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Abstract

Deep cascaded architectures for magnetic resonance imaging (MRI) acceleration have shown
remarkable success in providing high-quality reconstruction. However, as the number of
cascades increases, the improvements in reconstruction tend to become marginal, indicat-
ing possible excess model capacity. Knowledge distillation (KD) is an emerging technique
to compress these models, in which a trained deep ‘teacher’ network is used to distill
knowledge to a smaller ‘student’ network, such that the student learns to mimic the be-
havior of the teacher. Most KD methods focus on effectively training the student with a
pre-trained teacher that is unaware of the student model. We propose SFT-KD-Recon, a
student-friendly teacher training approach along with the student as a prior step to KD
to make the teacher aware of the student’s structure and capacity and enable aligning the
teacher’s representations with the student. In SFT, the teacher is jointly trained with
the unfolded branch configurations of the student blocks using three loss terms - teacher-
reconstruction loss, student-reconstruction loss, and teacher-student imitation loss, followed
by KD of the student. We perform extensive experiments for MRI acceleration in 4x and
5x under-sampling, on the brain and cardiac datasets on five KD methods using the pro-
posed approach as a prior step. We consider the DC-CNN architecture and setup teacher
as D5C5 (141765 parameters), and student as D3C5 (49285 parameters) denoting 2.87:1
compression. Results show that (i) our approach consistently improves the KD methods
with improved reconstruction performance and image quality, and (ii) the student distilled
using our approach is competitive with the teacher, with the performance gap reduced from
0.53 dB to 0.03 dB.

Keywords: Knowledge Distillation (KD), Student-Friendly Teacher KD for reconstruction
(SFT-KD-Recon), MRI, deep cascaded convolutional neural networks (DC-CNN).

1. Introduction

Modern deep neural networks have achieved outstanding performance in various medical
imaging tasks such as image reconstruction, super-resolution, and object detection. Specif-
ically in Magnetic Resonance Imaging (MRI) acceleration, the top five performing methods
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of fastMRI were implemented by using cascades of deep learning (DL) models (Muckley
et al., 2021), with greater depth and complexity yielding higher output fidelity. However,
the gain in performance per added cascade is not linear (Ramanarayanan et al., 2020a)
over discrete increments in model size but rather becomes marginal asymptotically, imply-
ing possible excess capacity and potential compressibility of cascade models like DC-CNN
(Schlemper et al., 2017) and DC-UNet (Sun et al., 2019).

The field of model compression research addresses the problem of achieving the least
network size with minimum reduction in performance. To obtain lightweight models, there
exist recent techniques such as (1) model pruning [(Li et al., 2016), (He et al., 2017)],
where the model weights are sparsified to minimize redundancies, (2) lightweight network
design [(Howard et al., 2017), (Zhang et al., 2018a)], such as substituting convolutions with
separable convolutions, and (3) knowledge distillation (KD) methods [(Hinton et al., 2015),
(Romero et al., 2014), (Yim et al., 2017b), (Gao et al., 2018)], where a trained deep ‘teacher’
network is used to distill representations to a smaller ‘student’ network, and the student
learns to mimic the behavior of the teacher network, retaining the structure (Fig. 1a).

KD is an interesting method, as besides distilling from a pre-trained teacher network
(Hinton et al., 2015), the training framework can accommodate the training of the teacher
model along with the student. Such approaches can render the teacher aware of the student’s
structure and capacity, and offer scope for aligning representations with the student’s layer
features. A real-world analogy is neuro-linguistic programming, wherein educators under-
stand what motivates students and orient the teaching to suit them (Tosey and Mathison,
2010). Student-Friendly Teacher (SFT) training (Park et al., 2021) is a recent method that
introduces a prior step of jointly training the teacher along with the student (i.e. student-
aware training), followed by routine feature-based knowledge distillation. This approach
uses modular block-structured architectures for both teacher and student and augments
the student branches to the teacher during student-aware teacher training. This has been
shown to improve top-1 classification accuracy in standard image classification datasets
using ResNet-50 (teacher) and ResNet-34 (student) with a compression factor of 32 %.

For MRI reconstruction, we consider the deep cascaded convolutional neural network
(DC-CNN) owing to its block-structured configuration and good-quality reconstruction. For
KD, we consider the DC-CNN with deeper blocks as the teacher and shallower blocks as
the student. We perform SFT training by enabling the teacher to interact with the student
block-wise. This student-oriented approach enables the low-level features of the student
to match with the corresponding features of the teacher, improving both the teacher and
the student. Furthermore, we effectively reuse the mutual knowledge (Zhang et al., 2018b)
learned by the student for the subsequent distillation process. Hence, we have chosen
the SFT-KD framework to ensure consistency between the teacher and the student for
optimal knowledge distillation in MRI reconstruction. In SFT, the ResNet units need to
be configured as blocks, wherein the number of Resnet blocks might be a hyperparameter
and each block output is in the residual feature domain. In ours, the deep cascaded MRI
reconstruction CNNs with interleaved data fidelity blocks are inherently block-structured
with each block output in the image domain (Figure 2). Our contributions are as follows:

1. We propose SFT-KD-Recon, a Student-Friendly Teacher learning framework for en-
hancing knowledge distillation for MRI restoration tasks. The proposed framework enables
knowledge distillation to be oriented to the student network.
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Figure 1: Comparison between the standard KD and SFT-KD-Recon. (a) The standard
KD trains teacher alone and distills knowledge to student. (b) SFT-KD-Recon trains the
teacher along with the student branches and then distills effective knowledge to student. (c)
SFT Vs SFT-KD-Recon, the former learns in the feature domain via residual CNN while
the latter learns in the image domain via image domain CNN.

2. The proposed framework improves the teacher and provides an initialization to the
student layers for the subsequent stage of distillation. Our method is straightforward and
can be easily plugged into the standard KD methods for high fidelity.

3. We demonstrate the effectiveness of SFT-KD-Recon on various KD methods for MRI
reconstruction and super-resolution tasks. Experiments reveal (i) the superiority of the
proposed student-friendly teacher over conventional teacher models, and (ii) the consistency
of SFT-KD-Recon in improving the student accuracy across five KD methods for image
reconstruction and super-resolution.

2. Related work

MRI reconstruction using cascaded image domain architectures like deep cascaded CNN
(DC-CNN) (Schlemper et al., 2017), dilated networks (Sun et al., 2018), attention mecha-
nism (Huang et al., 2019), dense connections (Wu et al., 2018), and adaptive reconstruction
(Ramanarayanan et al., 2020b) have shown promising performance for various anatomies,
contrasts and acceleration factors for reconstruction. To demonstrate the efficacy of our
method we have chosen the foremost and simplest deep cascaded architecture, DC-CNN.

Knowledge distillation is first introduced for neural network model compression (Hin-
ton et al., 2015). KD methods for classification tasks include, (i) FitNets (Romero et al.,
2014) which uses the pre-trained teacher’s hint layer and student’s guided layer for distil-
lation, (ii) Flow of solution procedure (FSP) (Yim et al., 2017a), wherein the student pre-
serves the pairwise similarities with the teacher in the representation space, (iii) Similarity-
preserving (SP) KD (Tung and Mori, 2019) wherein the student mimics the similarity map
of the intermediate layers of the teacher, and (iv) Correlation Congruence (CC) (Peng et al.,
2019) wherein the information at the input instance level and the correlation between in-
stances are transferred to the student. Unlike KD for classification tasks wherein knowledge
refers to the softened probabilities or sample relationships, for regression tasks, KD remains
less explored. For MRI reconstruction, both universal under-sampled reconstruction (Liu
et al., 2021) and KD-MRI (Murugesan et al., 2020) use Attention transfer (AT) (Zagoruyko
and Komodakis, 2016) which distills the response patterns in the teacher to the student
feature maps. A few other previous works for image regression tasks include FAKD (super-
resolution) (He et al., 2020), U-Net KD (denoising) (Chen et al., 2021), collaborative KD
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Figure 2: Student-Friendly training of the teacher. The teacher DC-CNN has five blocks,
each having CNN with five convolution layers and DF layer, and the student DC-CNN has
five blocks, each having three convolution layers and a DF layer. The teacher is trained
with three loss terms - LT

rec, L
S
rec (blue arrows), and Limit (violet arrows). Note that all the

blocks of the student learn initial weights except the first block during SFT training.

(style transfer) (Wang et al., 2020) and deep pose regression network (Saputra et al., 2019).
Similar to these networks, our work focuses on model compression, and learns the feature
similarity with the teacher to improve the student’s fidelity.

3. Methodology

3.1. Problem formulation for deep learning based MRI reconstruction

The deep-learning-based MRI reconstruction can be formulated as an optimization prob-
lem (Huang et al., 2019) and is given by:

min
x

∥x− fcnn (xu | θ)∥22 + λ ∥Ax− y∥22 (1)

where x ∈ CN denotes the desired image, y ∈ CM is the under-sampled k-space measure-
ments. Here A : CN → CM represents the forward operator of the MRI acquisition and is
given by A = M ◦ F(x) where ◦ indicate Hadamard product. M is the under-sampling
mask and F(.) is the 2D Fourier transform. Here, fcnn is the CNN that learns the mapping
between the zero filled (ZF) or under-sampled image xu and the fully sampled image x and
is parameterized by θ. The data fidelity (DF) operation in the k-space domain is performed
after each CNN block to ensure consistency with the acquired k-space and is given by:

X̂rec =

{
X̂cnn(k) k /∈ Ω
X̂cnn(k)+λX̂u(k)

1+λ k ∈ Ω, λ → ∞
(2)

where xcnn = fcnn (xu | θ) , X̂cnn = F(xcnn), X̂u = F(xu), xrec = F−1(X̂rec), Ω is the
index set of the acquired k-space measurements and λ is the data fidelity weight.

3.2. Proposed Student-friendly Teacher-KD Framework

The SFT approach aims to train the teacher model collaboratively with the student, prior
to distillation. During teacher training, the teacher learns along with the student branches
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to obtain representations tailored to the student. Figure 2 shows that SFT training consists
of a teacher network along with multiple branches from the student network. Let {Tn}Nn=1

and {Sn}Nn=1 denote the blocks in the teacher and the student respectively. Here N denotes
the number of blocks in the two networks. The figure shows a case with N = 5. Here, T1

block is associated with S2−S3−S4−S5 branch, T2 is associated with S3 to S5, and so on.
By infusing student intermediate branches with the corresponding blocks of the teacher,
each teacher block improves its knowledge based on the respective student branch and also
the knowledge of the subsequent teacher blocks. For instance, T1 learns according to the S2

to S5 branch and T2 to T5 blocks. Each student branch performs image-to-image mapping
which is essential for reconstruction, unlike SFT, which learns in the feature domain. Our
three loss terms are:

(1) Teacher-target reconstruction loss: The L1 loss between the teacher’s prediction
xTrec, and the target x, given by

LT
rec =

∥∥x− xTrec
∥∥
1

(3)

(2) Student-target reconstruction loss: The average L1 loss taken over each student
branch output xSrec,i, i = 1, 2, ..N − 1 and the target, given by

LS
rec =

1

N − 1

N−1∑
i=1

∥∥x− xSrec,i
∥∥
1

(4)

(3) Student-teacher imitation loss: The L1 loss that minimizes the inconsistency
between the predictions of the teacher and the student (branch-wise), given by

Limit =
1

N − 1

N−1∑
i=1

∥∥xTrec − xSrec,i
∥∥
1

(5)

The overall training process is illustrated in Algorithm 1

Algorithm 1: SFT-KD-Recon procedure:

• Step 1: Train the teacher DC-CNN, fT
cnn parameterized by θT , along with multiple

student branches with loss LSFTN = LT
rec + LS

rec + Limit.

• Step 2: Load the student blocks weights θS obtained during SFT training in Step 1,
and train the student network, fS

cnn using reconstruction loss LS
rec =

∥∥x− xSrec
∥∥
1
and

distillation loss (depending upon the KD method) between teacher and student.

4. Experiments and Results

4.1. Dataset Description and Evaluation metrics

We have used two publicly available datasets to evaluate the proposed method for MRI
reconstruction. (1) The Cardiac MRI dataset, released as part of the Automated Car-
diac Diagnosis Challenge (ACDC) (Bernard et al., 2018), consists of 150 patient records
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Table 1: Comparison of our framework with standard KD framework for MRI Reconstruc-
tion on MRBrainS and cardiac datasets. In all the KD methods, the student distilled from
the SFT-KD-Recon outperforms the ones distilled from the standard teacher.

4x 5x
Std-KD SFT-KD-Recon Std-KD SFT-KD-ReconDataset Model

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
ZF 31.38/0.6651 - 29.93/0.6304 -

Teacher 40.05/0.9785 40.23/0.9799 39.11/0.9715 39.16/0.972
Student 39.49/0.9759 - 38.49/0.9663 -
Fitnets 39.52/0.9762 40.08/0.9790 38.70/0.9681 38.95/0.9699
AT 39.76/0.9769 40.07/0.9789 38.85/0.9691 38.92/0.9699
CC 39.64/0.9762 40.06/0.9789 38.60/0.9675 38.86/0.9691
FSP 39.45/0.9756 40.01/0.9786 38.32/0.9643 38.82/0.9692

MRBrainS

SP 39.53/0.9762 39.93/0.9782 38.46/0.9661 38.81/0.9692
ZF 24.27/0.6996 - 23.82/0.6742 -

Teacher 32.15/0.9108 32.26/0.9126 31.25/0.8964 31.33/0.8968
Student 31.68/0.9013 - 30.59 /0.8826 -

AT 31.95/0.9060 32.03/0.9070 30.88/0.8879 30.93/0.8884
Fitnets 31.90/0.9050 31.95/0.9067 30.59/0.8811 30.86/0.8871
CC 31.83/0.9049 31.96/0.9070 30.73/0.8859 30.94/0.8889
FSP 31.71/0.9024 31.91/0.9060 30.51/0.8817 30.82/0.8862

Cardiac

SP 31.58/0.9004 31.91/0.9060 30.73/0.8860 30.83/0.8865

(1841 slices) for training and 50 patient records (1076 slices) for validation. Each slice is
cropped to its central 150×150 region. (2) The Brain MRI dataset, MRBrainS Dataset
(Mendrik et al., 2015) consists of 7 volumes of T1 MRI split into 5 volumes (240 slices) for
training and the remaining (96 slices) for validation. Each slice is of size 240 × 240. The
under-sampled k-space and under-sampled images are retrospectively obtained using fixed
Cartesian under-sampling masks for 4x and 5x acceleration factors (Ramanarayanan et al.,
2020a). We use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
metrics as our evaluation metrics. Wilcoxon signed rank test with an alpha of 0.05 is used
to assess statistical significance.

4.2. Implementation Details

For KD, we use DC-CNN configurations D5C5 as the teacher and D3C5 as the student with
a compression factor of 65%. Here D3C5 means each cascade block has 3 convolution layers
and there are 5 cascade blocks. Each layer in the two networks has 32 channels with ReLU
activations and 3x3 filters. The cascaded network have alternating CNN blocks and DF
units. We have chosen five KD methods to demonstrate the effectiveness of our approach,
namely AT (Attention Transfer) (Zagoruyko and Komodakis, 2016), Fitnets (Romero et al.,
2014), Similarity Procedure (SP) (Tung and Mori, 2019), Flow of Solution Procedure (FSP)
(Yim et al., 2017a), and CC (Correlation congruence) (Peng et al., 2019).

Models are implemented in PyTorch (v1.12) on a 24GB RTX 3090 GPU. For every step
mentioned in the training algorithm, models are trained for 150 epochs using the Adam
optimizer, with a learning rate of 1e−3. Code for our proposed method is available at
SFT-KD-Recon repository 1.

1. https://github.com/GayathriMatcha/SFT-KD-Recon
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4.3. Results and discussion

We compare our SFT-KD-Recon (Student trained using our procedure) with Std-KD (stan-
dard KD i.e. student trained using pre-trained teacher (Hinton et al., 2015)), student, and
teacher in 4x and 5x setup on cardiac and brain datasets. Table 1 provides the quantitative
analysis of the reconstruction performance of the proposed SFT approach applied to five
different KD methods. From the table, our observations are as follows. (i) Student-friendly
teacher performs consistently better than the conventional teacher with the highest improve-
ment margin of 0.15 dB in PSNR and 0.002 in SSIM. (ii) SFT-KD-Recon is consistently
better than Std-KD in the five KD methods. (iii) In PSNR, the performance drop in the
student relative to the teacher is 0.56 dB without KD. By using Std-KD, this gap is 0.53
dB. With the proposed SFT-KD-Recon, the gap is significantly minimized to 0.03 dB.

Figure 3: Visual results (from left to right): target, target inset, ZF, teacher, student, Std-
KD, SFT-KD-Recon, student residue, Std-KD residue, SFT-KD-Recon residue with respect
to the target, for the brain (top) and cardiac (bottom) with 4x acceleration. We note that
in addition to lower reconstruction errors, the SFT-KD distilled student is able to retain
finer structures better when compared to the student and Std-KD output.

We note that during SFT training, multiple configurations of the students ((i) S5 alone,
(ii) S4 and S5, (iii) S3, S4 and S5, and so on) are collaboratively involved. The teacher
and each student configuration are primarily directed by a supervised learning loss. Each
configuration of student branch is a sub-network that steers towards a common objective.
Each student sub-network starts with different initialization and provides predictions that
serve as extra information for the teacher to optimize to a more robust set of features
(Zhang et al., 2018b). This joint learning of the teacher makes it oriented toward student
and transfers effective knowledge during the distillation stage as shown in our experiments.
Interestingly, the distilled student performs as good as the original teacher in three KD
methods, namely AT, Fitnets, and CC for 4x acceleration.

Our PSNR / SSIM results for AT which has given best KD results are: Teacher:
40.05/0.9785, Student: 39.49/0.9759, KD: 39.76/0.9769, SFT-KD-Recon (random initial-
izations): 40.01/0.9786, and with initializations: 40.07/0.9789. This shows that the weights
learned by student branches during SFT training are helpful to provide better initializa-
tions to the student. Comparing conventional SFT and ours using MSE loss and AT as KD
method shows that SFT-KD-Recon outperforms conventional SFT (Table 2). Although,
in general, feature domain learning is important for KD, image domain learning is crucial
both for the SFT training and the KD, using cascaded MRI reconstruction networks.
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Table 2: Comparison of SFT and SFT-KD-Recon for AT distillation method on MRBrainS
dataset and 4x acceleration. For SFT, the classification task loss terms are replaced with
MSE loss for reconstruction. Our framework which trains in the image domain ensures
better reconstruction fidelity than feature domain learning.

Dataset
SFT training setup SFT-KD-Recon training setup

Training done with MSE loss in place of CE/KL loss Training done in image domain with MSE loss
Model PSNR SSIM Model PSNR SSIM

MRBrainS, 4x

Teacher 34.06 ± 0.7114 0.9291 ± 0.007151 Teacher 40.05 ± 2.023 0.9785 ± 0.00655
SF Teacher 34.06 ± 0.6263 0.9296 ± 0.005212 SFT-KD-Recon Teacher 40.23 ± 2.081 0.9799 ± 0.00636
Student 33.48 ± 0.4628 0.9199 ± 0.0051 Student 39.49 ± 1.778 0.9759 ± 0.005949
KD 32.50 ± 0.4323 0.9156 ± 0.006479 KD 39.76 ± 1.899 0.9769 ± 0.006172
SFT 33.50 ± 0.4232 0.9205 ± 0.005292 SFT-KD-Recon 40.07 ± 1.983 0.9789 ± 0.0062

(a) (b)

Figure 4: (a) SSIM Box plots of KD, SFT-KD-Recon with respect to teacher and student
across the brain and cardiac datasets for 4x and 5x acceleration. (b) Reconstruction loss
of teacher, student, SFT-Teacher, KD, SFT-KD-Recon on the validation set for the cardiac
dataset, 4x acceleration. KD and SFT-KD-Recon use AT as the distillation method.

Figure 3 shows the visual results comparing the target image, ZF, teacher, student, KD,
and SFT-KD-Recon for the brain and cardiac respectively. Our observations are (i) SFT-
Recon exhibits better structure recovery as compared to KD. The arrows pointing to the
middle frontal gyrus region of the brain show that our method can recover details better
than student and the Std-KD student. In the cardiac image, the cardiac mass pointed by
the arrows for student and KD is more faded when compared to our approach. The box
plots in Figure 4 show better results for our proposed approach (higher SSIM value (green)
in figure 4(a) and lower reconstruction loss (green) in (b)) than student and KD. For our
proposed method, the metrics are statistically significant with p < 0.05.

5. Conclusion

In this work, we introduced SFT-KD-Recon, a student-friendly teacher training approach for
improved knowledge distillation in the MRI restoration tasks. In the proposed approach, the
teacher network is learned along with the student in a block-structured manner to improve
the accuracy of the student during KD. Extensive experimentation for MRI reconstruction
and super-resolution tasks on the brain and cardiac datasets using various KD methods show
that the proposed SFT training can align the teacher to the student and can significantly
improve the performance of knowledge distillation in MRI.
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Appendix A. MRI Reconstruction

A.0.1. Performance Analysis of SFT-KD

We show the efficacy of our approach using two other metrics, (1) High-Frequency Error
Norm (HFN) (Fujita et al., 2020) and (2) Visual Information Fidelity (VIF) (Han et al.,
2013). HFN quantifies the quality of reconstruction of edges and fine features of MRI. VIF
is chosen to assess the quality of MRI reconstruction with radiologist perception. As shown
in Table 3, it is evident that our approach improves student performance in terms of these
metrics also. We obtained the best improvement for the fitnets method of around 1.3%
improvement in VIF score. Note that the HFN and VIF scores of student distilled with
our method are closer to the teacher and very much better than student and KD-distilled
student.

Table 3: HFN (lower is better) and VIF (higher is better) score of KD, SFT-KD-Recon
with respect to teacher and student for five KD methods of MRBrainS dataset for 4x
acceleration factor. Apart from PSNR and SSIM, we can notice a consistent improvement
in other metrics like HFN and VIF scores for a distilled student with our approach.

4x
Std. KD SFT-KD-ReconDataset Model
HFN/VIF HFN/VIF

Teacher 0.2802/ 0.9146 0.2769/0.9223
Student 0.3266/0.9037 -
Fitnets 0.3204/0.9012 0.2816/0.9166
AT 0.3023/0.9103 0.2825/0.9141
CC 0.3081/0.9078 0.2833/0.9155
FSP 0.3155/0.8989 0.2848/0.9169

MRBrainS

SP 0.3187/0.9023 0.2915/0.9170
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A.0.2. Comparison of SFT and SFT-KD-Recon

To compare SFT and SFT-KD-Recon, we just took the original SFT with only residual layers
and no intermediate image outputs and replaced CE/KL with MSE loss. We preserved the
number of CNN layers in SFT and SFT-KD-Recon between the teacher (25 convolution
layers) and the student (15 layers). Table 4 shows that SFT constitutes a set of models -
teacher (25 layer CNN), student (15 layer CNN), KD (15 layer CNN), and SFT-KD-Recon
(15 layer CNN) with the underlying architecture having only residual layers. Similarly, SFT-
KD-Recon constitutes another set of models - teacher (D5C5), student (D3C5), KD (D3C5),
SFT-KD-Recon (D3C5) with intermediate data fidelity units and image outputs. We note
that the SFT-KD-Recon training setting improves the teacher and the AT distillation step
significantly better than models trained in a conventional SFT setting. Figure 5 shows
quantitative analysis of teacher, student, Std. KD, SFT student in both SFT and SFT-KD-
Recon training settings. Figure 6 shows the comparison of the residual feature attention
maps of the output layer in each cascade of the student trained using SFT and SFT-KD-
Recon training settings. The residual feature maps are taken with respect to the respective
teacher models. The figure shows that the features learned by our approach mimic the
representation of its teacher significantly better than the conventional SFT.

Table 4: Comparison of SFT and SFT-KD-Recon for AT distillation method on MRBrainS
dataset and 4x acceleration. For SFT, the classification task loss terms are replaced with
MSE loss for reconstruction. Our framework which trains in the image domain, ensures
better reconstruction fidelity than feature domain learning.

Dataset
SFT training setup SFT-KD-Recon training setup

Training done with MSE loss in place of CE/KL loss Training done in image domain with MSE loss
Model HFN/VIF PSNR/SSIM Model HFN/VIF PSNR/SSIM

MRBrainS, 4x

Teacher 0.4947/0.7379 34.06/0.9291 Teacher 0.2802/ 0.9146 40.05/0.9785
SF Teacher 0.2769/0.9223 34.06/0.9296 SFT-KD-Recon Teacher 0.2769/0.9223 40.23/0.9799
Student 0.5316/0.6994 33.48/0.6994 Student 0.3266/0.9037 39.49/0.9759
KD 0.5534/0.6850 32.50/0.9156 KD 0.3023/0.9103 39.76/0.9769
SFT 0.5380/0.7043 33.50/0.9205 SFT-KD-Recon 0.2816/0.9166 40.07/0.9789

Figure 5: Visual results: Top - SFT training setting (from left to right): target, target
inset, ZF, teacher, student, Std. KD, SFT; Bottom - SFT-KD-Recon setting (left to right):
target, target inset, ZF, teacher, student, Std. KD, SFT-KD-Recon for MRBrainS dataset
with 4x acceleration factor.
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Figure 6: Top - SFT training setting (from left to right): Residue computed between feature
attention maps of the distilled student and feature attention maps of teacher from cascade
1 to cascade 5. Bottom - SFT-KD-Recon setting (left to right): Residue computed between
distilled student and teacher features from cascade 1 to cascade 5. Note that the distilled
student trained in our SFT-KD-Recon setting is able to mimic the teacher’s attention maps
better.

Comparison of SFT-KD-Recon with and without random initialization for the
student during KD step: One key difference between the SFT and ours is that the
initial knowledge obtained by the student during this mutual learning is not utilized in
SFT. We consider this a pre-training phase for the later layers of the student and reuse the
initialization of the student during the KD stage. This fine-tuning phase can enable the
student to well handle target tasks better than KD, especially for image restoration tasks
where fine-image details need to be recovered. As shown in the ablative study (Table 5)
with these initializations, the student is performing better than the SFT framework itself.

Table 5: Ablative study comparing SFT-KD-Recon student with random initialization
(SFT-KD-Recon (random)) and SFT-KD-Recon student with initialization learned dur-
ing teacher training stage for AT method on MRBrainS dataset and 4x acceleration in the
image domain. Here, our framework, which trains with better initializations, ensures better
performance. In general, fine-tuning often outperforms training from scratch because the
student during SFT training already has a generous amount of knowledge.
Evaluation
Metrics

Teacher
(D5C5)

Student
(D3C5)

KD
(D3C5)

SFT-KD-Recon (random)
(D3C5)

SFT-KD-Recon
(D3C5)

HFN 0.2802 +/- 0.0319 0.3266 +/- 0.02357 0.3023 +/- 0.0313 0.2882 +/- 0.02705 0.2825 +/- 0.02775

MSE 1.002e-04 +/- 4.626e-05 1.137e-04 +/- 4.623e-05 1.07e-04 +/- 4.641e-05 1.015e-04 +/- 4.510e-05 9.967e-05 +/- 4.513e-05

PSNR 40.05 +/- 2.023 39.49 +/- 1.778 39.76 +/- 1.899 39.99 +/- 1.947 40.07 +/- 1.983

SSIM 0.9785 +/- 0.00655 0.9759 +/- 0.005949 0.9769 +/- 0.006172 0.9785 +/- 0.006112 0.9789 +/- 0.0062

VIF 0.9146 +/- 0.01749 0.9037 +/- 0.01972 0.9103 +/- 0.01752 0.9140 +/- 0.01702 0.9141 +/- 0.01799

A.0.3. Versatility of SFT-KD

Among all the KD methods, the SFT-KD-Recon for AT shows the highest performance
improvements in all configurations. Using AT, we further analyzed the performance of
SFT-KD-Recon with a heterogeneous teacher, wherein we chose DC-UNet (Sun et al., 2019)
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as the teacher and D3C5 as the student (different architectures for teacher and student)
tabulated in Table 6. This shows that our approach can improve the KD irrespective of
whether the teacher’s architecture is homogeneous with the student.

Table 6: Ablative study comparing KD and SFT-KD-Recon for AT method on MRBrainS
dataset and 4x acceleration by considering DC-UNet as teacher and D3C5 as a student. De-
spite the architectural mismatch of the student and the teacher, there is visible performance
gain of the student using our approach.
Evaluation Metrics Teacher SFT-Teacher Student KD SFT-KD Recon

PSNR 40.11 ± 2.588 40.18 ± 2.692 39.47 ± 1.823 39.77 ± 1.899 39.89 ± 1.997

SSIM 0.9777 ± 0.008232 0.9775 ± 0.009105 0.9758 ± 0.006268 0.9774 ± 0.006272 0.978 ± 0.006585

A.0.4. Comparison with other Reconstruction methods

Table 7 illustrates that our model can successfully compress larger networks while perform-
ing competitively with other MRI reconstruction networks. The table comparison reveals
that our model outperforms three other methods (Sun et al., 2019; Schlemper et al., 2017;
Murugesan et al., 2020) and exhibits a competitive Structural Similarity Index Measure of
0.907, which is on par with the best-performing model MAC-ReconNet (Ramanarayanan
et al., 2020b) with three times more parameters (0.9114). These observations highlight the
importance of model compression for MRI reconstruction.

Table 7: Ablative study comparing SFT-KD-Recon student for AT method on cardiac
dataset for 4x and 5x acceleration.

PSNR/SSIM
Reconstruction Method

4x 5x
Number of parameters

DC-CNN 32.15/0.9108 31.25/0.8964 141765
DC-RDN 31.65/0.9015 30.65/0.8844 141765

MAC-ReconNet 32.21/0.9114 31.12/0.8943 141765
DAGAN 28.52/0.8410 28.02/0.8250 3348227

KD-MRI (D3C5) 31.95/0.9060 30.88/0.8879 49285
SFT-KD-Recon (D3C5) 32.03/0.9070 30.93/0.8884 49285

Comparison of SFT-KD-Recon Teacher training with pre-trained weights and
random initializations: Figure 7 shows validation curves of SFT-KD-Recon teacher
(pre-trained on the cardiac dataset and fine-tuned in brain dataset, green curve) and SFT-
KD-Recon teacher trained from scratch on brain dataset (red curve). We can see the rapid
adaptation of the pre-trained teacher in about 13 epochs taking 4.5 secs against the teacher
trained from scratch, taking the number of epochs thrice to converge thereby reducing the
computational speed of the training teacher.

Performance analysis for different compression factors: We considered different
compression factors of the teacher network like D4C5 (33%), D3C5 (62%), and D2C5 (97%)
as student networks and tabulated the performance of distilled student networks using
conventional KD and proposed approach in Table 8. from the table we note that as the
compression rate is very high in D2C5, conventional KD fails due to very small size of
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Figure 7: Comparison of the validation loss of SFT-KD-Recon teacher (pre-trained on the
cardiac dataset and fine-tuned in brain dataset, green curve) and SFT-KD-Recon teacher
trained from scratch on brain dataset (red curve). The figure shows the rapid adaptation
of the pre-trained teacher in about 13 epochs, taking 4.5 secs against the teacher trained
from scratch, taking the number of epochs thrice to converge.

the network where as the same network distilled with our approach is able to give better
performance.

Table 8: Performance analysis for different compression factors (different student models)
for MRBrainS Dataset, 4x acceleration factor. Note that the compression factor are 33%,
62% and 97% for D4C5, D3C5, D2C5 respectively.

MODEL Parameters
Inference
Time (ms)

Original KD SFT-KD-Recon
PSNR/SSIM HFN/VIF PSNR/SSIM HFN/VIF PSNR/SSIM HFN/VIF

Teacher (D5C5) 141765 17.415 40.05/0.9785 0.2802/0.9146 - - - -

Student-1 (D4C5) 95525 (32.6%) 9.353 39.98/0.9785 0.2934/0.9113 40.19/0.9791 0.2774/0.9202 40.21/0.9797 0.2764/0.9196

Student-2 (D3C5) 49285 (65.25%) 6.628 39.49/0.9759 0.3266/0.9037 39.76/0.9769 0.3023/0.9103 40.07/0.9789 0.2825/0.9141

Student-3 (D2C5) 3045(97.83%) 3.686 39.01/0.9728 0.3456/0.8876 38.87 /0.9720 0.3578/0.8854 39.17/0.9739 0.3417/0.8929

Appendix B. MRI Super Resolution:

B.1. MRI Super-Resolution architecture

MRI Super-Resolution involves reconstructing a high-resolution (HR) image from a low-
resolution (LR) image. In general, interpolation fails to recover the loss of high-frequency
details (fine edges). So, deep learning architectures like VDSR (Kim et al., 2016) were
proposed to restore the LR image. VDSR architecture consists of n blocks of convolution
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M
SE

Figure 8: PSNR and MSE Box plots of KD (AT), SFT-KD-Recon with respect to teacher
and student across validation data of MRBrainS and cardiac datasets for 4x and 5x acceler-
ation factors. From the plots, it is evident that our approach improves student performance
in terms of PSNR also. Our approach (green) has more PSNR, and less mean square error
than student and KD

and ReLU with a residual connection between the input and the output. LR image is inter-
polated to match the dimension of the HR image. We consider VDSR with 12 convolution
layers with a residual connection between input and output for the teacher network and
4 convolution layers with a residual connection between input and output for the student
network. We evaluate the performance of the student network using our approach and
standard approach by considering various baseline KD methods such as AT (Zagoruyko
and Komodakis, 2016), Fitnets (Romero et al., 2014), CC (Peng et al., 2019), Neuron se-
lectivity transfer (NST) (Huang and Wang, 2017), Factor transfer (FT) (Kim et al., 2018),
Probabilistic knowledge transfer (PKT) (Passalis and Tefas, 2018).

B.2. Experiments and Results:

B.2.1. Dataset Description and Evaluation metrics

Dataset Description: Calgary dataset[Complex-valued]: The human brain dataset was
obtained with 12-channel receiver coil and then combined to fetch a single-coil acquisition.
The dataset contains 35 volumes of T1 each of size 256 x 256. We consider the center 110
slices from each volume, which provided 25 volumes (2750 slices) and 10 volumes (1100
slices) for training and validation, respectively.

We use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
metrics as our evaluation metrics.
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Table 9: Comparison of our framework with standard KD framework for MRI super-
resolution on MRBrainS dataset for 4x acceleration.

RESOLUTION TASK

4x
Std-KD SFT-KD-ReconDataset Model

PSNR SSIM PSNR SSIM

Teacher 30.40+/- 1.345 0.8753 +/- 0.01291 30.49 +/- 1.262 0.8767 +/- 0.01268
Student 29.94 +/- 1.423 0.8656 +/- 0.01412 - -

AT 29.97 +/- 1.448 0.8662 +/- 0.01404 30.02 +/- 1.392 0.8673 +/- 0.01364
Fitnets 29.95 +/- 1.38 0.8658 +/- 0.01373 30.01 +/- 1.381 0.8672 +/- 0.01360
CC 29.98 +/- 1.423 0.8730 +/- 0.01277 29.99 +/- 1.425 0.8663 +/- 0.01328
PKT 29.95 +/- 1.435 0.8659 +/- 0.01381 30.01 +/- 1.421 0.8676 +/- 0.01349

factortransfer 29.99 +/- 1.427 0.8665 +/- 0.01332 30.04 +/- 1.387 0.8677 +/- 0.01360

Calgary

NST 29.98 +/- 1.364 0.8662 +/- 0.01374 29.99 +/- 1.414 0.8663 +/- 0.01382

B.2.2. Experiments and results:

Table 9 shows the quantitative analysis of the distilled student performance of the proposed
SFT approach applied to various KD methods. From the table, we observe that SFT-
KD performs consistently better than the routine KD approach and the student-friendly
teacher performs better than the conventional teacher. In terms of PSNR, the performance
drop in the student from the teacher is around 0.46 dB without KD. By using normal KD
methods, this drop reduces to only around 0.41 dB. With the proposed SFT-KD, the gap
is significantly minimized to 0.36 dB.
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