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ABSTRACT

The H3 loop in the Complementarity Determining Region of antibodies plays a key role in their ability to bind the diverse space

of potential antigens. It is also exceptionally difficult to model computationally causing a significant hurdle for in silico develop-

ment of antibody biotherapeutics. In this article, we show that most H3s have unique structural characteristics which may

explain why they are so challenging to model. We found that over 75% of H3 loops do not have a sub-Angstrom structural neigh-

bor in the non-antibody world. Also, in a comparison with a nonredundant set of all protein fragments over 30% of H3 loops

have a unique structure, with the average for all of other loops being less than 3%. We further observed that this structural

difference can be seen at the level of four residue fragments where H3 loops present numerous novel conformations, and also at

the level of individual residues with Tyrosine and Glycine often found in energetically unfavorable conformations.
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INTRODUCTION

Antibodies are an essential part of the immune system.

They are able to attain high specificity and affinity to

almost any antigen. Over the last few decades develop-

ment of therapeutic antibodies has grown rapidly and

they now account for the majority of revenue in the sales

of new bio-therapeutics.21 The major drivers for the

success of therapeutic antibodies is both their ability to

bind to almost any target and their proven viability for

protein design.15,18,30

A natural human antibody is a symmetric Y shape, each

half of the symmetric unit has two chains: a heavy chain

(H) and a light (L) chain. The majority of the affinity and

specificity of antibodies is modulated by a set of binding

loops called the Complementarity Determining Region

(CDR) found on the variable domain of each of the two

chains. There are six CDR loops, L1, L2, L3 on the light

chain and H1, H2, and H3 on the heavy chain. Several defi-

nitions of the CDR loops have been proposed; they are

based either on sequence variability, contacts with the anti-

gen or structural variability (e.g., Refs. 1,13,19,22,25,34). As

the central theme of this work is structural variation we use

the Chothia structural definition.1

Out of the six CDR loops, the H3 loop shows the

greatest structural diversity and is located in the center

of the binding site.35 It also gains the most mutations

through affinity maturation7 and has on average the

largest number of contacts with the antigen.23 It there-

fore plays a crucial role in antigen binding, making accu-

rate modeling of H3 vital. However, the H3 loop is the

only CDR for which computational methods consistently

fail to produce sub-angstrom models.2 Modeling for the

other CDR loops is aided by the fact that the backbone

structures can be clustered into a number of canonical
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forms (e.g., Refs. 6,25,26). Using just a few residues the

canonical form and thus the structure of a CDR can be

predicted relatively accurately. The H3 loop however

does not show such canonical forms.

A number of theories for the difficulty in H3 model-

ing have been proposed. It is known that H3 loops sam-

ple a large number of conformations through the process

of V(D)J recombination and somatic hyper-mutation.29

It could be this larger diversity that prevents accurate

modeling. A computational study has suggested that H3

loops are highly flexible, owing to their longer residue

sequences and reduced number of stabilizing bonds.3

This could make modeling highly challenging. The length

distribution of H3 is much broader than for other CDRs

and the number of solved crystal structures could be too

low to effectively allow for the clustering of shapes.20 In

this article, we have analyzed H3 loop flexibility through

a systematic study of the normalized temperature factor

and show that H3 structures in the Protein Data Bank

(PDB) are if anything less flexible than general protein

loops.

Given that H3 is not more flexible than other loops

we explored in detail what differentiates it. We compared

the structures of the H3, the other five CDRs and 18

other loop sets from well populated superfamilies to a

nonredundant set of structures from the PDB. We found

that H3 contains by far the largest percentage of unique

conformations (�30%), on average 10 times more than

the other loops. A kink in the C-terminal end of CDR

H3 has been previously hypothesized to be involved in

H3 structural diversity.28,32 Next, we analyzed the

regions within the H3 loop which cause these differences.

We found >1000 four residue fragments which adopt

conformations not seen in any other structure. These

fragments are consistently found in the area around the

tip of the H3 loop and show a high propensity for Tyro-

sine and Glycine in unfavorable conformations. These

results suggest that H3 loops present structural character-

istics which are unique in the protein world and it is this

uniqueness that allows antibodies to target the highly

diverse space of antigen structures but also makes them

difficult to model computationally.

MATERIALS AND METHODS

Datasets

Antibody CDRs

We took all the Fv chains found in the SAbDab database10

on October 8, 2015 and removed those with resolution >3.0

Å. This resulted in 1779 structures with 4989 chains. From

these chains the CDR loops were extracted according to the

Chothia definition using the ANARCI numbering software.9

We discarded the CDR loops that have backbone atoms

with a temperature factor higher than 80.0.

Loops from other superfamilies

Eighteen superfamilies were selected by randomly

picking from those superfamilies that have >500 loops

with unique sequences. We used the SCOP superfamily

assignments24 and the Superfamily package12 to predict

the superfamily for the chains in the PDB that do not

have already have a manual assignment. Loops were then

extracted from these chains as a region of more than

three residues between two secondary structures as

annotated by DSSP.17 The superfamilies and number of

loops are detailed in Supporting Information Table S1.

Non-IG like protein loops

For the comparison to general protein loops we used

all the loops from every chain in the PDB that has a res-

olution better than 3.0 Å and is not IG-like. We used

DSSP17 as described above to define loops. Loops which

have backbone atoms with a temperature factor higher

than 80.0 were removed. We define a chain as being IG-

like if it is either in SabDab10 or contains in the descrip-

tion field terms related to MHCs or T-Cell Receptors.

Bound loop definition

In some tests we split loops into bound and unbound.

For antibodies a loop is considered to be bound if it is

part of an antibody-antigen complex as indicated by

SabDab.10,22 For non-Ig proteins a loop is considered to

be bound if any of its atoms are within 5.0 Å of any

atom from a residues found on a different chain in the

same PDB structure.

Nonredundant set of protein structures

A nonredundant set of protein structures was created

by culling the chains in the PDB with resolution <3.0 Å

at 90% sequence identity using PISCES.31 This resulted

in 31,028 chains with an average number of 260 residues.

From these chains we extracted all overlapping fragments

between three and 30 residues.

Temperature factor normalization and
flexibility

The comparison of temperature factors between

structures is difficult because the uncertainty of an atom

position increases with a decrease in resolution (see Sup-

porting Information Fig. S1). Hence, using the average

temperature factor for comparing flexibility would be

biased by resolution. We, therefore, normalized the value

of each temperature factor to a Z-score for the entire

PDB file (the mean and the variance are calculated from

all the temperature factors of the backbone atoms in the

PDB structure) as suggested by Parthasarathy and Mur-

thy.27 Using this method we observe that the normalized

distribution does not vary with resolution.
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Alternate conformations could potentially offer a more

accurate picture of the flexibility of H3 loops, but there

are very few structures that have backbone atoms for the

H3 loop with multiple occupancies (one example is PDB

structure with accession code 2VXU, chain H, residues

95 and 96), meaning it cannot be used at this time.

Length matched sets

When comparing two sets of loops the result might be

biased by the fact that their length distributions are dif-

ferent. To correct for this bias we generated length

matched sets (LMS). If set B is compared to set A, and B

has a different length distribution to A, a sample from B

is randomly extracted without replacement such that at

each residue length it matches the proportion of loops of

that length in set A. For example if in set A 5% of loops

have length 6, 3% length 9 and 2% length 12, then

LMS(B) will be a sample of B which has 5% of loops at

length 6, 3% at length 9 and 2% at length 12.

Unique loop fragments

We define a fragment as a continuous chain of four

amino acids. The set of fragments of a loop consists of

all its overlapping four residue fragments (e.g., for a loop

of length five there are two overlapping fragments of

length four). Two fragments are considered to be struc-

turally different if their Kabsch optimal superposition16

of the backbone atoms has an RMSD >1.0 Å. To identify

if the H3 loop contains fragment conformations which

are unique to the protein world we clustered all the frag-

ments from non-IG loops plus an anchor of two residues

(both upstream and downstream). Over 12 million frag-

ments were clustered into 64,830 unique shapes. Super-

position, however, is not transitive and using a 1.0 Å

cut-off for clustering we might not capture some of the

unique shapes. Therefore, when clustering the non-IG

fragments we chose a stricter uniqueness cut-off of 0.5

Å. This is expected to result in a possible overestimation

of the number of non-IG shapes, reducing the possibility

of generating false positives when classifying an H3 frag-

ment as unique. We considered an H3 fragment to be

unique when its closest structural neighbor from the

cluster of non-IG shapes is >1.0 Å RMSD.

Dihedral angles

To define the expected dihedral angles in loops we

took a nonredundant set of non-IG loops and meshed

their backbone atoms U2W dihedral angle space into

bins of 3.0 3 3.0 degrees. The frequency for each bin

was computed and a 90% contour plot was generated.

The algorithm for the contour plot used a greedy

“highest-frequency first” approach up to 90% of the den-

sity. If an angle falls out of the generated contour it is

considered to be energetically unfavorable.

RESULTS

Flexibility

We first tested using normalized temperature factors

(see Materials and Methods) whether H3 loops are more

flexible than other loops. Figure 1 shows how the distri-

bution of normalized temperature factors of H3 loops

compares to that of general protein loops (a LMS is also

shown to correct for possible bias from the differences in

length distribution). We find that the H3 loop does not

show an increased flexibility. We also considered the

potential bias induced by the fact that H3 loops are

found in two states: bound and unbound. It has previ-

ously been suggested that loops involved in binding are

less flexible. We, therefore, examined the bound and

unbound H3 loops separately. We observe the expected

increase of normalized temperature factor in the

unbound H3 loops, however there is no significant dif-

ference to the behavior of unbound general protein loops

(P value 0.53).

Residue propensity and length distribution

We analyzed the length distribution and residue pro-

pensity distributions of all H3 loops. We compared these

distributions to >200,000 loops from a nonredundant

set of 25,361 PDB structures (see Materials and Methods

and Supporting Information Fig. S2). H3 loops tend to

be longer, peaking at length 10 as opposed to non-IG

loops which peak at length four. They also have a higher

Figure 1
Flexibility comparison between H3 loops and non-IG protein loops

using the distribution of normalized temperature factors, one value per
loop. For each of the H3, H3 bound, and H3 unbound datasets 10

length matches samples were generated from the non-IG set and
amassed to produce their associated LMS distribution: Non-

Immunoglobulin (non-IG) LMS, non-IG LMS bound, and non-IG LMS

unbound, respectively. Between each H3 loop set and its associated
non-IG LMS the P-value from a two tailed Welch t test33 is reported.

CDR H3 of Antibodies Shows Unique Structural Characteristics
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propensity for Tyrosine, Glycine, Aspartic Acid, and Phe-

nylalanine. These differences have been previously

reported in other studies (e.g., Refs. 35 and 5). However,

if we carry out the same test for other CDRs (e.g., H2 or

H1), H2 loops peak at length six and they have a higher

propensity for Serine and Glycine than the general set.

As all these sets are just subsets of the whole this result

is perhaps not surprising but it suggests that it is not

just length differences or particular amino acid preferen-

ces that are the reason for the difficulties in predicting

H3 loops.

Full loop structure

Given that H3 loops have a unique length and residue

distribution we next looked at its structural divergence.

For each of the H3 loops we computed the superposition

and RMSD to every loop from all non-IG chains in all

crystal structures in the PDB with <3.0 Å resolution

(2,281,826 loops). We did not cull the list of chains

based on sequence because loops with the same sequence

in different crystal structures can have different confor-

mations (e.g., H3 loop in structure with PDB id 3v6f

chain H and H3 loop in 3v6z chain C share the same

sequence but have an RMSD of 2.69 Å). To represent

how H3 loops and the other CDRs compare in terms of

structural similarity to the rest of protein world, we plot

distributions of minimum RMSD. For every loop in the

query set we retained the value of the closest structural

neighbor in all other proteins, excluding the query set.

However, all CDRs apart from H3 adopt canonical forms

(e.g., Refs. 6,25,26).

To check whether our results are biased by this we

removed shape duplicates. Shape duplicates are sets of

loops which have a superposition RMSD of <1.0 Å and

for each set we retain only one loop. There are many def-

initions of canonical forms (these have been compared

in several papers e.g., Ref. 26). We use a very simple 1.0

Å RMSD cut-off as this is a standard definition of struc-

tural equivalence (e.g., Refs. 4,8,11,14) and one which

also provides a framework for including H3 in the analy-

sis (which does not have canonical forms). Figure 2(A)

shows this distribution for H3 loops is approximately

normal, peaks around 1.5 Å, and 88% of the conforma-

tions are not found in the rest of the protein world. The

other five panels in Figure 2(B–F) show the same data

for the other CDRs. CDRs L1 and L3 also have most of

their conformations >1.0 Å, while H1, H2, and L2 have

most of their conformations under 1.0 Å. We also strati-

fied this analysis by length to check for length bias (see

Supporting Information Fig. S4), and this shows the

same overall results. We also include in Supporting

Information Figure S3 the results without shape dupli-

cates removed, where for all but CDR L2 we observe

Figure 2
Structural similarity of CDR loops to non-IG loops. For each CDR loop the closest structural neighbor in the rest of the protein world has been
identified. The distribution of RMSD between the loops and their closest structural neighbor has been summarized as a histogram to show the

structural similarity between the respective set of loops and general proteins. For each CDR the percentage of loops that have their closest

structural neighbor at over 1.0 Å RMSD (the unique threshold) is reported. Shape duplicates have been removed in each data set. We define as
shape duplicates sets of loops which have a superposition RMSD of less than 1.0 Å to another loop in the data set. For each set of such duplicates

we retain only one loop. In the case of CDRs H1, H2, L1, L2, L3 this is approximately equivalent to retaining only one loop for each canonical
class.
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similar overall results. The difference for CDR L2 is

caused by the fact that there are only 7 unique shapes.

As L1 and L3 are known to take on canonical

shapes it is likely if we allowed structures from the

same superfamily (in this case the Ig fold) to be

included we would expect L1 and L3 to have close

structural neighbors whereas H3 may well still not. To

show this we compared the CDRs to a nonredundant

set of protein structures which include antibodies.

This dataset consists of all overlapping fragments

from 31,028 protein chains (includes secondary struc-

ture as well as loop—see Materials and Methods).

Between 5.3 and 6.8 million fragments were compared to

each loop (dependent on length). We found that H3 loops

are structurally unique (have a closest structural neighbor

with an RMSD >1.0 Å) at least 10 times more frequently

than the other CDRs.

To show that this diversity is not only unique for H3

in comparison to the other CDRs, but also in the general

protein world we also selected 18 sets of loops from

highly populated SCOP superfamilies (Supporting Infor-

mation Table S1) and carried out the same test (Fig. 3).

These loop sets also have only a small number of unique

structures. The largest percentage of unique structures

seen for anything other than H3 is 5.6%, and the average

is approximately 3%. As H3 tends to be longer on aver-

age than other loops, we checked whether the observed

structural difference was due to this length difference.

Figure 4 shows that for all the lengths between five and

19 the closest structural neighbor to an H3 is on average

further away than for other loops. We also checked

whether our results might be affected by the fact that in

each control set the loops are homologous. We per-

formed an analysis where H3 is compared to five

Figure 3
Structural similarity of the CDRs and 18 control loop sets to all fragments in a nonredundant set of PDB structures. For every loop in the sets of
CDR loops and the 18 sets from other superfamilies a histogram of the RMSD of their closest structural neighbor from our nonredundant set of

all protein structures is shown. The 18 control loop sets are from SCOP with the ID of the superfamily being provided as a title (details can be
found in Table S1 of the Supporting Information). The percentage of loops with no close structural neighbor (> 1.0 Å RMSD) is given.

CDR H3 of Antibodies Shows Unique Structural Characteristics

PROTEINS 1315

 10970134, 2017, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.25291 by T

est, W
iley O

nline L
ibrary on [14/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



random samples of loops from all the superfamilies and

we find that the same result holds (Supporting Informa-

tion Fig. S5).

The challenge of modeling H3 appears to arise from its

structural novelty. These results show that even if a perfect

scoring system existed such that we could always select

the closest structural neighbor as a prediction we would

fail to achieve sub-Angstrom accuracy at least 75% of the

time if we used only non-IG loops as the prediction

library, and at least 30% of the time otherwise.

Unique fragment conformations

Next we tested whether the entire H3 or only seg-

ments of the loop are structurally unique. We extracted

all the four residue overlapping fragments from every

H3 loop and compared it to the set of 64,830 structur-

ally unique four residue segments found in the rest of

the PDB (see Materials and Methods). We identified a

list of >1000 fragments that are unique to H3, with

>30% of H3 loops containing at least one unique frag-

ment. Supporting Information Figure S6 shows the

characteristics of these fragments. The fragments tend

to occur close to the tip of the H3 loop. We define the

tip as the residue in the loop that contains the Ca at the

greatest distance from the Ca of the residues at the start

and end of H3. To identify whether these unique H3

fragments have a sequence preference we calculated

their amino acid propensities. We observed that the

unique fragments have a high propensity for Tyrosine

and Glycine, even when compared to the rest of the H3

fragments [Supporting Information Fig. S6(A)]. Tyro-

sine and Glycine are known to have a high propensity

throughout H3 [Supporting Information Fig. S2(B)],

but our result suggests that they are even more concen-

trated within the unique fragments. Examining these

residues we found that the unique fragments contain

large numbers of Tyrosine and Glycine adopting ener-

getically unfavorable /2w angle combinations (Fig. 5).

These fragments are not more flexible then the other

H3 fragments when comparing normalized temperature

factors (Supporting Information Fig. S7). It appears

that the unique fragments and thus unique H3 confor-

mations may arise from these residues and dihedral

patterns.

Figure 4
A violin plot comparing the difference in closest structural neighbor

RMSD of H3 loops to the loops from the 18 control datasets at differ-
ent lengths (see Fig. 3). At all lengths the H3 sets have on average a

higher RMSD to their closest structural neighbors in the nonredundant

set of protein structures.

Figure 5
Ramachandran plots of Glycine (A) and Tyrosine (B) residues generated from a nonredundant set of protein loops. Each dot on the plot is a resi-

due from a unique H3 fragment. A red dot indicates a residue with a conformation which is outside the 90% contour and, therefore, considered
potentially energetically unfavorable. A green dot indicates a residue which is inside the 90% contour.
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DISCUSSION

The H3 CDR loop in antibodies is often the most

important loop for antigen binding. Through the pro-

cess, which is unique to antibodies, of V(D)J recombina-

tion and somatic hypermutation the CDR loops

(including the H3) are refined to achieve high affinity

and specificity to target antigens. To be able to modulate

binding to a very large palette of potential antigens the

H3 is known to have very high structural variability. It

has been previously suggested that the source of its struc-

tural variability is an increased flexibility because of its

longer length and lack of stabilizing bonds. However, the

same study suggested that affinity matured antibodies

present rigid backbone conformations. What we observe

is that the antibodies present in the PDB do not show an

increased flexibility when compared to general protein

loops. This could be because most crystallized antibodies

are matured high affinity binders. Nevertheless, high flex-

ibility is not present and can not explain the difficulty in

modeling the H3 loops of the structures in the PDB.

What we did identify is that H3 loops are distinctive

in their structural characteristics and diversity from other

loops. Thirty percent of H3 loops are unique compared

to a nonredundant set of the PDB structures, on average

10 times more than our control datasets. Also, 75% of

these H3 loops do not have a sub-Angstrom structural

neighbor in non-IG proteins. This result is mirrored by

the fact that some of the best predictions in the Anti-

body Modeling Assessment2 relied on physics-based

approaches. To try and understand the origin of these

unique H3 structures we examined all four residue frag-

ments from H3s and found >1000 unique four residue

fragments. These fragments have conformations which

are not seen in the rest of the PDB. A high proportion

of these fragments are found in close proximity to the

tip of the H3 loop. We also observed that these frag-

ments have increased levels of Tyrosine and Glycine com-

pared to other H3 fragments which already have high

levels of these amino acids. The uniqueness is further

cemented by the fact that these residues are seen to

adopt energetically unfavorable dihedral angles, which

could be the reason for the structural diversity we

observe. These results are a strong indication that the use

of fragments of known structure from non-IG proteins

will not be effective in attempts to model the H3 loop to

sub-Angstrom accuracy. There is, therefore, a necessity to

develop methods which focus specifically on the charac-

teristics of these unique loops.
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