and calculated the average cost across the datasets.
The results are presented in Table 20 under the row “LOCAL”.

Surprisingly, despite generating only 4 global counterfactual actions, our method achieved signif-
icantly lower average costs than the local counterfactuals, even though both were generated using
the same local counterfactual method. This counterintuitive result highlights the inherent variability
and complexity in local counterfactual generation, emphasizing the difficulty in defining an optimal
solution at both local and global levels.

This experiment demonstrates the effectiveness of our approach in achieving cost-efficient global
counterfactuals while reinforcing the challenges of theoretical analysis in this domain.
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Table 21: Default Credit Effectiveness Mean

INITIAL CLUSTERS 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
MODEL DIVERSE ACTIONS

DNN 5 99.91 100.00 99.86 99.97 100.00 99.94 100.00 99.97 99.97 100.00
10 99.91 100.00 99.88 99.97 99.97 100.00 99.97 99.97 99.97 99.97
15 99.89 100.00 99.94 100.00 99.97 99.94 99.97 99.97 100.00 100.00
20 99.91 100.00 99.97 100.00 99.97 99.97 100.00 99.97 99.94 100.00
25 99.89 100.00 100.00 99.97 99.97 99.97 99.94 100.00 99.97 99.97
30 99.94 100.00 99.97 100.00 99.97 100.00 100.00 100.00 100.00 100.00
35 99.94 99.97 99.97 99.97 99.97 100.00 99.97 99.97 99.97 100.00
40 99.94 100.00 100.00 99.97 99.97 99.97 99.97 99.97 100.00 100.00
45 99.94 100.00 99.94 100.00 100.00 99.97 99.97 99.97 100.00 100.00
50 99.91 100.00 99.97 99.97 99.97 99.97 100.00 100.00 100.00 100.00

LR 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
15 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
25 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
45 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

XGB 5 94.42 94.39 95.48 96.50 95.53 94.95 96.29 96.14 96.42 94.59
10 94.03 96.08 97.38 95.99 95.85 98.24 96.79 96.94 95.54 96.68
15 95.95 95.97 97.73 96.30 97.39 98.01 97.97 97.94 97.92 96.49
20 96.02 96.62 97.79 96.19 98.54 98.54 98.62 98.52 98.11 98.34
25 96.66 95.72 98.57 96.84 98.62 98.65 98.57 97.76 98.21 98.36
30 96.68 96.69 98.62 96.31 98.49 98.67 98.46 98.49 98.43 98.97
35 96.73 97.17 99.00 97.56 98.67 98.85 98.46 98.84 98.58 98.70
40 96.94 97.69 98.82 97.44 98.90 98.63 98.92 99.07 98.80 98.99
45 97.76 98.51 98.82 97.69 98.82 99.00 98.44 98.89 98.82 99.07
50 97.20 98.49 98.82 98.63 98.74 99.11 98.74 98.94 98.87 99.01

L IMPACT OF INITIAL CLUSTERS AND DIVERSE ACTIONS

To evaluate the influence of key parameters in C-GLANCE on solution quality, interpretability, and
runtime, we analyzed the role of initial clusters and diverse candidate actions. The product of these
parameters defines the total number of generated actions, which directly impacts the algorithm’s
performance.

Increasing the number of generated actions often improves effectiveness but typically comes at the
expense of increased cost. However, selecting a subset of actions with optimal effectiveness tends
to reduce overall cost. This pattern is clearly observed in Tables 21 to 24.

Regarding individual parameter effects, increasing the number of initial clusters proves particu-
larly beneficial for larger datasets with widely distributed points. This approach allows for better
grouping in the feature space, thereby enhancing the relevance and feasibility of the generated coun-
terfactual actions. Conversely, increasing the diversity of candidate actions is more advantageous
for complex models with intricate decision boundaries. A higher diversity ensures that the generated
counterfactual actions are well-aligned with the model’s structure, leading to better adaptation to the
complexities of the decision boundary.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 22: Default Credit Average Cost Mean

INITIAL CLUSTERS 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
MODEL DIVERSE ACTIONS

DNN 5 4.85 3.15 1.45 1.58 1.40 2.27 1.13 2.65 1.41 1.32
10 2.91 2.53 1.98 1.41 1.59 1.39 1.33 1.51 1.03 1.28
15 4.66 1.90 1.19 1.25 1.21 1.01 1.03 1.11 1.02 1.03
20 2.76 1.71 1.27 1.39 1.02 1.00 1.01 1.08 1.02 1.01
25 3.91 1.96 1.27 1.40 1.11 1.01 1.29 1.25 1.02 1.00
30 2.16 1.90 1.27 1.40 1.01 1.01 1.21 1.28 1.01 1.01
35 2.16 1.62 1.27 1.39 1.00 1.01 1.29 1.07 1.00 1.00
40 1.82 1.47 1.21 1.23 1.00 1.01 1.02 1.19 1.01 1.01
45 1.78 1.54 1.21 1.07 1.01 1.00 1.02 1.07 1.00 1.01
50 1.82 1.34 1.02 1.03 1.01 1.00 1.22 1.08 1.01 1.01

LR 5 1.93 1.43 1.33 1.47 1.45 1.48 1.30 1.27 1.32 1.51
10 1.91 1.13 1.18 1.34 1.43 1.29 1.26 1.09 1.02 1.38
15 1.59 1.13 1.17 1.27 1.23 1.34 1.22 1.09 1.23 1.17
20 1.22 1.01 1.27 1.35 1.22 1.24 1.20 1.11 0.99 1.08
25 1.20 1.13 1.19 1.10 1.11 1.32 1.19 1.05 1.17 1.10
30 1.20 1.00 1.27 1.13 1.22 1.20 1.09 1.19 1.21 1.18
35 1.11 1.00 1.16 1.12 1.15 1.17 1.05 0.99 1.07 1.23
40 1.11 1.00 1.20 1.16 1.10 1.11 1.11 1.00 0.99 0.99
45 1.11 1.00 1.11 1.07 1.08 1.06 1.18 0.97 1.21 0.98
50 1.11 1.00 1.05 1.07 1.07 1.15 1.06 1.09 1.07 0.96

XGB 5 3.44 3.43 2.83 2.76 3.30 2.99 2.67 2.67 2.65 3.39
10 2.97 2.81 2.91 3.88 5.08 4.05 2.97 2.89 2.99 3.47
15 3.13 2.47 2.83 2.81 3.92 3.89 3.56 3.30 3.26 4.06
20 2.98 3.35 3.81 3.10 4.08 4.38 3.69 3.37 3.17 4.04
25 2.95 3.15 3.81 3.03 2.63 3.29 4.26 3.75 3.75 3.84
30 3.42 3.82 3.97 3.16 4.59 2.97 4.48 3.23 3.57 4.45
35 2.65 3.01 4.18 3.06 5.12 4.24 3.27 3.43 4.10 3.75
40 2.43 3.09 3.39 3.98 3.54 4.57 4.12 3.52 3.74 4.59
45 2.57 3.83 3.39 4.03 2.84 4.84 5.66 4.11 3.47 5.14
50 2.50 3.08 2.89 3.79 3.58 3.94 4.99 4.39 4.45 3.77

Table 23: HELOC Effectiveness Mean

INITIAL CLUSTERS 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
MODEL DIVERSE ACTIONS

DNN 5 99.21 99.67 99.61 99.34 99.53 99.46 99.88 99.69 99.88 99.61
10 99.41 99.66 99.22 99.28 99.43 99.92 99.92 99.86 99.92 99.92
15 99.36 99.08 99.21 99.27 99.39 99.94 99.92 99.73 99.92 99.94
20 99.72 99.08 99.14 99.67 99.92 99.89 99.98 99.92 99.97 99.98
25 99.74 99.08 99.14 99.39 99.98 99.92 99.98 99.96 99.98 99.98
30 99.78 99.08 99.23 99.98 99.98 100.00 99.95 99.98 99.96 99.98
35 99.78 99.10 99.27 99.98 100.00 100.00 99.98 99.98 99.96 99.98
40 99.76 98.89 99.60 100.00 100.00 99.98 99.94 99.98 99.98 100.00
45 99.76 99.12 99.65 100.00 99.98 99.98 100.00 99.98 99.98 99.96
50 99.76 99.12 99.65 100.00 99.98 100.00 99.94 99.98 99.98 99.96

LR 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
15 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
25 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
35 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
45 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

XGB 5 87.66 91.56 94.14 94.27 95.33 96.28 97.12 97.34 98.02 98.19
10 90.45 95.79 96.01 97.95 97.86 98.57 98.39 98.73 98.64 99.38
15 93.13 96.53 96.93 97.94 98.05 98.40 98.69 98.82 98.92 99.32
20 94.71 97.87 96.89 98.26 98.34 98.49 99.13 99.00 98.94 99.42
25 95.23 97.80 97.55 98.71 98.98 98.94 99.01 99.07 98.99 99.58
30 96.14 97.76 98.65 98.84 98.62 99.00 99.07 98.98 99.38 99.38
35 95.96 98.17 98.92 99.01 99.02 99.15 99.07 98.83 99.39 99.53
40 96.51 98.63 99.25 99.34 99.40 99.20 99.58 99.17 99.57 99.72
45 97.43 98.97 99.27 99.37 99.39 99.13 99.54 99.54 99.58 99.85
50 97.95 98.89 99.30 99.24 99.49 99.26 99.66 99.43 99.62 99.91
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Table 24: HELOC Average Cost Mean

INITIAL CLUSTERS 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
MODEL DIVERSE ACTIONS

DNN 5 9.03 7.44 10.79 9.14 11.58 10.49 10.20 11.21 9.67 10.55
10 10.97 10.12 10.58 9.85 9.97 10.77 10.95 11.35 10.37 11.25
15 10.54 11.09 10.96 10.35 10.36 10.23 10.57 11.17 9.83 9.43
20 10.85 11.27 11.35 10.38 11.87 12.11 10.98 11.87 10.19 10.50
25 10.80 11.30 11.86 10.13 10.76 11.54 11.51 11.23 10.09 11.75
30 11.70 11.08 10.87 12.77 10.92 11.51 10.96 10.80 10.34 9.54
35 11.70 11.06 10.86 11.70 11.97 12.22 10.54 11.08 10.11 10.82
40 12.03 11.06 11.01 11.29 11.56 12.22 10.87 11.48 10.12 10.81
45 12.03 11.25 11.63 12.47 11.59 12.65 11.90 9.85 10.21 8.84
50 12.03 11.20 11.62 12.17 11.59 11.64 11.67 10.70 11.39 11.52

LR 5 2.67 2.40 1.92 1.77 1.78 1.92 2.00 1.72 1.66 1.68
10 1.91 2.04 1.88 1.63 1.79 1.66 1.66 1.50 1.57 1.52
15 2.09 1.73 1.65 1.77 1.48 1.41 1.56 1.49 1.46 1.35
20 1.80 1.56 1.59 1.60 1.54 1.52 1.59 1.53 1.47 1.25
25 1.80 1.65 1.62 1.51 1.51 1.52 1.50 1.48 1.43 1.46
30 1.69 1.62 1.54 1.51 1.57 1.38 1.52 1.52 1.43 1.32
35 1.69 1.62 1.57 1.41 1.49 1.24 1.43 1.40 1.49 1.34
40 1.66 1.53 1.41 1.38 1.52 1.28 1.34 1.39 1.40 1.35
45 1.64 1.53 1.50 1.40 1.46 1.30 1.43 1.39 1.37 1.31
50 1.64 1.47 1.44 1.31 1.46 1.27 1.37 1.43 1.23 1.35

XGB 5 12.22 14.05 15.44 14.77 15.91 16.25 17.14 17.13 17.87 18.28
10 13.83 16.14 16.51 18.75 17.54 17.57 20.25 20.62 21.32 25.72
15 15.33 18.93 17.05 17.40 18.07 21.27 19.51 21.48 27.93 18.61
20 14.92 18.59 16.79 20.42 21.98 23.13 22.44 20.12 22.97 23.07
25 16.03 20.48 17.85 19.41 22.98 22.43 21.69 25.36 27.18 22.68
30 15.74 20.30 18.35 21.33 23.88 24.85 23.86 23.11 24.39 24.77
35 17.16 22.75 20.80 21.62 23.70 27.08 24.47 20.27 25.74 24.13
40 16.58 25.14 21.67 23.77 24.82 29.50 26.66 23.40 26.58 29.42
45 18.55 25.83 22.86 25.32 25.87 26.71 25.22 25.62 22.86 27.09
50 18.75 23.21 26.56 24.85 28.62 27.21 24.82 28.62 24.27 26.10

32


	Introduction
	Key Contributions
	Related Work

	Problem Formulation
	C-GLANCE
	T-GLANCE
	Experimental Evaluation
	Experimental Setting
	Experimental Evaluation

	Conclusion
	Hardness
	Size-Cost and Size-Effectiveness Trade-offs
	Time Complexity Analysis
	C-GLANCE
	T-GLANCE

	Datasets & Preprocessing
	Models and Hyperparameters
	Competing Methods
	Candidate Counterfactual Action Generators
	DiCE
	Random Sampling
	Nearest Neighbors
	Nearest Neighbors Scaled

	Experimental Results
	Experimental Procedure
	Experiments for Effectiveness-Cost Trade-offs
	Results for s = 8 
	Comperative Evaluation with different Counterfactual Generation Methods
	Detailed results

	A User Study to Assess how Global Counterfactual Explanations are Perceived
	Design
	The Viewpoint of Individuals Seeking Recourse
	The Viewpoint of System Owners Seeking to Provide Recourse
	Evaluating the Trade-off between Effectiveness and Average Recourse Cost

	Results

	Addressing Potential Edge Cases in Recourse Algorithms
	Local vs. Global Counterfactual Costs
	Impact of Initial Clusters and Diverse Actions

