
Temporal Difference Flows

Jesse Farebrother 1 2 † Matteo Pirotta 3 Andrea Tirinzoni 3 Rémi Munos 3

Alessandro Lazaric 3 Ahmed Touati 3

Abstract
Predictive models of the future are fundamental
for an agent’s ability to reason and plan. A com-
mon strategy learns a world model and unrolls
it step-by-step at inference, where small errors
can rapidly compound. Geometric Horizon Mod-
els (GHMs) offer a compelling alternative by di-
rectly making predictions of future states, avoid-
ing cumulative inference errors. While GHMs
can be conveniently learned by a generative ana-
log to temporal difference (TD) learning, existing
methods are negatively affected by bootstrapping
predictions at train time and struggle to generate
high-quality predictions at long horizons. This
paper introduces Temporal Difference Flows (TD-
Flow), which leverages the structure of a novel
Bellman equation on probability paths alongside
flow-matching techniques to learn accurate GHMs
at over 5× the horizon length of prior methods.
Theoretically, we establish a new convergence re-
sult and primarily attribute TD-Flow’s efficacy to
reduced gradient variance during training. We fur-
ther show that similar arguments can be extended
to diffusion-based methods. Empirically, we vali-
date TD-Flow across a diverse set of domains on
both generative metrics and downstream tasks, in-
cluding policy evaluation. Moreover, integrating
TD-Flow with recent behavior foundation models
for planning over policies demonstrates substan-
tial performance gains, underscoring its promise
for long-horizon decision-making.

1. Introduction
Predictive modeling lies at the heart of intelligent decision-
making, enabling agents to reason and plan in complex
environments. In Reinforcement Learning (RL), this pre-

†Work done at Meta 1McGill University 2Mila - Québec AI
Institute 3FAIR at Meta. Correspondence to: Jesse Farebrother
<jfarebro@cs.mcgill.ca>, Ahmed Touati <atouati@meta.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

dictive capability has traditionally been achieved through
world models that capture the transition structure of the en-
vironment. These models have enabled significant advances
across numerous domains — from robotics manipulation
employing model-predictive control (Sikchi et al., 2021;
Hafner et al., 2023; Hansen et al., 2022; 2024), to sample-
efficient exploration strategies (Schmidhuber, 1991; Stadie
et al., 2016; Pathak et al., 2017), and sophisticated plan-
ning algorithms (Silver et al., 2016; 2017; Schrittwieser
et al., 2020). However, while world models have demon-
strated impressive results, they face fundamental limitations
when deployed for long-horizon reasoning. The standard
approach of unrolling predictions step-by-step leads to com-
pounding errors, as small inaccuracies in each prediction
accumulate and propagate forward in time (Talvitie, 2014;
Jafferjee et al., 2020; Lambert et al., 2022). This “curse of
horizon” presents a significant challenge for applications
requiring reliable long-range predictions.

An alternative approach is to learn a generative model of
future states directly, avoiding compounding errors dur-
ing inference. These models, usually referred to as Ge-
ometric Horizon Models (GHM; Thakoor et al., 2022) or
γ-models (Janner et al., 2020), are learned by leveraging
the temporal difference structure of the successor measure
(Blier et al., 2021). However, their reliance on bootstrapped
predictions during training can lead to instability and grow-
ing inaccuracy over long horizons. As a result, current
methods struggle to make accurate predictions beyond 20-
50 steps, also limiting their utility for long-term decision-
making. In this paper, we show that while state-of-the-art
generative methods like flow matching (Lipman et al., 2023)
and denoising diffusion (Ho et al., 2020) cannot be directly
applied to learn long-horizon GHMs, their iterative nature
can be leveraged to better exploit the temporal difference
structure of the problem. This insight yields a new class of
methods that provably converges to the successor measure
while reducing the variance of their sample-based gradient
estimates, enabling stable long-horizon predictions. Empir-
ically, our approach produces significantly more accurate
GHMs at all horizons, consistently outperforming state-of-
the-art algorithms across domains and metrics, including
prediction accuracy, value function estimation, and general-
ized policy improvement.

1

Temporal Difference Flows

2. Background
In the following, we use capital letters to denote random
variables, sans-serif fonts for sets, and P(A) to denote the
space of probability measures over a measurable set A.

Markov Decision Process We consider a reward-free dis-
counted Markov decision process M = (S,A, P, γ), which
characterizes the dynamics of a sequential decision-making
problem. At each step, the agent selects an action a ∈ A in
state s ∈ S according to its policy π : S → A. This action
influences the transition to the next state s′ ∈ S, governed
by the transition kernel P : S× A → P(S), which defines
a probability measure over successor states. The discount
factor γ ∈ [0, 1) can be interpreted as implying a process
that either continues with probability γ or terminates with
probability 1 − γ. This interpretation naturally defines a
geometric distribution of future states the agent will occupy,
where states reached after k steps are discounted by γk.

Successor Measure The normalized successor mea-
sure (Dayan, 1993; Blier et al., 2021) of a policy π describes
the discounted distribution of future states visited by π start-
ing from an initial state-action pair (s, a). For the mea-
surable subset X ⊆ S the successor measure mπ(X | s, a)
represents the probability that future states fall within X,
geometrically discounted by γ according to the time of visi-
tation. Formally, it is defined as:

mπ(X | s, a) = (1)

(1− γ)

∞∑
k=0

γk Pr(Sk+1 ∈ X | S0 = s, A0 = a, π),

where Pr(· | S0, A0, π) denotes the probability of state-
action sequences (Sk, Ak)k≥0 generated from (S0, A0) fol-
lowing Sk ∼ P (· | Sk−1, Ak−1) and Ak = π(Sk). The
successor measure encapsulates the long-term dynamics
of π, enabling value estimation for any reward function
r : S → R. Specifically, the value of taking action a ∈ A in
state s ∈ S is the expected reward under states visited by π
amplified by the effective horizon (1− γ)−1:

Qπ(s, a) = (1− γ)−1 EX∼mπ(·|s,a)[r(X)] . (2)

Moreover, mπ is the fixed point of the Bellman operator
T π : P(S)S×A → P(S)S×A (Thakoor et al., 2022):

mπ(· | s, a) = (T πmπ) (· | s, a) (3)
:= (1− γ)P (· | s, a) + γ (Pπmπ) (· | s, a) .

The operator Pπ applied to m mixes the one-step kernel
with the successor measure, accounting for transitioning
from (s, a) to a new state-action pair (s′, π(s′)) and query-
ing the successor measure m(· | s,′ π(s′)) thereafter:

(Pπm) (dx | s, a) =
∫
s′
P (ds′ | s, a)m(dx | s′, π(s′)) .

Geometric Horizon Model A Geometric Horizon Model
(GHM; Thakoor et al., 2022) or γ-model (Janner et al.,
2020) is a generative model of the normalized successor
measure. To learn the parametric model m̃(· · · ; θ) ≈ mπ

we can minimize a Monte-Carlo cross-entropy objective
over source states from the empirical distribution ρ as,

Es∼ρ,X∼mπ(·|S,π(A))[− log m̃(X |S,A; θ))] .

In order to sample from mπ we deploy policy π for t ∼
Geom(1 − γ) steps resulting in state X = St. Similar to
other Monte Carlo methods in RL, this approach is problem-
atic when learning from off-policy data, often resulting in
high-variance estimators that rely on importance sampling.

Alternatively, we can leverage the Bellman equation (3)
to construct an off-policy iterative method for estimating
mπ. Given initial weights θ(0), each iteration updates θ by
minimizing the following temporal-difference cross-entropy
objective over transitions that need not come from policy π,

E(S,A)∼ρ,X∼(T πm̃(n))(·|S,A)[−log m̃(X | S,A; θ)]. (4)

In the equation above and throughout the paper, we adopt
the shorthand m̃(n) = m̃(· · · ; θ(n)). To generate samples
X ∼

(
T πm̃(n)

)
(· | S,A) we first draw a successor state

S′ ∼ P (· | S,A); then with probability 1 − γ, we return
S′; otherwise, with probability γ, we return a bootstrapped
sample drawn from m̃(n)(· | S′, π(S′)).

Several probabilistic models have been applied to this prob-
lem, including generative adversarial networks (e.g., Janner
et al., 2020; Wiltzer et al., 2024b), normalizing flows (e.g.,
Janner et al., 2020), and variational auto-encoders (e.g.,
Thakoor et al., 2022; Tomar et al., 2024). We now turn our
attention to a class of generative models based on the flow-
matching framework specifically designed to leverage the
underlying structure of the Bellman equation (3), enabling
more effective generative models of the successor measure.

3. Temporal Difference Flows
Flow Matching (FM; Lipman et al., 2023; 2024; Liu et al.,
2023; Albergo & Vanden-Eijnden, 2023) constructs a time-
dependent probability path mt : S × A → P(S) for t ∈
[0, 1] that evolves smoothly from the source distribution
m0 = p0 ∈ P(S) to the target distribution m1 ≈ mπ . This
evolution is governed by a vector field vt : S × S × A →
S, which dictates the instantaneous movement of samples
along mt. The relationship between vt and the resulting
probability path mt is established through a time-dependent
flow ψt : S× S× A → S, defined by the following ODE:

d

dt
ψt(x | s, a) = vt

(
ψt(x | s, a) | s, a

)
, ψ0(x | s, a) = x

⇐⇒ ψt(x | s, a) = x+

∫ t

0

vτ
(
ψτ (x|s, a) | s, a

)
dτ .

2

Temporal Difference Flows

TDCFM Coupled TDCFM TD²CFM

Figure 1. Visual depiction of TD-Flow variants. Samples are mapped from m0 to the target distribution m(n)
1 through the neural ODE

ψ
(n)
t . Dashed lines depict the neural ODE trajectory; solid lines show the conditional probability path ut. (Left) TD-CFM maps X0 to X1

before creating a separate conditional path between X ′
0 and X1, resulting in crossing paths. (Middle) TD-CFM(C) directly couples X0

used to generate X1 when constructing the conditional probability path. (Right) TD2-CFM solves the neural ODE up to time t to directly
obtain the target velocity ṽt.

We say that vt generates mt if its flow ψt satisfies Xt :=
ψt(X0 | S,A) ∼ mt(· | S,A) for X0 ∼ m0. In words,
the flow ψt pushes samples forward through time, ensuring
they are distributed according to mt at time t. To learn this
transformation, we can minimize the squared L2 distance
between a parameterized vector field ṽt(· · · ; θ) and the true
vector field vt over t ∼ U([0, 1]), yielding the Monte-Carlo
Flow Matching (MC-FM) loss ℓMC-FM(θ):

Eρ,t,Xt
[∥∥ṽt(Xt | S,A; θ)− vt(Xt | S,A)

∥∥2] ,
whereXt ∼ mt(· | S,A) . (MC-FM; 5)

Despite its conceptual simplicity, direct optimization of the
flow matching objective above proves challenging due to
the inaccessibility of the true probability path mt and its
associated vector field vt.

Alternatively, Lipman et al. (2023) shows that we can
sidestep this problem entirely by introducing additional con-
ditioning information. Instead of directly modeling the
probability path mt we can introduce a random variable Z
and define a conditional path on Z as pt|Z : S×Z → P(S)
(Lipman et al., 2024; Tong et al., 2024). The conditional ve-
locity field ut|Z : S×Z → S that generates pt|Z can now be
computed in closed form for many simple choices of Z and
pt|Z . One such choice is taking Z = X1 and performing a
linear Gaussian interpolation from X0 → X1 resulting in
pt|1(· |X1) = N (· | tX1, (1 − t)2I) with the correspond-
ing vector field given by ut|1(x |X1) = (X1 − x)/(1− t).
Armed with the ability to sample from pt|1 and to compute
ut|1, we can directly learn ṽt by optimizing the Monte-Carlo
Conditional Flow Matching (MC-CFM) objective ℓMC-CFM(θ):

Eρ,t,Z,Xt
[∥∥ṽt(Xt | S,A; θ)− ut|Z(Xt | Z)

∥∥2] ,
whereZ = X1 ∼ mπ(· | S,A) , Xt ∼ pt|Z(· | Z) .

(MC-CFM; 6)

Remarkably, both (MC-FM; 5) and (MC-CFM; 6) share the
same gradient and converge to the same solution.

Proposition 1 (Lipman et al. 2024). Given a conditional
probability path pt|Z and vector field ut|Z with their associ-
ated marginal counterparts pt(x) and vt(x), we have

∇θ ℓMC-FM(θ) = ∇θ ℓMC-CFM(θ).

TD-CFM While (MC-CFM; 6) requires direct access to sam-
ples from the target distribution mπ, we can instead learn
from an offline dataset ρ containing only one-step transi-
tions (S,A, S′) through an iterative process similar to (4).
Starting with initial parameters θ(0), at each iteration, we
minimize the TD-Conditional Flow Matching (TD-CFM)
loss ℓTD-CFM — an extension of (MC-CFM; 6) that differs
only in its sampling procedure:

X0 ∼ p0

Z = X1 ∼ (1− γ) δS′ + γ δ
ψ̃

(n)
1 (X0 |S′,π(S′))

.

(TD-CFM; 7)
In this procedure, with probability 1 − γ, we return
the successor state S′. Otherwise, with probability γ
we sample from the neural ordinary differential equation
(Chen et al., 2018) ψ̃(n)

t with corresponding vector field
ṽ
(n)
t (Xt | S′, π(S′)) from X0 ∼ p0 to produce a sample
X1 ∼ m̃(n)(· | S′, π(S′)).

Coupled TD-CFM Although (TD-CFM; 7) offers a princi-
pled way of learning the flow from noise to data, an increas-
ingly popular strategy to improve flow matching methods
is to correlate noise and data whenever a “natural” cou-
pling is available (e.g., Liu et al., 2023; Shi et al., 2023;
Pooladian et al., 2023; Tong et al., 2024; De Bortoli et al.,
2024). Motivated by this idea, we observe that the process
used to generate X1 described above already provides a
direct coupling between X0 and X1. We can leverage this
coupling by conditioning the probability path pt|Z on both
endpoints, i.e., Z = (X0, X1), rather than just condition-
ing on Z = X1 as in TD-CFM. As illustrated in Figure 1,
this coupling helps align Xt with the path generated by

3

Temporal Difference Flows

ψ̃
(n)
t , potentially simplifying the regression problem. This

procedure gives rise to the Coupled TD-Conditional Flow
Matching (TD-CFM(C)) loss ℓTD-CFM(C) which now extends
ℓTD-CFM, again, differing only in its sampling procedure:

X0 ∼ p0

X1 ∼ (1− γ) δS′ + γ δ
ψ̃

(n)
1 (X0|S′,π(S′))

Z = (X0, X1) .
(TD-CFM(C); 8)

A convenient approach to specifying the conditional path
pt|Z is to define Xt = ϕt(X0, X1) = αtX1 + βtX0 as
the affine interpolant between X0 and X1, with the in-
terpolation coefficients satisfying the boundary conditions
α0 = β1 = 0, α1 = β0 = 1, and monotonicity constraints
α̇t > 0,−β̇t > 0, where the over-dot denotes the time
derivative. From this definition, the conditional vector field
arises as the time derivative of this interpolant defined as
ut|0,1(Xt | X0, X1) = ϕ̇t(X0, X1) = α̇tX1 + β̇tX0 (Al-
bergo et al., 2023). A simple choice of the interpolation
coefficients that yields a linear (straight-line) conditional
path is given by βt = 1− αt = 1− t.

TD2-CFM While (TD-CFM(C); 8) improves upon
(TD-CFM; 7) by accounting for the coupling between
bootstrapped samples and their generating noise, both
methods rely upon fitting an ad-hoc conditional vector
field ut|Z that generates the surrogate conditional path
pt|Z . To formulate a more structured approach, we exploit
the linearity of the Bellman equation, as detailed in the
following result.

Lemma 1. Let →
pt be a probability path for P generated by

vector field →
vt and ↷

p
(n)
t be a probability path for Pπm(n)

1

generated by ↷
v

(n)
t such that →

p0 =
↷
p
(n)
0 = m0. For any

t ∈ [0, 1] and (s, a) let v(n+1)
t (· | s, a) be the solution of 1

argmin
v :Rd→Rd

(1− γ)E→
Xt∼

→
pt(·|s,a)

[∥∥v(→
Xt)−

→
vt(

→
Xt | s, a)

∥∥2]
+ γE↷

Xt∼
↷
p

(n)
t (·|s,a)

[∥∥v(↷
Xt)−

↷
v

(n)
t (

↷
Xt | s, a)

∥∥2].
Then v(n+1)

t induces a probability path m(n+1)
t such that

m
(n+1)
0 = m0 and m(n+1)

1 = T πm
(n)
1 .

This result shows that it is possible to use two independent
probability paths for the two terms in the sampling process
induced by the Bellman operator. For the first term, we can
use a standard CFM approach for Z = X1 with conditional
path →

pt|1 and vector field →
ut|1, which induces the marginal,

→
vt(x|s, a) =

∫
→
ut|1(x | x1)

→
pt|1(x | x1)P (dx1|s, a)

→
pt(x|s, a)

,

1Notice here that the minimization is over the space of all
functions and not the parameterized vector fields ṽt(· · · ; θ).

where →
pt(x|s, a) =

∫ →
pt|1(x|s′)P (ds′|s, a). For the second

term, we can leverage the GHMm
(n)
t learned at the previous

iteration to construct the marginal,

↷
v

(n)
t (x|s, a)=

∫
v
(n)
t (x|s′, a′)m

(n)
t (x|s′, a′)P (ds′|s, a)

↷
p
(n)
t (x|s, a)

,

where ↷
p
(n)
t (x | s, a) =

∫
m

(n)
t (x | s′, a′)P (ds′ | s, a), and

a′ = π(s′). This shows that m(n)
t plays the role of a condi-

tional probability path for the bootstrapped term and v(n)t is
its associated conditional vector field. We can then use the
equivalence between FM and CFM in Proposition 1 to replace
the marginal probability paths and vector fields in Lemma 1
with their conditional counterparts to obtain the loss:

→
ℓ(θ) = E

ρ,t,Z,
→
Xt

[∥∥ṽt(→
Xt | S,A; θ)−

→
ut|Z(

→
Xt | Z)

∥∥2],
whereZ = X1 ∼ P (· | S,A),

→
Xt ∼

→
pt|Z(· |Z) ,

↷
ℓ(θ) = E

ρ,t,
↷
Xt

[∥∥ṽt(↷
Xt |S,A; θ)− ṽ

(n)
t (

↷
Xt |S′, π(S′)

∥∥2],
whereX0 ∼ p0, S

′ ∼ P (· | S,A),
↷
Xt = ψ̃

(n)
t (X0 | S′, π(S′)) ,

ℓTD2-CFM(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) . (TD2-CFM; 9)

Since we now bootstrap the previous estimate not only in the
sampling process but also in the objective function, we refer
to this method as TD2-Conditional Flow Matching (TD2-
CFM). The right panel of Figure 1 depicts the process of ob-
taining the bootstrapped vector field ṽ(n)t for TD2-CFM. We
provide further implementation details and pseudo-code for
all TD-Flow methods in Appendix C.3.1. Next, we extend
our TD2 result to the class of denoising diffusion models.

3.1. Extension to Diffusion Models

Denoising Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) build a diffusion process starting from a
data sample X0 ∼ q0 = mπ(· | S,A)2 and corrupting it via
a stochastic differential equation (SDE),

dXt = f(t)Xt dt+ g(t) dWt , (10)

where t ∈ [0, T] for some time horizon T , f, g : [0, T] → R
is drift and diffusion term, and Wt ∈ Rd is a standard Brow-
nian motion. The forward process of the linear SDE (10) has
an analytic Gaussian kernel qt|0(· |X0) = N (· |αtX0, σ

2
t I),

where αt and σt can be computed in closed form. To sample
from the target data distribution q0, we can solve the reverse
SDE (Song & Ermon, 2019) from time T to 0:

dXt=
(
f(t)Xt−g(t)∇Xt log qt(Xt |S,A)

)
dt+g(t) dW t

(11)
2Different to flow matching, time is inverted in diffusion mod-

els and ranges from 0 to T .

4

Temporal Difference Flows

where W t is the reverse-time Brownian motion and qt
is the marginal distribution of both the forward (16) and
reverse (17) process. To simulate (11), we can train a
parametrized score function s̃t(x | s, a; θ) to approximate
∇xt log qt(xt | s, a) using the denoising diffusion / score
matching objective (Vincent, 2011) ℓDD(θ):

Eρ,t,X0,Xt

[∥∥s̃t(Xt | S,A; θ)−∇Xt log qt|0(Xt | X0)
∥∥2],

where X0 ∼ mπ(· | S,A), Xt ∼ qt|0(· | X0) . (DD; 12)

Temporal Difference Diffusion Following the blueprint
in §3, we define an iterative process starting from s̃(0) =
s̃(· · · ; θ(0)) and minimize at each iteration the Temporal-
Difference Denoising Diffusion (TD-DD) loss ℓTD-DD(θ):

Eρ,t,X0,Xt

[∥∥s̃(Xt | S,A; θ)−∇x log qt|0(Xt | X0)
∥∥2] ,

whereX0 ∼
(
T πm̃

(n)
0|T

)
(· | S,A), Xt ∼ qt|0(· | X0) .

(TD-DD; 13)
Once again, to sample X0 ∼

(
T πm̃

(n)
0|T

)
(· | S,A), we pro-

ceed as follows: with probability 1−γ, we draw a successor
state S′ ∼ P (· | S,A); conversely, with probability γ, we
sample from the bootstrapped model by solving the reverse
SDE with score function s̃(n), initiated from XT . Follow-
ing an approach analogous to Lemma 1, we demonstrate in
Appendix B that we can employ two distinct diffusion pro-
cesses for the two terms involved in the Bellman operator,
which consequently leads to the TD2-DD objective:
→
ℓ(θ) = E

ρ,t,
→
Xt

[∥∥s̃t(→
Xt |S,A; θ)−∇→

Xt
qt|0(

→
Xt |S′)

∥∥2],
where

→
Xt ∼ qt|0(· | S′) ,

↷
ℓ(θ) = E

ρ,t,
↷
Xt

[∥∥s̃t(↷
Xt |S,A; θ)− s̃

(n)
t (

↷
Xt |S′, π(S′)

∥∥2],
whereXT ∼ qT ,

↷
Xt ∼ q

(n)
t|T (· | S

′, π(S′)) ,

ℓTD2-DD(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) . (TD2-DD; 14)

4. Theoretical Analysis
We now study the learning dynamics of an idealized version
of the TD-Flow methods, assuming that the flow-matching
loss is minimized exactly at each iteration. Under this as-
sumption, at each iteration we compute a probability path
m

(n)
t such that m(n)

1 = T πm
(n−1)
1 , which implies that

m
(n)
1 →mπ by the contraction property of T π. The fol-

lowing result shows that the overall probability paths m(n)
t

follow a similar process. Proofs are deferred to Appendix E.

Theorem 1. For any n ≥ 1, the probability paths generated
by TD-CFM, TD-CFM(C), or TD2-CFM satisfy

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a), ∀ t ∈ [0, 1]

where Bπt m := (1 − γ)Pt + γPπm and Pt(x|s, a) :=∫
pt|1(x | x1)P (x1|s, a)dx1. For any t ∈ [0, 1], the opera-

tor Bπt is a γ-contraction in 1-Wasserstein distance, that is,
for any couple of probability paths pt, qt,

sup
s,a

W1 ((Bπt pt) (· | s, a), (Bπt qt) (· | s, a))

≤ γ sup
s,a

W1 (pt(· | s, a), qt(· | s, a)) .

Theorem 1 shows that all TD-flow methods fundamentally
implement the same update where the probability path at
t ∈ [0, 1] is obtained by applying a Bellman-like operator
Bt to the previous iteration. This operator is a γ-contraction
as T π , directly implying the following result.

Corollary 1. Let {m(n)
t }n≥0 be the sequence of probabil-

ity paths produced by TD-CFM, TD-CFM(C), or TD2-CFM

starting from an arbitrary vector field v(0)t . Then,

lim
n→∞

m
(n)
t = mt = Btmt,

where mt is the unique fixed point of Bt, and mt = mMC
t ,

where mMC
t (· | s, a) =

∫
pt|1(· | x1)mπ(x1 | s, a) is the

probability path of the Monte-Carlo approach (MC-CFM; 6).

This corollary shows that the fixed point of Bt coincides with
the probability path generated in Monte-Carlo Conditional
Flow Matching (MC-CFM; 6), which assumes direct access
to samples of mπ. An important subtlety in Theorem 1 is
that all algorithms apply the same operator for n ≥ 1, but
the result holds for n = 0 only for TD2-CFM. This means
that even starting from the same θ(0), the three algorithms
may generate different sequences {m(n)

t }n≥0, while still
converging to mt. In Theorems 5 and 6 , we show we can
reconcile TD-CFM(C) and TD-CFM with TD2-CFM under a
mild assumption on the form of the initial vector field.

While Theorem 1 analyzes an idealized version of the al-
gorithms, in practice gradients are estimated from samples
and the following analysis reveals important differences in
their variance. We introduce the (unbiased) sample-based
gradients for each of the algorithms,

E
[
gTD-CFM(YTD-CFM)

]
= ∇θ ℓTD-CFM(θ),

E
[
gTD-CFM(C)(YTD-CFM(C))

]
= ∇θ ℓTD-CFM(C)(θ)

E
[
gTD2-CFM(YTD2-CFM)

]
= ∇θ ℓTD2-CFM(θ),

where Y summarizes the random variables involved
in the loss definitions in (TD-CFM; 7), (TD-CFM(C); 8),
and (TD2-CFM; 9) (see Appendix E.6 for a formal definition
of the gradients). We want to compare the total variance of
the gradient estimates σ2 = Tr

(
CovY [g(Y)]

)
, where Tr

denotes the trace.

5

Temporal Difference Flows

Theorem 2. For any n ≥ 1 and t ∈ [0, 1], assume that
m

(n)
t (x | s, a) =

∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, then

σ2
TD-CFM = σ2

TD2-CFM
+

γ2 E
[
Tr
(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt|X1)

])]
.

Theorem 3. For any n ≥ 1 and t ∈ [0, 1], assume
that m(n)

t (x | s, a) =
∫
pt|0,1(x | x0, x1)m(n)

0,1 (x0, x1 |
s, a)dx0dx1

3, then we obtain

σ2
TD-CFM(C) = σ2

TD2-CFM
+

γ2E
[
Tr
(
CovZ|S,A,Xt

[
∇θvt(Xt|S,A; θ)⊤ut|Z(Xt|Z)

])]
,

where Z = (X0, X1). Furthermore, if we use straight
conditional paths, i.e., Xt = tX1 + (1 − t)X0, and the
linear interpolant Xt does not intersect for any s, a, s′, then
σ2

TD-CFM(C) = σ2
TD2-CFM

.

In both results, the probability path m(n)
t from the previous

iteration must be identical for the algorithms being com-
pared. The analysis reveals that TD-CFM and TD-CFM(C)
suffer from a larger variance compared to TD2-CFM, which
uses the vector field v(n) both to sample Xt and as a tar-
get for the regression problem. This variance gap is “dis-
counted” by γ2, which suggests that the performance of
these algorithms would be similar for problems with small
horizons but would increase as γ → 1. The extra variance
in both cases stems from samples generated by the algo-
rithm (i.e., they do not depend on the transitions available
in the dataset). In this sense, we can refer to it as compu-
tational variance, and in principle, it could be reduced by
increasing the number of samples X0, X1, and Xt used
in gradient computation. While the variance of TD-CFM
and TD-CFM(C) cannot be directly compared, we expect
that constructing Xt from X0 and X1 (instead of X1 only)
will tend to reduce its variance. Specifically, when Xt is
obtained by linear interpolation between X0 and X1, and it
does not generate crossing paths, the variance of TD-CFM(C)
reduces to the one of TD2-CFM.

5. Experiments
We now present a series of experiments to assess the efficacy
of our TD-based flow and diffusion approaches with base-
lines employing Generative Adversarial Networks (Goodfel-
low et al., 2014) and β-Variational Auto-Encoders (Higgins
et al., 2017). Following the methodology from Touati et al.
(2023); Pirotta et al. (2024), we benchmark 22 tasks span-
ning 4 domains (Maze, Walker, Cheetah, Quadruped) from
the DeepMind Control Suite (Tunyasuvunakool et al., 2020).

3m
(n)
0,1 (x0, x1|s, a) = m0(x0)δψ(n)

1 (x0|s,a)
(x1) is the joint

distribution of (X0, X1), i.e the endpoints of the ODE.

For a single policy, we evaluate how well each method mod-
els its i) successor measure and ii) value function. While
lower errors in estimating the successor measure are ex-
pected to lead to better value estimation, this is not always
the case since modeling errors may disproportionally affect
states with negligible rewards. Additionally, motivated by
our theoretical results, we explore how the probability path’s
design affects our proposed methods’ relative performance.

Finally, we examine the scalability of our approach by learn-
ing a generative model of the successor measure across a
class of parameterized policies derived from the Forward-
Backward (FB) representation (Touati & Ollivier, 2021;
Touati et al., 2023), a non-generative model of the successor
measure. We conclude by demonstrating how TD2 enables
more effective planning for task-relevant policies when per-
forming Generalized Policy Improvement (GPI; Barreto
et al., 2017), far surpassing the capabilities of FB alone.

5.1. Empirical Evaluation of Geometric Horizon Models

Before benchmarking, we must first obtain a policy to eval-
uate. We follow the approach taken in Thakoor et al. (2022)
and pre-train a set of deterministic policies – one for each
task – using TD3 (Fujimoto et al., 2018). The final policy
obtained from this pre-training phase is now fixed for the
remainder of our experiments. GHM training proceeds in an
off-policy manner where we learn the successor measure of
a TD3 policy using transition data from the ExoRL dataset
(Yarats et al., 2022); specifically, we use a dataset of 10M
transitions collected by a random network distillation policy
(Burda et al., 2019). All GHM methods are trained for 3M
gradient steps using the AdamW optimizer (Loshchilov &
Hutter, 2019) with a batch size of 1024 and weight decay of
0.001. We maintain a target network using an exponential
moving average of the training parameters with a step size
of 0.001. Special care was taken to match the capacity of
the neural networks between methods with a UNet-style
architecture employed for all flow and diffusion methods,
while the GAN and VAE baselines use an MLP with residual
connections for all their respective networks. Full details for
the training methodology, network architecture, and hyper-
parameters can be found in Appendix C.

We implement all conditional flow matching methods (TD-
CFM, TD-CFM(C), TD2-CFM) with the Optimal Transport
Gaussian conditional path from Lipman et al. (2023). When
constructing our bootstrap targets, we sample from the neu-
ral ODE using the Midpoint solver with a constant step
size of t/10 for a maximum of 10 steps. For TD2-CFM, we
sample t ∼ U([0, 1]); otherwise, we integrate to t = 1 and
construct Xt using the conditional path. For Denoising Dif-
fusion methods (TD-DD, TD2-DD), we train a DDPM (Ho
et al., 2020) by discretizing β ∈ (0.1, 20) using T = 1, 000
steps. We construct diffusion bootstrapped targets using

6

Temporal Difference Flows

5 10 20 50 100

Effective Horizon

10 4

10 2

100

102

104

Va
lu

e
Fu

nc
tio

n
M

SE TD-CFM

TD²-CFM
TD-CFM(C)

TD-DD

TD²-DD

TD-GAN
TD-VAE

Scaling Effective Horizon

Figure 2. Value-Function prediction error as a function of the effec-
tive horizon (1− γ)−1 for γ ∈ {0.8, 0.9, 0.95, 0.98, 0.99} on the
POINTMASS loop task. TD2 methods show impressive robustness
to increasingly long-horizon predictions.

20 steps of the DDIM (Song et al., 2021a) sampler. For
TD-DD, we solve to t = 0 and regress towards the noise that
re-corrupted our sample. Alternatively, TD2-DD directly re-
gresses towards the noise prediction from the target network
at a randomly selected noise level. The first baseline we
consider is a GHM instantiated as a Generative Adversar-
ial Network (Goodfellow et al., 2014) similar to the one
found in Janner et al. (2020). We follow the best practices
from Huang et al. (2024) with the primary modification be-
ing a relativistic discriminator (Jolicoeur-Martineau, 2019)
equipped with a zero-centered gradient penalty on both real
and fake samples. For our second baseline, we implement
a β-VAE (Higgins et al., 2017) following the practices out-
lined in Thakoor et al. (2022).

To evaluate the quality of our models, we first generate sam-
ples from the ground truth successor measure mπ according
to the following procedure. We first randomly sample 64
source states S0 from the initial state distribution and ex-
ecute policy π for 1, 000 steps. Along each trajectory, we
resample 2048 states with replacement according to the stop-
ping time t ∼ Geometric(1 − γ). For the same 64 source
states, we generate a matching set of 2048 samples from
each GHM. Now in possession of these two sets of sam-
ples, we evaluate the: 1) log-likelihood of the true samples
for models with tractable densities (i.e., diffusion and flow
methods); 2) Earth Mover’s Distance (EMD; Rubner et al.,
2000), which quantifies the minimal transport cost between
the two empirical distributions; and 3) mean-squared error
of a Monte-Carlo estimate of the true value function Qπ

and the value function derived from GHM samples using
(2). Full details can be found in Appendix C.1.

Having established our training framework, baselines, and
evaluation protocol, we proceed to investigate a key predic-
tion from our theoretical analysis. Our variance analysis

Method EMD ↓ Norm NLL ↓ MSE(V) ↓

C
H

E
E

TA
H

TD-DD 20.22 (0.26) 2.824 (0.195) 454.49 (131.97)
TD2-DD 14.14 (1.08) 0.806 (0.016) 189.15 (23.63)
TD-CFM 12.26 (0.02) 0.886 (0.024) 228.77 (2.20)

TD-CFM(C) 10.51 (0.06) 0.447 (0.020) 140.78 (18.72)
TD2-CFM 10.57 (0.07) 0.422 (0.014) 135.22 (19.79)

GAN 23.97 (0.46) — 2463.22 (628.05)
VAE 83.77 (0.41) — 1284.27 (37.62)

P
O

IN
T

M
A

S
S

TD-DD 0.149 (0.001) 2.974 (0.100) 1245.20 (29.27)
TD2-DD 0.027 (0.001) 0.761 (0.082) 11.13 (3.09)
TD-CFM 0.062 (0.003) 0.554 (0.033) 355.56 (82.83)

TD-CFM(C) 0.022 (0.002) −0.696 (0.094) 11.89 (3.16)
TD2-CFM 0.021 (0.000) −0.843 (0.027) 8.74 (2.09)

GAN 0.203 (0.037) — 1257.26 (112.86)
VAE 0.410 (0.036) — 1821.89 (69.78)

Q
U

A
D

R
U

P
E

D

TD-DD 28.33 (0.33) 1.908 (0.041) 1490.75 (444.49)
TD2-DD 22.64 (2.47) 0.861 (0.028) 159.03 (14.64)
TD-CFM 15.73 (0.06) 1.056 (0.002) 525.06 (28.90)

TD-CFM(C) 14.38 (0.03) 0.488 (0.003) 155.25 (5.58)
TD2-CFM 14.51 (0.05) 0.379 (0.011) 141.77 (3.10)

GAN 36772.12 (13898.25) — 2634.69 (798.38)
VAE 60.27 (0.28) — 1156.33 (36.52)

W
A

L
K

E
R

TD-DD 20.58 (0.24) 2.649 (0.137) 382.40 (458.63)
TD2-DD 12.09 (0.12) 0.537 (0.060) 39.04 (6.08)
TD-CFM 13.53 (0.11) 0.713 (0.028) 225.27 (42.43)

TD-CFM(C) 11.91 (0.02) 0.219 (0.016) 30.71 (3.44)
TD2-CFM 11.92 (0.10) 0.104 (0.001) 28.35 (6.10)

GAN 24.51 (0.89) — 3690.65 (1117.94)
VAE 111.73 (2.53) — 2457.61 (16.25)

Table 1. Evaluation results comparing our TD-based methods along
with GAN and VAE baselines for a single-policy. Results are com-
puted over 19 tasks from 4 domains and further averaged across 3
seeds. For each metric we highlight the best performing methods.

Method EMD ↓ Norm NLL ↓ MSE(V) ↓

TD-CFM(C) 14.08 (12.42) 1.79 (1.98) 310.45 (258.94)
TD2-CFM 0.09 (0.09) −0.01 (0.04) −3.36 (7.76)

Table 2. Performance difference for TD-CFM(C) and TD2-CFM

when employing a curved instead of straight conditional path.
Lower is better with negative values indicating a net improvement
for using a curved path.

suggests that our TD-Flow framework should enable more
stable training across extended temporal horizons. To vali-
date this hypothesis, we train each GHM for 3 seeds on the
loop task in the Maze domain while varying the effective
horizon (1 − γ)−1 across five values: {5, 10, 20, 50, 100}.
Figure 2 illustrates the relationship between value function
MSE and the effective horizon. The results demonstrate
that TD2-based methods maintain consistent performance
even as the effective horizon increases, while alternative
approaches show significant performance degradation. No-
tably, at an effective horizon of 100, TD2-based methods
maintain their accuracy and achieve performance improve-
ments of nearly four orders of magnitude compared to their
naive implementations. These results empirically support
for our initial hypothesis, with the stability of TD2 methods
aligning with our predictions.

In the following, we shift our attention to a more in-depth
analysis of the largest horizon of 100 (γ = 0.99). For each

7

Temporal Difference Flows

Random Train Distribution Local Perturbation
−10

0

10

20

30

%
 Im

pr
ov

em
en

t O
ve

r F
B

-57

+10

+25

+5

+30 +29

-59

+12

+32

+8

+36 +36

-38

+16

+33

+9

+36 +36

-57

+10

+25

+5

+30 +29

-59

+12

+32

+8

+36 +36

-38

+16

+33

+9

+36 +36

Planning via Generalized Policy Improvement
FB-GPI DD-GPI FM-GPI Coupled TD²

Figure 3. Performance improvement over the zero-shot Forward Backward (FB; Touati & Ollivier, 2021) policies when planning with
Generalized Policy Improvement (GPI; Barreto et al., 2017). FB-GPI performs GPI over the FB value-function Qπw . DD-GPI and
FM-GPI perform GPI with the value function implied by the GHM mπw for our diffusion-based and flow-based methods, respectively.
Results are averaged over 22 tasks across 4 domains.

algorithm, we train a GHM for 3 independent seeds for all
domains and tasks. Table 1 reports aggregate performance
across our full suite of metrics. For each domain and metric,
we highlight results in a 1% range with respect to the best-
performing method. The results demonstrate a clear pattern
of superior performance for TD2-based algorithms: TD2-
CFM achieves significant improvements over TD-CFM with
a 10× reduction in value-function MSE, 1.5× reduction in
EMD, and 3× reduction in log-likelihood, averaged across
all four domains. In line with our theoretical predictions, the
coupled variant of TD-CFM performs comparably to TD2-
CFM, given straight conditional paths. While a comparison
between flow matching and diffusion is not at the core of this
paper, in our experiments, flow matching generally outper-
forms diffusion across all metrics. We posit this is primarily
due to noise in the diffusion process adversely impacting an
already noisy prediction problem for large horizons.

Given the comparable performance between TD-CFM(C)
and TD2-CFM with straight conditional paths, we next ex-
amine how these methods behave with alternative path ge-
ometries. Our theoretical analysis suggests an important
distinction: TD2-CFM should maintain its effectiveness with
non-straight paths, while the performance of TD-CFM(C)
should degrade. To test this prediction, we maintain the
methodology above while replacing conditional path in
(TD2-CFM; 9) with the following curved path pt|1(· |X1) =

N (· |αtX1, β
2
t) with coefficients αt = sin

(
π
2 t
)

and βt =
cos
(
π
2 t
)
. The corresponding conditional vector field is

now given by ut|1(Xt|X1) =
(
α̇t − αt

βt

)
X1 +

β̇t
βt
Xt. Ad-

ditionally, for TD-CFM(C) we condition the curved path
above on X0 and X1 resulting in the conditional vector field

ut|0,1(Xt | X0, X1) = π
2

(
βtX1 − αtX0

)
. Table 2 illus-

trates the performance difference relative to the straight path
results (Table 1) averaged across all domains and tasks. The
results strongly support our theoretical prediction: TD2-CFM
not only maintained but surprisingly improved performance
compared to the linear path. In contrast, TD-CFM(C) showed
significant performance degradation, confirming our hypoth-
esis about its limitations with non-straight paths.

5.2. Planning via Generalized Policy Improvement

We now turn our attention towards training policy-
conditioned GHMs which can be utilized for test-time plan-
ning. To accomplish this, we first pre-train a Forward Back-
ward (FB; Touati & Ollivier, 2021; Touati et al., 2023) rep-
resentation using the same dataset of 10M transitions as
described in §5.1. This pre-training yields a class of w-
conditioned policies πw, where each w ∈ W = Sd−1(

√
d)

represents an embedding of a reward function situated on a
d-dimensional hypersphere with radius

√
d. We then train

the GHM mπw conditioned on the policy by incorporating
the embedding w directly into the model’s input. All GHM
methods are trained for 8M gradient steps, maintaining the
same parameters used in §5.1, with the exception of a higher
weight decay coefficient of 0.01. For additional insights into
the accuracy of the policy-conditioned GHMs, we direct the
reader to Appendix D. Overall, we observed similar trends
to those seen in our single-policy experiments.

Given that both FB and w-conditioned GHM models enable
estimation of a policy’s value function Qπw , we can utilize
this information to perform Generalized Policy Improve-
ment (GPI; Barreto et al., 2017) during evaluation. Specifi-

8

Temporal Difference Flows

cally, at each time step t, we choose an action at = πwt(st),
where wt is derived as follows:

wt ∈ argmax
w∼D(W)

(1− γ)−1 EX∼mπw (·|st,πw(st)))[r(X)]︸ ︷︷ ︸
Qπw (st,πw(st))

.

(15)
Here D(W) is a sampling distribution over W. We consider
three such distributions: i) Random: uniform distribution
over W; ii) Local Perturbation: we perturb the embedding
wr of the task reward r by the uniform distribution; iii)
Train Distribution: we sample w from the training distri-
bution used by FB. To approximate (15), we sample 255
embeddings from D(W) and explicitly include the task em-
bedding wr, resulting in a maximization over 256 policies.
To estimate Qπw , we average the reward over 128 states
sampled from mπw . Performance is measured by averaging
returns over 100 episodes, each lasting 1000 steps.

Figure 3 illustrates the average percentage of improvement
for each algorithm and w-sampling strategy relative to the
performance of the FB policy πwr for the task reward r.
We refer to Appendix D for a more detailed view of these
results. All TD-based GHM approaches lead to a signifi-
cant improvement over the base FB policy, with TD-CFM(C)
and TD2-CFM providing ≈ 30%+ improvement with all
sampling approaches. TD2-DD also leads to significant per-
formance gains but is still dominated by the flow matching
methods. Notably, FB-based GPI not only fails to improve
performance but actually deteriorates it on average with sig-
nificant degradation observed in three out of four domains
(detailed results available in Appendix D). When compar-
ing different distributions D(W), we observe that while
FB-GPI’s performance fluctuates considerably, GHM meth-
ods maintain their robustness across distributions, showing
only minor variation. These results underscore the abil-
ity of our improved GHMs to make long-term predictions
enabling powerful planning capabilities.

6. Discussion
In this paper, we introduced temporal difference flows, a
novel generative modeling approach that significantly ad-
vances long-horizon predictive models of state. By leverag-
ing the successor measure’s temporal difference structure
both in its sampling procedure and learning objective, TD2-
CFM and TD2-DD effectively address challenges associated
with modeling long-range state dynamics. The methods
developed in this paper provide a robust theoretical and em-
pirical foundation that demonstrates the advantages of our
framework across a range of tasks, metrics, and domains.
We envision numerous exciting applications emerging from
this work, particularly around imitation learning (Wu et al.,
2025; Jain et al., 2025), planning (Sutton, 1991; Thakoor
et al., 2022; Zhu et al., 2024), and off-policy evaluation (Pre-
cup et al., 2000; 2001; Nachum et al., 2019; Fujimoto et al.,

2021). Furthermore, recent work on consistency models
(Song et al., 2023; Yang et al., 2024) and self-distillation
(Frans et al., 2025) suggests promising avenues for tackling
the computational burden of sampling — a limitation com-
mon to the family of iterative generative models that our
approach builds upon.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Albergo, M. S. and Vanden-Eijnden, E. Building normaliz-

ing flows with stochastic interpolants. In International
Conference on Learning Representations, (ICLR), 2023.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic interpolants: A unifying framework for flows
and diffusions. CoRR, abs/2303.08797, 2023.

Anderson, B. D. Reverse-time diffusion equation models.
Stochastic Processes and their Applications, 12(3):313–
326, 1982.

Ba, J., Kiros, J., and Hinton, G. E. Layer normalization.
CoRR, abs/1607.06450, 2016.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
Silver, D., and van Hasselt, H. Successor features for
transfer in reinforcement learning. In Neural Information
Processing Systems (NeurIPS), 2017.

Barreto, A., Hou, S., Borsa, D., Silver, D., and Precup, D.
Fast reinforcement learning with generalized policy up-
dates. Proceedings of the National Academy of Sciences
(PNAS), 117(48):30079–30087, 2020.

Blier, L., Tallec, C., and Ollivier, Y. Learning successor
states and goal-dependent values: A mathematical view-
point. CoRR, abs/2101.07123, 2021.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., van
Hasselt, H., Munos, R., Silver, D., and Schaul, T. Uni-
versal successor features approximators. In International
Conference on Learning Representations (ICLR), 2019.

Burda, Y., Edwards, H., Storkey, A. J., and Klimov, O. Ex-
ploration by random network distillation. In International
Conference on Learning Representations (ICLR), 2019.

Cetin, E., Touati, A., and Ollivier, Y. Finer behavioral foun-
dation models via auto-regressive features and advantage
weighting. CoRR, abs/2412.04368, 2024.

9

Temporal Difference Flows

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Neural
Information Processing Systems (NeurIPS), 2018.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural Computa-
tion, 1993.

De Bortoli, V., Korshunova, I., Mnih, A., and Doucet, A.
Schrödinger bridge flow for unpaired data translation. In
Neural Information Processing Systems (NeurIPS), 2024.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. In International
Conference on Learning Representations (ICLR), Work-
shop Track Proceedings, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real nvp. In International Conference on
Learning Representations (ICLR), 2017.

Farebrother, J., Greaves, J., Agarwal, R., Le Lan, C.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with aux-
iliary tasks. In International Conference on Learning
Representations (ICLR), 2023.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz,
A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A.,
and Vayer, T. Pot: Python optimal transport. Journal of
Machine Learning Research, 22(78):1–8, 2021.

Frans, K., Hafner, D., Levine, S., and Abbeel, P. One step
diffusion via shortcut models. In International Confer-
ence on Learning Representations (ICLR), 2025.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning (ICML),
2018.

Fujimoto, S., Meger, D., and Precup, D. A deep reinforce-
ment learning approach to marginalized importance sam-
pling with the successor representation. In International
Conference on Machine Learning (ICML), 2021.

Ghosh, D., Bhateja, C. A., and Levine, S. Reinforcement
learning from passive data via latent intentions. In In-
ternational Conference on Machine Learning (ICML),
2023.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Neural Information
Processing Systems (NeurIPS), 2014.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever,
I., and Duvenaud, D. FFJORD: free-form continuous
dynamics for scalable reversible generative models. In
International Conference on Learning Representations
(ICLR), 2019.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. P. Mas-
tering diverse domains through world models. CoRR,
abs/2301.04104, 2023.

Hansen, N., Su, H., and Wang, X. Temporal difference
learning for model predictive control. In International
Conference on Machine Learning (ICML), 2022.

Hansen, N., Su, H., and Wang, X. TD-MPC2: Scalable,
robust world models for continuous control. In Interna-
tional Conference on Learning Representations (ICLR),
2024.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In International Conference on
Learning Representations (ICLR), 2017.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Neural Information Processing Sys-
tems (NeurIPS), 2020.

Huang, N., Gokaslan, A., Kuleshov, V., and Tompkin, J. The
gan is dead; long live the gan! a modern gan baseline. In
Neural Information Processing Systems (NeurIPS), 2024.

Jafferjee, T., Imani, E., Talvitie, E., White, M., and Bowl-
ing, M. Hallucinating value: A pitfall of dyna-style
planning with imperfect environment models. CoRR,
abs/2006.04363, 2020.

Jain, A. K., Lehnert, L., Rish, I., and Berseth, G. Maximum
state entropy exploration using predecessor and succes-
sor representations. In Neural Information Processing
Systems (NeurIPS), 2023.

Jain, A. K., Wiltzer, H., Farebrother, J., Rish, I., Berseth, G.,
and Choudhury, S. Non-adversarial inverse reinforcement
learning via successor feature matching. In International
Conference on Learning Representations (ICLR), 2025.

Janner, M., Mordatch, I., and Levine, S. Gamma-models:
Generative temporal difference learning for infinite-
horizon prediction. In Neural Information Processing
Systems (NeurIPS), 2020.

Jolicoeur-Martineau, A. The relativistic discriminator: a
key element missing from standard gan. In International
Conference on Learning Representations (ICLR), 2019.

10

Temporal Difference Flows

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations (ICLR), 2014.

Lambert, N., Pister, K., and Calandra, R. Investigating com-
pounding prediction errors in learned dynamics models.
CoRR, abs/2203.09637, 2022.

Le Lan, C., Tu, S., Oberman, A., Agarwal, R., and Belle-
mare, M. G. On the generalization of representations in
reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

Le Lan, C., Greaves, J., Farebrother, J., Rowland, M., Pe-
dregosa, F., Agarwal, R., and Bellemare, M. G. A novel
stochastic gradient descent algorithm for learning princi-
pal subspaces. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2023a.

Le Lan, C., Tu, S., Rowland, M., Harutyunyan, A., Agarwal,
R., Bellemare, M. G., and Dabney, W. Bootstrapped rep-
resentations in reinforcement learning. In International
Conference on Machine Learning (ICML), 2023b.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M.,
and Le, M. Flow matching for generative modeling. In
International Conference on Learning Representations
(ICLR), 2023.

Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M.,
Karrer, B., Chen, R. T. Q., Lopez-Paz, D., Ben-Hamu,
H., and Gat, I. Flow matching guide and code. CoRR,
abs/2412.06264, 2024.

Liu, X., Gong, C., and Liu, Q. Flow straight and fast:
Learning to generate and transfer data with rectified flow.
In International Conference on Learning Representations
(ICLR), 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations (ICLR), 2019.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. In International Confer-
ence on Learning Representations (ICLR), 2018.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
AAAI Conference on Artificial Intelligence, 2020.

Machado, M. C., Barreto, A., Precup, D., and Bowling, M.
Temporal abstraction in reinforcement learning with the

successor representation. Journal of Machine Learning
Research (JMLR), 24:80:1–80:69, 2023.

Misra, D. Mish: A self regularized non-monotonic neural
activation function. CoRR, abs/1908.08681, 2019.

Nachum, O., Chow, Y., Dai, B., and Li, L. Dualdice:
Behavior-agnostic estimation of discounted stationary
distribution corrections. In Neural Information Process-
ing Systems (NeurIPS), 2019.

Park, S., Kreiman, T., and Levine, S. Foundation policies
with hilbert representations. In International Conference
on Machine Learning (ICML), 2024.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning
(ICML), 2017.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a gen-
eral conditioning layer. In AAAI Conference on Artificial
Intelligence, 2018.

Pirotta, M., Tirinzoni, A., Touati, A., Lazaric, A., and Ol-
livier, Y. Fast imitation via behavior foundation models.
In International Conference on Learning Representations
(ICLR), 2024.

Pooladian, A.-A., Ben-Hamu, H., Domingo-Enrich, C.,
Amos, B., Lipman, Y., and Chen, R. T. Q. Multisample
flow matching: Straightening flows with minibatch cou-
plings. In International Conference on Machine Learning
(ICML), 2023.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces for
off-policy policy evaluation. In International Conference
on Machine Learning (ICML), 2000.

Precup, D., Sutton, R. S., and Dasgupta, S. Off-policy tem-
poral difference learning with function approximation. In
International Conference on Machine Learning (ICML),
2001.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning (ICML), 2015.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), volume 9351, pp. 234–241, 2015.

Rubner, Y., Tomasi, C., and Guibas, L. J. The earth mover’s
distance as a metric for image retrieval. International
Journal of Computer Vision, 40(2):99–121, 2000.

11

Temporal Difference Flows

Schmidhuber, J. A possibility for implementing curiosity
and boredom in model-building neural controllers. In
International Conference on Simulation of Adaptive Be-
havior, 1991.

Schramm, L. and Boularias, A. Bellman diffusion models.
CoRR, abs/2407.12163, 2024.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., Lillicrap, T., and Silver, D. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. Diffu-
sion schrödinger bridge matching. In Neural Information
Processing Systems (NeurIPS), 2023.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy
with online planning. In Conference on Robot Learning
(CoRL), 2021.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and Has-
sabis, D. Mastering the game of go with deep neural
networks and tree search. Nature, 529(7587):484–489,
2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L.,
van den Driessche, G., Graepel, T., and Hassabis, D.
Mastering the game of go without human knowledge.
Nature, 550(7676):354–359, 2017.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning (ICML), 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In International Conference on Learning
Representations (ICLR), 2021a.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Neural Information
Processing Systems (NeurIPS), 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021b.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. Consis-
tency models. In International Conference on Machine
Learning (ICML), 2023.

Stadie, B. C., Levine, S., and Abbeel, P. Incentivizing ex-
ploration in reinforcement learning with deep predictive
models. In International Conference on Learning Repre-
sentations (ICLR), 2016.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM SIGART, 2(4):160–163,
1991.

Talvitie, E. Model regularization for stable sample rollouts.
In Conference on Uncertainty in Artificial Intelligence
(UAI), 2014.

Thakoor, S., Rowland, M., Borsa, D., Dabney, W., Munos,
R., and Barreto, A. Generalised policy improvement with
geometric policy composition. In International Confer-
ence on Machine Learning (ICML), 2022.

Tirinzoni, A., Touati, A., Farebrother, J., Guzek, M., Kan-
ervisto, A., Xu, Y., Lazaric, A., and Pirotta, M. Zero-shot
whole-body humanoid control via behavioral foundation
models. In International Conference on Learning Repre-
sentations (ICLR), 2025.

Tomar, M., Hansen-Estruch, P., Bachman, P., Lamb, A.,
Langford, J., Taylor, M. E., and Levine, S. Video occu-
pancy models. CoRR, abs/2407.09533, 2024.

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang, Y.,
Rector-Brooks, J., Wolf, G., and Bengio, Y. Improving
and generalizing flow-based generative models with mini-
batch optimal transport. In Transactions on Machine
Learning Research (TMLR), 2024.

Touati, A. and Ollivier, Y. Learning one representation to
optimize all rewards. In Neural Information Processing
Systems (NeurIPS), 2021.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot rein-
forcement learning exist? In International Conference on
Learning Representations (ICLR), 2023.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. In Neural Information
Processing Systems (NeurIPS), 2017.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural Computation, 23(7):1661–
1674, 2011.

Wiltzer, H., Farebrother, J., Gretton, A., and Rowland, M.
Foundations of multivariate distributional reinforcement
learning. In Neural Information Processing Systems
(NeurIPS), 2024a.

12

Temporal Difference Flows

Wiltzer, H., Farebrother, J., Gretton, A., Tang, Y., Barreto,
A., Dabney, W., Bellemare, M. G., and Rowland, M. A
distributional analogue to the successor representation. In
International Conference on Machine Learning (ICML),
2024b.

Wu, R., Chen, Y., Swamy, G., Brantley, K., and Sun, W.
Diffusing states and matching scores: A new framework
for imitation learning. In International Conference on
Learning Representations (ICLR), 2025.

Yang, L., Zhang, Z., Zhang, Z., Liu, X., Xu, M., Zhang,
W., Meng, C., Ermon, S., and Cui, B. Consistency flow
matching: Defining straight flows with velocity consis-
tency. CoRR, abs/2407.02398, 2024.

Yarats, D., Brandfonbrener, D., Liu, H., Laskin, M., Abbeel,
P., Lazaric, A., and Pinto, L. Don’t change the algorithm,
change the data: Exploratory data for offline reinforce-
ment learning. CoRR, abs/2201.13425, 2022.

Zhang, P., Chen, X., Zhao, L., Xiong, W., Qin, T., and
Liu, T.-Y. Distributional reinforcement learning for multi-
dimensional reward functions. In Neural Information
Processing Systems (NeurIPS), 2021.

Zhu, C., Wang, X., Han, T., Du, S. S., and Gupta, A. Dis-
tributional successor features enable zero-shot policy op-
timization. In Neural Information Processing Systems
(NeurIPS), 2024.

13

Temporal Difference Flows

Appendices

A. Related Work
The Successor Representation (Dayan, 1993) was originally proposed for tabular MDPs and was later generalized to
continuous state spaces with the Successor Measure (Blier et al., 2021). Successor Features (Barreto et al., 2017; 2020)
extends these ideas by instead modeling the evolution of multi-dimensional features assuming rewards decompose linearly
over these features. Prior works have leveraged these methods for zero-shot policy evaluation (Dayan, 1993; Barreto et al.,
2017; Wiltzer et al., 2024b), zero-shot policy optimization (Borsa et al., 2019; Touati & Ollivier, 2021; Touati et al., 2023;
Park et al., 2024; Zhu et al., 2024; Cetin et al., 2024; Tirinzoni et al., 2025), imitation learning (Pirotta et al., 2024; Jain
et al., 2025), exploration (Machado et al., 2020; Jain et al., 2023), representation learning (Le Lan et al., 2022; 2023a;b;
Farebrother et al., 2023; Ghosh et al., 2023), and building temporal abstractions (Machado et al., 2018; 2023).

Janner et al. (2020) originally proposed a method to learn a generative model of the successor measure with modeling
techniques spanning from Generative Adversarial Networks (Goodfellow et al., 2014) to Normalizing Flows (Dinh et al.,
2015; Rezende & Mohamed, 2015) like RealNVP (Dinh et al., 2017). Followup work (e.g., Thakoor et al., 2022; Tomar
et al., 2024) explored other generative modeling techniques including various types of auto-encoders (e.g., Higgins et al.,
2017; van den Oord et al., 2017). Also of note is recent work learning generative models of multi-dimensional cumulants
including features (Wiltzer et al., 2024a; Zhu et al., 2024) and multi-variate reward functions (Zhang et al., 2021). Prior
work by Wiltzer et al. (2024b) sought to deal with the instability of long-horizon predictions in GHMs by employing an
n-step mixture distribution where they sample t ∼ Geometric(1− γ) and bootstrap if t > n; otherwise returning the state
at time t along the trajectory. Without resorting to importance sampling this approach is limited to the on-policy setting.
Finally, most closely related to our work is that of Schramm & Boularias (2024) who provide a preliminary and limited
derivation of what we term TD2-DD. In contrast, our work not only rigorously formalizes and significantly extends these
ideas but also integrates them into the more general flow-matching framework (Lipman et al., 2023; 2024), additionally
incorporating extensions to score-matching (Song et al., 2021b;b) and diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Moreover, we conduct an extensive empirical analysis, demonstrating the efficacy of our approach — an aspect notably
absent from Schramm & Boularias (2024).

B. Extension to Score Matching and Diffusion Models
This section extends our framework to score matching and denoising diffusion models. We leverage the unification of these
methods under stochastic differential equations (Song et al., 2021b) introducing an analogous class of Temporal Difference
Diffusion methods.

B.1. Background

Both score-based generative modeling (Song & Ermon, 2019) and diffusion probabilistic modeling (Sohl-Dickstein et al.,
2015; Ho et al., 2020) can be unified under the framework of stochastic differential equations (SDE) introduced in Song
et al. (2021b). Unlike in flow-matching, time is inverted in diffusion models and ranges from time 0 to T . Given the data
distribution q0 and prior simple distribution qT (the “noise” distribution), we construct a diffusion process {Xt}t∈[0,T] such
that X0 ∼ q0 and XT ∼ qT . This diffusion can be modeled as the solution to an Ito SDE:

dXt = f(t)Xt dt+ g(t) dWt | X0 ∼ q0 , (16)

where Wt is a standard Brownian motion and f : [0, T] → Rd is scalar function called the drift coefficient, and g : [0, T] →
R is scalar function known as diffusion coefficient.

Generating samples from X0 ∼ q0 consists in sampling XT ∼ qT and reversing the forward-SDE process in (16). A known
result from Anderson (1982) states that the reverse of a diffusion process is also a diffusion process, running backward in
time and given by the reverse-time SDE:

dXt =
(
f(t)Xt − g(t)2 ∇Xt log qt(Xt)

)
dt+ g(t) dW t | XT ∼ qT , (17)

where W t is a Brownian motion when time flows backwards from T to 0, dt is an infinitesimal negative timestep and qt is

14

Temporal Difference Flows

the marginal distribution of Xt. Therefore, once we learn the score of the marginal distribution ∇x log qt(x), we can sample
from q0 by simulating the reverse diffusion process (17).

To estimate ∇x log qt(x), we can train a time-dependent score-based model s̃(· · · ; θ) : [0, T]×Rd → Rd via the denoising
diffusion / score matching objective (Vincent, 2011; Song & Ermon, 2019):

ℓDD(θ) = Et∼U([0,1]),X0∼q0EXt∼qt|0(·|X0)

[∥∥s̃t(Xt; θ)−∇Xt log qt|0(Xt | X0)
∥∥2] . (18)

For ℓDD to be tractable, we need to know the conditional probability qt|0. Usually, specific choices of the drift and diffusion
coefficients ft and gt are used such that qt|0 is always a Gaussian distribution N (· | αtx0, σ2

t), where the mean αt and
variance σ2

t can be computed in closed-form. The global minimizer of ℓDD(θ) denoted by s⋆t (x) is equal to the score function
∇x log qt(x), thanks to the following proposition:
Proposition 2 (Vincent 2011). Let qt(x) =

∫
q0(x0)qt|0(x|x0) dx0, then we have:

∇θ ℓDD(θ) = ∇θ Et,Xt∼qt
[∥∥s̃t(Xt; θ)−∇Xt log qt(Xt)

∥∥2] . (19)

B.2. Temporal Difference Diffusion

To learn a predictive model of mπ using diffusion from an offline dataset, we follow a similar approach to what we
presented in §3 and we define an iterative process starting from initial weights θ(0) and at each iteration minimizing the
Temporal-Difference Denoising Diffusion (TD-DD) loss:

ℓTD-DD(θ) = Eρ,t,X0,Xt

[∥∥s̃t(Xt | S,A; θ)−∇x log qt|0(Xt | X1)
∥∥2] ,

where , X0 ∼
(
T πm̃

(n)
0|T

)
(· | S,A), Xt ∼ qt|0(· | X0) .

(TD-DD; 20)

In order to sample X0 ∼
(
T πm̃

(n)
0|T

)
(· | s, a), with probability 1 − γ, we return the successor state S′ ∼ P (· | S,A).

Otherwise, with probability γ we solve the following reverse-time SDE from XT using the score s̃(n)t ,

dXt =
(
f(t)Xt − g(t)2s̃

(n)
t (Xt | S,A)

)
dt+ g(t)dW t . (21)

Minimizing ℓTD-DD(θ) leads to score function s̃(n+1)
t (s | s, a) generating a marginal probability q(n+1)

t that approximates
T πq

(n)
0 at t = 0.

Following the TD2-CFM blueprint, we can further exploit the structure of the target bootstrapped distribution to design an
improved diffusion process that converts Gaussian noise to T πq

(n)
0 . First, we show below that the mixture of a diffusion

process is also a diffusion process with modified drift and diffusion functions.

Lemma 2. Consider two diffusion processes with drift functions
→
f and

↷
f , sharing the same diffusion coefficient g:

dXt =
→
ft(Xt) dt+ g(t) dW

dXt =
↷
ft(Xt) dt+ g(t) dW .

Let →
qt and ↷

qt be their marginal distribution, then the diffusion process corresponding to the mixture marginal distribution
qt = (1− γ)

→
qt + γ

↷
qt is:

dXt =
(1− γ)

→
qt

→
ft + γ

↷
qt

↷
ft

(1− γ)
→
qt + γ

↷
qt

(Xt) dt+ g(t) dW .

Proof. The marginal probabilities →
p and ↷

p are characterized by the Fokker-Planck equations:

∂
→
pt
∂t

= −div(
→
pt

→
ft) +

g2t
2
∆

→
pt

∂
↷
pt
∂t

= −div(
↷
pt

↷
ft) +

g2t
2
∆

↷
pt

15

Temporal Difference Flows

where div is the divergence operator and ∆ = div∇ is the Laplace operator. Therefore,

∂pt
∂t

= (1− γ)
∂

→
pt
∂t

+ γ
∂

↷
pt
∂t

= −div(
→
pt

→
ft) +

g2t
2
∆

→
pt − div(

↷
pt

↷
ft) +

g2t
2
∆

↷
pt

= −div
(
(1− γ)

→
pt

→
ft + γ

↷
pt

↷
ft

)
+
g2t
2
∆ ((1− γ)

→
pt + γ

↷
pt)

= div

(
pt
(1− γ)

→
pt

→
ft + γ

↷
pt

↷
ft)

(1− γ)
→
pt + γ

↷
pt

)
+
g2t
2
∆pt .

The drift (1−γ)→pt
→
ft+γ

↷
pt

↷
ft

(1−γ)→pt+γ
↷
pt

and the diffusion coefficient gt satisfy the Fokker-Planck equation with the probability path pt,
and therefore their associated diffusion process generate pt.

Lemma 2 can be easily extended to the case of a continuous mixture of diffusion processes.

This result shows that it is possible to use two independent diffusion processes for the two terms in the sampling process
induced by the Bellman operator. For the first, we can use the standard noising diffusion process:

→
qt(x | s, a) =

∫
qt|0(x | s′)P (ds′ | s, a) ,

where we sample Xt ∼ qt|0(· | s′) by simulating a simple forward diffusion process (16). For the second term, we can
leverage the GHM m

(n)
t at the previous iteration to construct the process,

↷
q
(n)
t (x | s, a) =

∫
m

(n)
t (x | s′, π(s′))P (ds′ | s, a) ,

where m(n)
t (x | s′, a′) is the marginal probability of the reverse SDE induced by the score s(n),

dXt =
(
f(t)Xt − g(t)2 s

(n)
t (Xt | s, a)

)
dt+ g(t) dW t .

Additionally, ↷
q
(n)
t (x | s, a), as continuous mixture of diffusion’s marginals m(n)

t (x | s′, π(s′)) weighted by P (s′ | s, a),
can be generated by the diffusion process,

dXt =
(
f(t)Xt − g(t)2

↷
st(Xt | s, a)

)
dt+ g(t) dW t, where

↷
st(xt | s, a) =

∫
P (ds′ | s, a) q(n)t (x | s′, π(s′)) s(n)t (xt | s′, π(s′))∫

P (ds′ | s, a) q(n)t (x | s′, π(s′))
.

Given these two diffusion processes, the target probability q(n+1)
t = (1− γ)

→
qt + γ

↷
q
(n)
t can be generated by the following

reverse SDE,

dXt =
(
f(t)Xt − g(t)2 s

(n+1)
t (Xt | s, a)

)
dt+ g(t) dW t,

where s(n+1)
t (x | s, a) = (1−γ)→qt∇x log

→
qt+γ

↷
q

(n)
t

↷
s

(n)
t

(1−γ)→qt+γ
↷
q

(n)
t

(x | s, a). Therefore, we can learn s̃t(· · · ; θ) to approximate s(n+1)
t by

minimizing the loss,

ℓ(θ) = (1− γ)Eρ,t,Xt∼→
qt(·|S,A)

[∥∥s̃(Xt | S,A; θ)−∇Xt log
→
qt(Xt | S,A)

∥∥2] (22)

+ γE
ρ,t,Xt∼

↷
q

(n)
t (·|S,A)

[∥∥s̃(Xt | S,A; θ)−
↷
s
(n)
t (Xt | S,A)

∥∥2].
16

Temporal Difference Flows

We can simplify the first term via Proposition 2 (since →
qt(x|s, a) =

∫
qt|0(x|s′)P (ds′|s, a)), hence we have

∇θ Eρ,t,Xt∼→
qt(·|s,a)

[∥∥s̃(Xt | s, a; θ)−∇Xt log
→
qt(Xt | S,A)

∥∥2] =
∇θ Eρ,t,Xt∼qt|0(·|S′)

[∥∥s̃(Xt | S,A; θ)−∇Xt log qt|0(Xt | S′)
∥∥2] .

Moreover, using a similar argument for equivalence between the gradient of marginal and conditional flow-matching
objectives, we can show that

∇θ Eρ,t,Xt∼↷
q

(n)
t (·|S,A)

[∥∥s̃(Xt | S,A; θ)−
↷
s
(n)
t (Xt | S,A)

∥∥2] =
∇θ Eρ,t,XT∼qT ,Xt∼qnt|T (·|s,a)

[∥∥s̃(Xt | S,A; θ)− s
(n)
t (Xt | S,A)

∥∥2] .
This leads us to the final TD2-DD loss function,

ℓTD2-DD(θ) = (1− γ)Eρ,t,Xt∼qt|0(·|S′)

[∥∥s̃t(Xt |S,A; θ)−∇x log pt|0(Xt | S′)
∥∥2] (23)

+ γE
ρ,t,Xt∼q(n)

t|T (·|S′,π(S′))

[∥∥s̃(Xt | S,A; θ)− s̃
(n)
t (Xt | S′, π(S′)

∥∥2] .

17

Temporal Difference Flows

C. Experimental Details
C.1. Evaluation

Table 3. Evaluation hyper-parameters for both single and multi-policy
experiments.

Evaluation Hyperparameter Value

EMD

Number of states s0 64

Number of m-samples per state 2048

Number of episodes per state 1

Episode length 1000

MSE(V)

Number of state s0 64

Number of GHM-samples per state 2048

Number of episodes per state 1

Episode length 1000

GPI
Number of z samples 256

Number of GHM samples 128

Number of FB inference samples 250, 000

Evaluating a GHM can be challenging, TD-based losses
employing bootstrapping do not provide a good signal
as to the quality of the learned model. Instead, we opt
to measure 1) the likelihood of a trajectory coming from
the true discounted occupancy of a given policy, 2) the
Earth Mover’s Distance (EMD; Rubner et al., 2000) be-
tween samples from the true occupancy and our GHM
which provides an estimate of the distance between these
two probability distributions, and 3) the value-function
approximation error. In all cases, to obtain samples from
the true discounted occupancy, we collect trajectories
{(s0, s1, . . . , sT)}Ni=1 from policy π and subsequently re-
sample states according to t ∼ Geometic(1 − γ) for a
particular discount factor γ ∈ [0, 1). Armed with samples
from mπ we compute the aforementioned metrics follow-
ing the procedures stated below along with the parameter
values outlined in Table 3.

Normalized Negative Log-Likelihood. To compute the
log-likelihood of our flow matching and diffusion meth-
ods, we take advantage of the following change in vari-
ables formula (Dinh et al., 2015; Rezende & Mohamed, 2015; Chen et al., 2018),

log (m̃(x1 | s, a; θ)) = logφ(x0) +

∫ 1

0

∂ log (m̃(xt | s, a; θ))
∂xt

dt ,

where φ is the probability density function of a standard Gaussian distribution, which acts as the prior on x0. The change
in log density over time can be written as the following differential equation called the instantaneous change of variables
formula (Chen et al., 2018, Theorem 1),

∂ log (m̃(xt | s, a; θ))
∂xt

= −Tr

(
∂ ṽt(xt | s, a; θ)

∂xt

)
.

We can now compute the log-likelihood for a sample X ∼ mπ(· | s, a) by integrating the total change in log-density
backward in time from x1 = X to obtain x0 which has tractable likelihood. In practice, we solve the following coupled
initial value problem using numerical integration (Grathwohl et al., 2019),[

x0
log m̃(x1 | s, a; θ)− logφ(x0)

]
=

∫ 0

1

[
−ṽt(xt | s, a; θ)

Tr
(
∂ ṽt(xt | s,a;θ)

∂xt

)]
dt ,

where
[

x1
log m̃(x | s, a; θ)− log m̃(x1 | s, a; θ)

]
=

[
X
0

]
.

(24)

For all experiments we report the negative log-likelihood normalized by the dimension of the observation space.

Earth Mover’s Distance We compute the Earth Mover’s Distance (EMD; Rubner et al., 2000), also known as the
Wasserstein-1 distance, between m = 2048 samples from the ground truth distribution X ∼ mπ(· |Sk, Ak) and our learned
GHM X̃ ∼ m̃(· |Sk, Ak; θ) for a set of randomly sampled state-action pairs {(Sk, Ak)}nk=1. Intuitively, the EMD quantifies
the minimum cost required to transform one distribution into another, where the cost is defined in terms of the Euclidean
distance between states X(i), X(j). Formally, we have,

EMD({X(1), . . . , X(m)}, {X̃(1), . . . , X̃(m)}) = min
ξ∈Ξ

∑
i,j

ξij

d∑
k=1

(
X

(i)
k − X̃

(j)
k

)2
,

18

Temporal Difference Flows

where ξ is a transport plan such that ξij specifies the proportion of mass moved from Xi to X̃j . We report the average EMD
across n = 64 source states using the Python Optimal Transport (Flamary et al., 2021) library.

Value Function Mean Square Error (MSE(V)). We compute the mean square error between a Monte-Carlo estimation
Ṽ πMC of the value function V π(s) and the estimation ṼGHM obtained using the learned model. We obtain Ṽ πMC by collecting a
trajectory {(s0, s1, . . . , sT)} from policy π and computing the discounted sum of rewards. We generate a single trajectory
since both the policy and the environment are deterministic. The GHM estimate is given by (2), i.e.,

Ṽ πGHM(s) = (1− γ)−1EX̃∼m̃(·|s,π(s))

[
r(X̃)

]
.

Then, MSE(Ṽ πMC, Ṽ
π

GHM) = ES0∼ν

[
(Ṽ πGHM(S0)− Ṽ πMC(S0))

2
]
. We average our results over 64 initial states S0 sampled from

the initial state distribution ν.

Planning with GPI. We evaluate planning performance by computing the average return over 100 episodes, each lasting
1, 000 steps, for every task. For the Forward-Backward representation (Touati & Ollivier, 2021), we directly follow the
policy πwr (thus at = πwr (st)) where wr = E(S,R)∼ρ[B(s) ·R] is the zero-shot policy embedding inferred using 250, 000
transitions labeled with the task reward function r. Given that FB provides a direct way of estimating the value function of
a policy (i.e., Qπwr (s, a) = F (s, a, w)T zr), we can do planning in the policy embedding space by solving the following
problem:

wFB-GPI
t ∈ argmax

w∼D(W)

F (st, πw(st), w)
Twr.

This optimization problem requires no generation except sampling from D(W). We approximate the max using 255 samples
from D(W) and additionally incorporating wr to ultimately maximize over 256 policies. On the other hand, for GHM-GPI,
we solve the following optimization problem,

wGHM-GPI
t ∈ argmax

w∼D(W)

(1− γ)−1 EX∼mπw (·|st,πw(st)))[r(X)]︸ ︷︷ ︸
Qπw (st,πw(st))

,

which requires generating samples from mπw . In our experiments we generate 128 samples from mπw .

C.2. Environments

Experiments in this paper were conducted with a subset of domains from the DeepMind Control Suite (Tunyasuvunakool
et al., 2020) highlighted in Figure 4.

Figure 4. A visual depiction of each domain used in our experiments from the DeepMind Control Suite (Tunyasuvunakool et al., 2020).
From left to right: MAZE, CHEETAH, QUADRUPED, WALKER.

19

Temporal Difference Flows

C.3. Geometric Horizon Models

This section describes each class of generative model used for our empirical experiments.

C.3.1. FLOW MATCHING

Algorithm 1 Template for TD-Flow algorithms
1: Inputs: offline dataset D, policy π, batch size n, Polyak coefficient ζ,

weight decay λ, randomly initialized weights θ, discount factor γ, learning
rate η, one-step conditional path →

pt|1 and conditional vector-field →
ut|1,

bootstrap path ↷
pt and vector-field ↷

vt.
2: for n = 1, . . . do
3: Sample mini-batch {(Sk, Ak, S′

k)}Kk=1 from D
4: for k = 1, . . . ,K do
5: Sample tk ∼ U([0, 1])
6: Sample

→
Xk ∼ →

ptk|1(· | S
′
k)

7:
→
ℓk(θ) =

∥∥vtk (→
Xk | Sk, Ak; θ)−→

utk|1(
→
Xk | S′

k)
∥∥2

8: Sample
↷
Xk ∼ ↷

ptk (· | S
′
k, π(S

′
k); θ̄)

9:
↷
ℓk(θ) =

∥∥vtk (↷
Xk | Sk, Ak; θ)−↷

vtk (
↷
Xk | S′

k, π(S
′
k); θ̄)

∥∥2

10: end for
11: # Compute loss
12: ℓ(θ) = 1

K

∑K
k=1(1− γ)

→
ℓk(θ) + γ

↷
ℓk(θ)

13: # Perform gradient step
14: θ ← θ − η∇θ

(
ℓ(θ) + λ∥θ∥2

)
15: # Update parameters of target vector field
16: θ̄ ← ζθ̄ + (1− ζ)θ
17: end for

Table 4. Summary of how different TD-flow algorithms
generate the target probability path and vector field.
The neural ode ψt is defined by the vector field

↷
v t

computed at iteration n.

↷
pt

↷
vt

T
D

-C
F

M

X0 ∼ m0

ut|1(Xt | X1)X1 = ψ1(X0 | S′, A′; θ̄)

Xt ∼ pt|1(· | X1)

T
D

-C
F

M
(C

) X0 ∼ m0

ut|0,1(Xt | X0, X1)X1 = ψ1(X0 | S′, A′; θ̄)

Xt ∼ pt|0,1(· | X0, X1)

T
D
2
-C

F
M X0 ∼ m0

vt(Xt | S′, A′; θ̄)

Xt = ψt(X0 | S′, A′; θ̄)

To discuss the TD-Flow methods introduced herein, we first unify the loss function through defining a general template for
the loss as,

ℓ(θ) = (1− γ)Eρ,t,Xt∼→
pt|1(·|S′)

[∥∥vt(Xt | S,A; θ)−
→
ut|1(Xt | S′)

∥∥2]
+ γE

ρ,t,Xt∼
↷
p

(n)
t (·|Z)

[∥∥vt(Xt | S,A; θ)−
↷
v

(n)
t (Xt | Z)

∥∥2] .
We can now recover each algorithm by a specific choice of the target probability path ↷

p
(n)
t and vector field ↷

v
(n)
t as illustrated

in Figure 4. Based on this unified structure, we present pseudo-code for the TD flow methods in Figure 1. In practice,
instead of proceeding through full iterations, we use standard mini-batch gradient updates with a target network θ̄ updated
as a moving average of θ.

When employing the conditional probability path →
pt|1 and vector field →

ut|1 we use the standard Gaussian linear interpolation
defined as →

pt|1(· | X1) = N (· | tX1, (1 − t)2I), hence Xt = tX1 + (1 − t)X0 ∼ pt|1, resulting in →
ut|1(Xt | X1) =

(X1 −Xt)/(1− t) (Lipman et al., 2023). The source distribution for all experiments is m0(·) = N (· | 0, I). To sample
from the Neural ODE we use the Midpoint method with a constant step size of dt = t/10 for a total of 10 steps. We found
both coupled and TD2 methods do not require many solver steps and hypothesize this is due to the reduction in transport
cost as analyzed in Appendix E.7.

For all flow and diffusion-based methods, we employ a U-Net-style architecture (Ronneberger et al., 2015) that has
hierarchical skip connections throughout an MLP. We embed the timestep t by first increasing its dimensionality with a
sinusoidal embedding before transforming it through a two-layer MLP with mish activations (Misra, 2019). We further
process additional conditioning information, such as the state-action pair and Forward-Backward embedding z through an
additional two-layer MLP, whose result then gets concatenated with our time embedding. Finally, the network integrates all
prior conditioning information through FiLM modulation (Perez et al., 2018) that replaces the learned affine transformation
for layer normalization (Ba et al., 2016).

20

Temporal Difference Flows

C.3.2. DENOISING DIFFUSION

We train a Denoising Diffusion Probabilistic Model (DDPM; Ho et al., 2020) using the same architecture as our flow
matching model above, with the output now being interpreted as a prediction of the noise seed ϵ0 that began the diffusion
process. We discretize the diffusion process using 1, 000 steps with βmin = 0.1 and βmax = 20. We employ the DDIM
sampler(Song et al., 2021a) with 50 sampling steps for both training and evaluation.

For evaluating our DDPM model, we compute exact log-likelihoods using the instantaneous change of variables formula
(Chen et al., 2018) along with the probability flow ODE from Song et al. (2021b). That is, we solve the initial value problem
in (24) using the vector field,

vt(xt | s, a; θ) = −1

2
(βmin + t (βmax − βmin))

(
xt −

1√
1− ᾱt

ϵt(xt | s, a; θ)
)
.

We now outline the losses for each of the TD-DPM experiments in the paper:

TD-DD To train our vanilla Diffusion GHM we employ the standard DDPM-style objective, that is, we optimize the following
loss:

E ρ, t, ϵ∼N (· | 0,I)
X0∼(T πm̃(n))(·|S,A)

[∥∥ϵ− ϵt(
√
ᾱtX0 +

√
1− ᾱtϵ | S,A; θ)

∥∥2] , (25)

where θ̄ are the target parameters and ᾱ are the standard diffusion coefficients as seen in Ho et al. (2020).

TD2-DD As outlined in §3.1 we can split our DDPM loss into two terms, one that will use standard DDPM training on
one-step transitions and the second term that will regress to our target networks noise prediction. This materializes as,

→
ℓ(θ) = Eρ,t,ϵ,X0

[∣∣|ϵt(√ᾱtX0 +
√
1− ᾱtϵ |S,A; θ)− ϵ

∣∣|2]
whereX0 ∼ P (· |S,A) ,

↷
ℓ(θ) = E

ρ,t,ϵ,
↷
Xt

[∣∣|ϵt(↷
Xt |S,A; θ)− ϵ

(n)
t (

↷
Xt |S′, π(S′))

∣∣|2]
where

↷
Xt ∼ q

(n)
t|T (· |S

′, π(S′))

ℓTD2-DD(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) (26)

C.3.3. GENERATIVE ADVERSARIAL NETWORK

We implement a modern Generative Adversarial Network (GAN; Goodfellow et al., 2014) baseline based on the recom-
mendations in Huang et al. (2024). Specifically, we train a relativistic GAN (Jolicoeur-Martineau, 2019) resulting in the
following loss,

ℓGAN(θG, θD) = Eρ,X0,X1
[f (D(G(X0 | S,A; θG); θD)−D(X1 | S,A; θD))] ,

where X0 ∼ N (· | 0, I) , X1 ∼
(
T πm̃(n)

)
(· | S,A) ,

We take f(x) = − log (1 + exp (−x)) to be the log-sigmoid function (Jolicoeur-Martineau, 2019) and further add the
following zero-centered gradient penalties on the discriminator,

R1(θD) = Eρ,X∼(T πm̃(n))(·|S,A)

[
∥∇XD(X | S,A)∥2]

,

R2(θG, θD) = Eρ,X∼(T πm̃)(·|S,A;θG)

[
∥∇XD(X | S,A)∥2]

.

The penalty R1 penalizes the gradient norm of the discriminator D on “real data” sampled from our current iterate m̃(n),
whereas R2 penalizes the gradient norm on “fake data” generated directly from the current generator. We experimented with
different coefficients and schedules for these gradient penalties and settled on a linear decay schedule from 0.05 → 0.005

21

Temporal Difference Flows

throughout training. Furthermore, as is common practice, we impose a schedule on the second moment EMA coefficient β2
of Adam (Kingma & Ba, 2015) to increase from 0.9 → 0.99 throughout training.

The generator and discriminator architecture in our GAN is implemented as a Residual MLP with leaky ReLU activations
with the same FiLM-style conditioning (Perez et al., 2018) as our flow and diffusion models. The input to our generator
is random noise sampled from an isotropic Gaussian with dimensionality equal to the number of state dimensions in the
environment.

C.3.4. VARIATIONAL AUTO-ENCODER

We implement a β-Variational Auto-Encoder (Kingma & Welling, 2014; Higgins et al., 2017) following the best practices
outlined in Thakoor et al. (2022). That is, we train our VAE to minimize the following loss,

ℓVAE(θE, θD) = Eρ,X1

[
EX0∼qθE (·|S,A,X1)[log pθD(X1 | S,A,X0)]− βDKL(qθE∥p0)

]
,

where X1 ∼
(
T πm̃(n)

)
(· | S,A) .

We employ a similar architecture to our GAN-GHM and use a residual MLP for the encoder and decoder. We use an
isotropic Gaussian latent space with the number of latents equal to the number of state dimensions in the environment. We
also swept over β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the MAZE domain and chose β = 0.5 for the rest of
our experiments. Overall, we found the β-VAE-based GHM to be very unstable and likely requires very careful fine-tuning
of β to get adequate performance at long-horizons.

22

Temporal Difference Flows

C.4. Hyperparameters

We report the hyper-parameters for training the GHM models used in the single and multi-policy experiments. Table 5
shows the parameters for Flow Matching and Denoising Diffusion. We also report the hyper-parameters for pre-training the
Forward-Backward representation (Touati & Ollivier, 2021) utilized in the multi-policy GHM experiments in Table 8.

Table 5. Flow Matching and Denoising Diffusion hyper-parameters used for the single and multi-policy experiments across tasks and
domains. We highlight any differences depending on the training context.

Hyperparameter Single Policy Multi-Policy

Flow Matching
(Lipman et al., 2023)

ODE Solver Midpoint Midpoint
ODE dt (train) 0.1 0.1

ODE dt (eval) 0.1 0.05 (0.1 for GPI)

Diffusion (DDPM)
(Ho et al., 2020)

βmin 0.1 0.1

βmax 20 20

Discretization Steps 1, 000 1, 000

SDE Solver DDIM (Song et al., 2021a) DDIM (Song et al., 2021a)
SDE Solver Steps (train) 20 20
SDE Solver Steps (eval) 20 20

Network (U-Net)
(Ronneberger et al., 2015)

t-Positional Embedding Dim. 256 256

t-Positional Embedding MLP (256, 256) (256, 256)

Hidden Activation mish (Misra, 2019) mish (Misra, 2019)
Blocks per Stage 1 1

Block Dimensions (512, 512, 512) (1024, 1024, 1024)

Conditional Encoder
Encoder Input s, a s, a, z

Encoder MLP (512, 512, 512) (1024, 1024, 1024)

Encoder Activation mish (Misra, 2019) mish (Misra, 2019)

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9 0.9

AdamW β2 0.999 0.999

AdamW ϵ 10−4 10−4

Learning Rate 10−4 10−4

Weight Decay 10−3 10−2

Common
Gradient Steps 3M 8M
Batch Size 1024 1024

Target Network EMA 10−3 10−4

23

Temporal Difference Flows

Table 6. β-VAE (Higgins et al., 2017) hyper-parameters for single
policy experiments across tasks and domains.

Hyperparameter Value

β-VAE
(Higgins et al., 2017)

β 10
Latent Prior N (0, I)

Latent Dimension |S|

Network

Encoder Residual MLP
Decoder Residual MLP
Hidden Activation mish (Misra, 2019)
Blocks per Stage 1

Block Dimensions (512, 512, 512)

Conditional Encoder
Encoder Input s, a

Encoder MLP (512, 512, 512)

Encoder Activation mish (Misra, 2019)

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9

AdamW β2 0.999

AdamW ϵ 10−4

Learning Rate 10−4

Weight Decay 10−3

Common
Gradient Steps 3M
Batch Size 1024

Target Network EMA 10−3

Table 7. GAN hyper-parameters for single policy experiments
across tasks and domains.

Hyperparameter Value

RGAN
(Jolicoeur-Martineau, 2019)

Grad. Penalty Coef Linear(0.05 → 0.005)
Latent Prior N (0, I)

Latent Dimension |S|

Network

Generator Residual MLP
Discriminator Residual MLP
Hidden Activation Leaky ReLU
Blocks per Stage 1

Block Dimensions (512, 512, 512)

Conditional Encoder
Encoder Input s, a

Encoder MLP (512, 512, 512)

Encoder Activation Leaky ReLU

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9

AdamW β2 Linear(0.9 → 0.99)
AdamW ϵ 10−4

Learning Rate 10−4

Weight Decay 10−3

Common
Gradient Steps 3M
Batch Size 1024

Target Network EMA 10−3

Table 8. Forward Backward Representation hyper-parameters. We largely reuse the hyper-parameters from Pirotta et al. (2024) and
highlight any deviations.

Hyperparameter Walker Cheetah Quadruped Maze

Forward Backward
(Touati & Ollivier, 2021)

Embedding Dimension d 100 50 50 100

Embedding Prior Sd Sd Sd Sd

Embedding Prior Goal Prob. 0 0 0 1/2

B Normalization ℓ2 ℓ2 ℓ2 ℓ2

Orthonormal Loss Coeff. 1 1 1 1

Policy (TD3)
(Fujimoto et al., 2018)

Target Policy Noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.2)

Target Policy Clipping 0.3 0.3 0.3 0.3

Policy Update Frequency 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Adam β1 0.9 0.9 0.9 0.9

Adam β2 0.999 0.999 0.999 0.999

Adam ϵ 10−8 10−8 10−8 10−8

Common

Batch Size 2048 1024 2048 1024

Gradient Steps 3M 3M 3M 5M
Discount Factor γ 0.98 0.98 0.98 0.99

Target Network EMA 0.99 0.99 0.99 0.99

Reward Inference Samples 250, 000 250, 000 250, 000 250, 000

24

Temporal Difference Flows

D. Additional Experimental Results
In this section, we report additional results about the experiments.

Single policy. We report metrics averaged over tasks using a curved conditional path in Table 12. We also report the
performance per task in Table 13. Table 11 shows the performance of the single-policy experiments (§5.1 in the main paper)
expanded for each task. While the performance of TD-based methods is reasonably stable across tasks, VAE and GAN have
a large variance across tasks. For example, the EMD of GAN diverges in 2 tasks out of 4 in QUADRUPED.

Multiple policies and planning. We report aggregate performance across our full suite of evaluation metrics for the
multi-policy experiments in Table 14. We also report per-task metrics in Table 16. We can notice that TD2-DD achieves
quite a high EMD compared to TD-DD while achieving a better MSE(V). By further inspecting the generated samples (see
Figure 5), we found that TD-DD tends to generate highly concentrated samples, while TD2-DD is more diffuse. However, the
samples generated by TD-DD appear to be better at a visual inspection. This may explain the discrepancy between the two
metrics. Finally, we report aggregate planning performance in Table 15 and per-task results in Table 17.

Comparison with planning with one-step world model we include in Table 9 results for a Model Predictive Path Integral
(MPPI) controller with a learned dynamics model. We train a similar capacity dynamics model to that of TD2-CFM before
evaluating MPPI with a finite horizon of 32 for locomotion tasks and 128 for maze, where at each step we sample 256
action candidates and perform 10 optimization rounds with 64 elites (top-k actions) per round. The results show that GPI
with TD2-CFM significantly outperforms MPPI in 3/4 domains with comparable results in Walker. MPPI notably displayed
instability related to compounding errors in environments with difficult to model dynamics.

Impact of number of ODE integration steps we report in Table 10 an empirical analysis showing how prediction quality
degrades as we reduce the number of integration steps on the Loop task in Pointmass Maze. The results show that TD2-CFM
remains robust even at coarse discretizations of the ODE with as little as 5 integration steps, while we observe with a
predictable degradation when the number of steps is too small,

Table 9. Comparison with planning with one-step world models

Domain FB TD²-CFM-GPI MPPI
Cheetah 479.35 (14.56) 693.63 (5.50) 541.22 (5.28)

Pointmass 472.45 (14.40) 800.99 (8.56) 286.43 (54.95)

Quadruped 627.28 (1.98) 695.73 (2.07) 156.80 (122.89)

Walker 526.66 (5.94) 627.63 (7.97) 658.15 (21.46)

Table 10. Ablation of the number of ODE integration steps

ODE Steps NLL ↓ EMD ↓ MSE(VF) ↓
2 -0.48 (0.21) 0.076 (0.003) 379.52 (81.75)

5 -2.75 (0.15) 0.036 (0.000) 23.82 (2.05)

10 -2.85 (0.17) 0.025 (0.001) 7.71 (2.75)

20 -2.99 (0.04) 0.0218 (0.001) 4.40 (0.82)

25

Temporal Difference Flows

Table 11. Per task results for the single policy experiments.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

RUN

TD-DD 20.06 (0.27) 2.713 (0.189) 120.21 (52.91)

TD2-DD 11.05 (0.01) 0.543 (0.164) 24.02 (25.54)

TD-CFM 12.46 (0.35) 0.608 (0.026) 148.56 (29.24)

TD-CFM(C) 10.90 (0.05) 0.112 (0.018) 9.53 (1.37)

TD2-CFM 10.59 (0.13) −0.026 (0.005) 11.90 (7.59)

GAN 23.99 (1.15) — 827.79 (130.38)

VAE 114.95 (2.51) — 646.96 (21.57)

SPIN

TD-DD 21.55 (0.17) 2.754 (0.062) 1812.90 (2016.68)

TD2-DD 13.57 (0.02) 0.561 (0.014) 21.81 (9.55)

TD-CFM 15.46 (0.26) 0.838 (0.021) 379.13 (180.63)

TD-CFM(C) 12.94 (0.08) 0.321 (0.009) 22.36 (4.99)

TD2-CFM 13.27 (0.15) 0.200 (0.007) 7.14 (1.72)

GAN 26.85 (1.98) — 2948.74 (4541.66)

VAE 103.73 (6.86) — 431.70 (87.04)

STAND

TD-DD 19.82 (0.07) 2.579 (0.180) 56.11 (18.32)

TD2-DD 12.15 (0.20) 0.487 (0.040) 21.65 (4.76)

TD-CFM 13.30 (0.17) 0.669 (0.041) 32.95 (8.33)

TD-CFM(C) 12.25 (0.11) 0.218 (0.002) 12.76 (3.17)

TD2-CFM 12.27 (0.14) 0.126 (0.019) 14.96 (10.23)

GAN 22.98 (1.31) — 5041.85 (654.87)

VAE 114.46 (0.28) — 3863.70 (38.24)

WALK

TD-DD 21.29 (0.46) 2.635 (0.072) 121.50 (34.67)

TD2-DD 11.59 (0.34) 0.558 (0.080) 88.67 (28.94)

TD-CFM 12.91 (0.16) 0.738 (0.084) 340.43 (63.65)

TD-CFM(C) 11.55 (0.02) 0.225 (0.036) 78.20 (14.20)

TD2-CFM 11.54 (0.27) 0.118 (0.022) 79.41 (16.24)

GAN 24.21 (1.43) — 5944.23 (302.73)

VAE 113.79 (1.65) — 4888.07 (78.85)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-DD 27.89 (0.67) 1.890 (0.025) 1778.78 (611.15)

TD2-DD 25.62 (3.75) 0.906 (0.013) 12.88 (2.07)

TD-CFM 15.68 (0.15) 1.068 (0.006) 523.10 (42.47)

TD-CFM(C) 14.12 (0.00) 0.518 (0.002) 10.10 (1.32)

TD2-CFM 14.27 (0.06) 0.426 (0.005) 12.89 (2.86)

GAN 18.23 (0.34) — 3546.34 (984.61)

VAE 60.54 (0.29) — 1939.62 (22.15)

RUN

TD-DD 28.01 (1.02) 1.975 (0.061) 438.92 (310.44)

TD2-DD 22.79 (3.08) 0.856 (0.033) 32.38 (4.36)

TD-CFM 15.74 (0.05) 1.051 (0.026) 170.86 (19.61)

TD-CFM(C) 14.62 (0.11) 0.457 (0.006) 26.01 (4.44)

TD2-CFM 14.75 (0.05) 0.338 (0.004) 18.36 (2.62)

GAN 19.21 (0.13) — 195.11 (144.29)

VAE 60.56 (0.21) — 428.69 (10.48)

STAND

TD-DD 28.57 (0.50) 1.832 (0.034) 2083.77 (1767.03)

TD2-DD 20.81 (1.81) 0.867 (0.040) 20.09 (19.08)

TD-CFM 15.03 (0.18) 1.003 (0.026) 505.51 (88.47)

TD-CFM(C) 13.91 (0.02) 0.483 (0.005) 12.86 (4.65)

TD2-CFM 14.07 (0.12) 0.393 (0.021) 7.77 (0.91)

GAN 91273.39 (81559.61) — 3631.15 (2289.14)

VAE 59.42 (0.49) — 859.51 (101.82)

WALK

TD-DD 28.83 (0.41) 1.934 (0.075) 1661.52 (402.07)

TD2-DD 21.36 (1.70) 0.815 (0.040) 570.75 (35.38)

TD-CFM 16.48 (0.09) 1.103 (0.006) 900.78 (85.36)

TD-CFM(C) 14.89 (0.01) 0.494 (0.006) 572.02 (24.55)

TD2-CFM 14.96 (0.13) 0.361 (0.022) 528.06 (11.32)

GAN 55777.67 (28193.15) — 3166.15 (54.62)

VAE 60.57 (0.54) — 1397.52 (100.28)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

LOOP

TD-DD 0.189 (0.003) 3.462 (0.232) 4717.87 (83.53)

TD2-DD 0.031 (0.003) 0.577 (0.027) 4.27 (1.36)

TD-CFM 0.071 (0.007) 0.748 (0.070) 677.48 (154.81)

TD-CFM(C) 0.025 (0.002) −0.703 (0.032) 10.91 (2.35)

TD2-CFM 0.020 (0.001) −0.674 (0.072) 1.75 (0.13)

GAN 0.225 (0.014) — 2276.26 (361.04)

VAE 0.456 (0.045) — 4011.19 (85.44)

REACH
BOTTOM LEFT

TD-DD 0.139 (0.002) 2.808 (0.058) 320.80 (27.06)

TD2-DD 0.025 (0.001) 0.980 (0.174) 5.76 (3.15)

TD-CFM 0.059 (0.001) 0.520 (0.031) 224.13 (33.19)

TD-CFM(C) 0.024 (0.002) −0.729 (0.167) 16.58 (12.10)

TD2-CFM 0.020 (0.002) −0.984 (0.053) 10.44 (7.08)

GAN 0.269 (0.150) — 1199.80 (212.47)

VAE 0.313 (0.029) — 981.22 (195.70)

REACH
BOTTOM RIGHT

TD-DD 0.174 (0.004) 3.270 (0.257) 230.79 (18.24)

TD2-DD 0.025 (0.001) 0.640 (0.283) 4.82 (2.61)

TD-CFM 0.066 (0.004) 0.549 (0.040) 166.07 (35.75)

TD-CFM(C) 0.023 (0.001) −0.759 (0.034) 10.95 (2.63)

TD2-CFM 0.020 (0.002) −0.855 (0.022) 4.84 (3.08)

GAN 0.170 (0.018) — 416.75 (54.72)

VAE 0.505 (0.051) — 489.06 (6.44)

REACH
TOP LEFT

TD-DD 0.102 (0.001) 2.407 (0.059) 593.98 (72.33)

TD2-DD 0.033 (0.003) 0.863 (0.255) 34.43 (10.96)

TD-CFM 0.055 (0.006) 0.454 (0.167) 472.54 (308.65)

TD-CFM(C) 0.021 (0.003) −0.517 (0.445) 14.85 (3.28)

TD2-CFM 0.025 (0.002) −0.797 (0.057) 23.48 (5.46)

GAN 0.132 (0.022) — 1350.49 (716.52)

VAE 0.321 (0.029) — 2404.42 (498.13)

REACH
TOP RIGHT

TD-DD 0.141 (0.002) 2.924 (0.243) 362.56 (8.06)

TD2-DD 0.023 (0.003) 0.743 (0.259) 6.38 (1.55)

TD-CFM 0.059 (0.002) 0.501 (0.018) 237.57 (47.18)

TD-CFM(C) 0.020 (0.001) −0.771 (0.090) 6.18 (3.37)

TD2-CFM 0.018 (0.001) −0.903 (0.074) 3.21 (2.22)

GAN 0.218 (0.044) — 1043.01 (337.10)

VAE 0.453 (0.106) — 1223.57 (80.69)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 20.31 (0.31) 2.669 (0.086) 601.62 (314.84)

TD2-DD 14.44 (1.79) 0.758 (0.028) 172.03 (35.51)

TD-CFM 11.90 (0.03) 0.868 (0.008) 211.92 (26.25)

TD-CFM(C) 10.55 (0.03) 0.485 (0.024) 124.08 (17.89)

TD2-CFM 10.67 (0.04) 0.447 (0.021) 67.76 (21.99)

GAN 23.55 (2.52) — 3608.55 (1948.65)

VAE 83.00 (1.02) — 3339.01 (44.80)

FLIP
BACKWARD

TD-DD 16.67 (0.02) 2.647 (0.186) 1043.27 (369.92)

TD2-DD 12.99 (2.64) 0.894 (0.025) 463.04 (89.08)

TD-CFM 10.91 (0.12) 0.927 (0.047) 398.66 (59.04)

TD-CFM(C) 9.90 (0.07) 0.542 (0.023) 410.49 (77.16)

TD2-CFM 10.11 (0.14) 0.542 (0.006) 370.69 (112.59)

GAN 20.80 (1.56) — 3761.79 (785.37)

VAE 84.65 (0.31) — 918.32 (25.62)

RUN

TD-DD 20.26 (0.06) 2.907 (0.336) 46.48 (13.06)

TD2-DD 16.91 (4.04) 0.813 (0.028) 86.53 (55.44)

TD-CFM 12.21 (0.05) 0.872 (0.032) 54.98 (11.01)

TD-CFM(C) 10.44 (0.08) 0.434 (0.018) 24.52 (5.89)

TD2-CFM 10.53 (0.08) 0.412 (0.020) 27.69 (5.44)

GAN 25.48 (2.01) — 183.47 (72.39)

VAE 83.91 (0.57) — 109.45 (9.86)

RUN
BACKWARD

TD-DD 21.47 (0.32) 3.074 (0.376) 20.28 (5.95)

TD2-DD 13.04 (1.22) 0.818 (0.016) 14.87 (2.34)

TD-CFM 13.38 (0.20) 0.989 (0.056) 37.90 (2.98)

TD-CFM(C) 11.02 (0.05) 0.452 (0.023) 8.71 (1.05)

TD2-CFM 11.06 (0.08) 0.414 (0.016) 8.33 (1.89)

GAN 24.77 (0.43) — 270.21 (4.08)

VAE 82.91 (0.36) — 734.77 (22.94)

WALK

TD-DD 21.57 (0.84) 2.790 (0.151) 546.05 (86.30)

TD2-DD 12.85 (1.67) 0.780 (0.047) 238.01 (11.17)

TD-CFM 12.27 (0.12) 0.802 (0.034) 377.45 (101.61)

TD-CFM(C) 10.24 (0.17) 0.354 (0.021) 176.99 (28.54)

TD2-CFM 10.18 (0.08) 0.336 (0.021) 229.89 (21.93)

GAN 24.39 (1.11) — 3520.88 (1050.76)

VAE 84.39 (0.41) — 2138.32 (233.01)

WALK
BACKWARD

TD-DD 21.05 (0.30) 2.854 (0.094) 469.23 (133.50)

TD2-DD 14.64 (2.48) 0.771 (0.019) 160.42 (42.25)

TD-CFM 12.89 (0.14) 0.857 (0.033) 291.71 (66.89)

TD-CFM(C) 10.88 (0.01) 0.412 (0.023) 99.90 (4.20)

TD2-CFM 10.86 (0.12) 0.381 (0.014) 106.97 (10.45)

GAN 24.86 (0.34) — 3434.43 (189.45)

VAE 83.73 (0.63) — 465.72 (16.06)

26

Temporal Difference Flows

Table 12. Results averaged over tasks for the single policy experiments with a curved conditional path.
Domain Method EMD ↓ NLL ↓ MSE(V) ↓

CHEETAH

TD-CFM 13.91 (0.73) 1.354 (0.017) 477.89 (40.53)

TD-CFM(C) 25.86 (18.91) 1.295 (0.067) 189.21 (17.69)

TD2-CFM 10.79 (0.03) 0.412 (0.014) 121.67 (5.68)

POINTMASS
MAZE

TD-CFM 0.091 (0.003) 1.156 (0.081) 758.16 (103.54)

TD-CFM(C) 0.089 (0.008) 4.340 (0.456) 679.29 (20.11)

TD2-CFM 0.021 (0.000) −0.806 (0.017) 9.22 (1.40)

QUADRUPED

TD-CFM 15.63 (0.09) 1.478 (0.088) 273.68 (34.07)

TD-CFM(C) 34.00 (6.96) 0.930 (0.036) 522.28 (155.42)

TD2-CFM 14.56 (0.02) 0.327 (0.014) 142.18 (9.38)

WALKER

TD-CFM 13.10 (0.11) 1.147 (0.042) 608.47 (124.62)

TD-CFM(C) 33.20 (4.66) 1.039 (0.052) 189.66 (102.83)

TD2-CFM 12.00 (0.05) 0.099 (0.005) 27.56 (0.53)

Table 13. Per task results for the single policy experiments with a curved conditional path.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

RUN

TD-CFM 12.39 (0.17) 1.218 (0.107) 326.14 (56.12)

TD-CFM(C) 23.80 (4.91) 0.923 (0.191) 69.39 (8.84)

TD2-CFM 10.69 (0.06) −0.040 (0.008) 11.69 (4.01)

SPIN

TD-CFM 14.08 (0.12) 1.410 (0.189) 896.83 (278.52)

TD-CFM(C) 47.39 (3.14) 1.801 (0.186) 401.22 (321.52)

TD2-CFM 13.37 (0.11) 0.198 (0.008) 7.65 (2.29)

STAND

TD-CFM 13.24 (0.23) 0.896 (0.053) 274.60 (121.20)

TD-CFM(C) 36.32 (13.80) 0.625 (0.053) 159.74 (31.53)

TD2-CFM 12.50 (0.17) 0.119 (0.008) 9.42 (1.95)

WALK

TD-CFM 12.69 (0.20) 1.067 (0.015) 936.30 (86.71)

TD-CFM(C) 25.29 (7.62) 0.808 (0.049) 128.28 (65.70)

TD2-CFM 11.42 (0.20) 0.119 (0.026) 81.47 (3.53)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-CFM 15.31 (0.17) 1.460 (0.188) 115.99 (138.59)

TD-CFM(C) 39.28 (8.90) 0.980 (0.062) 686.51 (314.49)

TD2-CFM 14.36 (0.07) 0.358 (0.010) 10.84 (3.05)

RUN

TD-CFM 15.61 (0.16) 1.450 (0.060) 104.52 (33.53)

TD-CFM(C) 40.27 (7.59) 0.898 (0.040) 240.50 (58.83)

TD2-CFM 14.73 (0.06) 0.288 (0.015) 21.13 (3.52)

STAND

TD-CFM 15.24 (0.11) 1.515 (0.215) 173.07 (34.09)

TD-CFM(C) 22.77 (6.86) 0.924 (0.053) 275.03 (249.91)

TD2-CFM 14.17 (0.09) 0.342 (0.019) 7.05 (1.80)

WALK

TD-CFM 16.37 (0.10) 1.486 (0.022) 701.13 (83.58)

TD-CFM(C) 33.68 (4.69) 0.917 (0.036) 887.11 (120.92)

TD2-CFM 14.99 (0.08) 0.318 (0.016) 529.71 (35.40)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

LOOP

TD-CFM 0.112 (0.015) 1.465 (0.171) 1888.54 (444.66)

TD-CFM(C) 0.132 (0.031) 5.191 (1.328) 1354.09 (102.55)

TD2-CFM 0.020 (0.000) −0.708 (0.013) 2.31 (0.59)

REACH
BOTTOM LEFT

TD-CFM 0.096 (0.012) 1.091 (0.142) 628.74 (118.04)

TD-CFM(C) 0.078 (0.001) 3.942 (0.576) 820.02 (52.88)

TD2-CFM 0.022 (0.001) −0.883 (0.057) 10.55 (9.13)

REACH
BOTTOM RIGHT

TD-CFM 0.097 (0.001) 1.296 (0.220) 290.21 (29.94)

TD-CFM(C) 0.109 (0.009) 5.310 (0.552) 409.28 (10.79)

TD2-CFM 0.019 (0.001) −0.833 (0.049) 2.64 (0.30)

REACH
TOP LEFT

TD-CFM 0.070 (0.003) 0.894 (0.139) 500.63 (142.18)

TD-CFM(C) 0.048 (0.002) 2.821 (0.268) 75.79 (20.06)

TD2-CFM 0.025 (0.002) −0.738 (0.011) 26.56 (9.99)

REACH
TOP RIGHT

TD-CFM 0.083 (0.004) 1.035 (0.138) 482.68 (128.45)

TD-CFM(C) 0.080 (0.001) 4.436 (0.305) 737.30 (23.75)

TD2-CFM 0.019 (0.001) −0.866 (0.026) 4.02 (1.75)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-CFM 12.92 (1.25) 1.324 (0.042) 342.71 (129.09)

TD-CFM(C) 22.90 (15.00) 1.364 (0.108) 140.32 (42.14)

TD2-CFM 10.89 (0.08) 0.433 (0.012) 74.34 (6.50)

FLIP
BACKWARD

TD-CFM 14.52 (4.08) 1.346 (0.190) 576.31 (169.57)

TD-CFM(C) 25.46 (25.58) 1.427 (0.027) 388.45 (87.18)

TD2-CFM 10.48 (0.23) 0.538 (0.034) 283.84 (40.81)

RUN

TD-CFM 14.00 (0.77) 1.390 (0.043) 114.51 (3.11)

TD-CFM(C) 17.42 (5.78) 1.423 (0.091) 37.23 (8.74)

TD2-CFM 10.85 (0.08) 0.405 (0.010) 32.58 (8.42)

RUN
BACKWARD

TD-CFM 14.50 (0.31) 1.439 (0.102) 109.32 (5.35)

TD-CFM(C) 38.06 (28.90) 1.283 (0.110) 101.24 (149.88)

TD2-CFM 11.06 (0.05) 0.399 (0.007) 12.32 (2.34)

WALK

TD-CFM 13.66 (0.71) 1.290 (0.041) 1040.43 (147.86)

TD-CFM(C) 21.01 (16.43) 1.096 (0.028) 343.71 (66.91)

TD2-CFM 10.45 (0.04) 0.323 (0.010) 213.87 (23.09)

WALK
BACKWARD

TD-CFM 13.83 (0.89) 1.336 (0.033) 684.05 (21.31)

TD-CFM(C) 30.29 (22.58) 1.178 (0.206) 124.29 (17.61)

TD2-CFM 11.00 (0.11) 0.372 (0.015) 113.09 (22.45)

27

Temporal Difference Flows

Table 14. Per domain results for the quantitative multi-
policy experiments.

Domain Method EMD ↓ NLL ↓ MSE(V) ↓

CHEETAH

TD-DD 17.79 (0.40) 1.442 (0.042) 534.82 (107.81)

TD2-DD 74.35 (7.49) 0.771 (0.020) 253.89 (21.42)

TD-CFM 12.54 (0.04) 1.044 (0.044) 826.54 (58.01)

TD-CFM(C) 11.19 (0.11) 0.581 (0.011) 249.02 (19.81)

TD2-CFM 11.06 (0.08) 0.481 (0.008) 230.34 (44.81)

POINTMASS

TD-DD 0.152 (0.006) 2.048 (0.093) 662.96 (76.86)

TD2-DD 0.349 (0.037) 0.666 (0.027) 312.98 (66.46)

TD-CFM 0.087 (0.003) 0.771 (0.025) 580.94 (41.28)

TD-CFM(C) 0.063 (0.000) 0.174 (0.021) 220.11 (100.36)

TD2-CFM 0.060 (0.002) 0.043 (0.022) 169.74 (85.76)

QUADRUPED

TD-DD 20.21 (1.76) 1.403 (0.022) 499.88 (292.17)

TD2-DD 135.79 (9.24) 0.901 (0.051) 415.29 (101.86)

TD-CFM 15.06 (0.08) 0.950 (0.024) 391.12 (141.00)

TD-CFM(C) 14.98 (0.15) 0.528 (0.016) 176.62 (13.73)

TD2-CFM 14.74 (0.12) 0.340 (0.010) 178.95 (30.43)

WALKER

TD-DD 21.49 (0.64) 1.441 (0.009) 571.72 (196.76)

TD2-DD 104.44 (2.84) 0.688 (0.009) 180.45 (47.82)

TD-CFM 15.08 (0.28) 0.920 (0.023) 768.13 (66.48)

TD-CFM(C) 13.57 (0.09) 0.414 (0.019) 179.39 (24.52)

TD2-CFM 13.70 (0.33) 0.307 (0.008) 154.75 (8.70)

Table 15. Per domain results for the multi-policy experiments evaluating
planning performance with generalized policy improvement.

Domain Method Planner Z-Distribution D(Z)

Random Local Perturbation Train Distribution

CHEETAH

FB — 479.35 (14.56)

FB GPI 275.32 (2.50) 401.08 (5.92) 269.59 (8.18)

TD-DD GPI 574.05 (3.88) 604.53 (11.87) 620.72 (14.29)

TD2-DD GPI 662.17 (0.94) 680.22 (5.98) 678.98 (3.67)

TD-CFM GPI 403.54 (81.24) 426.46 (81.69) 372.40 (99.68)

TD-CFM(C) GPI 681.52 (6.49) 700.97 (6.57) 697.81 (3.16)

TD2-CFM GPI 682.21 (5.41) 692.72 (7.96) 693.63 (5.50)

POINTMASS

FB — 472.45 (14.40)

FB GPI −0.64 (7.70) 240.54 (23.69) −17.74 (4.34)

TD-DD GPI 569.05 (37.58) 599.92 (37.26) 537.69 (47.54)

TD2-DD GPI 763.95 (38.02) 805.72 (2.23) 788.87 (17.13)

TD-CFM GPI 625.44 (23.12) 671.53 (52.75) 695.70 (27.88)

TD-CFM(C) GPI 800.87 (3.46) 812.44 (1.58) 808.03 (2.77)

TD2-CFM GPI 790.34 (14.16) 813.90 (1.62) 800.99 (8.56)

QUADRUPED

FB — 627.28 (1.98)

FB GPI 671.95 (0.58) 674.09 (0.53) 646.05 (2.28)

TD-DD GPI 657.98 (1.87) 662.29 (1.46) 657.44 (4.71)

TD2-DD GPI 667.24 (6.32) 671.54 (1.40) 665.52 (5.12)

TD-CFM GPI 669.35 (5.82) 672.46 (4.96) 668.61 (5.74)

TD-CFM(C) GPI 695.52 (4.51) 697.65 (5.21) 696.18 (3.29)

TD2-CFM GPI 696.58 (4.10) 696.57 (2.36) 695.73 (2.07)

WALKER

FB — 526.66 (5.94)

FB GPI 35.23 (0.98) 37.51 (1.20) 39.04 (1.48)

TD-DD GPI 512.65 (19.19) 553.35 (14.28) 533.37 (27.24)

TD2-DD GPI 509.39 (10.26) 598.40 (6.44) 609.28 (5.87)

TD-CFM GPI 506.62 (15.84) 524.34 (4.75) 537.24 (17.20)

TD-CFM(C) GPI 513.24 (17.77) 608.80 (16.14) 624.19 (19.45)

TD2-CFM GPI 518.07 (20.74) 617.08 (6.55) 627.63 (7.97)

28

Temporal Difference Flows

Table 16. Per task results for the quantitative multi-policy experiments.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 24.22 (0.37) 1.595 (0.021) 494.85 (221.39)

TD2-DD 108.16 (1.64) 0.893 (0.065) 103.71 (34.77)

TD-CFM 16.01 (0.33) 1.120 (0.037) 431.62 (64.40)

TD-CFM(C) 14.77 (0.38) 0.704 (0.083) 74.42 (13.13)

TD2-CFM 14.81 (0.56) 0.546 (0.012) 73.86 (26.41)

RUN

TD-DD 21.28 (0.97) 1.389 (0.005) 53.28 (20.52)

TD2-DD 102.69 (3.60) 0.546 (0.070) 6.35 (0.88)

TD-CFM 14.99 (0.65) 0.845 (0.085) 209.80 (54.21)

TD-CFM(C) 13.01 (0.35) 0.260 (0.089) 32.84 (8.26)

TD2-CFM 13.20 (0.36) 0.180 (0.076) 34.61 (21.58)

SPIN

TD-DD 21.31 (0.65) 1.482 (0.015) 1093.50 (700.34)

TD2-DD 103.72 (1.69) 0.903 (0.067) 115.58 (28.18)

TD-CFM 15.16 (0.53) 1.020 (0.036) 482.78 (24.82)

TD-CFM(C) 14.22 (0.06) 0.605 (0.076) 170.20 (48.23)

TD2-CFM 14.34 (0.20) 0.449 (0.056) 197.13 (26.98)

STAND

TD-DD 21.34 (0.66) 1.459 (0.029) 594.94 (219.72)

TD2-DD 103.86 (4.22) 0.630 (0.030) 250.96 (79.14)

TD-CFM 14.28 (0.32) 0.829 (0.107) 1371.68 (326.61)

TD-CFM(C) 13.43 (0.34) 0.335 (0.067) 265.09 (12.84)

TD2-CFM 13.52 (0.61) 0.284 (0.062) 166.16 (17.51)

WALK

TD-DD 19.30 (0.80) 1.282 (0.033) 622.04 (186.99)

TD2-DD 103.79 (3.80) 0.471 (0.055) 425.65 (131.20)

TD-CFM 14.97 (0.14) 0.787 (0.070) 1344.77 (149.38)

TD-CFM(C) 12.39 (0.25) 0.165 (0.042) 354.40 (114.40)

TD2-CFM 12.63 (0.46) 0.078 (0.072) 301.97 (21.93)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-DD 20.23 (1.67) 1.394 (0.024) 279.84 (165.15)

TD2-DD 135.62 (9.10) 0.921 (0.044) 562.83 (170.42)

TD-CFM 15.25 (0.02) 0.960 (0.006) 365.14 (177.15)

TD-CFM(C) 15.24 (0.13) 0.548 (0.008) 129.02 (23.63)

TD2-CFM 15.00 (0.08) 0.369 (0.004) 139.10 (9.66)

RUN

TD-DD 20.06 (1.67) 1.405 (0.013) 273.65 (192.14)

TD2-DD 135.28 (9.10) 0.909 (0.049) 171.76 (48.29)

TD-CFM 15.04 (0.02) 0.961 (0.031) 189.56 (63.62)

TD-CFM(C) 14.92 (0.17) 0.538 (0.017) 84.74 (6.77)

TD2-CFM 14.71 (0.12) 0.351 (0.008) 90.48 (10.33)

STAND

TD-DD 20.01 (1.78) 1.401 (0.033) 1131.49 (863.23)

TD2-DD 135.81 (9.19) 0.875 (0.054) 669.65 (148.88)

TD-CFM 14.91 (0.10) 0.931 (0.033) 735.43 (274.17)

TD-CFM(C) 14.75 (0.30) 0.508 (0.017) 336.02 (16.08)

TD2-CFM 14.49 (0.24) 0.309 (0.015) 325.59 (79.83)

WALK

TD-DD 20.55 (1.93) 1.412 (0.035) 314.53 (84.50)

TD2-DD 136.45 (9.57) 0.901 (0.056) 256.91 (58.22)

TD-CFM 15.06 (0.22) 0.949 (0.030) 274.37 (58.65)

TD-CFM(C) 15.02 (0.09) 0.518 (0.024) 156.72 (41.37)

TD2-CFM 14.76 (0.19) 0.331 (0.019) 160.62 (23.36)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FAST SLOW

TD-DD 0.164 (0.013) 2.012 (0.089) 1642.91 (26.55)

TD2-DD 0.350 (0.038) 0.637 (0.046) 236.52 (58.27)

TD-CFM 0.082 (0.004) 0.772 (0.065) 575.00 (75.51)

TD-CFM(C) 0.061 (0.002) 0.083 (0.013) 93.04 (5.55)

TD2-CFM 0.060 (0.003) 0.010 (0.059) 61.08 (20.86)

LOOP

TD-DD 0.151 (0.007) 2.094 (0.119) 537.80 (22.89)

TD2-DD 0.337 (0.040) 0.659 (0.028) 213.93 (51.75)

TD-CFM 0.088 (0.003) 0.782 (0.018) 225.96 (59.92)

TD-CFM(C) 0.070 (0.007) 0.266 (0.066) 86.12 (23.47)

TD2-CFM 0.065 (0.003) 0.101 (0.074) 102.65 (27.28)

REACH
BOTTOM LEFT

TD-DD 0.131 (0.008) 1.969 (0.143) 207.45 (38.79)

TD2-DD 0.339 (0.050) 0.510 (0.043) 89.56 (41.56)

TD-CFM 0.078 (0.005) 0.659 (0.044) 376.64 (67.43)

TD-CFM(C) 0.048 (0.002) −0.099 (0.054) 73.84 (7.92)

TD2-CFM 0.042 (0.002) −0.261 (0.024) 14.20 (0.47)

REACH BOTTOM
LEFT LONG

TD-DD 0.144 (0.005) 2.037 (0.062) 1239.65 (627.94)

TD2-DD 0.355 (0.042) 0.807 (0.010) 1431.05 (342.62)

TD-CFM 0.105 (0.004) 0.987 (0.060) 2212.63 (504.47)

TD-CFM(C) 0.078 (0.002) 0.457 (0.058) 993.60 (639.56)

TD2-CFM 0.074 (0.005) 0.310 (0.083) 896.15 (598.65)

REACH
BOTTOM RIGHT

TD-DD 0.180 (0.004) 2.106 (0.114) 194.15 (75.47)

TD2-DD 0.369 (0.053) 0.618 (0.035) 112.24 (12.17)

TD-CFM 0.096 (0.004) 0.724 (0.055) 272.13 (33.13)

TD-CFM(C) 0.070 (0.005) 0.063 (0.043) 103.89 (10.69)

TD2-CFM 0.067 (0.007) −0.104 (0.024) 49.28 (13.90)

REACH
TOP LEFT

TD-DD 0.122 (0.005) 2.083 (0.149) 433.81 (37.98)

TD2-DD 0.343 (0.036) 0.631 (0.046) 158.15 (35.48)

TD-CFM 0.076 (0.003) 0.679 (0.086) 453.53 (88.84)

TD-CFM(C) 0.051 (0.003) 0.092 (0.071) 54.48 (4.15)

TD2-CFM 0.052 (0.003) 0.022 (0.047) 31.01 (7.91)

REACH
TOP RIGHT

TD-DD 0.149 (0.004) 1.994 (0.093) 221.28 (26.98)

TD2-DD 0.350 (0.022) 0.563 (0.121) 69.97 (34.75)

TD-CFM 0.074 (0.004) 0.700 (0.078) 250.17 (36.85)

TD-CFM(C) 0.051 (0.000) 0.032 (0.010) 39.79 (5.50)

TD2-CFM 0.047 (0.002) −0.131 (0.020) 17.01 (6.82)

SQUARE

TD-DD 0.175 (0.008) 2.088 (0.105) 826.61 (162.87)

TD2-DD 0.347 (0.030) 0.906 (0.033) 192.41 (36.20)

TD-CFM 0.093 (0.002) 0.869 (0.026) 281.43 (52.24)

TD-CFM(C) 0.077 (0.005) 0.566 (0.027) 210.94 (97.86)

TD2-CFM 0.075 (0.006) 0.392 (0.043) 186.53 (58.91)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 16.97 (0.45) 1.358 (0.033) 903.42 (267.90)

TD2-DD 73.44 (9.89) 0.782 (0.065) 308.54 (36.36)

TD-CFM 13.06 (0.46) 0.964 (0.073) 911.92 (135.18)

TD-CFM(C) 10.96 (0.58) 0.564 (0.050) 328.99 (27.34)

TD2-CFM 10.95 (0.32) 0.443 (0.047) 222.71 (32.96)

FLIP
BACKWARD

TD-DD 18.64 (0.48) 1.442 (0.052) 678.24 (40.56)

TD2-DD 75.09 (6.07) 0.753 (0.007) 215.67 (39.77)

TD-CFM 12.83 (0.38) 0.966 (0.020) 381.99 (112.95)

TD-CFM(C) 11.36 (0.21) 0.582 (0.005) 230.92 (14.13)

TD2-CFM 11.06 (0.18) 0.476 (0.028) 255.25 (57.02)

RUN

TD-DD 17.61 (0.43) 1.489 (0.054) 87.64 (30.75)

TD2-DD 73.06 (6.95) 0.742 (0.039) 111.78 (49.51)

TD-CFM 12.22 (0.30) 1.103 (0.066) 194.36 (19.68)

TD-CFM(C) 10.75 (0.17) 0.535 (0.028) 34.90 (21.47)

TD2-CFM 10.74 (0.07) 0.445 (0.021) 24.71 (10.91)

RUN
BACKWARD

TD-DD 18.75 (0.31) 1.475 (0.036) 57.65 (8.84)

TD2-DD 76.43 (7.28) 0.802 (0.013) 90.76 (20.35)

TD-CFM 12.59 (0.11) 1.083 (0.041) 82.43 (5.56)

TD-CFM(C) 11.78 (0.17) 0.632 (0.008) 30.50 (4.34)

TD2-CFM 11.53 (0.15) 0.534 (0.013) 33.52 (3.75)

WALK

TD-DD 16.77 (0.46) 1.461 (0.037) 805.51 (158.64)

TD2-DD 72.44 (7.86) 0.757 (0.020) 348.70 (58.96)

TD-CFM 11.91 (0.18) 1.095 (0.042) 1899.15 (131.04)

TD-CFM(C) 10.72 (0.14) 0.551 (0.024) 277.74 (117.41)

TD2-CFM 10.66 (0.18) 0.464 (0.029) 260.01 (153.43)

WALK
BACKWARD

TD-DD 18.00 (1.11) 1.427 (0.073) 676.44 (296.20)

TD2-DD 75.66 (7.41) 0.787 (0.036) 447.90 (49.14)

TD-CFM 12.62 (0.28) 1.056 (0.067) 1489.41 (90.89)

TD-CFM(C) 11.60 (0.17) 0.621 (0.030) 591.06 (12.67)

TD2-CFM 11.41 (0.18) 0.523 (0.021) 585.86 (103.16)

29

Temporal Difference Flows

Table 17. Per task results for planning with GPI.

Walker

Domain Method Planner Z-Distribution D(Z)

Random Local Perturbation Train Distribution

RUN

FB — 326.94 (7.00)

FB GPI 14.13 (0.51) 14.06 (0.43) 14.57 (0.33)

TD-DD GPI 328.61 (2.66) 303.45 (44.57) 292.96 (52.91)

TD2-DD GPI 316.41 (4.59) 338.14 (14.23) 349.77 (12.78)

TD-CFM GPI 301.88 (17.94) 221.07 (3.80) 199.50 (4.09)

TD-CFM(C) GPI 325.92 (14.31) 368.97 (16.10) 367.38 (11.48)

TD2-CFM GPI 325.76 (12.88) 362.79 (19.09) 358.73 (24.84)

SPIN

FB — 338.41 (2.98)

FB GPI 29.32 (2.15) 36.99 (4.28) 39.09 (5.90)

TD-DD GPI 281.76 (74.27) 304.28 (65.49) 299.92 (72.32)

TD2-DD GPI 287.70 (50.25) 298.07 (51.86) 298.78 (34.52)

TD-CFM GPI 323.56 (32.38) 323.90 (34.69) 328.47 (15.90)

TD-CFM(C) GPI 266.80 (80.22) 251.21 (64.39) 284.37 (73.57)

TD2-CFM GPI 287.26 (84.37) 313.07 (33.89) 320.22 (96.14)

STAND

FB — 852.55 (19.44)

FB GPI 79.24 (2.32) 80.60 (3.28) 82.58 (3.06)

TD-DD GPI 852.49 (26.17) 806.55 (7.62) 872.85 (19.73)

TD2-DD GPI 839.00 (22.97) 914.47 (6.14) 936.41 (11.77)

TD-CFM GPI 823.10 (15.06) 758.91 (19.84) 846.08 (7.85)

TD-CFM(C) GPI 858.42 (5.92) 931.74 (12.01) 947.69 (6.45)

TD2-CFM GPI 863.16 (4.15) 923.77 (9.88) 963.10 (6.69)

WALK

FB — 588.74 (5.30)

FB GPI 18.23 (0.68) 18.36 (1.15) 19.94 (0.87)

TD-DD GPI 587.76 (6.46) 799.12 (11.85) 667.74 (81.98)

TD2-DD GPI 594.48 (3.74) 842.94 (28.16) 852.17 (12.09)

TD-CFM GPI 577.95 (2.89) 793.47 (21.27) 774.91 (55.37)

TD-CFM(C) GPI 601.81 (8.58) 883.26 (4.06) 897.33 (10.88)

TD2-CFM GPI 596.08 (3.41) 868.69 (14.42) 868.46 (44.44)

Quadruped

Domain Method Planner Z-Distribution D(Z)

Random Local Perturbation Train Distribution

JUMP

FB — 683.96 (2.09)

FB GPI 742.71 (1.01) 746.48 (1.63) 718.52 (2.65)

TD-DD GPI 673.33 (6.07) 690.13 (6.34) 677.58 (5.71)

TD2-DD GPI 744.92 (0.69) 750.42 (2.30) 745.29 (1.12)

TD-CFM GPI 748.19 (10.47) 753.72 (0.58) 745.93 (12.60)

TD-CFM(C) GPI 790.56 (14.06) 795.84 (16.14) 785.20 (13.69)

TD2-CFM GPI 796.39 (13.27) 800.34 (9.63) 791.43 (11.66)

RUN

FB — 452.38 (3.25)

FB GPI 486.71 (0.64) 488.23 (0.48) 469.03 (2.35)

TD-DD GPI 484.45 (1.07) 482.81 (2.55) 482.53 (2.38)

TD2-DD GPI 485.26 (1.63) 486.35 (0.93) 484.89 (2.43)

TD-CFM GPI 488.93 (1.08) 488.45 (0.62) 488.98 (0.28)

TD-CFM(C) GPI 491.66 (2.75) 490.89 (2.05) 491.81 (2.14)

TD2-CFM GPI 488.89 (1.35) 488.65 (1.19) 489.31 (1.03)

STAND

FB — 896.43 (5.80)

FB GPI 975.01 (1.40) 977.94 (0.76) 938.44 (7.04)

TD-DD GPI 976.59 (2.78) 976.75 (0.86) 975.25 (2.49)

TD2-DD GPI 981.26 (1.56) 981.59 (1.45) 979.46 (0.93)

TD-CFM GPI 982.08 (1.27) 981.06 (0.26) 981.29 (1.34)

TD-CFM(C) GPI 984.03 (1.20) 984.50 (1.49) 983.33 (1.20)

TD2-CFM GPI 984.36 (0.25) 985.52 (0.89) 984.36 (1.21)

WALK

FB — 476.34 (4.71)

FB GPI 483.37 (1.05) 483.73 (3.02) 458.20 (6.62)

TD-DD GPI 497.55 (10.40) 499.45 (11.65) 494.38 (19.75)

TD2-DD GPI 457.54 (23.37) 467.78 (4.58) 452.44 (17.14)

TD-CFM GPI 458.20 (29.01) 466.62 (19.30) 458.24 (30.28)

TD-CFM(C) GPI 515.84 (5.84) 519.36 (14.37) 524.37 (1.56)

TD2-CFM GPI 516.67 (3.49) 511.77 (3.70) 517.82 (2.58)

Pointmass Maze

Domain Method Planner Z-Distribution D(Z)

Random Local Perturbation Train Distribution

FAST SLOW

FB — 223.85 (23.81)

FB GPI 1.67 (0.30) 74.52 (2.24) 1.24 (0.28)

TD-DD GPI 169.55 (74.06) 363.47 (23.78) 148.59 (43.53)

TD2-DD GPI 781.84 (1.20) 769.02 (5.03) 768.67 (11.19)

TD-CFM GPI 254.07 (85.86) 546.75 (191.17) 359.50 (144.41)

TD-CFM(C) GPI 763.24 (15.57) 776.51 (12.37) 769.87 (13.18)

TD2-CFM GPI 773.51 (2.71) 773.81 (4.71) 772.22 (3.11)

LOOP

FB — 317.59 (8.55)

FB GPI 81.99 (5.11) 315.10 (1.95) 61.41 (3.58)

TD-DD GPI 462.86 (5.90) 430.51 (72.79) 593.64 (56.15)

TD2-DD GPI 876.91 (9.21) 889.03 (2.40) 878.78 (2.43)

TD-CFM GPI 832.91 (27.77) 797.10 (57.17) 852.81 (16.74)

TD-CFM(C) GPI 873.85 (21.16) 885.90 (4.21) 875.45 (3.43)

TD2-CFM GPI 885.07 (2.79) 887.18 (5.27) 878.26 (0.64)

REACH
BOTTOM LEFT

FB — 830.60 (0.63)

FB GPI 0.18 (0.17) 127.90 (20.14) 0.11 (0.10)

TD-DD GPI 781.69 (8.09) 797.98 (3.52) 795.12 (3.88)

TD2-DD GPI 823.28 (2.76) 820.15 (1.89) 824.00 (1.40)

TD-CFM GPI 808.61 (7.06) 801.97 (2.97) 813.36 (6.35)

TD-CFM(C) GPI 824.02 (0.73) 824.17 (1.77) 824.18 (3.84)

TD2-CFM GPI 827.85 (1.45) 820.98 (3.63) 828.45 (3.10)

REACH BOTTOM
LEFT LONG

FB — 49.31 (0.09)

FB GPI −464.55 (19.21) 0.58 (1.79) −401.26 (28.43)

TD-DD GPI 461.30 (7.43) 468.73 (26.94) 252.28 (241.97)

TD2-DD GPI 609.10 (11.64) 597.03 (6.46) 668.76 (4.02)

TD-CFM GPI 180.27 (35.66) 311.59 (152.06) 439.47 (230.80)

TD-CFM(C) GPI 631.52 (11.58) 614.90 (8.82) 688.44 (4.05)

TD2-CFM GPI 646.67 (9.38) 639.90 (13.22) 691.68 (2.99)

REACH
BOTTOM RIGHT

FB — 366.39 (27.01)

FB GPI 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

TD-DD GPI 343.62 (112.70) 470.97 (42.25) 398.94 (81.80)

TD2-DD GPI 360.71 (312.31) 674.54 (7.35) 529.97 (137.98)

TD-CFM GPI 394.78 (159.98) 356.58 (69.31) 548.65 (73.62)

TD-CFM(C) GPI 642.67 (6.59) 686.08 (4.46) 679.75 (2.98)

TD2-CFM GPI 534.62 (57.49) 687.66 (1.75) 641.45 (2.00)

REACH
TOP LEFT

FB — 895.88 (1.26)

FB GPI 351.72 (17.68) 837.14 (2.07) 185.50 (13.00)

TD-DD GPI 941.32 (16.86) 812.40 (152.88) 920.44 (28.63)

TD2-DD GPI 940.90 (5.41) 967.44 (3.52) 939.49 (10.02)

TD-CFM GPI 964.27 (0.34) 948.83 (11.63) 955.82 (9.32)

TD-CFM(C) GPI 940.00 (29.18) 967.03 (3.38) 931.02 (18.53)

TD2-CFM GPI 943.43 (19.57) 967.06 (1.42) 940.05 (18.13)

REACH
TOP RIGHT

FB — 715.25 (4.47)

FB GPI 0.72 (0.96) 358.22 (20.05) 1.35 (0.85)

TD-DD GPI 766.59 (6.78) 771.64 (9.55) 733.83 (44.76)

TD2-DD GPI 822.44 (1.74) 818.06 (6.60) 823.09 (1.76)

TD-CFM GPI 777.94 (46.86) 765.68 (41.55) 754.73 (45.71)

TD-CFM(C) GPI 826.30 (1.36) 824.87 (2.61) 821.51 (5.64)

TD2-CFM GPI 809.75 (28.90) 824.23 (1.88) 788.98 (45.69)

SQUARE

FB — 337.33 (9.46)

FB GPI 4.89 (1.03) 148.93 (0.90) 2.97 (0.82)

TD-DD GPI 585.01 (39.45) 587.71 (46.77) 451.92 (5.35)

TD2-DD GPI 896.45 (7.94) 910.52 (2.63) 878.19 (11.18)

TD-CFM GPI 790.65 (3.06) 843.76 (8.91) 841.25 (22.73)

TD-CFM(C) GPI 905.41 (1.13) 920.06 (2.51) 874.00 (10.23)

TD2-CFM GPI 901.82 (1.29) 910.41 (1.66) 866.85 (7.95)

Cheetah

Domain Method Planner Z-Distribution D(Z)

Random Local Perturbation Train Distribution

FLIP

FB — 221.55 (44.79)

FB GPI 355.27 (5.95) 356.52 (9.99) 355.94 (5.10)

TD-DD GPI 451.93 (81.15) 445.10 (100.81) 424.78 (100.74)

TD2-DD GPI 702.98 (27.77) 712.72 (16.66) 683.62 (35.04)

TD-CFM GPI 355.69 (110.25) 420.53 (184.00) 341.40 (124.16)

TD-CFM(C) GPI 724.85 (8.19) 710.02 (4.51) 711.16 (13.29)

TD2-CFM GPI 722.08 (7.50) 718.74 (14.51) 713.66 (14.14)

FLIP
BACKWARD

FB — 463.12 (5.73)

FB GPI 238.33 (9.74) 388.33 (25.98) 249.60 (5.64)

TD-DD GPI 620.00 (69.42) 596.45 (38.20) 595.59 (34.96)

TD2-DD GPI 706.99 (8.08) 690.83 (3.20) 706.75 (8.34)

TD-CFM GPI 545.12 (184.05) 540.36 (186.74) 492.55 (173.13)

TD-CFM(C) GPI 727.23 (25.25) 716.22 (29.49) 711.11 (20.97)

TD2-CFM GPI 709.19 (16.76) 684.33 (37.92) 694.16 (15.24)

RUN

FB — 310.39 (35.44)

FB GPI 200.65 (4.44) 301.34 (11.26) 191.10 (6.56)

TD-DD GPI 436.74 (3.52) 438.90 (4.92) 434.94 (3.02)

TD2-DD GPI 427.15 (16.50) 429.98 (13.04) 421.92 (14.83)

TD-CFM GPI 206.96 (45.56) 243.53 (60.37) 238.96 (66.97)

TD-CFM(C) GPI 465.08 (2.50) 470.44 (5.05) 462.89 (3.15)

TD2-CFM GPI 462.71 (9.73) 467.25 (14.78) 454.90 (10.61)

RUN
BACKWARD

FB — 201.07 (10.72)

FB GPI 5.31 (2.02) 102.20 (5.73) 19.11 (2.52)

TD-DD GPI 165.02 (4.50) 246.72 (12.09) 325.40 (0.86)

TD2-DD GPI 224.90 (21.33) 310.10 (22.82) 322.33 (4.05)

TD-CFM GPI 90.83 (28.26) 92.46 (15.59) 49.88 (29.15)

TD-CFM(C) GPI 222.14 (36.05) 342.15 (2.02) 333.90 (3.00)

TD2-CFM GPI 252.70 (10.86) 319.46 (35.05) 332.21 (0.77)

WALK

FB — 792.89 (52.74)

FB GPI 830.00 (15.20) 889.84 (5.00) 733.11 (34.27)

TD-DD GPI 977.30 (3.13) 978.74 (2.47) 979.48 (3.47)

TD2-DD GPI 959.18 (30.39) 955.97 (25.64) 956.79 (29.06)

TD-CFM GPI 767.47 (96.47) 805.68 (104.96) 853.73 (117.82)

TD-CFM(C) GPI 985.04 (0.10) 985.06 (0.29) 984.90 (0.18)

TD2-CFM GPI 984.21 (0.03) 984.46 (0.09) 984.23 (0.07)

WALK
BACKWARD

FB — 897.16 (32.19)

FB GPI 22.40 (10.18) 373.19 (13.71) 78.60 (18.72)

TD-DD GPI 793.32 (52.67) 946.70 (12.57) 982.37 (0.21)

TD2-DD GPI 951.82 (11.09) 981.74 (0.27) 982.45 (0.07)

TD-CFM GPI 455.18 (190.16) 456.19 (140.79) 257.85 (173.06)

TD-CFM(C) GPI 964.75 (4.54) 981.93 (0.26) 982.89 (0.25)

TD2-CFM GPI 962.41 (4.32) 982.08 (0.16) 982.64 (0.05)

30

Temporal Difference Flows

γ = 0.8 γ = 0.9 γ = 0.95 γ = 0.98 γ = 0.99

T
D

-C
F

M
T

D
-C

F
M

(C
)

T
D
2
-C

F
M

T
D

-D
D

T
D
2
-D

D
V

A
E

G
A

N
G

R
O

U
N

D
T

R
U

T
H

Figure 5. Qualitative samples generated with TD-CFM, TD-DD, VAE, and GAN methods for various discount factors γ on the LOOP task in
the POINTMASS MAZE domain. The last row depicts ground truth discounted occupancies.

31

Temporal Difference Flows

E. Theoretical Results
E.1. Proofs of Main Results

Lemma 1. Let →
pt be a probability path for P generated by vector field →

vt and ↷
p
(n)
t be a probability path for Pπm(n)

1

generated by ↷
v

(n)
t such that →

p0 =
↷
p
(n)
0 = m0. For any t ∈ [0, 1] and (s, a) let v(n+1)

t (· | s, a) be the solution of 4

argmin
v :Rd→Rd

(1− γ)E→
Xt∼

→
pt(·|s,a)

[∥∥v(→
Xt)−

→
vt(

→
Xt | s, a)

∥∥2]
+ γE↷

Xt∼
↷
p

(n)
t (·|s,a)

[∥∥v(↷
Xt)−

↷
v

(n)
t (

↷
Xt | s, a)

∥∥2].
Then v(n+1)

t induces a probability path m(n+1)
t such that m(n+1)

0 = m0 and m(n+1)
1 = T πm

(n)
1 .

Proof. By Lemma 4, we have that

v
(n+1)
t (x | s, a) = (1− γ)

→
pt(x|s, a)

→
vt(x | s, a) + γ

↷
p
(n)
t (x|s, a)↷v (n)

t (x | s, a)
m

(n+1)
t (x|s, a)

,

where m(n+1)
t (x|s, a) = (1− γ)

→
pt(x|s, a)+ γ

↷
p
(n)
t (x|s, a). Lemma 3 implies that m(n+1)

t is the probability path generated
by v(n+1)

t . It is easy to see that m(n+1)
0 = m0 since →

p0 =
↷
p
(n)
0 = m0. Moreover, since →

p1 = P and ↷
p
(n)
1 = Pπm

(n)
1 by

assumption, m(n+1)
1 = (1− γ)P + γPπm

(n)
1 = T πm

(n)
1 , which proves the result.

Theorem 1. For any n ≥ 1, the probability paths generated by TD-CFM, TD-CFM(C), or TD2-CFM satisfy

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a), ∀ t ∈ [0, 1]

where Bπt m := (1− γ)Pt + γPπm and Pt(x|s, a) :=
∫
pt|1(x | x1)P (x1|s, a)dx1. For any t ∈ [0, 1], the operator Bπt is

a γ-contraction in 1-Wasserstein distance, that is, for any couple of probability paths pt, qt,

sup
s,a

W1 ((Bπt pt) (· | s, a), (Bπt qt) (· | s, a))

≤ γ sup
s,a

W1 (pt(· | s, a), qt(· | s, a)) .

Proof. To prove that the iterates of the three algorithms satisfy a Bellman-like update through the operator Bπt we only need
to apply Proposition 3 for TD2-CFM, Theorem 5 for TD-CFM, and Theorem 6 for TD-CFM(C). That Bt is a γ-contraction in
1-Wasserstein distance can be seen by applying Theorem 4 with k = 1.

Corollary 1. Let {m(n)
t }n≥0 be the sequence of probability paths produced by TD-CFM, TD-CFM(C), or TD2-CFM starting

from an arbitrary vector field v(0)t . Then,

lim
n→∞

m
(n)
t = mt = Btmt,

where mt is the unique fixed point of Bt, and mt = mMC
t , where mMC

t (· | s, a) =
∫
pt|1(· | x1)mπ(x1 | s, a) is the

probability path of the Monte-Carlo approach (MC-CFM; 6).

Proof. That Bπt has a unique fixed point m̄t to which every sequence m(n)
t converges to is a consequence of the Banach

fixed point theorem applied on the space of all probability paths mt : S × A → P(Rd) equipped with the sup-1-
Wasserstein metric. By inspecting the definition of Bπt , it is easy to see that m̄t = (I − γPπ)−1Pt. Since Pt(x|s, a) =∫
pt|1(x|x1)P (x1|s, a)dx1,

m̄t(x|s, a) = [(I − γPπ)−1Pt](x|s, a) =
∫
pt|1(x|x1) [(I − γPπ)−1P](x1|s, a)︸ ︷︷ ︸

=mπ(x1|s,a)

dx1 = mMC
t (x|s, a).

32

Temporal Difference Flows

Theorem 2. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, then

σ2
TD-CFM = σ2

TD2-CFM
+

γ2 E
[
Tr
(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt|X1)

])]
.

Proof. See Theorem 7.

Theorem 3. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|0,1(x | x0, x1)m(n)

0,1 (x0, x1 | s, a)dx0dx1 5,
then we obtain

σ2
TD-CFM(C) = σ2

TD2-CFM
+

γ2E
[
Tr
(
CovZ|S,A,Xt

[
∇θvt(Xt|S,A; θ)⊤ut|Z(Xt|Z)

])]
,

where Z = (X0, X1). Furthermore, if we use straight conditional paths, i.e., Xt = tX1 + (1 − t)X0, and the linear
interpolant Xt does not intersect for any s, a, s′, then σ2

TD-CFM(C) = σ2
TD2-CFM

.

Proof. See Theorem 8.

E.2. General Results

Lemma 3. Let v1t and v2t be vector fields that generate the probability paths p1t and p2t , respectively. Then, for any γ ∈ [0, 1],
the mixture probability path pt = (1− γ)p1t + γp2t is generated by the vector field

vt :=
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t
. (27)

Proof. Since vt1 (resp. vt2) generates p1t (resp. p2t), we know from the continuity equation that:

∂p1t
∂t

= div(p1t v
1
t),

∂p2t
∂t

= div(p2t v
2
t),

where div denotes the divergence operator. Then, by linearity of div,

∂pt
∂t

=
∂
(
(1− γ)p1t + γp2t

)
∂t

= (1− γ)div(p1t v
1
t) + γdiv(p2t v

2
t)

= div
(
(1− γ)p1t v

1
t + γp2t v

2
t

)
= div

(
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t

(
(1− γ)p1t + γp2t

))
= div

(
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t
pt

)
= div(vtpt).

Hence, (vt, pt) satisfies the continuity equation, which implies that vt generates pt.

Lemma 4. Let v1t and v2t be vector fields that generate the probability paths p1t and p2t , respectively. For γ ∈ [0, 1], the
vector field vt =

(1−γ)p1tv
1
t+γp

2
tv

2
t

(1−γ)p1t+γp2t
satisfies

vt = argmin
v:Rd→Rd

{
(1− γ)Ext∼p1t

[
∥vt(xt)− v1t (xt)∥2

]
+ γ Ext∼p2t

[
∥vt(xt)− v2t (xt)∥2

]}
.

Proof. Let ℓt(v) := (1− γ)Ext∼p1t
[
∥vt(xt)− v1t (xt)∥2

]
+ γ Ext∼p2t

[
∥vt(xt)− v2t (xt)∥2

]
. The functional derivative of

this quantity wrt v evaluated at some point x is

∇vℓt(v)(x) = (1− γ)pt1(x)(vt(x)− v1t (x)) + γpt2(x)(vt(x)− v2t (x)).

Setting this to zero and solving for vt(x) yields the result.

33

Temporal Difference Flows

E.3. Analysis of TD2-CFM

We study the learning dynamics of an idealized variant of TD2-CFM which minimizes the flow-matching loss exactly.
Starting from an arbitrary vector field v(0)t , at each iteration n ≥ 0 we compute

v
(n+1)
t (·|s, a) ∈ argmin

v:Rd→Rd
ℓ
(n)

TD2-CFM
(t, s, a), (28)

where

ℓ
(n)

TD2-CFM
(t, s, a) := (1− γ)

→
ℓ(t, s, a) + γ

↷
ℓ(t, s, a)

→
ℓ(t, s, a) := ES′∼P (·|s,a),Xt∼pt|1(·|S′)

[∥∥v(Xt|s, a)− ut(Xt|S′)
∥∥2]

↷
ℓ(t, s, a) := E

S′∼P (·|s,a),Xt∼m(n)
t (·|s′,π(s′))

[∥∥v(Xt|s, a)− v
(n)
t (Xt|S′, π(S′))

∥∥2],
and m(n)

t (x|s, a) is the probability path generated by v(n)t (x|s, a).
Lemma 5. For any n ≥ 0, the vector field minimizing (28) is

v
(n+1)
t (x | s, a) =

(1− γ)
∫
ut|1(x | x1)pt|1(x | x1)P (x1|s, a)dx1 + γES′∼P (·|s,a)[m

(n)
t (x|S′, π(S′))v

(n)
t (x|S′, π(S′))]

m
(n+1)
t (x|s, a)

where we define m(n+1)
t (x|s, a) := (1 − γ)Pt(x|s, a) + γES′∼P (·|s,a)[m

(n)
t (x|S′, π(S′))] and Pt(x|s, a) :=

∫
pt|1(x |

x1)P (x1|s, a)dx1. Moreover v(n+1)
t generates m(n+1)

t .

Proof. By Theorem 2 of (Lipman et al., 2023), we have for the first term in ℓTD2-CFM

∇θ

→
ℓ(t, s, a) = ∇θEXt∼Pt(·|s,a)

[∥∥vt(Xt|s, a)−
→
vt(Xt|s, a)

∥∥2],
where Pt(x|s, a) :=

∫
pt|1(x | x1)P (x1|s, a)dx1, →

vt(x|s, a) =
∫
ut|1(x|x1)pt|1(x|x1)P (x1|s,a)dx1

Pt(x|s,a) . Similarly, we have for the
second term:

∇θ

↷
ℓ(t, s, a) = ∇θEXt∼↷

p
(n)
t (·|s,a)

[∥∥vt(Xt|s, a)−
↷
vt(Xt|s, a)

∥∥2],
where ↷

p
(n)
t = Pπm

(n)
t and ↷

vt =
Pπ(m

(n)
t v

(n)
t)

Pπm
(n)
t

.

Therefore, ℓ(n)TD-CFM(t, s, a) is equivalent, in term of gradient, to a mixture of two marginal flow-matching losses, which implies
that v(n+1)

t has the stated expression by Lemma 4. The fact that it generates m(n+1)
t is a consequence of Lemma 3.

We then define the following operator to characterize the iterates of TD2-CFM.

Definition 1 (Bellman operator for probability paths). For any t ∈ [0, 1], we define the operator Bπt m := (1−γ)Pt+γPπm,
where Pt(x|s, a) :=

∫
pt|1(x | x1)P (x1|s, a)dx1.

The following observation is then immediate from Lemma 5.

Proposition 3. For any n ≥ 0, the probability path generated by TD2-CFM satisfies m(n+1)
t (x|s, a) =

(
Bπt m

(n)
t

)
(x | s, a),

where Bπt is the operator of Definition 1. Moreover, m(n+1)
1 (x|s, a) =

(
T πm

(n)
1

)
(x | s, a).

Theorem 4. For any t ∈ [0, 1], the operator Bπt of Definition 1 is a γ1/k-contraction in Wasserstein k-distance, i.e., for any
couple of probability paths pt, qt and k ∈ [1,∞),

sup
s,a

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
≤ γ1/k sup

s,a
Wk (pt(· | s, a), qt(· | s, a)) .

34

Temporal Difference Flows

Proof. Recall that the Wasserstein k-distance between pt and qt induced by a metric d is defined as

Wk(pt(·|s, a), qt(·|s, a)) := inf
Γ(·|s,a)∈C(pt(·|s,a),qt(·|s,a))

E(X,Y)∼Γ(·|s,a)[d(X,Y)k]1/k,

where C(pt(·|s, a), qt(·|s, a)) is the set of all couplings between the two measures. Now take any coupling Γ̃(·|s, a) ∈
C(pt(·|s, a), qt(·|s, a)) for any s, a. Then, the following quantity

Θ(x, y|s, a) = (1− γ)P (x|s, a)δ(x− y) + γ
(
PπΓ̃

)
(x, y|s, a)

is a valid coupling between
(
Bπt pt

)
(· | s, a) and

(
Bπt qt

)
(· | s, a). In fact,∫

Θ(x, y|s, a)dx = (1− γ)

∫
P (x|s, a)δ(x− y)dx+ γ

∫ (
PπΓ̃

)
(x, y | s, a)dx

= (1− γ)P (y|s, a) + γ

∫
Es′∼P (·|s,a)

[
Γ̃(x, y|s′, π(s′))

]
dx

= (1− γ)P (y|s, a) + γ Es′∼P (·|s,a)

[∫
Γ̃(x, y|s′, π(s′))dx

]
= (1− γ)P (y|s, a) + γ Es′∼P (·|s,a)[qt(y|s′, π(s′))]

=
(
T πqt

)
(y|s, a).

Analogously, we can prove that
∫
Θ(x, y|s, a)dy =

(
Bπpt

)
(x|s, a). Then,

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
= inf

Γ(·|s,a)∈C([Lπt pt](·|s,a),[Lπt qt](·|s,a))
E(X,Y)∼Γ(·|s,a)[d(X,Y)k]1/k

≤ E(X,Y)∼Θ(·|s,a)[d(X,Y)k]1/k

=
(
(1− γ)E(X∼P (·|s,a),Y∼δX)[d(X,Y)k] + γE(X,Y)∼[PπΓ̃](·|s,a)[d(X,Y)k]

)1/k
= γ1/kEs′∼P (·|s,a),(X,Y)∼Γ̃(·|s′,π(s′))[d(X,Y)k]1/k.

Since this holds for any coupling Γ̃(·|s, a) ∈ C(pt(·|s, a), qt(·|s, a)), we can take the infimum over all such couplings on the
right-hand side, so that

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
≤ γ1/k

(
Es′∼P (·|s,a)

[
inf

Γ∈C(pt(·|s′,π(s′)),qt(·|s′,π(s′)))
E(X,Y)∼Γ[d(X,Y)k]

])1/k

= γ1/k
(
Es′∼P (·|s,a)

[
Wk(pt(·|s′, π(s′)), qt(·|s′, π(s′)))k

])1/k
≤ γ1/k sup

s,a
Wk(pt(· | s, a), qt(· | s, a)).

Taking the supremum over (s, a) of the left-hand side concludes the proof.

E.4. Analysis of TD-CFM

We study the learning dynamics of an idealized variant of TD-CFM which minimizes the flow-matching loss exactly. Starting
from an arbitrary vector field v(0)t , at each iteration n ≥ 0 we compute

v
(n+1)
t (·|s, a) ∈ argmin

vt(·):Rd→Rd
ℓ
(n)
TD-CFM(t, s, a) := E

X1∼
(
T πm(n)

1

)
(s,a),Xt∼pt|1(·|X1)

[
∥vt(Xt)− ut|1(Xt|X1)∥2

]
, (29)

where m(n)
t (x|s, a) is the probability path generated by v(n)t (x|s, a).

Lemma 6. For any n ≥ 0, the vector field minimizing (29) is

v
(n+1)
t (x | s, a) =

∫
ut|1(x|x1)

pt|1(x | x1)
(
T πm

(n)
1

)
(x1 | s, a)

m
(n+1)
t (x|s, a)

dx1,

where m(n+1)
t (x|s, a) :=

∫
pt|1(x | x1)

(
T πm

(n)
1

)
(x1 | s, a)dx1. Moreover v(n+1)

t generates m(n+1)
t .

35

Temporal Difference Flows

Proof. Note that (29) is a standard flow matching loss for the target distribution T πm
(n)
1 . The expression of v(n+1)

t (x | s, a)
given in the statement is exactly the vector field obtained by marginalization of the conditional vector field ut|1, which we
know to be the minimizer of the loss from Theorem 2 of (Lipman et al., 2023). The fact that v(n+1)

t generates m(n+1)
t is a

consequence of Theorem 1 of (Lipman et al., 2023).

Lemma 7. For any n ≥ 0, the probability path generated by (29) satisfies m(n+1)
1 (x|s, a) =

(
T πm

(n)
1

)
(x|s, a).

Proof. This is immediate from the definition of conditional probability path, as we set p1|1(x | x1) = δ(x − x1) by
construction, where δ(·) is the Dirac’s delta function.

Theorem 5. For any n ≥ 1, the probability path generated by (29) satisfies

m
(n+1)
t (x|s, a) =

(
Bπt m

(n)
t

)
(x|s, a),

where Bπt is the operator of Definition 1. Moreover, if the initial vector field v(0)t satisfies

v
(0)
t (x | s, a) =

∫
ut|1(x|x1)

pt|1(x | x1)m(0)
1 (x1 | s, a)

m
(0)
t (x|s, a)

dx1,

with m(0)
t being its generated proability path, then this result is valid at all n ≥ 0.

Proof. We know that, for all n ≥ 0, vn+1
t generates m(n+1)

t (Lemma 6) and that m(n+1)
1 = T πm

(n)
1 (Lemma 7). Note that

m
(n+1)
t is written as a function of m(n)

1 only, i.e., at each iteration we keep only the distribution generated at time t = 1

(m(n)
1) and discard the associated probability path (m(n)

t for t < 1). We can however express m(n+1)
t as a function of m(n)

t

thanks to the linearity of the Bellman operator and the definition of marginal paths. For any n ≥ 1,

m
(n+1)
t (x | s, a) : =

∫
pt|1(x | x1)

(
T πm

(n)
1

)
(x1 | s, a)dx1

=

∫
pt|1(x | x1)

(
(1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
m

(n)
1 (x1 | s′, π(s′))

])
dx1

= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[∫
pt|1(x | x1)m(n)

1 (x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[∫
pt|1(x | x1)

(
T πm

(n−1)
1

)
(x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
= (1− γ)Pt(x|s, a) + γ Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
=
(
Bπt m

(n)
t

)
(x | s, a).

This proves the first part of the statement. For the second part, we only need to prove that the result also holds at n = 0.
Note that the assumption on v(0)t implies that m(0)

t (x | s, a) :=
∫
pt|1(x | x1)m(0)

1 (x1 | s, a)dx1. Thus,

m
(1)
t (x | s, a) : =

∫
pt|1(x | x1)

(
T πm

(0)
1

)
(x1 | s, a)dx1

=

∫
pt|1(x | x1)

(
(1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
m

(0)
1 (x1 | s′, π(s′))

])
dx1

= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[∫
pt|1(x | x1)m(0)

1 (x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[
m

(0)
t (x | s′, π(s′))

]
=
(
Bπt m

(0)
t

)
(x | s, a).

36

Temporal Difference Flows

E.5. Analysis of TD-CFM(C)

The idealized update of TD-CFM(C) is, for any n ≥ 0,

v
(n+1)
t (·|s, a) ∈ argmin

vt(·):Rd→Rd
ℓ
(n)
TD-CFM(C)(t, s, a) ,where

ℓ
(n)
TD-CFM(C)(t, s, a) := E

(X0,X1)∼Γ
(n)
0,1 (·|s,a),Xt∼pt|0,1(·|X0,X1)

[
∥vt(Xt)− ut|0,1(Xt | X0, X1)∥2

]
,

(30)

and Γ
(n)
0,1 (· | s, a) is the coupling between m0 and T πm

(n)
1 , while pt|0,1, ut|0,1 are such that ut|0,1(x | x0, x1) generates

pt|0,1(x | x0, x1), p1|0,1(x | x0, x1) = δx1
(x), and

pt|1(x | x1) =
∫
pt|0,1(x | x0, x1)m0(x0)dx0. (31)

Lemma 8. The coupling Γ
(n)
0,1 (· | s, a) satisfies

Γ
(n)
0,1 (x0, x1 | s, a) = (1− γ)P (x1 | s, a)m0(x0) + γ ES′∼P (·|s,a)

[
m

(n)
0,1 (x0, x1 | S′, π(S′))

]
,

where m(n)
0,1 (x0, x1 | s, a) = m0(x0)δψ(n)

1 (x0|s,a)
(x1) is the joint distribution of (X0, X1), i.e the endpoints of the ODE.

Proof. For any x0, x1, we can write Γ
(n)
0,1 (x0, x1 | s, a) = Γ

(n)
1 (x1 | s, a, x0)m0(x0), where Γ

(n)
1 is the corresponding

conditional distribution. By definition, we have

Γ
(n)
1 (x1 | s, a, x0) = (1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
δ
ψ

(n)
1 (x0|s′,π(s′))

(x1)

]
where ψ(n)

1 is the flow that generates m(n)
1 . Multiplying both sides by m0(x0) and using that m(n)

0,1 (x0, x1 | s, a) =
m0(x0)δψ(n)

1 (x0|s,a)
(x1) concludes the proof.

Lemma 9. For any n ≥ 0, the vector field minimizing (30) is

v
(n+1)
t (x | s, a) =

∫ ∫
ut|0,1(x | x0, x1)

pt|0,1(x | x0, x1)Γ(n)
0,1 (x0, x1 | s, a)

m
(n+1)
t (x | s, a)

dx0dx1,

where m(n+1)
t (x | s, a) :=

∫ ∫
pt|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1. Moreover v(n+1)
t generates m(n+1)

t .

Proof. Note that (30) is a standard conditional flow matching loss since ut|0,1(x | x0, x1) generates pt|0,1(x | x0, x1) and
p1|0,1(x | x0, x1) = δx1(x). The expression of v(n+1)

t (x | s, a) given in the statement is exactly the vector field obtained by
marginalization of the conditional vector field ut|0,1, which we know to be the minimizer of the loss from Theorem 2 of
(Lipman et al., 2023). The fact that v(n+1)

t generates m(n+1)
t is a consequence of Theorem 1 of (Lipman et al., 2023).

Lemma 10. For any n ≥ 0, the probability path generated by (29) satisfies m(n+1)
1 (x | s, a) =

(
T πm

(n)
1

)
(x | s, a).

Proof. By Lemma 9 and the fact that p1|0,1(x | x0, x1) = δx1(x),

m
(n+1)
1 (x | s, a) :=

∫ ∫
p1|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1

=

∫
Γ
(n)
0,1 (x0, x | s, a)dx0

=
(
T πm

(n)
1

)
(x|s, a).

37

Temporal Difference Flows

Theorem 6. For any n ≥ 1, the probability path generated by (29) satisfies

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a),

where Bπt is the operator of Definition 1. Moreover, if the initial vector field v(0)t satisfies

v
(0)
t (x | s, a) =

∫ ∫
ut|0,1(x|x0, x1)

pt|0,1(x | x0, x1)m(0)
0,1(x0, x1 | s, a)

m
(0)
t (x | s, a)

dx0dx1,

with m(0)
t being its generated probability path, then this result is valid at all n ≥ 0.

Proof. We know that, for all n ≥ 0, vn+1
t generates m(n+1)

t (Lemma 9) and that m(n+1)
1 = T πm

(n)
1 (Lemma 10). While

m
(n+1)
t is written as a function of Γ(n)

0,1 only, we can rewrite it as a function of m(n)
t thanks to the linearity of the Bellman

operator and the definition of marginal paths. For any n ≥ 1, By Lemma 8,

m
(n+1)
t (x | s, a) :=

∫ ∫
pt|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1

=

∫ ∫
pt|0,1(x | x0, x1)

(
(1− γ)P (x1 | s, a)m0(x0) + γ ES′∼P (·|s,a)

[
m

(n)
0,1 (x0, x1 | S′, π(S′))

])
dx0dx1

= (1− γ)

∫ ∫
pt|0,1(x | x0, x1)P (x1 | s, a)m0(x0)dx0dx1︸ ︷︷ ︸

(i)

+ γ Es′∼P (·|s,a)

[∫ ∫
pt|0,1(x | x0, x1)m(n)

0,1 (x0, x1 | S′, π(S′))dx0dx1

]
︸ ︷︷ ︸

(ii)

.

By (31),

(i) =

∫
pt|1(x | x1)P (x1 | s, a)dx1 = Pt(x | s, a).

For (ii), by Lemma 9, we have m(n)
t (x | s, a) =

∫ ∫
pt|0,1(x | x0, x1)Γ(n−1)

0,1 (x0, x1 | s, a)dx0dx1,∀n ≥ 0, which implies

m
(n)
0,1 (x0, x1 | s′, π(s′)) = Γ

(n−1)
0,1 (x0, x1 | s′, π(s′)).

Therefore, again by definition of m(n)
t (Lemma 9),

(ii) = Es′∼P (·|s,a)

[∫ ∫
pt|0,1(x | x0, x1)Γ(n−1)

0,1 (x0, x1 | s′, π(s′))dx0dx1

]
= Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
.

Plugging the expressions of (i) and (ii) into the one of m(n+1)
t (x | s, a) yields the first part of the statement.

For the second part, we only need to prove that the result also holds at n = 0. Note that the assumption on v(0)t implies
that m(0)

t (x | s, a) =
∫ ∫

pt|0,1(x | x0, x1)m(0)
0,1(x0, x1 | s′, π(s′))dx0dx1. Thus, using the same decomposition above, we

have

m
(1)
t (x | s, a) = (1− γ)Pt(x | s, a) + γ Es′∼P (·|s,a)

[∫ ∫
pt|0,1(x | x0, x1)m(0)

0,1(x0, x1 | s′, π(s′))dx0dx1

]
= (1− γ)Pt(x | s, a) + γ Es′∼P (·|s,a)

[
m

(0)
t (x | s′, π(s′))

]
,

which proves the result.

38

Temporal Difference Flows

E.6. Variance Analysis

Theorem 7. Let us define the random variables

gTD2-CFM(t, s, a, s
′,

→
Xt, X

(n)
t) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|1(

→
Xt|s′)

)
+ γ∇θvt(X

(n)
t |s, a; θ)⊤

(
vt(X

(n)
t |s, a; θ)− v

(n)
t (X

(n)
t |s′, π(s′))

)
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|1(

→
Xt|s′)

)
+ γ∇θvt(Xt|s, a; θ)⊤

(
vt(Xt|s, a; θ)− ut|1(Xt|X1)

)
where t ∼ U([0, 1]), (s, a) ∼ ρ, s′ ∼ P (·|s, a),

→
Xt ∼ pt|1(·|s′), X

(n)
t ∼ m

(n)
t (· | s′, π(s′)), X1 ∼ m

(n)
1 (· | s′, π(s′)),

and Xt ∼ pt|1(·|X1). Then, gTD2-CFM and gTD-CFM are respectively unbiased estimates of the gradients ∇θℓTD2-CFM(θ) and
∇θℓTD-CFM(θ).

Moreover, if we consider their respective total variations defined as:

σ2
TD2-CFM

= Trace
(

Cov
t,s,a,s′,

→
Xt,X

(n)
t

[
gTD2-CFM(t, s, a, s

′,
→
Xt, X

(n)
t)

])
σ2

TD-CFM = Trace
(

Cov
t,s,a,s′,

→
Xt,X1,Xt

[
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt)

])
and we assume that m(n)

t (x | s, a) =
∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, then we obtain

σ2
TD-CFM = σ2

TD2-CFM
+ γ2Et,s,a,Xt

[
Trace

(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
.

Proof. Recall the TD2-CFM and TD-CFM objectives:

ℓTD2-CFM(θ) = (1− γ)Et,s,a,s′,Xt∼pt|1(·|s′)
[∥∥∥vt(Xt|s, a; θ)− ut|1(Xt|s′)

∥∥∥2]
+ γE

t,s,a,s′,Xt∼m(n)
t (·|s′,π(s′))

[∥∥vt(Xt|s, a; θ)− v
(n)
t (Xt|s′, π(s′))

∥∥2],
ℓTD-CFM(θ) = (1− γ)Et,s,a,s′,Xt∼pt|1(·|s′)

[∥∥∥vt(Xt|s, a; θ)− ut|1(Xt|s′)
∥∥∥2]

+ γE
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),Xt∼pt|1(·|X1)

[∥∥vt(Xt|s, a; θ)− ut|1(Xt|X1)
∥∥2].

Computing the gradients of these quantities w.r.t. θ, it is easy to check that gTD2-CFM and gTD-CFM are their unbiased estimates.

Let us now analyze the total variation of these estimators. By assumption, we havem(n)
t (x | s, a) =

∫
pt|1(x | x1)m(n)

1 (x1 |
s, a)dx1, which implies that X(n)

t and Xt follow the same law. Moreover, we obtain the following identities:

v
(n)
t (x | s′, π(s′)) = EX1|x,s′

[
ut|1(x | X1)

]
,

gTD2-CFM(t, s, a, s
′,

→
Xt, Xt) = EX1|Xt,s′ [gTD-CFM(t, s, a, s

′, Xo
t , X1, Xt)] ,

E
Xt∼m(n)

t (·|s′,π(s′))

[
gTD2-CFM(t, s, a, s

′,
→
Xt, Xt)

]
= E

X1∼m(n)
1 (·|s′,π(s′))

Xt∼pt|1(·|X1)

[
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt)

]
,

where X1 | x, s′ ∼ pt|1(x|X1)m
(n)
1 (X1|s′,π(s′))

m
(n)
t (x|s,a)

is the posterior distribution of X1 given x and s′.

To simplify notation, we denote by Y the random variable (t, s, a, s′,
→
Xt). Using the decomposition of variance into

39

Temporal Difference Flows

conditional variance, Var(X) = E[Var(X|Y)]) + Var(E[X|Y]), we conclude that

σTD-CFM = Trace (CovY,X1,Xt [gTD-CFM(Y,X1, Xt)])

= EY,X1,Xt

[∥∥∥gTD-CFM(Y,X1, Xt)− EY,X1,Xt [gTD-CFM(Y,X1, Xt)]
∥∥∥2]

= EY,Xt
[∥∥∥EX1|Y,Xt [gTD-CFM(Y,X1, Xt)]− EY,X1,Xt [gTD-CFM(Y,X1, Xt)]

∥∥∥2]
+ EY,Xt

[
EX1|Y,Xt

[∥∥∥gTD-CFM(Y,X1, Xt)− EX1|Y,Xt [gTD-CFM(Y,X1, Xt)]
∥∥∥2]]

= EY,Xt
[∥∥∥gTD2-CFM(Y,Xt)− EY,Xt [gTD2-CFM(Y,Xt)]

∥∥∥2]
+ γ2EY,Xt

[
EX1|Y,Xt

[∥∥∥∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)− EX1|Y,Xt
[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

] ∥∥∥2]]
= σTD2-CFM + γ2EY,Xt

[
Trace

(
CovX1|Y,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
= σTD2-CFM + γ2Et,s,a,Xt

[
Trace

(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
.

Theorem 8. Let us define the random variable

gTD-CFM(C)(t, s, a, s
′,

→
Xt, X0, X1, Xt) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|0,1(

→
Xt|X0, s

′)
)

+ γ∇θvt(Xt|s, a; θ)⊤
(
vt(Xt|s, a; θ)− ut|0,1(Xt|X0, X1)

)
where t ∼ U([0, 1]), (s, a) ∼ ρ, s′ ∼ P (·|s, a),

→
Xt ∼ pt|1(·|s′), (X0, X1) ∼ m

(n)
0,1 (· | s′, π(s′)) and Xt ∼

pt|0,1(·|X0, X1,). Then gTD-CFM(C) is an unbiased estimate of the gradient ∇θℓTD-CFM(C)(θ).

Moreover, if we consider its total variation defined as:

σTD-CFM(C) = Trace
(

Cov
t,s,a,s′,

→
Xt,X0,X1,Xt

[
gTD-CFM(C)(t, s, a, s

′,
→
Xt, X0, X1, Xt)

])
and we assume that m(n)

t (x | s, a) =
∫ ∫

pt|0,1(x | x0, x1)m(n)
0,1 (x0, x1 | s, a)dx0dx1, then we obtain

σTD-CFM(C) = σTD2-CFM + γ2Et,s,a,Xt
[
Trace

(
Cov(X0,X1)|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)

])]
.

Furthermore, if we use straight conditional paths, i.e., pt|0,1(x|x0, x1) = δ(tx1 + (1− t)x0 − x), then

σTD-CFM(C) ≤ σTD2-CFM

+ γ2 sup
t,s,a,x

∥∥∥∇θvt(x|s, a; θ)
∥∥∥2Et,s,a,s′,X0,X1,Xt

[
∥X1 −X0 − E(X1,X0)|s,a,s′,Xt [X1 −X0] ∥2

]
.

In particular, when the paths of the linear interpolation Xt do not intersect for any s, a, s′, we have
Et,s,a,s′,X0,X1,Xt

[
∥X1 −X0 − E(X1,X0)|s,a,s′,Xt [X1 −X0] ∥2

]
= 0 and σTD-CFM(C) = σTD2-CFM.

Proof. The first two statements can be checked by repeating the proof of Theorem 7 with conditional paths pt|0,1 and vector
fields ut|0,1. Let us thus prove the second part. We know that the flow ϕt(x0, x1) that generates the the conditonal path
pt|0,1(x|x0, x1) = δtx1+(1−t)x0

(x) is ϕt(x0, x1) = tx1 + (1− t)x0. Its associated vector field ut|0,1 is thus

ut|0,1(ϕt(x0, x1)|x0, x1) =
d

dt
ϕt(x0, x1) = x1 − x0.

40

Temporal Difference Flows

Theorefore, denoting Y = (t, s, a), we can bound the second term in the decomposition of σTD-CFM(C) as

EY,Xt
[
Trace

(
Cov(X0,X1)|Y,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X0, X1)

])]
= EY,Xt

[
EX0,X1|Y,Xt

[∥∥∥∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)− EX0,X1|Y,Xt
[
∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)

] ∥∥∥2]]
≤ EY,Xt

[
∥∇θvt(Xt|s, a; θ)∥2EX0,X1|Y,Xt

[∥∥∥ut|0,1(Xt | X0, X1)− EX0,X1|Y,Xt
[
ut|0,1(Xt | X0, X1)

] ∥∥∥2]]
= EY,Xt

[
∥∇θvt(Xt|s, a; θ)∥2EX0,X1|Y,Xt

[∥∥∥X0 −X1 − EX0,X1|Y,Xt [X1 −X0]
∥∥∥2]]

≤ sup
t,s,a,x

∥∇θvt(x|s, a; θ)∥2EY,Xt
[
EX0,X1|Y,Xt

[∥∥∥X0 −X1 − EX0,X1|Y,Xt [X1 −X0]
∥∥∥2]] .

This proves the third statement. For the last point, simply note that if the paths generating Xt do not cross, then the
distribution of X0, X1|Y,Xt is supported over a single couple (X0, X1), which means that its variance is zero.

41

Temporal Difference Flows

E.7. Transport Cost Analysis

Theorem 9. Assume that m(n)
t (x | s, a) =

∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, where pt|1(· | x1) = N (tx1, (1− t)2I) is a

Gaussian path. Then, the conditional paths 6built by TD-CFM(C) and TD2-CFM to generate m(n+1)
1 = T πm

(n)
1 induce a

smaller transport cost than those built by TD-CFM. Formally, for every t, s, a,

Et,s,a,s′,X0∼m0,X1∼(1−γ)δs′+γδψ(n)
1 (X0|s′,π(s′))

[
∥X1 −X0∥2

]
≤ E

t,s,a,s′,X0∼m0,X1∼[T πm(n)
1](·|s,a)

[
∥X1 −X0∥2

]
.

Proof. The paths generated by TD-CFM(C) and TD2-CFM induce the same transport cost since both algorithms connect the
endpoints of the ODE path m(n)

t in the bootstrapped term. Hence,

Et,s,a,s′,X0∼m0,X1∼(1−γ)δs′+γδψ(n)
1 (X0|s′,π(s′))

[
∥X1 −X0∥2

]
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γEt,s,a,s′,X0

[
∥ψ(n)

1 (X0 | s′, π(s′))−X0∥2
]

(a)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γEt,s,a,s′,X0

[∥∥∥ ∫ v
(n)
t (ψ

(n)
t (X0 | s′, π(s′)))dt

∥∥∥2]
(b)

≤ (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
Et,s,a,s′,X0

[∥∥∥v(n)t (ψ
(n)
t (X0 | s′, π(s′)))

∥∥∥2] dt
(c)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[∥∥∥v(n)t (Xt | s′, π(s′))
∥∥∥2]dt

(d)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[∥∥∥EX1|s′,Xt
[
ut|1(Xt|X1)

] ∥∥∥2]dt
(e)

≤ (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[
EX1|s′,Xt

[∥∥∥ut|1(Xt|X1)
∥∥∥2]]dt

(f)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),Xt∼pt|1(·|X1)

[∥∥∥ut|1(Xt|X1)
∥∥∥2]dt

(g)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),X0

[∥∥∥ut|1(tX1 + (1− t)X0|X1)
∥∥∥2] dt

(h)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),X0

[∥∥∥X1 −X0

∥∥∥2] dt
(i)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γE

t,s,a,s′,X1∼m(n)
1 (·|s′,π(s′)),X0

[∥∥∥X1 −X0

∥∥∥2]
(j)
= E

t,s,a,s′,X0∼m0,X1∼[T πm(n)
1](·|s,a)

[
∥X1 −X0∥2

]
,

where (a) uses the definition of flow as integration of a vector field, (b) uses Cauchy-Schwarz inequality, (c) uses that

m0 ∗ ψ(n)
t is the pushforward measure generating m(n)

t , (d) defines X1 | x, s′ ∼ pt|1(x|X1)m
(n)
1 (X1|s′,π(s′))

m
(n)
t (x|s,a)

as the posterior

distribution of X1 given x, s′ and uses that v(n)t is in marginal form by assumption, (e) uses Jensen’s inequality, (f) uses the
Tower property of expectations, (g) uses the definition of pt|1 and the corresponding linear-interpolation flow, (h) uses the
definition of ut|1, (i) is trivial, and (j) simply combines the two terms using the definition of Bellman operator T π .

6Recall that, given a marginal probability path m(n)
t (x | s, a), the conditional probability path built by TD-CFM(C) and TD2-CFM to

generate T πm(n)
1 is a linear interpolation between noise X0 ∼ m0 and X1 ∼ (1− γ)δs′ + γψ

(n)
1 (X0|s′, π(s′)), while the one built by

TD-CFM is a linear interpolation between noise X0 ∼ m0 and a sample X1 ∼ [T πm(n)
1](· | s, a) from the target distribution.

42

