FLAP: Table-to-Text Generation with
Feature Indication and Numerical Reasoning Pretraining

Anonymous ACL submission

Abstract

Recent neural models have shown success in
table-to-text generation. However, the perfor-
mance of content selection and content plan-
ning is still unsatisfactory. In this paper, we
propose an effective framework with Feature in-
dication and numericaL. reAsoning Pretraining
(FLAP) to help the neural generation model
on content selection and planning. FLAP is
an end-to-end generation model that takes the
whole table as input and utilize explicit con-
tent selection indication with the feature indica-
tion mechanism to ensure consistency between
training and inference. As numerical reasoning
plays a crucial role in both content selection
and planning. Rather than treating the table
as a sequence of token embeddings, we treat
values of a table as scalars and map the whole
table into a numerical vector for explicit con-
tent selection with machine learning algorithms.
Additionally, we design a QA-based numerical
reasoning pretraining task to enhance numeri-
cal reasoning ability of our pretrained model.
Experiments show that our framework outper-
forms the strong baselines on metrics of both
content selection and planning on ROTOWIRE
and RW-FG. Thorough analyses demonstrate
the effectiveness of our proposed method.

1 Introduction

Table-to-text generation is the task of taking data
of table as input and producing proper and fluent
text as output. An example can be seen in Figure 1.
There are two basic procedures to perform table-to-
text generation: content selection, which aims to
select an appropriate subset of the input table, and
then, content planning, which aims to transform
the selected content into fluent natural text (Reiter
and Dale, 1997; Gatt and Krahmer, 2018).

One line of works approaches this task in a
pipeline fashion which first employs a model to
select a certain part of the table and then maps
the selected table content to its translated natural
language with a seq2seq model (Puduppully et al.,

PLAYER_NAME PTS AST REB STL BLK TEAM CITY

Rashad Vaughn 0 1 0 0 0 Milwaukee
Steve Novak 4 0 0 0 0 Milwaukee
Tyler Ennis 3 0 0 0 0 Milwaukee

Johnny O'Bryant 111 0 0 1 0 0 Milwaukee
Giannis Antetokounmpo 8 7 12 0 0 Milwaukee

Miles Plumlee 10 0 6 1 2 Milwaukee

Jabari Parker 13 & 5 0 0 Milwaukee
0.J. Mayo 9 2 2 0 0 Milwaukee

Khris Middleton 26 2 7 1 1 Milwaukee

Greg Monroe 10 3 7 1 1 Milwaukee
Michael Carter-Williams 8 3 4 0 3 Milwaukee

Marcus Morris 20 2 8 0 0 Detroit

Tobias Harris 15 4 4 1 0 Detroit
Kentavious Caldwell-Pope 12 2 3 2 0 Detroit
Andre Drummond 15 2 17 4 2 Detroit

Reggie Bullock 8 0 4 2 0 Detroit

Reggie Jackson 22 8 2 2 0 Detroit
Aron Baynes 2 1 5 1 0 Detroit
Steve Blake 0 4 2 1 0 Detroit
Justin Harper 0 0 0 0 0 Detroit

Darrun Hilliard 8 1 1 0 0 Detroit

paced the Pistons' attack with 22 points, eight assists, two
rebounds and two steals. followed with 20 points, eight
rebounds and two assists. and were next with
a pair of 15-point efforts. The former added four rebounds, four assists
and a steal, while the latter hauled in 17 boards, dished out two assists,
recorded four steals and registered a pair of blocks... Milwaukee was led
by 's 26 points, which he supplemented with seven
rebounds, two assists, a steal and a block. followed with
13 points, five rebounds and three assists. continued to
start at center over Greg Monroe, and collected 10 points, six rebounds, a
steal and two blocks. paced the reserves with 10 points, seven
rebounds, three assists, a steal and a block...

PTS: Points AST: Assist REB: Rebound STL: Steal BLK: Block

Figure 1: An example of a pair of game statistical table
and its corresponding summary.

2019a; Puduppully and Lapata, 2021; Gong et al.,
2020). The apparent drawback of the pipeline ap-
proach is at inference stage, content planning is
subject to the quality of the predicted upstream
selected content, which results in exposure bias
(Ranzato et al., 2016). Another line of works ap-
proaches the task in an end-to-end fashion which
utilizes the seq2seq model to take the whole table
as input and generates the summary (Puduppully
et al., 2019b; Rebuffel et al., 2020; Gong et al.,
2019; Li et al., 2021). These methods avoid the ex-
posure bias problem by considering the whole table.
However, it is very challenging to learn implicit
content selection for the model and the absence
of explicit selection indication might hinder the

overall performance. Given the above, we identify
end-to-end modeling with whole table input and
explicit selection indication as the pivotal premised
approach for our work and introduce a feature in-
dication mechanism that treats predictions of the
content selector as auxiliary features then feed the
whole table as well as the auxiliary features into
the seq2seq model.

We further make a key observation that numeri-
cal reasoning is crucial for both content selection
and content planning. As highlighted in Figure 1,
players with competitive performance, i.e. higher
points or assists, tend to get mentioned in the sum-
mary. The value of the numbers in the statistical ta-
ble greatly determines whether and how the records
should be presented. Therefore, we propose an ef-
fective framework with numerical feature selection
indication and numerical reasoning pretraining to
enhance the numerical reasoning ability and im-
prove the performance of content selection and
planning, respectively. Specifically, for content se-
lection, most previous methods treat the numerical
values in the table as sequence tokens in the form
of distributed representations which makes it inef-
ficient to distinguish their relative magnitude. We
propose to treat the numerical values as scalars di-
rectly and map the whole table into a numerical vec-
tor where each dimension corresponds to a certain
record. This allows the traditional machine learn-
ing tools such as XGBoost (Chen and Guestrin,
2016) or Random Forest (Ho, 1995) that deal with
numerical features to perform multi-label classifi-
cation. The resulted predicted record features can
be served as the content selection indication for
the generation model. As for content planning, we
introduce the pretraining and finetuning paradigm
and design a series of numerical reasoning pretrain-
ing tasks that require the model to perform absolute
or relative comparison and sorting of the numeri-
cal records in the table. Concretely, we construct
the QA-based pretraining task to incorporates nu-
merical reasoning ability to the seq2seq generation
model and finetune the model on the downstream
table-to-text task.

We conduct experiments on two document
level table-to-text generation datasets ROTOWIRE
(Wiseman et al., 2017) and RW-FG (Wang, 2019a).
Our method achieves favorable improvements over
several strong baselines in content selection preci-
sion, F1, content ordering (CO) and BLEU metrics.
Experiments results demonstrate the effectiveness

of our feature indication mechanism in dealing with
exposure bias and the effectiveness of our numer-
ical reasoning pretraining paradigm. Focusing on
the numerical feature of the table and may also
inspire future research.

2 Related Work

Table-to-text generation is the task of generating
fluent text that properly describes the input ta-
ble. The main challenge lies in content selection
and planning (Reiter and Dale, 1997; Gatt and
Krahmer, 2018). Recently, several neural gener-
ation systems have been proposed for table-to-text
generation. One line of works follow a pipeline
paradigm, Perez-Beltrachini and Lapata (2018)
equip the sequence-to-sequence model with a con-
tent selection component that selects key records
from the table then map the selected records into
natural language. Puduppully et al. (2019a) addi-
tionally introduce a content planning module that
sort the selected records. Gong et al. (2020) in-
troduce a rank pretraining task to refine the value
representation and optimize content selection and
planning via policy gradient (Sutton et al., 1998).
Puduppully and Lapata (2021) groups the selected
records into a set of paragraph plans, then employ
a content planning module to sort the paragraph
plans. These methods take a subset of the table as
input and the content selection at inference stage
inevitably introduces error, which causes exposure
bias. Other works perform table-to-text genera-
tion in a end-to-end fashion that take full table of
records as input and directly generate the target
sequence. Gong et al. (2019) propose a hierarchi-
cal encoder with dual attention to consider both the
table structure and history information. Puduppully
et al. (2019b) create dynamically updated entity-
specific representations according to entity-centric
theories (Grosz et al., 1994; Mann and Thompson,
1988). Rebuffel et al. (2020) propose a hierarchi-
cal transformer encoder to encode the table at both
element level and structure level. Li et al. (2021)
introduce a reasoning module and two supervision
task on the encoder to capture the relations among
records. These end-to-end models avoid the ex-
posure bias problem but choose to model the con-
tent selection implicitly. Among them, Gong et al.
(2019); Puduppully et al. (2019b); Li et al. (2021)
utilize conditional copy mechanism to apply super-
vision to the switch gate, which make use of the
content selection supervision during training.

Our work performs end-to-end modeling and
takes explicit feature indication for content selec-
tion during both training and inference. Compared
with previous works, we treat values of a table as
scalars and map the whole table into a numerical
vector. So we can model the content selection as a
multi-label classification task, which is suitable for
traditional ML algorithms such as XGBoost. The
proposed numerical reasoning pretraining task and
the use of pretrained model BART also encourage
future work to consider large pretrained LMs.

3 Method

We start the section with the formulation of the
table-to-text task. Then, we show how to construct
numerical features and labels given a table to train
our content selector for feature indication. Then we
introduce our neural generation model with feature
indication mechanism. Finally, we describe the
numerical reasoning pretraining process. The input
of our model is a table of records as shown in Fig-
ure 1. Each record is either a numerical value (e.g.
player’s points) or categorical value (e.g. player’s
starting position). Each row of the tables describes
the statistics of an entity (a player or one of the two
teams). The generation model needs to generate
a summary that properly describes the table con-
tent. The output summary is a sequence of tokens

Yy =Jyiy2---Yiy|-

3.1 Feature & Label Construction

Previous works (Perez-Beltrachini and Lapata,
2018; Puduppully et al., 2019a; Puduppully and La-
pata, 2021) treat the values in the table as sequence
tokens and learn a distributed representations for
content selection, which is inefficient and loses the
numbers’ exact value information. The numerical
information is of great importance when it comes to
choosing which record to mention. Rooted in this
intuition, we treat the record values in the table as a
vector X with scalar feature at each dimension. The
corresponded label is Label = [1,1,0,0,], in
which each dimension indicates whether the cor-
responded record in the table is mentioned in the
summary. This allows us to model content selec-
tion as a multi-label classification task.

As shown in Figure 3, we concatenate the scalar
values in the table into a vector. Since each record
can refer to a unique entity (a player or a team),
we exclude the name of the player, team and the
city. Other categorical values are also mapped into

scalars. For example, we map START_POSITION
from {P,F, G} into {0, 1,2}. We use 0 to indicate
a home player and 1 to indicate a visitor player. To
construct Label, we use an public available pre-
trained extracted model to extract the ground-truth
records from the corresponding summary. Then we
aligned the extracted records with records in the
table and map the aligned records to 1 and others
to 0. We train a traditional machine learning model
XGBoost with multi-label classification objective
as our content selector.

3.2 Generation Model

Our overall generation model follows a transformer
(Vaswani et al., 2017) encoder-decoder architecture.
The input of the encoder are three sequences of to-
kens: {K,V,F}. K=[ENT]kq1,...,[ENT]ko;..., where
k;; represents the attribute of i-th row and j-th
column of the table. V=[ENT]v11,...,[JENT]vo1...,
where v;; represents the value of i-th row and j-th
column of the table. F=[ENT]fi1,...,[ENT]fo1...,
where f;; € {F, T} represents a feature token that
indicates whether record of i-th row and j-th col-
umn of the table is mentioned in the summary.
[ENT] is a special token that separates each records.
In the training stage, we use the ground truth F,
while in the inference stage, we use F predicted by
the XGBoost content selector.

3.2.1 Encoding with Feature Indication

We first feed three sequences into a word embed-
ding layer and get three embedding matrices:

Ex,Ey,Er = Emb(K), Emb(V), Emb(F),
6]
where Emb(-) is the word embedding layer with
parameter W € RIVI*P | || is the vocabulary size,
D is the hidden size. The final representation of
the embedding layer is:

Hyo = (Ex +Ey +Ep)/3+P, (2

where P is the position embedding matrix. Thus
the feature indication F are fused into the represen-
tation Hy and the generation model is supervised
with explicit content selection indication. Then Hy
is fed into a transformer encoder:

H; = TransEncoder(Hy), 3)

where H is the contextual representation, L is the
number of encoder layers.

Notice that we input the whole table into the
encoder along with feature indication sequence F

The | [Milwaukee| | Bucks defealeg
t t t ¢

Transformer Encoder

— Transformer Decoder

vectorize table

E:'I)I/chdings EN Name Name pTEdlCt label u

Xﬂglzddingsm@[—][_][_] ﬁ@[_]ﬁ[_] 3 0

1
1 1 130
Content 0

redict

Feature
Embeddi

m F_] ﬁ F_] m ﬁ ﬁ m ﬁ ﬁ e |} Selector | i1

Position

e (0 (0 G0 () G- () 60) 6) G o) : 55

Figure 2: Overall model architecture.

-

POSITION]

|;| |_| |;|

1 8 [8]118 143 |27 1 1 1 0fo0
0133 [101([35]17 1 1 1 0|0

[TEAM | HV |\\|\s | LOSSES |P|s REB [AST |

lﬂl TEAM | H/V | WINs | LOsSES | PTs | REB [st |
|(|\l|lgr | v | 13 | 3 101 35 | 17 |

gl
=
19
o
o

Figure 3: The feature construction process from a table.
Values that occur in the summary are highlighted in red.

rather than only the selected subset of the table such
that the model is not reduced to a translation model.
Another motivation behind this is to fix the com-
bination of table embeddings and prevent model
from fitting the combination distribution to miti-
gate exposure bias problem in the inference stage.
Specifically, in the inference stage, Ex, Ey/, P as
well as the shape of the initial representation Hj
will not change, the only variation is reduced into
the sub component E .

3.2.2 Decoding and Objective Function

The output of encoder are then fed into the trans-
former decoder to predict next words one-by-one:

= TransDecoder(H,,, ,,Hp),
“4
HY1:i71 = Emb(ylzifl) + Pylzi—17 (&)

p(yily1i—1, Hr)

where Py, . | is the postition embedding of pre-
vious ¢ — 1 words. The final objective function is:

L
L(0) = = log p(yilyr:i—1, HL). (6)
i=1

3.3 Numerical Reasoning Pretraining

3.3.1 Query Construction

As discussed above, numerical reasoning is also
important for content planning. Inspired by the
achievements of transfer learning (Torrey and Shav-
lik, 2010; Devlin et al., 2019), we propose to pre-
train our model on a numerical reasoning pretrain-
ing task, then finetune on the downstream table-to-
text generation task. According to the philosophy
of transfer learning, the upstream task needs to
share common knowledge with the downstream
task. To this end, we design a series of QA-based
numerical reasoning tasks that require the model to
make absolute or relative comparison and sorting
of the numerical records in the table. As detailed
in Figure 4, for each table, we have six types of
questions. For each question, we sample its corre-
sponding arguments from the table. For example,
for the question SORT, we need to sample names
and an attribute, and sort the names with respect to
the attribute. In our experiments, we construct 150
questions and answers for each table in the training
dataset. We obtain around 500,000 (table, query,
answer) triples in total for our pretraining dataset.
Each question and its corresponding answer are
tokenized into a sequence.

3.3.2 Pretraining

For numerical reasoning pretraining, we use the
same transformer encoder-decoder architecture.
The model answers questions in a sequence-
to-sequence manner. The input of the en-
coder are two sequences, one is the concatena-
tion of table and the query attribute sequences:
K¢=[ENTIkq1,....,[ENT]k21...[ENT]kg, ..., where
kg, 1s the attribute token of the query sequence.
The other is the concatenation of value sequences:
V¢=[ENT]v11,....[ENT]vo1...[ENT]vg, ..., where

TEAM WINS LOSSES PTS REB AST

Bucks 8 8 118 43 27
Cavaliers 13 3 101 35 17
PLAYER PTS AST REB _STL CITY

Giannis 34 5 12 5 Milwaukee

Jabari 18 1 4 2 Milwaukee
Michael 17 2 2 1 Milwaukee

Lebron 20 4 4 0 Cleveland

Kyrie 10 3 2 1 Cleveland

Kevin 13 2 13 1 Cleveland
Query: MAX(Giannis, Kyrie, Kevin, PTS)

Ans: Giannis

Query: MAX_NUM(Giannis, Kyrie, Kevin, PTS)
Ans: 34

Query: EXCEED(Giannis, Kevin, Lebron, PTS, 20)

Ans: Giannis, Lebron

Query: EXCEED_NUM(Giannis, Kevin, Lebron, PTS, 20)
Ans: 34,22

Query: SORT(Giannis, Jabari, Kevin, PTS)

Ans: Kevin, Jabari, Giannis

Query: SORT_NUM(Giannis, Jabari, Kevin, PTS)

Ans: 13,18,34

1. MAX(Namel,Name2,...,K) : Output player's name with the maximum value of attribute K.
2. MAX_NUM(Namel,Name2,...,K) : Output the maximum value of the attribute K.

3. EXCEED(Name1,Name2, ..., K, V) : Output players' names with attributes K higher than V.
4. EXCEED_NUM(Namel1,Namez, ..., K, V) : Output the values that higher than V.

5. SORT(Namel, Name2, ..., K) : Sort the names of players according to values of attribute K.
6. SORT_NUM(Namel, Name2, ..., K) : Sort the values of players' attribute K.

Figure 4: Illustration of query and answer construction
condition on the table of a game.

Vg, 18 the i-th token in the query sequence. The
output of the decoder is the corresponding sequen-
tial answer y4 = y1y2...y|ya|. Similarly, we first
feed the two sequence into a embedding layer:
Eg,, Ey, = Emb(K,),Emb(V,), (7

the initial representation is:
Hf = (Eg, + Ev,)/2+ Py, ®)

where P is the position embedding matrix. Then,
we feed H{ into the transformer encoder to get the
contextual representation HqL.

As for decoding, the answer sequence is decoded
one-by-one:

p(yilyt,;_1, Hr) = TransDecoder(HZ = HY),
)

H! = Emb(y?, ,)+ P! (10)

Y1:i—1 Y1:i—17
where P§, . | is the postition embedding matrix of

previous ¢ — 1 words. The objective function is:

L4

LI(0) = = > log p(yf|yri—1, HE).
=1

11

4 Experiment

4.1 Dataset and Automatic Evaluation

We conduct our experiments mainly on the NBA
game table-to-text datasets ROTOWIRE (Wiseman

et al., 2017). The number of the attribute in the
table is 39 and average length of summaries is 337.
We also conduct experiments on RW-FG (Wang,
2019b), which is an enriched and cleaned version of
ROTOWIRE which removes ungrounded sentences
in the summary and add additional information
into the table, such as the arena name. The dataset
splits are 3,398/727/728 and 5,232/1,125/1,119 for
ROTOWIRE and RW-FG respectively.

As for automatic evaluation, we use BLEU score
(Papineni et al., 2002) and three extractive evalua-
tion metrics RG (Relation Generation), CS (Con-
tent Selection), and CO (Content Ordering) (Wise-
man et al., 2017). The main idea of the extractive
metrics is to use an Information Extraction (IE)
system to extract predicted records mentioned in
the generated summary and compare them with
records extracted from reference summary to eval-
uate the model. We denote r as the set of records
extracted from the gold summary, and 7 as the set
of records extracted from the generated summary.
The RG measures the content fidelity by computing
how many generated records in 7 can be find in the
table. CS measures the ability of content selection
by computing the precision, recall and F1 score
between r and 7. CO measures the model’s ability
of organizing and ordering the selected records by
computing the normalized Damerau-Levenshtein
Distance between r and 7.

4.2 TImplementation Details

We conduct our experiments on four 16GB
NVIDIA V100 GPUs. We implement our genera-
tion model with FAIRSEQ (Ott et al., 2019). We
use the pretrained BART (Lewis et al., 2020) to
initialize the model. We use the Adam (Kingma
and Ba, 2014) optimizer with learning rate Se-5.
The dropout rate is 0.1, weight decay is 0.1 and
clip norm (Pascanu et al., 2013) is 0.1. We use the
dynamic batching strategy with 2048 max tokens
within a batch. We trained our model 100 epochs
and select the best checkpoint at the validation set
based on BLEU score. As for the XGBoost, we em-
ploy the available public library provided by (Chen
and Guestrin, 2016). Since some tables have more
rows, we pad features and labels in to fixed size
with -1 and O respectively. At the decoding stage,
the minimum decoding length is 330 and the max-
imum decoding length is 600 with n-gram-block
(Paulus et al., 2018) to avoid 6-gram repetition.

ROTOWIRE

RG CS
Model P% 4 P% R% Fl% CO BLEU

Templ (Chen and Guestrin, 2016) 99.93 5427 26.86 5790 36.69 14.82 8.93

NCP (Puduppully et al., 2019a) 86.84 3426 33.37 5095 40.58 18.07 16.50
ENT (Puduppully et al., 2019b) 91.16 30.03 3845 4826 4280 19.90 16.13
Hierarchical-k (Rebuffel et al., 2020) 88.46 41.82 33.07 48.60 3935 17.79 16.77
Marco (Puduppully and Lapata, 2021) 97.51 41.09 35.57 58.05 44.11 19.87 15.46
HETD (Gong et al., 2019) 92.02 31.51 35.82 47.74 4093 20.60 16.85
DUV (Gong et al., 2020) 86.27 2697 4044 48.61 44.15 23.14 1592
HEnc (Li et al., 2021)" 93.14 32.73 40.80 5588 47.16 25.30 17.96
BART 9447 37.07 38.82 55.88 45.81 20.85 19.13
FLAP 93.21 21.39 53.18 4624 4946 25.44 18.32

RW-FG

Templ (Chen and Guestrin, 2016)* 98.89 51.80 2398 4396 31.03 10.25 12.09
ENT(Puduppully et al., 2019b)* 93.72 35.69 39.04 49.29 4357 175 21.23
NCP (Puduppully et al., 2019a)* 9421 3599 4331 55.15 4852 2346 23.86
NCP+TR (Wang, 2019a)* 95.70 37.49 4290 5691 48.92 2447 2441
HEnc (Li et al., 2021)" 9475 38.08 42.72 57.56 49.04 2523 2452
BART 95.03 3741 44.89 57.61 5046 2492 25.89
FLAP 94.15 2896 53.58 5235 5295 26.16 25.03

" HEnc (Li et al., 2021) doesn’t released their source code as well as pretrained models and generated summaries, thus we

use their results from the original paper.

* Results of Templ, ENT, NCP and NCP+TR on RW-FG are from Wang (2019a).

Table 1: Overall automatic metrics on the test set of ROTOWIRE and RW-FG dataset. The metrics include relation
generation (RG), count (#), precision (P%), content selection (CS) precision (P%), re-call (R%) and content ordering
(CO) in normalized Damerau-Levenshtein distance (DLD%)

4.3 Compared Baselines

We compare our system with several baselines:
Templ (Chen and Guestrin, 2016), NCP+CC
(Puduppully et al., 2019a), ENT (Puduppully et al.,
2019b), Hierarachical-k (Rebuffel et al., 2020),
Marco (Puduppully and Lapata, 2021), HETD
(Gong et al., 2019), DUV (Gong et al., 2020) and
HEnc (Li et al., 2021). We also use BART to train
an end-to-end generation model that takes the en-
tire table as input and summary as output without
explicit content selection. To ensure pair compari-
son, we use the output summaries released by these
papers or generate the corresponding summaries
with their released checkpoints. We use the public
available evaluation script and extraction models
to compute automatic metrics.

4.4 Overall Results

We report the overall results on ROTOWIRE and
RW-FG in Table 1. In ROTOWIRE, FLAP achieves
the best performance on content selection preci-
sion, improving the previous state-of-the-art by
12.38% and raises the F1 score by 2.3%, which

demonstrates that our model is superior at selecting
appropriate and proper records. Our model also
achieves the best score on content ordering (CO)
and improves the previous best model by 0.14%,
which shows that our model has a better ability
to organize and resort the selected records. Ad-
ditionally, although the two BART-based models
achieve the best BLEU score, which demonstrates
the powerful generation ability of the pretrained
model, the performances of content selection and
planning of the BART model still fall short in com-
parison with FLAP. This shows that it is difficult
for the end-to-end BART to learn content selection
and planning without explicit content selection su-
pervision. What’s more, notice that Marco gets the
highest score on CS recall, but its precision is only
35.57, which is 17.61% lower than our model. This
means that Marco just learns to mention as many
records as possible, which is sub-optimal. Last but
not least, FLAP has lower RG # than other mod-
els, which means that our model is more conserva-
tive when selecting the records. Overall speaking,
FLAP achieves well-balanced and competitive per-

Test Set

Model P% R % F1%
SVM 38.95 39.70 39.32
Random Forest 64.94 37.73 47.73
XGBoost 58.58 47.10 52.22
Development Set
SVM 39.51 39.89 39.70
Random Forest 65.88 38.55 48.64
XGBoost 59.64 48.38 53.42

Table 2: Performance of different classifier vs the
ground truth label on ROTOWIRE.

formance in all metrics.

The results are similar in RW-FG. Since RW-
FG is a cleaned and enrichment version of RO-
TOWIRE, all the baselines have higher perfor-
mance on all the metrics. FLAP achieves consistent
performance. Specifically, FLAP achieves the best
performance on content selection precision F1 and
CO again, and improves previous state-of-the-art
by 10.86%, 3.91% and 0.93% respectively.

4.5 Performance of Different Content Selector

We report the performance of different classifiers
compared with the ground truth 0-1 label in Table
2. We use SVM (Cortes and Vapnik, 1995), Ran-
domForest (Ho, 1995) and XGBoost (Chen and
Guestrin, 2016) respectively. As shown in the ta-
ble, XGBoost and Random Forest achieve better
performance than SVM since they are ensemble-
based methods. Besides, XGBoost have higher
performance on F1 and recall, specifically, it has
10% higher in recall and 5% higher in F1 than
Random Forest. We think it may be because that
XGBoost is a regularizing gradient boosting frame-
work which can reduce variance, and also reduces
bias. Notice that both XGBoost and Random For-
est achieve higher F1 score than previous methods
which treat table as sequence of token embeddings,
which demonstrates the importance of scalar fea-
ture in content selection.

4.6 Effectiveness of Feature Indication and
Dealing with Exposure Bias

In this subsection, we will discuss the effectiveness
of the feature indication mechanism and study how
feature indication can alleviate the exposure bias
(Ranzato et al., 2016) problem. For this purpose,
we implement a BART);,. model that takes the se-
lected subset of table rather than the whole table as
input. BART,,;;,. can be seen to perform translation
task that translate the selected records to natural

language summary. In the training stage, we feed
the model with the concatenation of ground truth
mentioned records. In the evaluate stage, we feed
the concatenation of records predicted by the con-
tent selector. We report the results of two models
evaluated under different kinds of records and cor-
responded performance drop in Table 3.

From Table 3, first thing we can observe is that
with the ground truth records, both BART);,. and
FLAP achieves very high performance across all
metrics. This can be viewed as an upper bound for
the task. Given gold content selection, BART ;¢
performs better in terms of content selection and
content ordering as it is strictly translating the
selected records. While FLAP generates more
records and has higher BLEU score as it learns
explicit as well as implicit content selection, which
provides more flexibility.

What’s more, notice that both models suffer from
performance drops when evaluated with predicted
records. The performance of BART ;. in content
selection, content ordering, and BLEU all drasti-
cally decrease. However, the drop of FLAP is much
smaller, especially for BLEU score. We believe
that the low BLEU of BART,;;, is mainly caused
by the combination distribution variation of the
model input form rather than the information mis-
match between ground truth and predicted records.
The gap between FLAP and BART,,;,. given pre-
dicted records shows the necessity of whole table
as input and that our feature indication mechanism
does alleviate the exposure bias (Ranzato et al.,
2016) problem.

We also report the results of the two models that
trained on predicted records on Table 4. The train-
ing and evaluation process is consistent in that they
both use predicted records. To avoid label leak-
age issue, we use 4-fold cross validation to get the
predicted records on training set. As shown in Ta-
ble 4, performance BART), trained on predicted
records drops significantly. The reason is that it is
difficult for a model to generate summary condi-
tions on the predicted records along. Thus models
trained on such training set tend to generate more
ungrounded facts. Compared to BART,;;., the per-
formance of FLAP trained on predicted records
doesn’t drop sharply, because the input of FLAP
is the entire table along with the feature indication
sequence. Besides, although the training and evalu-
ation process of this setting is consistent, the per-
formance of FLAP trained on ground truth records

Test Set

RG

CS

Model RDs P% 4 P% R% F1% (6(0] BLEU
BART, 0 gt 86.84 25.38 89.21 87.55 88.37 49.24 27.19
"~ pred 88.12T1_47% 22.39¢11_74% 50.84¢42_99% 42.66¢51_27% 46.39¢47_50% 23.51¢52_25% 15.17¢44_20%
FLAP gt 92.29 27.36 82.13 85.36 83.71 48.89 27. 54
pred 93'21T0-99% 2139&1.82% 53.18¢35_23% 46~24¢45.80% 49.46¢40_90% 25~44¢47.96% 18.32¢33_47%
Development Set
BART... gt 86.93 24.80 89.30 87.74 89.00 48.81 26.53
PP pred 882741549 219501499 5208 41679 43775019 475646569 2448140849 15-3342.01%
FLAP gt 92.81 26.72 82.13 85.36 83.48 48.44 27.34
pred 92290569 22.441837% 940234229 47.5314417% 50.5639.43% 26.41 4547 18.7531.42%

Table 3: Results of BART,;,. and FLAP on ROTOWIRE development and test set. For BART,;,., gt means
utilizing the ground truth records as input, pred means using predicted records. For FLAP, gt means utilizing the
ground truth feature sequence as input, while pred means using the predicted feature sequence.

Test Set
RG CS
Model P% " P% R% Fl% CO BLEU
BART,;,. 5074 19.16 28.01 37.92 3222 16.03 15.35
FLAP 9465 37.08 4029 5840 47.68 2327 19.36
Development Set
BART,;,. 5058 1898 28.11 39.07 32.69 1586 15.31
FLAP 94.80 36.72 4032 59.69 48.12 2431 19.57

Table 4: Results of BART,;,. and FLAP on RO-
TOWIRE that trained on predicted records and eval-
uated with predicted records.

is still better than that trained on predicted ones.
This is because the predicted records can’t align
well with the summary. Thus FLAP trained on
ground truth records has a better guidance. This
once again demonstrates the effectiveness of our
feature indication mechanism.

4.7 Ablation Study

Test Set
RG CS
Model P% 4 P% R% Fl% CO BLEU
baseline 9447 37.07 38.82 5588 4581 20.85 19.13
+pt 94.83 3698 39.80 57.61 47.07 22.89 19.72
+featinject 93.21 21.39 53.18 4624 49.46 2544 18.32
Development Set
baseline 94.56 36.13 38.64 56.02 4572 21.59 18.92
+pt 94.87 3657 39.66 58.12 47.14 2350 19.72
+feat.inject 92.29 2244 54.02 4753 50.56 2641 18.75

Table 5: Automatic metric on on ROTOWIRE test set
and development set. pt stands for numerical reasoning
pretraining. feat.inject stands for feature indication.

In this subsection, we will discuss the effective-
ness of feature indication and numerical reasoning
pretraining. As shown in Table 5, the performance
of baseline model improves greatly after adding nu-
merical reasoning pretraining. Specifically, content
selection precision recall, F1 and content ordering

increase around 2% on both test and development
set. The BLEU score also increases. During pre-
training, the model acquire the ability of under-
standing and reasoning over tables, thus pt not only
improves the performance on content selection, but
also improves the performance on content plan-
ning. Second, after adding feature indication, the
performance of content selection precision largely
increased by around 14% on both test and develop-
ment set. CO increased by around 3%. It demon-
strates that the auxiliary can remarkably improve
the content selection performance and then help
content planning.

We also showcase a couple of case studies in the
appendix A to demonstrate how FLAP can gener-
ate well-balanced summary than end-to-end BART
and pipeline BART and an analysis on minimum
decoding length in appendix B.

5 Conclusions

In this work, we present an end-to-end model that
takes whole table as input to alleviate the expo-
sure bias problem. We propose a feature indication
mechanism and utilizes the table’s scalar feature
and an XGBoost as content selector. We also pro-
pose a numerical reasoning pretraining task that
can improve the performance of content planning.
Experiments on two document level table-to-text
datasets ROTOWIRE and RW-FG show that our
model achieves favorable performance over several
strong baselines. We also propose experiments to
demonstrate the effectiveness of each component of
our model. We hope the idea of treating the values
in the table as numerical features and the proposed
numerical reasoning pretraining can inspire future
work on table-to-text generation.

References

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A
Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Fran-
cisco, CA, USA, August 13-17, 2016, pages 785-794.
ACM.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273-297.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Intell.
Res., 61:65-170.

Heng Gong, Wei Bi, Xiaocheng Feng, Bing Qin, Xiao-
jiang Liu, and Ting Liu. 2020. Enhancing content
planning for table-to-text generation with data under-
standing and verification. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 2905-2914. Association
for Computational Linguistics.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3143-3152.

Barbara J Grosz, Aravind K Joshi, and Scott Weinstein.
1994. Centering: A framework for modelling the
coherence of discourse.

Tin Kam Ho. 1995. Random decision forests. In Pro-
ceedings of 3rd international conference on docu-
ment analysis and recognition, volume 1, pages 278—
282. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Liang Li, Can Ma, Yinliang Yue, and Dayong Hu. 2021.
Improving encoder by auxiliary supervision tasks for
table-to-text generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5979-5989, Online. Association
for Computational Linguistics.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243-281.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. Fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning, pages 1310-1318. PMLR.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learning
Representations.

Laura Perez-Beltrachini and Mirella Lapata. 2018.
Bootstrapping generators from noisy data. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 1516—-1527.
Association for Computational Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019a.
Data-to-text generation with content selection and
planning. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 6908—-6915. AAAI Press.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019b.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 2023—
2035.

Ratish Puduppully and Mirella Lapata. 2021. Data-to-
text generation with macro planning. Trans. Assoc.
Comput. Linguistics, 9:510-527.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten,
and Patrick Gallinari. 2020. A hierarchical model
for data-to-text generation. In Advances in Informa-
tion Retrieval - 42nd European Conference on IR
Research, ECIR 2020, Lisbon, Portugal, April 14-17,
2020, Proceedings, Part I, volume 12035 of Lecture
Notes in Computer Science, pages 65-80. Springer.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57-87.

Richard S Sutton, Andrew G Barto, et al. 1998. Intro-
duction to reinforcement learning, volume 135. MIT
press Cambridge.

Lisa Torrey and Jude Shavlik. 2010. Transfer learn-
ing. In Handbook of research on machine learning
applications and trends: algorithms, methods, and
techniques, pages 242-264. 1GI global.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Hongmin Wang. 2019a. Revisiting challenges in data-
to-text generation with fact grounding. In Proceed-
ings of the 12th International Conference on Natural
Language Generation, pages 311-322, Tokyo, Japan.
Association for Computational Linguistics.

Hongmin Wang. 2019b. Revisiting challenges in data-
to-text generation with fact grounding. In Proceed-
ings of the 12th International Conference on Natural
Language Generation, INLG 2019, Tokyo, Japan,
October 29 - November 1, 2019, pages 311-322. As-
sociation for Computational Linguistics.

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017, pages 2253-2263. Association for Com-
putational Linguistics.

10

A Case Study

Figure 5 shows an example of the records ex-
tracted from summaries generated by FLAP and
BART. We can find that BART tends to mention
more records regardless of importance. Such as
(Henson, 0, PLAYER-FG3M) and (Henson, O,
PLAYER-OREB). While FLAP can capture im-
portant records, like (Quincy, 18, PLAYER-PTS),
and neglect unnecessary ones. We attributed this
phenomenon to the lack of explicit selection pro-
cedure of BART. This demonstrates that even a
powerful pretrained language model can’t learn
content selection well without explicit content se-
lection supervision and the advantage of our feature
indication mechanism.

FLAP

(Davis,42,PLAYER-MIN),(,16,),
(Ll -),(Tyreke,12,PLAYER-PTS),
(> ,),(Tyreke,six,PLAYER-AST),
(Quincy,18,PLAYER-PTS),(5 -),

(Jnine, W .15,),
(, 14, -),(Bayless,14,PLAYER-PTS)

BART

) ,20, -),
I »18,)

) 9, -FTA),
)(Zaza, 11,)
(Zaza9, -FGA),

I

)(,14,

),(Henson, 1

)i(,

)(,0,)

)() s)
(0,)

),
iA),

0,PLAYER-FC
-),

NN N S~~~ A~~~ o~ o~

Figure 5: Example of records extracted from the gener-
ated summaries of FLAP and BART. Common records
are removed. Correct records are lighted with green,
redundant ones are lighted with orange.

Figure 6 shows an example of generated sum-
maries of FLAP and BART);,. condition on the
same predicted records of XGBoost. As shown
on the Figure, BART,,;,. generates sentences con-
tradict to facts. For example, "...as he totaled 7
points and 7 rebounds in the victory..." is contra-
dict to the fact that "The Milwaukee Bucks (18-17)
defeated the New York Knicks (5-31) 95-82...".
While FLAP can generate fluent and consistent
summary.

FLAP

The Milwaukee Bucks (18-17) defeated the New
York Knicks (5-31) 95-82 on Tuesday. ...The Knicks
played this game without a true star, as Carmelo
Anthony missed this game with a shoulder injury.
Tim Hardaway Jr. led the team with 17 points, while
J.R. Smith accrued 15 points, seven rebounds and
four assists of his own. Cole Aldrich was the only
other starter in double figures, as he scored 12
points...

BART,

The Milwaukee Bucks (18-17) defeated the New
York Knicks (5-31) 95-82 on Saturday. ...J.R. Smith
was fantastic, as he tallied 15 points, 7 assists and 7
rebounds in the win. Tim Hardaway Jr. continued his
scoring tear off the bench, as he scored 17 points,
while filling in for Lance Thomas. Quincy Acy had
the most production off the bench, as he totaled 7
points and 7 rebounds in the victory. Cole Aldrich led
the team in scoring, as he dropped 12 points off the
bench...

Figure 6: Example of generated summaries of FLAP
and BART ;. condition on the same predicted records
of XGBoost.

B Discussion on the Effect of Minimum
Decoding Length

In this subsection, we will discuss the effect of min-
imum decoding length to each metric. As shown in
Figure 7, the first thing to noticed is that RG, CS-
P and CO decrease as minimum decoding length
increases. This is because as the model generates
more tokens, it is more likely to generate wrong
records that will punish precision score. Secondly,
content selection recall grows up as minimum de-
coding length increase, because as the model gener-
ates more tokens, more likely a target record will be
mentioned. And BLEU goes up until an inflection
point. The reason may be that model can improve
the BLEU score by generating high-frequency n-
grams until the length penalty mechanism of BLEU
score starts to work. However, these n-grams are
usually dull and redundant. Lastly, we can observe
that our model can consistently outperform the
BART);;,. model by a large margin, which demon-
strates the effectiveness of the feature indication
mechanism and numerical reasoning pretraining
again. This phenomenon also reminds us that we
should not focus too much on BLEU and CS-R
in the document level table-to-text generation task
since these two metrics can be cheated by forcing
the model to output more tokens.

11

co
0.27 .
= BART-Pipe = FLAP

0.26

0.25

024 4\

0.23

100 200 300

CS-P

400 500 600

0.56 -
= BART-Pipe = FLAP

0.54

0.52

0.50

0.48

100 200 300

RG

400 500 600

0.950 -
= BART-Pipe = FLAP

0.925

0.900

0.850

100 200 300 400 500 600

BLEU

20 '
= BART-Pipe = FLAP

18
16
14
12

10

100 200 300 500 600

CS-R

0.500 "
= BART-Pipe = FLAP

0.475 —//P

0.450

-

0.425

0.400

100 200 300 400 500 600

Figure 7: Automatic metric of a trained model under
different minimum decoding length on ROTOWIRE
development set.

