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Abstract
Recent neural models have shown success in001
table-to-text generation. However, the perfor-002
mance of content selection and content plan-003
ning is still unsatisfactory. In this paper, we004
propose an effective framework with Feature in-005
dication and numericaL reAsoning Pretraining006
(FLAP) to help the neural generation model007
on content selection and planning. FLAP is008
an end-to-end generation model that takes the009
whole table as input and utilize explicit con-010
tent selection indication with the feature indica-011
tion mechanism to ensure consistency between012
training and inference. As numerical reasoning013
plays a crucial role in both content selection014
and planning. Rather than treating the table015
as a sequence of token embeddings, we treat016
values of a table as scalars and map the whole017
table into a numerical vector for explicit con-018
tent selection with machine learning algorithms.019
Additionally, we design a QA-based numerical020
reasoning pretraining task to enhance numeri-021
cal reasoning ability of our pretrained model.022
Experiments show that our framework outper-023
forms the strong baselines on metrics of both024
content selection and planning on ROTOWIRE025
and RW-FG. Thorough analyses demonstrate026
the effectiveness of our proposed method.027

1 Introduction028

Table-to-text generation is the task of taking data029

of table as input and producing proper and fluent030

text as output. An example can be seen in Figure 1.031

There are two basic procedures to perform table-to-032

text generation: content selection, which aims to033

select an appropriate subset of the input table, and034

then, content planning, which aims to transform035

the selected content into fluent natural text (Reiter036

and Dale, 1997; Gatt and Krahmer, 2018).037

One line of works approaches this task in a038

pipeline fashion which first employs a model to039

select a certain part of the table and then maps040

the selected table content to its translated natural041

language with a seq2seq model (Puduppully et al.,042

PLAYER_NAME PTS AST REB STL BLK TEAM_CITY

Rashad Vaughn 0 1 0 0 0 Milwaukee

Steve Novak 4 0 0 0 0 Milwaukee

Tyler Ennis 3 0 0 0 0 Milwaukee

Johnny O'Bryant III 0 0 1 0 0 Milwaukee

Giannis Antetokounmpo 8 7 12 0 0 Milwaukee

Miles Plumlee 10 0 6 1 2 Milwaukee

Jabari Parker 13 3 5 0 0 Milwaukee

O.J. Mayo 9 2 2 0 0 Milwaukee

Khris Middleton 26 2 7 1 1 Milwaukee

Greg Monroe 10 3 7 1 1 Milwaukee

Michael Carter-Williams 8 3 4 0 3 Milwaukee

Marcus Morris 20 2 8 0 0 Detroit

Tobias Harris 15 4 4 1 0 Detroit

Kentavious Caldwell-Pope 12 2 3 2 0 Detroit

Andre Drummond 15 2 17 4 2 Detroit

Reggie Bullock 8 0 4 2 0 Detroit

Reggie Jackson 22 8 2 2 0 Detroit

Aron Baynes 2 1 5 1 0 Detroit

Steve Blake 0 4 2 1 0 Detroit

Justin Harper 0 0 0 0 0 Detroit

Darrun Hilliard 8 1 1 0 0 Detroit

…Jackson paced the Pistons' attack with 22 points, eight assists, two

rebounds and two steals. Marcus Morris followed with 20 points, eight

rebounds and two assists. Tobias Harris and Drummond were next with

a pair of 15-point efforts. The former added four rebounds, four assists

and a steal, while the latter hauled in 17 boards, dished out two assists,

recorded four steals and registered a pair of blocks... Milwaukee was led

by Khris Middleton's 26 points, which he supplemented with seven

rebounds, two assists, a steal and a block. Jabari Parker followed with

13 points, five rebounds and three assists. Miles Plumlee continued to

start at center over Greg Monroe, and collected 10 points, six rebounds, a

steal and two blocks. Monroe paced the reserves with 10 points, seven

rebounds, three assists, a steal and a block…

PTS: Points AST: Assist    REB: Rebound    STL: Steal    BLK: Block 

Figure 1: An example of a pair of game statistical table
and its corresponding summary.

2019a; Puduppully and Lapata, 2021; Gong et al., 043

2020). The apparent drawback of the pipeline ap- 044

proach is at inference stage, content planning is 045

subject to the quality of the predicted upstream 046

selected content, which results in exposure bias 047

(Ranzato et al., 2016). Another line of works ap- 048

proaches the task in an end-to-end fashion which 049

utilizes the seq2seq model to take the whole table 050

as input and generates the summary (Puduppully 051

et al., 2019b; Rebuffel et al., 2020; Gong et al., 052

2019; Li et al., 2021). These methods avoid the ex- 053

posure bias problem by considering the whole table. 054

However, it is very challenging to learn implicit 055

content selection for the model and the absence 056

of explicit selection indication might hinder the 057
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overall performance. Given the above, we identify058

end-to-end modeling with whole table input and059

explicit selection indication as the pivotal premised060

approach for our work and introduce a feature in-061

dication mechanism that treats predictions of the062

content selector as auxiliary features then feed the063

whole table as well as the auxiliary features into064

the seq2seq model.065

We further make a key observation that numeri-066

cal reasoning is crucial for both content selection067

and content planning. As highlighted in Figure 1,068

players with competitive performance, i.e. higher069

points or assists, tend to get mentioned in the sum-070

mary. The value of the numbers in the statistical ta-071

ble greatly determines whether and how the records072

should be presented. Therefore, we propose an ef-073

fective framework with numerical feature selection074

indication and numerical reasoning pretraining to075

enhance the numerical reasoning ability and im-076

prove the performance of content selection and077

planning, respectively. Specifically, for content se-078

lection, most previous methods treat the numerical079

values in the table as sequence tokens in the form080

of distributed representations which makes it inef-081

ficient to distinguish their relative magnitude. We082

propose to treat the numerical values as scalars di-083

rectly and map the whole table into a numerical vec-084

tor where each dimension corresponds to a certain085

record. This allows the traditional machine learn-086

ing tools such as XGBoost (Chen and Guestrin,087

2016) or Random Forest (Ho, 1995) that deal with088

numerical features to perform multi-label classifi-089

cation. The resulted predicted record features can090

be served as the content selection indication for091

the generation model. As for content planning, we092

introduce the pretraining and finetuning paradigm093

and design a series of numerical reasoning pretrain-094

ing tasks that require the model to perform absolute095

or relative comparison and sorting of the numeri-096

cal records in the table. Concretely, we construct097

the QA-based pretraining task to incorporates nu-098

merical reasoning ability to the seq2seq generation099

model and finetune the model on the downstream100

table-to-text task.101

We conduct experiments on two document102

level table-to-text generation datasets ROTOWIRE103

(Wiseman et al., 2017) and RW-FG (Wang, 2019a).104

Our method achieves favorable improvements over105

several strong baselines in content selection preci-106

sion, F1, content ordering (CO) and BLEU metrics.107

Experiments results demonstrate the effectiveness108

of our feature indication mechanism in dealing with 109

exposure bias and the effectiveness of our numer- 110

ical reasoning pretraining paradigm. Focusing on 111

the numerical feature of the table and may also 112

inspire future research. 113

2 Related Work 114

Table-to-text generation is the task of generating 115

fluent text that properly describes the input ta- 116

ble. The main challenge lies in content selection 117

and planning (Reiter and Dale, 1997; Gatt and 118

Krahmer, 2018). Recently, several neural gener- 119

ation systems have been proposed for table-to-text 120

generation. One line of works follow a pipeline 121

paradigm, Perez-Beltrachini and Lapata (2018) 122

equip the sequence-to-sequence model with a con- 123

tent selection component that selects key records 124

from the table then map the selected records into 125

natural language. Puduppully et al. (2019a) addi- 126

tionally introduce a content planning module that 127

sort the selected records. Gong et al. (2020) in- 128

troduce a rank pretraining task to refine the value 129

representation and optimize content selection and 130

planning via policy gradient (Sutton et al., 1998). 131

Puduppully and Lapata (2021) groups the selected 132

records into a set of paragraph plans, then employ 133

a content planning module to sort the paragraph 134

plans. These methods take a subset of the table as 135

input and the content selection at inference stage 136

inevitably introduces error, which causes exposure 137

bias. Other works perform table-to-text genera- 138

tion in a end-to-end fashion that take full table of 139

records as input and directly generate the target 140

sequence. Gong et al. (2019) propose a hierarchi- 141

cal encoder with dual attention to consider both the 142

table structure and history information. Puduppully 143

et al. (2019b) create dynamically updated entity- 144

specific representations according to entity-centric 145

theories (Grosz et al., 1994; Mann and Thompson, 146

1988). Rebuffel et al. (2020) propose a hierarchi- 147

cal transformer encoder to encode the table at both 148

element level and structure level. Li et al. (2021) 149

introduce a reasoning module and two supervision 150

task on the encoder to capture the relations among 151

records. These end-to-end models avoid the ex- 152

posure bias problem but choose to model the con- 153

tent selection implicitly. Among them, Gong et al. 154

(2019); Puduppully et al. (2019b); Li et al. (2021) 155

utilize conditional copy mechanism to apply super- 156

vision to the switch gate, which make use of the 157

content selection supervision during training. 158
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Our work performs end-to-end modeling and159

takes explicit feature indication for content selec-160

tion during both training and inference. Compared161

with previous works, we treat values of a table as162

scalars and map the whole table into a numerical163

vector. So we can model the content selection as a164

multi-label classification task, which is suitable for165

traditional ML algorithms such as XGBoost. The166

proposed numerical reasoning pretraining task and167

the use of pretrained model BART also encourage168

future work to consider large pretrained LMs.169

3 Method170

We start the section with the formulation of the171

table-to-text task. Then, we show how to construct172

numerical features and labels given a table to train173

our content selector for feature indication. Then we174

introduce our neural generation model with feature175

indication mechanism. Finally, we describe the176

numerical reasoning pretraining process. The input177

of our model is a table of records as shown in Fig-178

ure 1. Each record is either a numerical value (e.g.179

player’s points) or categorical value (e.g. player’s180

starting position). Each row of the tables describes181

the statistics of an entity (a player or one of the two182

teams). The generation model needs to generate183

a summary that properly describes the table con-184

tent. The output summary is a sequence of tokens185

y = y1y2...y|y|.186

3.1 Feature & Label Construction187

Previous works (Perez-Beltrachini and Lapata,188

2018; Puduppully et al., 2019a; Puduppully and La-189

pata, 2021) treat the values in the table as sequence190

tokens and learn a distributed representations for191

content selection, which is inefficient and loses the192

numbers’ exact value information. The numerical193

information is of great importance when it comes to194

choosing which record to mention. Rooted in this195

intuition, we treat the record values in the table as a196

vector X with scalar feature at each dimension. The197

corresponded label is Label = [1, 1, 0, 0, .....], in198

which each dimension indicates whether the cor-199

responded record in the table is mentioned in the200

summary. This allows us to model content selec-201

tion as a multi-label classification task.202

As shown in Figure 3, we concatenate the scalar203

values in the table into a vector. Since each record204

can refer to a unique entity (a player or a team),205

we exclude the name of the player, team and the206

city. Other categorical values are also mapped into207

scalars. For example, we map START_POSITION 208

from {P,F,G} into {0, 1, 2}. We use 0 to indicate 209

a home player and 1 to indicate a visitor player. To 210

construct Label, we use an public available pre- 211

trained extracted model to extract the ground-truth 212

records from the corresponding summary. Then we 213

aligned the extracted records with records in the 214

table and map the aligned records to 1 and others 215

to 0. We train a traditional machine learning model 216

XGBoost with multi-label classification objective 217

as our content selector. 218

3.2 Generation Model 219

Our overall generation model follows a transformer 220

(Vaswani et al., 2017) encoder-decoder architecture. 221

The input of the encoder are three sequences of to- 222

kens: {K,V,F}. K=[ENT]k11,...,[ENT]k21..., where 223

kij represents the attribute of i-th row and j-th 224

column of the table. V=[ENT]v11,...,[ENT]v21..., 225

where vij represents the value of i-th row and j-th 226

column of the table. F=[ENT]f11,...,[ENT]f21..., 227

where fij ∈ {F,T} represents a feature token that 228

indicates whether record of i-th row and j-th col- 229

umn of the table is mentioned in the summary. 230

[ENT] is a special token that separates each records. 231

In the training stage, we use the ground truth F, 232

while in the inference stage, we use F predicted by 233

the XGBoost content selector. 234

3.2.1 Encoding with Feature Indication 235

We first feed three sequences into a word embed- 236

ding layer and get three embedding matrices: 237

EK ,EV ,EF = Emb(K),Emb(V),Emb(F),
(1) 238

where Emb(·) is the word embedding layer with 239

parameter W ∈ R|V |∗D, |V | is the vocabulary size, 240

D is the hidden size. The final representation of 241

the embedding layer is: 242

H0 = (EK +EV +EF )/3 +P, (2) 243

where P is the position embedding matrix. Thus 244

the feature indication F are fused into the represen- 245

tation H0 and the generation model is supervised 246

with explicit content selection indication. Then H0 247

is fed into a transformer encoder: 248

HL = TransEncoder(H0), (3) 249

where HL is the contextual representation, L is the 250

number of encoder layers. 251

Notice that we input the whole table into the 252

encoder along with feature indication sequence F 253
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…
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Name PTS REBENT AST Name PTS REBENT AST

…James 22 5ENT 10 Kyrie 20 3ENT 2

+ + + + + + + + + +

TF TF T F F FF F

+ + + + + + + + + +

4321 5 k+2k+1 k+3k k+4

+ + + + + + + + + +

The Bucks defeatedMilwaukee

Figure 2: Overall model architecture.

1 8 8 118 43 27

PLAYER AST REB PTS STL START_POSITION

Lebron 4 4 22 2 G

1 1 1 11 4 18 2 1

PLAYER AST REB PTS STL START_POSITION

Lebron 4 4 22 2 G
PLAYER AST REB PTS STL START_POSITION

Kyrie 3 2 20 1 GPLAYER AST REB PTS STL START_POSITION

Lebron 4 4 22 2 G

2 13 13 1 2
3 2 20 1 1

4 4 22 2 0

0 1 0 0

0 0 1 0

1 1 1 0

TEAM H/V WINS LOSSES PTS REB AST

Bucks H 8 8 118 43 27TEAM H/V WINS LOSSES PTS REB AST

Cavaliers V 13 3 101 35 17

0 13 3 101 35 17

1 1 1 0 0

1 1 1 0 0

1

4

18

2

1

2

13

13

…

0

13

3

101

35

17

X Label
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1
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1

0

1

0

0

…

1

1

1

0

0

Figure 3: The feature construction process from a table.
Values that occur in the summary are highlighted in red.

rather than only the selected subset of the table such254

that the model is not reduced to a translation model.255

Another motivation behind this is to fix the com-256

bination of table embeddings and prevent model257

from fitting the combination distribution to miti-258

gate exposure bias problem in the inference stage.259

Specifically, in the inference stage, EK ,EV ,P as260

well as the shape of the initial representation H0261

will not change, the only variation is reduced into262

the sub component EF .263

3.2.2 Decoding and Objective Function264

The output of encoder are then fed into the trans-265

former decoder to predict next words one-by-one:266

p(yi|y1:i−1,HL) = TransDecoder(Hy1:i−1 ,HL),
(4)

267

Hy1:i−1
= Emb(y1:i−1) +Py1:i−1 , (5)268

where Py1:i−1
is the postition embedding of pre-269

vious i− 1 words. The final objective function is:270

271

L(θ) = −
L∑
i=1

log p(yi|y1:i−1,HL). (6)272

3.3 Numerical Reasoning Pretraining 273

3.3.1 Query Construction 274

As discussed above, numerical reasoning is also 275

important for content planning. Inspired by the 276

achievements of transfer learning (Torrey and Shav- 277

lik, 2010; Devlin et al., 2019), we propose to pre- 278

train our model on a numerical reasoning pretrain- 279

ing task, then finetune on the downstream table-to- 280

text generation task. According to the philosophy 281

of transfer learning, the upstream task needs to 282

share common knowledge with the downstream 283

task. To this end, we design a series of QA-based 284

numerical reasoning tasks that require the model to 285

make absolute or relative comparison and sorting 286

of the numerical records in the table. As detailed 287

in Figure 4, for each table, we have six types of 288

questions. For each question, we sample its corre- 289

sponding arguments from the table. For example, 290

for the question SORT, we need to sample n names 291

and an attribute, and sort the names with respect to 292

the attribute. In our experiments, we construct 150 293

questions and answers for each table in the training 294

dataset. We obtain around 500,000 (table, query, 295

answer) triples in total for our pretraining dataset. 296

Each question and its corresponding answer are 297

tokenized into a sequence. 298

3.3.2 Pretraining 299

For numerical reasoning pretraining, we use the 300

same transformer encoder-decoder architecture. 301

The model answers questions in a sequence- 302

to-sequence manner. The input of the en- 303

coder are two sequences, one is the concatena- 304

tion of table and the query attribute sequences: 305

Kq=[ENT]k11,...,[ENT]k21...[ENT]kq1 ..., where 306

kqi is the attribute token of the query sequence. 307

The other is the concatenation of value sequences: 308

Vq=[ENT]v11,...,[ENT]v21...[ENT]vq1 ..., where 309
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TEAM

Bucks

Cavaliers

WINS

8

13

LOSSES

8

3

PTS

118

101

REB

43

35

AST

27

17

PLAYER

Giannis

Jabari

Michael

Lebron

Kyrie

Kevin

AST

5

1

2

4

3

2

REB

12

4

2

4

2

13

STL

5

2

1

0

1

1

CITY

Milwaukee

Milwaukee

Milwaukee

Cleveland

Cleveland

Cleveland

Query:     MAX(Giannis, Kyrie, Kevin, PTS)

Ans:        Giannis

Query:    MAX_NUM(Giannis, Kyrie, Kevin, PTS)

Ans:         34

Query:    EXCEED(Giannis, Kevin, Lebron, PTS, 20)

Ans:         Giannis, Lebron

Query:    EXCEED_NUM(Giannis, Kevin, Lebron, PTS, 20)

Ans:         34,22

Query:     SORT(Giannis, Jabari, Kevin, PTS)

Ans:         Kevin, Jabari, Giannis

Query:     SORT_NUM(Giannis, Jabari, Kevin, PTS)

Ans:         13,18,34

1. MAX(Name1,Name2,...,K) : Output player's name with the maximum value of attribute K.

2. MAX_NUM(Name1,Name2,...,K) : Output the maximum value of the attribute K. 

3. EXCEED(Name1,Name2, ..., K, V) : Output players' names with attributes K higher than V. 

4. EXCEED_NUM(Name1,Name2, ..., K, V) : Output the values that higher than V. 

5. SORT(Name1, Name2, ..., K) : Sort the names of players according to values of attribute K. 

6. SORT_NUM(Name1, Name2, ..., K) : Sort the values of players' attribute K.

…

…

…

…

…

…

…

…

…

…

PTS

34

18

17

20

10

13

Figure 4: Illustration of query and answer construction
condition on the table of a game.

vqi is the i-th token in the query sequence. The310

output of the decoder is the corresponding sequen-311

tial answer yq = y1y2...y|yq|. Similarly, we first312

feed the two sequence into a embedding layer:313

EKq ,EVq = Emb(Kq),Emb(Vq), (7)314

the initial representation is:315

Hq
0 = (EKq +EVq)/2 +Pq, (8)316

where Pq is the position embedding matrix. Then,317

we feed Hq
0 into the transformer encoder to get the318

contextual representation Hq
L.319

As for decoding, the answer sequence is decoded320

one-by-one:321

p(yqi |y
q
1:i−1,HL) = TransDecoder(Hq

y1:i−1
,Hq

L),

(9)
322

Hq
y1:i−1

= Emb(yq1:i−1) +Pq
y1:i−1

, (10)323

where Pq
y1:i−1 is the postition embedding matrix of324

previous i− 1 words. The objective function is:325

Lq(θ) = −
Lq∑
i=1

log p(yqi |y1:i−1,H
q
L). (11)326

4 Experiment327

4.1 Dataset and Automatic Evaluation328

We conduct our experiments mainly on the NBA329

game table-to-text datasets ROTOWIRE (Wiseman330

et al., 2017). The number of the attribute in the 331

table is 39 and average length of summaries is 337. 332

We also conduct experiments on RW-FG (Wang, 333

2019b), which is an enriched and cleaned version of 334

ROTOWIRE which removes ungrounded sentences 335

in the summary and add additional information 336

into the table, such as the arena name. The dataset 337

splits are 3,398/727/728 and 5,232/1,125/1,119 for 338

ROTOWIRE and RW-FG respectively. 339

As for automatic evaluation, we use BLEU score 340

(Papineni et al., 2002) and three extractive evalua- 341

tion metrics RG (Relation Generation), CS (Con- 342

tent Selection), and CO (Content Ordering) (Wise- 343

man et al., 2017). The main idea of the extractive 344

metrics is to use an Information Extraction (IE) 345

system to extract predicted records mentioned in 346

the generated summary and compare them with 347

records extracted from reference summary to eval- 348

uate the model. We denote r as the set of records 349

extracted from the gold summary, and r̂ as the set 350

of records extracted from the generated summary. 351

The RG measures the content fidelity by computing 352

how many generated records in r̂ can be find in the 353

table. CS measures the ability of content selection 354

by computing the precision, recall and F1 score 355

between r and r̂. CO measures the model’s ability 356

of organizing and ordering the selected records by 357

computing the normalized Damerau-Levenshtein 358

Distance between r and r̂. 359

4.2 Implementation Details 360

We conduct our experiments on four 16GB 361

NVIDIA V100 GPUs. We implement our genera- 362

tion model with FAIRSEQ (Ott et al., 2019). We 363

use the pretrained BART (Lewis et al., 2020) to 364

initialize the model. We use the Adam (Kingma 365

and Ba, 2014) optimizer with learning rate 5e-5. 366

The dropout rate is 0.1, weight decay is 0.1 and 367

clip norm (Pascanu et al., 2013) is 0.1. We use the 368

dynamic batching strategy with 2048 max tokens 369

within a batch. We trained our model 100 epochs 370

and select the best checkpoint at the validation set 371

based on BLEU score. As for the XGBoost, we em- 372

ploy the available public library provided by (Chen 373

and Guestrin, 2016). Since some tables have more 374

rows, we pad features and labels in to fixed size 375

with -1 and 0 respectively. At the decoding stage, 376

the minimum decoding length is 330 and the max- 377

imum decoding length is 600 with n-gram-block 378

(Paulus et al., 2018) to avoid 6-gram repetition. 379
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ROTOWIRE

Model RG CS CO BLEUP% # P% R% F1%
Templ (Chen and Guestrin, 2016) 99.93 54.27 26.86 57.90 36.69 14.82 8.93
NCP (Puduppully et al., 2019a) 86.84 34.26 33.37 50.95 40.58 18.07 16.50
ENT (Puduppully et al., 2019b) 91.16 30.03 38.45 48.26 42.80 19.90 16.13
Hierarchical-k (Rebuffel et al., 2020) 88.46 41.82 33.07 48.60 39.35 17.79 16.77
Marco (Puduppully and Lapata, 2021) 97.51 41.09 35.57 58.05 44.11 19.87 15.46
HETD (Gong et al., 2019) 92.02 31.51 35.82 47.74 40.93 20.60 16.85
DUV (Gong et al., 2020) 86.27 26.97 40.44 48.61 44.15 23.14 15.92
HEnc (Li et al., 2021)† 93.14 32.73 40.80 55.88 47.16 25.30 17.96
BART 94.47 37.07 38.82 55.88 45.81 20.85 19.13
FLAP 93.21 21.39 53.18 46.24 49.46 25.44 18.32

RW-FG
Templ (Chen and Guestrin, 2016)‡ 98.89 51.80 23.98 43.96 31.03 10.25 12.09
ENT(Puduppully et al., 2019b)‡ 93.72 35.69 39.04 49.29 43.57 17.5 21.23
NCP (Puduppully et al., 2019a)‡ 94.21 35.99 43.31 55.15 48.52 23.46 23.86
NCP+TR (Wang, 2019a)‡ 95.70 37.49 42.90 56.91 48.92 24.47 24.41
HEnc (Li et al., 2021)† 94.75 38.08 42.72 57.56 49.04 25.23 24.52
BART 95.03 37.41 44.89 57.61 50.46 24.92 25.89
FLAP 94.15 28.96 53.58 52.35 52.95 26.16 25.03
† HEnc (Li et al., 2021) doesn’t released their source code as well as pretrained models and generated summaries, thus we

use their results from the original paper.
‡ Results of Templ, ENT, NCP and NCP+TR on RW-FG are from Wang (2019a).

Table 1: Overall automatic metrics on the test set of ROTOWIRE and RW-FG dataset. The metrics include relation
generation (RG), count (#), precision (P%), content selection (CS) precision (P%), re-call (R%) and content ordering
(CO) in normalized Damerau-Levenshtein distance (DLD%)

4.3 Compared Baselines380

We compare our system with several baselines:381

Templ (Chen and Guestrin, 2016), NCP+CC382

(Puduppully et al., 2019a), ENT (Puduppully et al.,383

2019b), Hierarachical-k (Rebuffel et al., 2020),384

Marco (Puduppully and Lapata, 2021), HETD385

(Gong et al., 2019), DUV (Gong et al., 2020) and386

HEnc (Li et al., 2021). We also use BART to train387

an end-to-end generation model that takes the en-388

tire table as input and summary as output without389

explicit content selection. To ensure pair compari-390

son, we use the output summaries released by these391

papers or generate the corresponding summaries392

with their released checkpoints. We use the public393

available evaluation script and extraction models394

to compute automatic metrics.395

4.4 Overall Results396

We report the overall results on ROTOWIRE and397

RW-FG in Table 1. In ROTOWIRE, FLAP achieves398

the best performance on content selection preci-399

sion, improving the previous state-of-the-art by400

12.38% and raises the F1 score by 2.3%, which401

demonstrates that our model is superior at selecting 402

appropriate and proper records. Our model also 403

achieves the best score on content ordering (CO) 404

and improves the previous best model by 0.14%, 405

which shows that our model has a better ability 406

to organize and resort the selected records. Ad- 407

ditionally, although the two BART-based models 408

achieve the best BLEU score, which demonstrates 409

the powerful generation ability of the pretrained 410

model, the performances of content selection and 411

planning of the BART model still fall short in com- 412

parison with FLAP. This shows that it is difficult 413

for the end-to-end BART to learn content selection 414

and planning without explicit content selection su- 415

pervision. What’s more, notice that Marco gets the 416

highest score on CS recall, but its precision is only 417

35.57, which is 17.61% lower than our model. This 418

means that Marco just learns to mention as many 419

records as possible, which is sub-optimal. Last but 420

not least, FLAP has lower RG # than other mod- 421

els, which means that our model is more conserva- 422

tive when selecting the records. Overall speaking, 423

FLAP achieves well-balanced and competitive per- 424
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Test Set
Model P% R% F1%
SVM 38.95 39.70 39.32
Random Forest 64.94 37.73 47.73
XGBoost 58.58 47.10 52.22

Development Set
SVM 39.51 39.89 39.70
Random Forest 65.88 38.55 48.64
XGBoost 59.64 48.38 53.42

Table 2: Performance of different classifier vs the
ground truth label on ROTOWIRE.

formance in all metrics.425

The results are similar in RW-FG. Since RW-426

FG is a cleaned and enrichment version of RO-427

TOWIRE, all the baselines have higher perfor-428

mance on all the metrics. FLAP achieves consistent429

performance. Specifically, FLAP achieves the best430

performance on content selection precision F1 and431

CO again, and improves previous state-of-the-art432

by 10.86%, 3.91% and 0.93% respectively.433

4.5 Performance of Different Content Selector434

We report the performance of different classifiers435

compared with the ground truth 0-1 label in Table436

2. We use SVM (Cortes and Vapnik, 1995), Ran-437

domForest (Ho, 1995) and XGBoost (Chen and438

Guestrin, 2016) respectively. As shown in the ta-439

ble, XGBoost and Random Forest achieve better440

performance than SVM since they are ensemble-441

based methods. Besides, XGBoost have higher442

performance on F1 and recall, specifically, it has443

10% higher in recall and 5% higher in F1 than444

Random Forest. We think it may be because that445

XGBoost is a regularizing gradient boosting frame-446

work which can reduce variance, and also reduces447

bias. Notice that both XGBoost and Random For-448

est achieve higher F1 score than previous methods449

which treat table as sequence of token embeddings,450

which demonstrates the importance of scalar fea-451

ture in content selection.452

4.6 Effectiveness of Feature Indication and453

Dealing with Exposure Bias454

In this subsection, we will discuss the effectiveness455

of the feature indication mechanism and study how456

feature indication can alleviate the exposure bias457

(Ranzato et al., 2016) problem. For this purpose,458

we implement a BARTpipe model that takes the se-459

lected subset of table rather than the whole table as460

input. BARTpipe can be seen to perform translation461

task that translate the selected records to natural462

language summary. In the training stage, we feed 463

the model with the concatenation of ground truth 464

mentioned records. In the evaluate stage, we feed 465

the concatenation of records predicted by the con- 466

tent selector. We report the results of two models 467

evaluated under different kinds of records and cor- 468

responded performance drop in Table 3. 469

From Table 3, first thing we can observe is that 470

with the ground truth records, both BARTpipe and 471

FLAP achieves very high performance across all 472

metrics. This can be viewed as an upper bound for 473

the task. Given gold content selection, BARTpipe 474

performs better in terms of content selection and 475

content ordering as it is strictly translating the 476

selected records. While FLAP generates more 477

records and has higher BLEU score as it learns 478

explicit as well as implicit content selection, which 479

provides more flexibility. 480

What’s more, notice that both models suffer from 481

performance drops when evaluated with predicted 482

records. The performance of BARTpipe in content 483

selection, content ordering, and BLEU all drasti- 484

cally decrease. However, the drop of FLAP is much 485

smaller, especially for BLEU score. We believe 486

that the low BLEU of BARTpipe is mainly caused 487

by the combination distribution variation of the 488

model input form rather than the information mis- 489

match between ground truth and predicted records. 490

The gap between FLAP and BARTpipe given pre- 491

dicted records shows the necessity of whole table 492

as input and that our feature indication mechanism 493

does alleviate the exposure bias (Ranzato et al., 494

2016) problem. 495

We also report the results of the two models that 496

trained on predicted records on Table 4. The train- 497

ing and evaluation process is consistent in that they 498

both use predicted records. To avoid label leak- 499

age issue, we use 4-fold cross validation to get the 500

predicted records on training set. As shown in Ta- 501

ble 4, performance BARTpipe trained on predicted 502

records drops significantly. The reason is that it is 503

difficult for a model to generate summary condi- 504

tions on the predicted records along. Thus models 505

trained on such training set tend to generate more 506

ungrounded facts. Compared to BARTpipe, the per- 507

formance of FLAP trained on predicted records 508

doesn’t drop sharply, because the input of FLAP 509

is the entire table along with the feature indication 510

sequence. Besides, although the training and evalu- 511

ation process of this setting is consistent, the per- 512

formance of FLAP trained on ground truth records 513
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Test Set

Model RDs RG CS CO BLEUP% # P% R% F1%

BARTpipe
gt 86.84 25.38 89.21 87.55 88.37 49.24 27.19
pred 88.12↑1.47% 22.39↓11.74% 50.84↓42.99% 42.66↓51.27% 46.39↓47.50% 23.51↓52.25% 15.17↓44.20%

FLAP
gt 92.29 27.36 82.13 85.36 83.71 48.89 27. 54
pred 93.21↑0.99% 21.39↓21.82% 53.18↓35.23% 46.24↓45.80% 49.46↓40.90% 25.44↓47.96% 18.32↓33.47%

Development Set

BARTpipe
gt 86.93 24.80 89.30 87.74 89.00 48.81 26.53
pred 88.27↑1.54% 21.95↓11.49% 52.08↓41.67% 43.77↓50.11% 47.56↓46.56% 24.48↓49.84% 15.33↓42.21%

FLAP
gt 92.81 26.72 82.13 85.36 83.48 48.44 27.34
pred 92.29↓0.56% 22.44↓18.37% 54.02↓34.22% 47.53↓44.17% 50.56↓39.43% 26.41↓45.47 18.75↓31.42%

Table 3: Results of BARTpipe and FLAP on ROTOWIRE development and test set. For BARTpipe, gt means
utilizing the ground truth records as input, pred means using predicted records. For FLAP, gt means utilizing the
ground truth feature sequence as input, while pred means using the predicted feature sequence.

Test Set

Model RG CS CO BLEUP% # P% R% F1%
BARTpipe 50.74 19.16 28.01 37.92 32.22 16.03 15.35
FLAP 94.65 37.08 40.29 58.40 47.68 23.27 19.36

Development Set
BARTpipe 50.58 18.98 28.11 39.07 32.69 15.86 15.31
FLAP 94.80 36.72 40.32 59.69 48.12 24.31 19.57

Table 4: Results of BARTpipe and FLAP on RO-
TOWIRE that trained on predicted records and eval-
uated with predicted records.

is still better than that trained on predicted ones.514

This is because the predicted records can’t align515

well with the summary. Thus FLAP trained on516

ground truth records has a better guidance. This517

once again demonstrates the effectiveness of our518

feature indication mechanism.519

4.7 Ablation Study520

Test Set

Model RG CS CO BLEUP% # P% R% F1%
baseline 94.47 37.07 38.82 55.88 45.81 20.85 19.13
+pt 94.83 36.98 39.80 57.61 47.07 22.89 19.72

+feat.inject 93.21 21.39 53.18 46.24 49.46 25.44 18.32
Development Set

baseline 94.56 36.13 38.64 56.02 45.72 21.59 18.92
+pt 94.87 36.57 39.66 58.12 47.14 23.50 19.72

+feat.inject 92.29 22.44 54.02 47.53 50.56 26.41 18.75

Table 5: Automatic metric on on ROTOWIRE test set
and development set. pt stands for numerical reasoning
pretraining. feat.inject stands for feature indication.

In this subsection, we will discuss the effective-521

ness of feature indication and numerical reasoning522

pretraining. As shown in Table 5, the performance523

of baseline model improves greatly after adding nu-524

merical reasoning pretraining. Specifically, content525

selection precision recall, F1 and content ordering526

increase around 2% on both test and development 527

set. The BLEU score also increases. During pre- 528

training, the model acquire the ability of under- 529

standing and reasoning over tables, thus pt not only 530

improves the performance on content selection, but 531

also improves the performance on content plan- 532

ning. Second, after adding feature indication, the 533

performance of content selection precision largely 534

increased by around 14% on both test and develop- 535

ment set. CO increased by around 3%. It demon- 536

strates that the auxiliary can remarkably improve 537

the content selection performance and then help 538

content planning. 539

We also showcase a couple of case studies in the 540

appendix A to demonstrate how FLAP can gener- 541

ate well-balanced summary than end-to-end BART 542

and pipeline BART and an analysis on minimum 543

decoding length in appendix B. 544

5 Conclusions 545

In this work, we present an end-to-end model that 546

takes whole table as input to alleviate the expo- 547

sure bias problem. We propose a feature indication 548

mechanism and utilizes the table’s scalar feature 549

and an XGBoost as content selector. We also pro- 550

pose a numerical reasoning pretraining task that 551

can improve the performance of content planning. 552

Experiments on two document level table-to-text 553

datasets ROTOWIRE and RW-FG show that our 554

model achieves favorable performance over several 555

strong baselines. We also propose experiments to 556

demonstrate the effectiveness of each component of 557

our model. We hope the idea of treating the values 558

in the table as numerical features and the proposed 559

numerical reasoning pretraining can inspire future 560

work on table-to-text generation. 561
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A Case Study 723

Figure 5 shows an example of the records ex- 724

tracted from summaries generated by FLAP and 725

BART. We can find that BART tends to mention 726

more records regardless of importance. Such as 727

(Henson, 0, PLAYER-FG3M) and (Henson, 0, 728

PLAYER-OREB). While FLAP can capture im- 729

portant records, like (Quincy, 18, PLAYER-PTS), 730

and neglect unnecessary ones. We attributed this 731

phenomenon to the lack of explicit selection pro- 732

cedure of BART. This demonstrates that even a 733

powerful pretrained language model can’t learn 734

content selection well without explicit content se- 735

lection supervision and the advantage of our feature 736

indication mechanism.

FLAP

…

(Davis,42,PLAYER-MIN),(Omer,16,PLAYER-PTS),

(Omer,11,PLAYER-REB),(Tyreke,12,PLAYER-PTS),

(Tyreke,nine,PLAYER-REB),(Tyreke,six,PLAYER-AST),

(Quincy,18,PLAYER-PTS),(Giannis,15,PLAYER-PTS),

(Giannis,nine,PLAYER-REB),(Ersan,15,PLAYER-PTS),

(Henson,14,PLAYER-PTS),(Bayless,14,PLAYER-PTS)

BART

…

(Bucks,37,TEAM-FG_PCT),(Bucks,20,TEAM-FG3_PCT),

(Davis,6,PLAYER-FGM),(Davis,18,PLAYER-FGA),

(Davis,8,PLAYER-FTM),(Davis,9,PLAYER-FTA),

(Henson,one,PLAYER-STL),(Zaza,11,PLAYER-PTS),

(Zaza,3,PLAYER-FGM),(Zaza,9,PLAYER-FGA),

(Zaza,5,PLAYER-FTM),(Zaza,6,PLAYER-FTA),

(Zaza,11,PLAYER-REB),(Henson,14,PLAYER-PTS),

(Henson,7,PLAYER-FGM),(Henson,10,PLAYER-FGA),

(Henson,0,PLAYER-FG3M),(Henson,4,PLAYER-FG3A),

(Henson,0,PLAYER-FTM),(Henson,0,PLAYER-TO),

(Henson,6,PLAYER-FTA),(Henson,seven,PLAYER-REB),

(Henson,0,PLAYER-OREB),(Henson,0,PLAYER-PF)

(Pelicans,37,TEAM-WINS)

(Pelicans,30,TEAM-LOSSES)

(Pelicans,85,TEAM-PTS)

(Milwaukee Bucks,84,TEAM-PTS)

(Milwaukee Bucks,34,TEAM-WINS)

(Milwaukee Bucks,33,TEAM-LOSSES)

(Davis,42,PLAYER-MIN)

(Davis,20,PLAYER-PTS)

(Davis,12,PLAYER-REB)

(Davis,four,PLAYER-AST)

(Davis,three,PLAYER-BLK)

(Davis,one,PLAYER-STL)

(Tyreke Evans,12,PLAYER-PTS)

(Tyreke Evans,10,PLAYER-REB)

(Tyreke Evans,6,PLAYER-AST)

(Tyreke Evans,37,PLAYER-MIN)

(Quincy Pondexter,18,PLAYER-PTS)

(Quincy Pondexter,five,PLAYER-FG3M)

(Michael Carter-Williams,2,PLAYER-FGM)

(Michael Carter-Williams,12,PLAYER-FGA)

(Jerryd Bayless,34,PLAYER-MIN)

(Jerryd Bayless,14,PLAYER-PTS)

(Jerryd Bayless,eight,PLAYER-REB)

(Jerryd Bayless,five,PLAYER-AST)

(John Henson,10,PLAYER-FGA)

Figure 5: Example of records extracted from the gener-
ated summaries of FLAP and BART. Common records
are removed. Correct records are lighted with green,
redundant ones are lighted with orange.

737

Figure 6 shows an example of generated sum- 738

maries of FLAP and BARTpipe condition on the 739

same predicted records of XGBoost. As shown 740

on the Figure, BARTpipe generates sentences con- 741

tradict to facts. For example, "...as he totaled 7 742

points and 7 rebounds in the victory..." is contra- 743

dict to the fact that "The Milwaukee Bucks (18-17) 744

defeated the New York Knicks (5-31) 95-82...". 745

While FLAP can generate fluent and consistent 746

summary. 747
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FLAP

The Milwaukee Bucks (18-17) defeated the New

York Knicks (5-31) 95-82 on Tuesday.…The Knicks

played this game without a true star, as Carmelo

Anthony missed this game with a shoulder injury.

Tim Hardaway Jr. led the team with 17 points, while

J.R. Smith accrued 15 points, seven rebounds and

four assists of his own. Cole Aldrich was the only

other starter in double figures, as he scored 12

points…

BART𝑝𝑖𝑝𝑒

The Milwaukee Bucks (18-17) defeated the New

York Knicks (5-31) 95-82 on Saturday. …J.R. Smith

was fantastic, as he tallied 15 points, 7 assists and 7

rebounds in the win. Tim Hardaway Jr. continued his

scoring tear off the bench, as he scored 17 points,

while filling in for Lance Thomas. Quincy Acy had

the most production off the bench, as he totaled 7

points and 7 rebounds in the victory. Cole Aldrich led

the team in scoring, as he dropped 12 points off the

bench…

Figure 6: Example of generated summaries of FLAP
and BARTpipe condition on the same predicted records
of XGBoost.

B Discussion on the Effect of Minimum748

Decoding Length749

In this subsection, we will discuss the effect of min-750

imum decoding length to each metric. As shown in751

Figure 7, the first thing to noticed is that RG, CS-752

P and CO decrease as minimum decoding length753

increases. This is because as the model generates754

more tokens, it is more likely to generate wrong755

records that will punish precision score. Secondly,756

content selection recall grows up as minimum de-757

coding length increase, because as the model gener-758

ates more tokens, more likely a target record will be759

mentioned. And BLEU goes up until an inflection760

point. The reason may be that model can improve761

the BLEU score by generating high-frequency n-762

grams until the length penalty mechanism of BLEU763

score starts to work. However, these n-grams are764

usually dull and redundant. Lastly, we can observe765

that our model can consistently outperform the766

BARTpipe model by a large margin, which demon-767

strates the effectiveness of the feature indication768

mechanism and numerical reasoning pretraining769

again. This phenomenon also reminds us that we770

should not focus too much on BLEU and CS-R771

in the document level table-to-text generation task772

since these two metrics can be cheated by forcing773

the model to output more tokens.774
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Figure 7: Automatic metric of a trained model under
different minimum decoding length on ROTOWIRE
development set.
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