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Abstract

Conditional Generative Adversarial Networks (cGANs) are implicit generative
models which allow to sample from class-conditional distributions. Existing
cGANs are based on a wide range of different discriminator designs and training
objectives. One popular design in earlier works is to include a classifier during
training with the assumption that good classifiers can help eliminate samples gen-
erated with wrong classes. Nevertheless, including classifiers in cGANs often
comes with a side effect of only generating easy-to-classify samples. Recently,
some representative cGANs avoid the shortcoming and reach state-of-the-art per-
formance without having classifiers. Somehow it remains unanswered whether the
classifiers can be resurrected to design better cGANs. In this work, we demonstrate
that classifiers can be properly leveraged to improve cGANs. We start by using
the decomposition of the joint probability distribution to connect the goals of
cGANs and classification as a unified framework. The framework, along with a
classic energy model to parameterize distributions, justifies the use of classifiers
for cGANs in a principled manner. It explains several popular cGAN variants, such
as ACGAN, ProjGAN, and ContraGAN, as special cases with different levels of
approximations, which provides a unified view and brings new insights to under-
standing cGANs. Experimental results demonstrate that the design inspired by the
proposed framework outperforms state-of-the-art cGANs on multiple benchmark
datasets, especially on the most challenging ImageNet. The code is available at
https://github.com/sian-chen/PyTorch-ECGAN.

1 Introduction

Generative Adversarial Networks [GANs; 10] is a family of generative models that are trained from
the duel of a generator and a discriminator. The generator aims to generate data from a target
distribution, where the fidelity of the generated data is “screened” by the discriminator. Recent studies
on the objectives [2, 37, 29, 25, 36, 26, 38], backbone architectures [41, 50], and regularization
techniques [13, 35, 51] for GANs have achieved impressive progress on image generation, making
GANs the state-of-the-art approach to generate high fidelity and diverse images [3]. Conditional
GANs (cGANs) extend GANs to generate data from class-conditional distributions [33, 39, 34, 16].
The capability of conditional generation extends the application horizon of GANs to conditional
image generation based on labels [39] or texts [43], speech enhancement [32], and image style
transformation [18, 53].

One representative cGAN is Auxiliary Classifier GAN [ACGAN; 39], which decomposes the condi-
tional discriminator to a classifier and an unconditional discriminator. The generator of ACGAN is
expected to generate images that convince the unconditional discriminator while being classified to
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the right class. The classifier plays a pivotal role in laying down the law of conditional generation
for ACGAN, making it the very first cGAN that can learn to generate 1000 classes of ImageNet
images [6]. That is, ACGAN used to be a leading cGAN design. While the classifier in ACGAN
indeed improves the quality of conditional generation, deeper studies revealed that the classifier
biases the generator to generate easier-to-classify images [45], which in term decreases the capability
to match the target distribution.

Unlike ACGAN, most state-of-the-art cGANs are designed without a classifier. One representative
cGAN without a classifier is Projection GAN [ProjGAN; 34], which learns an embedding for each
class to form a projection-based conditional discriminator. ProjGAN not only generates higher-quality
images than ACGAN, but also accurately generates images in target classes without relying on an
explicit classifier. In fact, it was found that ProjGAN usually cannot be further improved by adding a
classification loss [34]. The finding, along with the success of ProjGAN and other cGANs without
classifiers [15, 4], seem to suggest that including a classifier is not helpful for improving cGANs.

In this work, we challenge the belief that classifiers are not helpful for cGANs, with the conjecture that
leveraging the classifiers appropriately can benefit conditional generation. We propose a framework
that pins down the roles of the classifier and the conditional discriminator by first decomposing
the joint target distribution with Bayes rule. We then model the conditional discriminator as an
energy function, which is an unnormalized log probability. Under the energy function, we derive the
corresponding optimization term for the classifier and the conditional discriminator with the help
of Fenchel duality to form the unified framework. The framework reveals that a jointly generative
model can be trained via two routes, from the aspect of the classifier and the conditional discriminator,
respectively. We name our framework Energy-based Conditional Generative Adversarial Networks
(ECGAN), which not only justifies the use of classifiers for cGANs in a principled manner, but also
explains several popular cGAN variants, such as ACGAN [39], ProjGAN [34], and ContraGAN [16]
as special cases with different approximations. After properly combining the objectives from the two
routes of the framework, we empirically find that ECGAN outperforms other cGAN variants across
different backbone architectures on benchmark datasets, including the most challenging ImageNet.

We summarize the contributions of this paper as:

• We justify the principled use of classifiers for cGANs by decomposing the joint distribution.

• We propose a cGAN framework, Energy-based Conditional Generative Adversarial Net-
works (ECGAN), which explains several popular cGAN variants in a unified view.

• We experimentally demonstrate that ECGAN consistently outperforms other state-of-the-art
cGANs across different backbone architectures on benchmark datasets.

The paper is organized as follows. Section 2 derives the unified framework that establishes the
role of the classifiers for cGANs. The framework is used to explain ACGAN [39], ProjGAN [34],
and ContraGAN [16] in Section 3. Then, we demonstrate the effectiveness of our framework by
experiments in Section 4. We discuss related work in Section 5 before concluding in Section 6.

2 Method

Given a K-class dataset (x, y) ∼ pd, where y ∈ {1 . . .K} is the class of x and pd is the underlying
data distribution. Our goal is to train a generator G to generate a sample G(z, y) following pd(x|y),
where z is sampled from a known distribution such as N (0, 1). To solved the problem, a typical
cGAN framework can be formulated by extending an unconditional GAN as:

max
D

min
G

∑
y

E
pd(x|y)

D(x, y)− E
p(z)

D(G(z, y), y) (1)

where G is the generator and D is a discriminator that outputs higher values for real data. The choice
of D leads to different types of GANs [10, 2, 29, 8].

At first glance, there is no classifier in Eq. (1). However, because of the success of leveraging label
information via classification, it is hypothesized that a better classifier can improve conditional
generation [39]. Motivated by this, in this section, we show how we bridge classifiers to cGANs by
Bayes rule and Fenchel duality.
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2.1 Bridge Classifiers to Discriminators with Joint Distribution

A classifier, when viewed from a probabilistic perspective, is a function that approximates pd(y|x),
the probability that x belongs to class y. On the other hand, a conditional discriminator, telling
whether x is real data in class y, can be viewed as a function approximate pd(x|y). To connect
pd(y|x) and pd(x|y), an important observation is through the joint probability:

log p(x, y) = log p(x|y) + log p(y) (2)
= log p(y|x) + log p(x). (3)

The observation illustrates that we can approximate log p(x, y) in two directions: one containing
p(x|y) for conditional discriminators and one containing p(y|x) for classifiers. The finding reveals
that by sharing the parameterization, updating the parameters in one direction may optimize the
other implicitly. Therefore, we link the classifier to the conditional discriminator by training both
objectives jointly.

2.2 Learning Joint Distribution via Optimizing Conditional Discriminators

Since p(y) is usually known a priori (e.g., uniform) or able to easily estimated (e.g., empirical
counting), we focus on learning p(x|y) in Eq.(2). Specifically, since log p(x, y) ∈ R, we parameterize
it via fθ(x), such as a neural network with K real value outputs, where exp(fθ(x)[y]) ∝ p(x, y) .
Similar parameterization is also used in exponential family [48] and energy based model [23].
Therefore, the log-likelihood log p(x|y) can be modeled as:

log pθ(x|y) = log

(
exp (fθ(x)[y])

Zy(θ)

)
= fθ(x)[y]− logZy(θ), (4)

where Zy(θ) =
∫
x′ exp (fθ(x

′)[y]) dx′.

Optimizing Eq. (4) is challenging because of the intractable partition function Zy(θ). Here we
introduce the Fenchel duality [48] of the partition function Zy(θ):

logZy(θ) = max
qy

[
E

qy(x)
[fθ(x)[y]] +H(qy)

]
where qy is a distribution of x conditioned on y and H(qy) = −Exf∼qy(x) [log qy(x)] is the entropy
of qy. The derivation is provided in Appendix A. By the Fenchel duality, we obtain our maximum
likelihood estimation in Eq. (4) as:

max
θ

[
E

pd(x,y)
[fθ(x)[y]]−max

qy

[
E

qy(x)
[fθ(x)[y]] +H(qy)

]]
. (5)

To approximate the solution of qy , in additional to density models, we can train an auxiliary generator
qφ as in cGANs to estimate Eqy(x) via sampling. That is, we can sample x from qφ by x = qφ(z, y),
where z ∼ N (0, 1). The objective (5) then becomes:

max
θ

min
φ

∑
y

E
pd(x|y)

[fθ(x)[y]]− E
p(z)

[fθ(qφ(z, y))[y]]−H(qφ(·, y)), (6)

which is almost in the form of Eq (1) except the entropy H(qφ(·, y)). We leave the discussion about
the entropy estimation in Section 2.4. Currently, the loss function to optimize the objective without
the entropy can be formulated as:

Ld1(x, z, y; θ) = −fθ(x)[y] + fθ(qφ(z))[y]

Lg1(z, y;φ) = −fθ(qφ(z, y))[y]

2.3 Learning Joint Distributions via Optimizing Unconditional Discriminators & Classifiers

Following Eq. (3), we can approximate log p(x, y) by approximating log p(y|x) and log p(x). With
our energy function fθ, pθ(y|x) can be formulated as:

pθ(y|x) =
pθ(x, y)

pθ(x)
=

exp(fθ(x)[y])∑
y′ exp(fθ(x)[y′])

,
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which is equivalent to the y’th output of SOFTMAX(fθ(x)). Therefore, we can maximize the log-
likelihood of pθ(y|x) by consider fθ as a softmax classifier minimizing the cross-entropy loss:

Lclf(x, y; θ) = − log (SOFTMAX (fθ(x)) [y])

On the other hand, to maximize the log-likelihood of p(x), we introduce a reparameterization
hθ(x) = log

∑
y exp(fθ(x)[y]):

log pθ(x) = log

(∑
y

pθ(x, y)

)
= log

(∑
y

exp(fθ(x)[y])∫
x′

∑
y′ exp(fθ(x′)[y′]) dx′

)

= log

(
exp(log(

∑
y exp(fθ(x)[y])))∫

x′ exp(log(
∑
y′ exp(fθ(x′)[y′]))) dx′

)
= log

(
exp(hθ(x))∫

x′ exp(hθ(x′)) dx′

)
= hθ(x)− log(Z ′(θ)), (7)

where Z ′(θ) =
∫
x

exp(hθ(x)) dx. Similar to Eq. (5), we can rewrite logZ ′(θ) by its Fenchel duality:

logZ ′(θ) = max
q

[
E
q(x)

[hθ(x)] +H(q)

]
(8)

where q is a distribution of x and H(q) is the entropy of q.

Combining Eq. (7) and Eq. (8) and reusing the generator in Section 2.2, we obtain the optimization
problem:

max
θ

min
φ

E
pd(x,y)

[hθ(x)]− E
p(z)

[hθ(qφ(z, y))]−H(qφ) (9)

Similar to Eq. (6), the objective of the unconditional discriminator is equivalent to typical GANs
augmented with an entropy term. The loss function without considering the entropy can be formulated
as:

Ld2(x, z, y; θ) = −hθ(x) + hθ(qφ(z))

Lg2(z, y;φ) = −hθ(qφ(z, y))

2.4 Entropy Approximation in cGANs

In Section 2.2 and Section 2.3, we propose two approaches to train cGANs with and without
classification. Unsolved problems in Eq. (6) and Eq. (9) are the entropy termsH(qφ(·, y)) andH(qφ).
In previous work, various estimators have been proposed to estimate entropy or its gradient [46, 42,
21, 27]. One can freely choose any approach to estimate the entropy in the proposed framework. In
this work, we consider two entropy estimators, and we will show how they connect with existing
cGANs.

The first approach is the naive constant approximation. Since entropy is always non-negative, we
naturally have the constant zero as a lower bound. Therefore, we can maximize the objective by
replacing the entropy term with its lower bound, which is zero in this case. This approach is simple
but we will show its effectiveness in Section 4 and how it links our framework to ProjGAN and
ContraGAN in Section 3.

The second approach is estimating a variational lower bound. Informally, given a batch of data
{(x1, y1), . . . , (xm, ym)}, an encoder function l, and a class embedding function e(y), the negative
2C loss used in ContraGAN [16],

LC(xi, yi; t) = log

(
d(l(xi), e(yi)) +

∑m
k=1 Jyk = yiK d(l(xi), l(xk))

d(l(xi), e(yi)) +
∑m
k=1 Jk 6= iK d(l(xi), (l(xk))

)
, (10)

is an empirical estimate of a proper lower bound of H(X) [40], where d(a, b) = exp(a>b/t) is a
distance function with a temperature t. We provide the proof in Appendix B.

The 2C loss heavily relies on the embeddings l(x) and e(y). Although we only need to estimate the
entropy of generated data in Eq. (6) and Eq. (9), we still rely on true data to learn the embeddings in
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Softmax CE Loss: Lclf

Cond. Adv. Loss: Ld1 ,Lg1
Uncond. Adv. Loss: Ld2 ,Lg2
Contrastive Loss: Lreal

C ,Lfake
C

Figure 1: The discriminator’s design of ECGAN. D1 can be any network backbone such as DCGAN,
ResGAN, BigGAN. D2 is a linear layer with K outputs, where K is the number of classes.

practice. Therefore, the loss function of Eq. (6) can be written as:

LD1
(x, z, y; θ) = Ld1(x, z, y; θ) + λcLreal

C

LG1(z, y;φ) = Lg1(x, y;φ) + λcLfake
C ,

where λc is a hyperparameter controlling the weight of the contrastive loss, and Lreal
C ,Lfake

C are the
contrastive loss calculated on a batch of real data and generated data respectively.

Similarly, the loss function of Eq. (9) becomes:

LD2
(x, z, y; θ) = Ld2(x, z, y; θ) + λcLreal

C

LG2(z, y;φ) = Lg2(x, y;φ) + λcLfake
C ,

The introduction of 2C loss allows us to accommodate ContraGAN into our framework.

2.5 Energy-based Conditional Generative Adversarial Network

Previous work has shown that multitask training benefits representation learning [30] and training
discriminative and generative models jointly outperforms their purely generative or purely discrimi-
native counterparts [11, 28]. Therefore, we propose a framework named Energy-based Conditional
Generative Adversarial Network (ECGAN), which combines the two approaches in Section 2.2 and
Section 2.3 to learn the joint distribution better. The loss function can be summarized as:

LD(x, z, y; θ) = Ld1(x, z, y; θ) + αLd2(x, z, y; θ) + λcLreal
C + λclfLclf(x, y; θ) (11)

LG(z, y;φ) = Lg1(z, y;φ) + αLg2(z, y;φ) + λcLfake
C (12)

where α is a weight parameter for the unconditional GAN loss. The discriminator’s design is
illustrated in Fig 1.

Here we discuss the intuition of the mechanisms behind each component in Eq. (11). Ld1 is a loss
function for conditional discriminator. It updates the y-th output when given a data pair (x, y). Ld2
guides to an unconditional discriminator. It updates all outputs according to whether x is real. Lclf
learns a classifier. It increases the y-th output and decreases the other outputs for data belonging
to class y. Finally, LrealC and LfakeC play the roles to improve the latent embeddings by pulling the
embeddings of data with the same class closer.

Previously, we derive the loss functions Ld1 and Ld2 as the loss in Wasserstein GAN [2]. In practice,
we use the hinge loss as proposed in Geometric GAN [26] for better stability and convergence. We
use the following combination of Ld1 and Ld2 :

Hinge(fθ(xreal, y) + α · hθ(xreal), fθ(xfake, y) + α · hθ(xfake)). (13)
For more discussion of the implementation of hinge loss, please check Appendix C. The overall
training procedure of ECGAN is presented in Appendix E.

5



3 Accommodation to Existing cGANs

In this section, we show that our framework covers several representative cGAN algorithms, including
ACGAN [39], ProjGAN [35], and ContraGAN [16]. Through the ECGAN framework, we obtain
a unified view of cGANs, which allows us to fairly compare and understand the pros and cons
of existing cGANs. We name the ECGAN counterparts ECGAN-0, ECGAN-C, and ECGAN-E,
corresponding to ProjGAN, ACGAN, and ContraGAN, respectively. We summarize the settings in
Table 1 and illustrate the discriminator designs in Appendix F.

Existing cGAN ECGAN Counterpart α λclf λc
ProjGAN ECGAN-0 0 0 0
ACGAN ECGAN-C 0 > 0 0
ContraGAN ECGAN-E 0 0 > 0

Table 1: A summary of cGANs and their closest ECGAN counterpart.

3.1 ProjGAN

ProjGAN [34] is the most representative cGAN design that is commonly used in state-of-the-art
research [3, 50]. Let the output of the penultimate layer in the discriminator be g(x). The output of
ProjGAN’s discriminator is:

D(x, y) = wTu g(x) + bu + wTy g(x) = (wu + wy)T g(x) + bu (14)

where wu, bu are the parameters for the unconditional linear layer, and wy is the class embedding of
y. On the other hand, the output of a discriminator in ECGAN is:

D(x, y) = f(x)[y] = (WT g(x) + b)[y] = wTy g(x) + by (15)

where W,b are the parameters of the linear output layer in fθ. As shown in Eq. (14) and Eq. (15),
the architectures of ProjGAN and ECGAN are almost equivalent. In addition, the loss function of
ProjGAN can be formulated as:

LG = −D(G(z), y)

LD = −D(x, y) +D(G(z), y),

which is a special case of ECGAN while α = λc = λclf = 0. We name this case ECGAN-0, which
is the simplest version of ECGAN. Compared with ProjGAN, ECGAN-0 has additional bias terms
for the output of each class.

3.2 ACGAN

ACGAN [39] is the most well-known cGAN algorithm that leverages a classifier to achieve conditional
generation. Given aK-class dataset, the discriminator of ACGAN is parameterized by a network with
K + 1 outputs. The first output, denoted as D(x), is an unconditional discriminator distinguishing
between real and fake images. The remaining K outputs, denoted as C(x), is a classifier that predicts
logits for every class. The loss function of ACGAN can be formulated as:

LG = −D(G(z)) + λgLclf(G(z), y;C)

LD = −D(x) +D(G(z)) + λd(Lclf(x, y;C) + Lclf(G(z), y;C))

where G is the generator, λg and λd are hyperparameters to control the weight of cross-entropy loss.

The formulation of ACGAN is similar to our ECGAN when α = λc = 0 and λclf > 0. We call the
special case as ECGAN-C, with a suffix ‘C’ for classification loss. ECGAN-C uses a conditional
discriminator which plays the role of a classifier at the same time. Hence the generator in ECGAN-C
learns from the conditional discriminator rather than the cross-entropy loss which is biased for
generative objectives.
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Dataset # training # test # classes Resolution # training data
per class

CIFAR-10 50,000 10,000 10 32 × 32 5,000
Tiny ImageNet 100,000 10,000 200 64 × 64 500
ImageNet 1,281,167 50,000 1,000 128 × 128 1,281

Table 2: Datasets for evaluation.

3.3 ContraGAN

ContraGAN [16] proposed 2C loss, which we mentioned in Eq. (10), to capture the data-to-data
relationship and data-to-label relationship. The 2C loss is applied in both discriminator and generator
to achieve conditional generation. That is:

LG = −D(G(z), y) + λcLfake
C

LD = −D(x, y) +D(G(z), y) + λcLreal
C

The loss functions are similar to ones in ECGAN with α = λclf = 0 and λc > 0. We call it ECGAN-
E, where ‘E’ means entropy estimation. The main difference between ContraGAN and ECGAN-E is
the output layer of their discriminators. While ContraGAN uses a single-output network, ECGAN
uses a K-output network fθ which has higher capacity.

We keep Eq. (11) and Eq. (12) as simple as possible to reduce the burden of hyperparameter tuning.
Under the simple equations of the current framework, ECGAN-C and ECGAN-E are the closest
counterparts to ACGAN and ContraGAN. The subtle difference (in addition to the underlying network
architecture) is that ACGAN uses Ld2 instead of Ld1 (ECGAN-C); ContraGAN uses Ld2 ,Lg2 instead
of Ld1 ,Lg1 (ECGAN-E). One future direction is to introduce more hyperparameters in Eq. (11) and
Eq. (12) to get closer counterparts.

4 Experiment

We conduct our experiments on CIFAR-10 [20] and Tiny ImageNet [22] for analysis, and ImageNet [6]
for large-scale empirical study. Table 2 shows the statistics of the datasets. All datasets are publicly
available for research use. They were not constructed for human-related study. We do not specifically
take any personal information from the datasets in our experiments.

In our experiment, we use two common metrics, Frechet Inception Distance [FID; 14] and Inception
Score [IS; 44], to evaluate our generation quality and diversity. Besides, we use Intra-FID, which is
the average of FID for each class, to evaluate the performance of conditional generation.

4.1 Experimental Setup

We use StudioGAN1 [16] to conduct our experiments. StudioGAN is a PyTorch-based project
distributed under the MIT license that provides implementation and benchmark of several popular
GAN architectures and techniques. To provide reliable evaluation, we conduct experiments on
CIFAR-10 and Tiny ImageNet with 4 different random seeds and report the means and standard
deviations for each metric. We evaluate the model with the lowest FID for each trial. The default
backbone architecture is BigGAN [3]. We fix the learning rate for generators and discriminators to
0.0001 and 0.0004, respectively, and tune λclf in {1, 0.1, 0.05, 0.01}. We follow the setting λc = 1
in [16] when using 2C loss, and set α = 1 when applying unconditional GAN loss. The experiments
take 1-2 days on single GPU (Nvidia Tesla V100) machines for CIFAR-10, Tiny ImageNet, and take
6 days on 8-GPU machines for ImageNet. More details are described in Appendix D.

4.2 Ablation Study

We start our empirical studies by investigating the effectiveness of each component in ECGAN. We
use symbols ‘U’ to represent unconditional GAN loss, ‘C’ to represent classification loss, and ‘E’

1https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Dataset ECGAN Variant FID (↓) IS (↑) Intra-FID (↓)

CIFAR-10

ECGAN-0 8.049 ± 0.092 9.759 ± 0.061 41.708 ± 0.278
ECGAN-U 7.915 ± 0.095 9.967 ± 0.078 41.430 ± 0.326
ECGAN-C 7.996 ± 0.120 9.870 ± 0.157 41.715 ± 0.307
ECGAN-UC 7.942 ± 0.041 10.002 ± 0.120 41.425 ± 0.221
ECGAN-UCE 8.039 ± 0.161 9.898 ± 0.064 41.371 ± 0.278

Tiny ImageNet

ECGAN-0 24.077 ± 1.660 16.173 ± 0.671 214.811 ± 3.627
ECGAN-U 20.876 ± 1.651 15.318 ± 1.148 215.117 ± 7.034
ECGAN-C 24.853 ± 3.902 16.554 ± 1.500 212.661 ± 8.135
ECGAN-UC 18.919 ± 0.774 18.442 ± 1.036 203.373 ± 5.101
ECGAN-UCE 24.728 ± 0.974 17.935 ± 0.619 209.547 ± 1.968

Table 3: Ablation study of ECGAN on CIFAR-10 and Tiny ImageNet. ECGAN-0 means the vanilla
version of ECGAN where α = λclf = λc = 0. The label U stands for unconditional gan loss (α > 0).
C means classification loss (λclf > 0). E means entropy estimation loss via contrastive learning
(λc > 0).

to represent entropy estimation loss, which is 2C loss in our implementation. The concatenation
of the symbols indicates the combination of losses. For example, ECGAN-UC means ECGAN
with both unconditional GAN loss and classification loss (α > 0 and λclf > 0). Table 3 shows
the results of ECGAN from the simplest ECGAN-0 to the most complicated ECGAN-UCE. On
CIFAR-10, ECGAN-0 already achieves decent results. Adding unconditional loss, classification loss,
or contrastive loss provides slightly better or on-par performance. On the harder Tiny Imagenet, the
benefit of unconditional loss and classification loss becomes more significant. While ECGAN-U
already shows advantages to ECGAN-0, adding classification loss to ECGAN-U further improves
all metrics considerably. We also observe that directly adding classification loss is not sufficient to
improve cGAN, which is consistent to the finding in [34]. The fact reveals that the unconditional
GAN loss is a crucial component to bridge classifiers and discriminators in cGANs. We also find that
adding contrastive loss does not improve ECGAN-UC. An explanation is that the entropy estimation
lower bound provided by the contrastive loss is too loose to benefit the training. Furthermore, the
additional parameters introduced by 2C loss make the optimization problem more complicated. As
a result, we use the combination ECGAN-UC as the default option of ECGAN in the following
experiments.

4.3 Comparison with Existing cGANs

We compare ECGAN to several representative cGANs including ACGAN [39], ProjGAN [34], and
ContraGAN [16], with three representative backbone architectures: DCGAN [41], ResNet [13], and
BigGAN [3]. Table 4 compares the results of each combinations of cGAN algorithms and backbone
architectures. The results show that ECGAN-UC outperforms other cGANs significantly with all
backbone architectures on both CIFAR-10 and Tiny ImageNet. We also noticed that ContraGAN,
though achieves decent image quality and diversity, learns a conditional generator that interchanges
some classes while generating, hence has low Intra-FID. Overall, the experiment indicates that
ECGAN-UC can be a preferred choice for cGAN in general situations.

4.4 Comparisons between Existing cGANs and their ECGAN Counterpart

Table 5 compares ProjGAN, ContraGAN, ACGAN to their ECGAN counterparts. As we described
in Section 3, each of these representative cGANs can be viewed as special cases under our ECGAN
framework. As mentioned in Section 3, ECGAN-0 has additional bias terms in the output layer
compared to ProjGAN. The results in Table 5 shows that the subtle difference still brings significant
improvement to the generation quality, especially on the harder Tiny ImageNet.

Compared to ContraGAN, ECGAN-E has the same loss but different design in the discriminator’s
output layer. While the discriminator of ContraGAN has only single output, ECGAN-E has multiple
outputs for every class. The difference makes ECGAN-E solve the label mismatching problem of
ContraGAN mentioned in Section 4.3 and benefits generation on CIFAR-10, but does not work
well on Tiny ImageNet. It is probably because of the scarcity of training data in each class in Tiny
ImageNet. Only 50 data are available for updating the parameters corresponding to each class.
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Dataset Backbone method FID (↓) IS (↑) Intra-FID (↓)

CIFAR-10

DCGAN

ACGAN 32.507 ± 2.174 7.621 ± 0.088 129.603 ± 1.212
ProjGAN 21.918 ± 1.580 8.095 ± 0.185 68.164 ± 2.055
ContraGAN 28.310 ± 1.761 7.637 ± 0.125 153.730 ± 9.965
ECGAN-UC 18.035 ± 0.788 8.487 ± 0.131 59.343 ± 1.557

ResGAN

ACGAN 10.073 ± 0.274 9.512 ± 0.050 48.464 ± 0.716
ProjGAN 10.195 ± 0.203 9.268 ± 0.139 46.598 ± 0.070
ContraGAN 10.551 ± 0.976 9.087 ± 0.228 138.944 ± 12.582
ECGAN-UC 9.244 ± 0.062 9.651 ± 0.098 43.876 ± 0.384

BigGAN

ACGAN 8.615 ± 0.146 9.742 ± 0.041 45.243 ± 0.129
ProjGAN 8.145 ± 0.156 9.840 ± 0.080 42.110 ± 0.405
ContraGAN 8.617 ± 0.671 9.679 ± 0.210 114.602 ± 13.261
ECGAN-UC 7.942 ± 0.041 10.002 ± 0.120 41.425 ± 0.221

Tiny ImageNet BigGAN

ACGAN 29.528 ± 4.612 12.964 ± 0.770 315.408 ± 1.171
ProjGAN 28.451 ± 2.242 12.213 ± 0.624 242.332 ± 11.447
ContraGAN 24.915 ± 1.222 13.445 ± 0.371 257.657 ± 3.246
ECGAN-UC 18.780 ± 1.291 17.475 ± 1.052 204.830 ± 5.648

Table 4: Comparison between cGAN variants with different backbone architectures on CIFAR-10
and Tiny ImageNet

Dataset method FID (↓) IS (↑) Intra-FID (↓)

CIFAR-10

ProjGAN 8.145 ± 0.156 9.840 ± 0.080 42.110 ± 0.405
ECGAN-0 8.049 ± 0.092 9.759 ± 0.061 41.708 ± 0.278
ContraGAN 8.617 ± 0.671 9.679 ± 0.210 114.602 ± 13.261
ECGAN-E 8.038 ± 0.102 9.876 ± 0.036 41.155 ± 0.277
ACGAN 8.615 ± 0.146 9.742 ± 0.041 45.243 ± 0.129
ECGAN-C 8.102 ± 0.039 9.980 ± 0.093 41.109 ± 0.273

Tiny ImageNet

ProjGAN 28.451 ± 2.242 12.213 ± 0.624 242.332 ± 11.447
ECGAN-0 24.077 ± 1.660 16.173 ± 0.671 214.811 ± 3.627
ContraGAN 24.915 ± 1.222 13.445 ± 0.371 257.657 ± 3.246
ECGAN-E 38.270 ± 1.174 12.576 ± 0.405 239.184 ± 2.628
ACGAN 29.528 ± 4.612 12.964 ± 0.770 315.408 ± 1.171
ECGAN-C 24.853 ± 3.902 16.554 ± 1.500 212.661 ± 8.135

Table 5: Compare between representative cGANs and their ECGAN counterparts.

Last, we compare ECGAN-C to ACGAN. Both of them optimize a GAN loss and a classification
loss. However, ECGAN-C combines the discriminator and the classifier, so the generator can directly
optimize cGAN loss rather than the classification loss. As a result, ECGAN-C demonstrates better
performance on both CIFAR-10 and Tiny ImageNet. In sum, the comparisons show that through the
unified view provided by ECGAN, we can improve the existing methods with minimal modifications.

4.5 Evaluation on ImageNet

We compare our ECGAN-UC and ECGAN-UCE with BigGAN [3] and ContraGAN [16] on ImageNet.
We follow all configurations of BigGAN with batch size 256 in StudioGAN. The numbers in Table 6
are reported after 200,000 training steps if not specified. The results show that ECGAN-UCE
outperforms other cGANs dramatically. The comparison between ECGAN-UC and ECGAN-UCE
indicates that the 2C loss brings more significant improvement in the ECGAN framework than in
ContraGAN. The proposed ECGAN-UCE achieves 8.49 FID and 80.69 inception score. To the best
of our knowledge, this is a state-of-the-art result of GANs with batch size 256 on ImageNet. Selected
generated images are shown in Appendix G.

5 Related Work

The development of cGANs started from feeding label embeddings to the inputs of GANs or the
feature vector at some middle layer [33, 7]. To improve the generation quality, ACGAN [39] proposes
to leverage classifiers and successfully generates high-resolution images. The use of classifiers
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Method FID(↓) IS(↑)
BigGAN* 24.68 28.63
ContraGAN* 25.16 25.25
ECGAN-UC 30.05 26.47
ECGAN-UCE 12.16 56.33
ECGAN-UCE (400k step) 8.49 80.69

Table 6: Evaluation on ImageNet128×128. (*: Reported by StudioGAN.)

in GANs is studied in Triple GAN [24] for semi-supervised learning and Triangle GAN [9] for
cross-domain distribution matching. However, Shu [45] and Miyato and Koyama [34] pointed out
that the auxiliary classifier in ACGAN misleads the generator to generate images that are easier to be
classified. Thus, whether classifiers can help conditional generation still remains questionable.

In this work, we connect cGANs with and without classifiers via an energy model parameterization
from the joint probability perspective. [12] use similar ideas but focus on sampling from the
trained classifier via Markov Chain Monte Carlo [MCMC; 1]. Our work is also similar to a
concurrent work [11], which improves [12] by introducing Fenchel duality to replace computationally-
intensive MCMC. They use a variational approach [19] to formulate the objective for tractable
entropy estimation. In contrast, we study the GAN perspective and the entropy estimation via
contrastive learning. Therefore, the proposed ECGAN can be treated a complements works compared
with [12, 11] by studying a GAN perspective. We note that the studied cGAN approaches also result
in better generation quality than its variational alternative [11].

Last, [5] study the connection between exponential family and unconditional GANs. Different
from [5], we study the conditional GANs with the focus to provide a unified view of common cGANs
and an insight into the role of classifiers in cGANs.

6 Conclusion

In this work, we present a general framework Energy-based Conditional Generative Networks
(ECGAN) to train cGANs with classifiers. With the framework, we can explain representative cGANs,
including ACGAN, ProjGAN, and ContraGAN, in a unified view. The experiments demonstrate
that ECGAN outperforms state-of-the-art cGANs on benchmark datasets, especially on the most
challenging ImageNet. Further investigation can be conducted to find a better entropy approximation
or improve cGANs by advanced techniques for classifiers. We hope this work can pave the way to
more advanced cGAN algorithms in the future.

7 Limitations and Potential Negative Impacts

There are two main limitations in the current study. One is the investigation on ImageNet. Ideally,
more experiments and analysis on ImageNet can further strengthen the contribution. But training with
such a large dataset is barely affordable for our computational resource, and we can only resort to the
conclusive findings in the current results. The other limitation is whether the metrics such as FID
truly reflect generation quality, but this limitation is considered an open problem to the community
anyway.

As with any work on generative models, there is a potential risk of the proposed model being misused
to create malicious content, much like how misused technology can be used to forge bills. In this
sense, more anti-forgery methods will be needed to mitigate the misuse in the future.
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