
Instance Generation for Maximum Independent Set
using Graph Generative Models

Iker Pérez1, Josu Ceberio2, Iñigo Urteaga3
1UPV/EHU, iperez267@ikasle.ehu.eus

2UPV/EHU, josu.ceberio@ehu.eus
3BCAM, iurteaga@bcamath.org

Abstract

In the field of combinatorial optimization, having problem instances is essential
for the design, development, and evaluation of algorithms and models. However,
their availability is usually limited and, in general, existing benchmark repositories
are used to carry out the above-mentioned tasks along with current combinatorial
optimization problem (COP) instance generators. The problem is that those in-
stances are usually artificially generated and do not always succeed in reflecting
real problem properties, such as a the solutions achieved by a given algorithm. In
this paper, we approach the COP instance generation development using graph
generative models. Specifically, given a reference sample of instances of a given
problem, the aim is to implement a model that is able to generate (i.e., sample)
new instances from the probability distribution on the COP instance space that
mimics the original examples. In this particular case, we assume that the instances
of optimization problems we are interested in can be represented as undirected
unweighted graphs. Because of that, we will focus on the maximum independent
set problem. Conducted experiments show that although we are capable of creat-
ing graphs similar to the original ones, their properties do not coincide with the
expected ones, making room for other models and approaches.

1 Introduction
Combinatorial Optimization Problems (COP) have recurrently been studied by the communities of
operational research, applied mathematics, and computer science, producing a wide variety of works
that propose exact [PR91, Cpl17, PF], heuristic, meta-heuristic [BR03] and, more recently, machine
learning strategies [BLP21, BPL+16] in order to solve them.

Generally, developing an algorithm that works better than the rest for a given problem, and therefore,
for all possible instances of that problem, is not possible without contravening the No-Free-Lunch
Theorem [WM97]. For this reason, the interest lies in developing algorithms with the desired
characteristics (better in performance, better in efficiency, better in complexity, etc.) for a specific
type of instances. Instance is understood as a set of values that parameterize the objective function
of the problem to be optimized, but that does not change its mathematical formulation. In other
words, it could also be understood as an example of the problem being represented. In the case of the
Maximum Independent Set (MIS), an instance would be represented by any undirected unweighted
graph G = (V,E) of |V | = N nodes. As mathematically described in Equation 1, MIS is the problem
of finding a set of nodes x ⊆ V , such that no two vertices in x are adjacent and the cardinality of x is
maximized. If the first condition is satisfied, the set is considered independent, hence the name. In the
mathematical representation of MIS, instances are defined with the adjacency matrix D = [dij]N×N ,
and the set to be evaluated is represented as x.

X∗ = argmax
x

{
|x| if

∑|x|
i=1

∑|x|
j=i+1 dx(i)x(j) = 0

0 otherwise
(1)

XVI XVI Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (maeb 2025).

The development of the algorithms to solve MIS and other COP problems require a significant number
of instances that are needed to execute experimental comparisons and, in certain cases, carry out
costly learning processes where thousands of instances are necessary. In contrast, the availability
of optimization instances rarely exceeds a hundred, especially in problems from real environments.
As a result, the community has opted to use existing repositories of instances (commonly called
benchmarks) and has combined them with instances generated artificially by sampling their parameters
from certain probability distributions (usually uniformly at random) [DLM11].

In the absence of alternatives, the artificially generated instances have allowed for the entire develop-
ment of the field; however, it is unknown what the actual performance of the algorithms would be if
more realistic instances were used for the development of algorithms, and in the same way, if models
generating instances with properties firmly matching those from real world were used. As Ishibuchi et
al. [IHS19] noted, the performance of an algorithm on popular benchmark problems can be different
from that on real-world problems. Tanabe et al. [TO17] also show that widely-used real-world-like
problems have some unnatural problem features, so the necessity of a large amount of real-world
problems exists. The problem lies in the fact that it is difficult to implement generators that create
instances that are similar to the real ones, since it implies knowledge about how instances occur in
the real-world and about their inner structure, which is as difficult as solving them [CHML13].

Despite unsuccessful attempts to generate realistic instances in the literature of COPs, relevant
progress has been made in the field of generative modeling, where structured data from numerous
domains (audio, video, images, graph, etc.) is being artificially generated using a sample of reference
data. Those generative models have shown a high capacity to learn the inner structure of the
data they have to represent. In the particular context of COPs, many of these problems can be
naturally described as graphs, therefore, we have formulated the generation of such instances as a
graph generation task. However, as graphs are not universally suitable for representing all type of
COPs, for problems where alternative representations are more appropriate, correspondingly tailored
representations and architectures should be used.

Among graph generative models, we will investigate deep learning-based models due to their demon-
strated superior performance in other tasks, which we hypothesize might be relevant for COP instance
generation as well. As our work here is a first step in that direction, we include a thorough review
of graph generative models that could also be used in future work. We emphasize those that have
interesting attributes for COP instance generation (permutation invariance, size invariance and ca-
pacity for large graph generation) and classify them based on the type of graph they generate. We
also present a first approach to build COP instances using graph generative networks. Specifically,
we take MIS as the case of study and implement GraphRNN [YYR+18] to generate instances as
similar as possible to the reference set. The experiments carried out reveal that it is feasible to use
GraphRNN [YYR+18] to recreate MIS instances, although we also observed certain limitations in
the generative capacity of the model.

This paper is organized as follows. Section 2 presents previous work on the area of COP instance
generation and presents current models for graph generation in the literature. Additionally, we
provide a table that briefly summarizes the key characteristics of these models in handling COP
instance generation. Then, Section 3 details the proposed methodology, encompassing the model
architecture, dataset preparation, training protocol and evaluation metrics. Afterwards, Section 4
presents a comprehensive analysis of experimental results. Finally, Section 5 concludes the paper
with key findings and insights and outlines promising directions for future research.

2 Background
2.1 Previous work on generating instances for COPs
Creating instances of COPs with desired properties has been a long-standing research line. The most
naive instance generators create instances by randomly sampling their parameters from user defined
distributions (usually uniform or Gaussian) [DLM11]. In some other works, limited information
about instance’s parameters is used to feed the hyperparameters of the mentioned distribution. There
have been some advanced works using these methods, such as the Max-Set of Gaussian Landscape
Generator [GY06], or Kriging based real-like landscape generator [FZS+16].

In the first case, the Max-Set of Gaussian Landscape Generator computes the upper envelope of m
weighted Gaussian process realizations and can be used to generate continuous, bound-constrained
optimization problems. The landscape generator is parameterized to control the features of the

2

instances to be generated. Among others, the parametrization can include terms like the number of
Gaussian components and implicitly, the number of local optima.

The Kriging based real like landscape generator uses a Kriging model [SSK18] to fit to a real dataset,
then this model is altered according to a variation parameter α, by adding it to the parameters of
the model. The generated instances will be discarded or kept according to thresholds for several
similarity measures of the model.

However, although instances obtained by those methods have been widely used in the combinatorial
optimization area, it cannot be assumed that they are able to replicate real instances. Generating COP
instance datasets according to a specific distribution is a non-trivial task. Ceberio et al. [CML17]
show this difficulty by applying a reduction function (f : N × N −→ r,where r ∈ R+) to the
artificial instances. This function provides the solution for the problem represented by the instance,
i.e., the solution of the combinatorial problem that is being represented. In that article, the authors
note that when sampling the parameters uniformly at random, the problems analyzed in terms of
rankings of solutions in the search spaces are not distributed uniformly. This results points a stray
weakness of such a technique so commonly used.

2.2 Literature review of graph generative models

In order to analyze the capabilities of the available models for graph generation, we will mainly focus
on four of their attributes: permutation invariance, size invariance, maximum graph size achieved and
type of graph generated (weighted / unweighted, directed / undirected, ...). Due to the permutation
invariant nature of COPs, the vast amount of equivalences that appear when representing the instances
may transform the learning of its structure into a difficult task. This, combined with the limited
availability of extensive datasets, may lead to low-quality generated instances. Size invariance along
with maximum graph size achieved are also good attributes for COP generative models, as COPs
can be of very distinct sizes, reaching up to thousands of nodes. A model with size invariance and
ability to deal with large graphs makes it a highly versatile choice for working with different types of
COPs. Finally, the type of graph generated is crucial as each COP has its own representation and not
all types of graphs are suitable.

In the following, we provide a taxonomic classification of graph generative models, along with
a table summarizing their main characteristics (Table 1). Four main families will be analyzed:
models based on Variational AutoEncoders (VAE) [BL14], those based on flow models [RM15],
on diffusion models [SDWMG15] and on autoregressive models like Recurrent Neural Networks
(RNNs) [Elm90].

Among the earliest approaches in the literature, we find models based on the VAE architecture.
The most representative model using this framework is GraphVAE [SK18], which decodes a vector
representation into a fully connected probabilistic graph, through a one-shot process. The low
capacities of VAEs to generate high quality graphs have led to their abandonment in favor of other
alternatives. However, this architecture has recently been revived for its use in combination with
diffusion models, achieving higher quality graphs. Among others, NGG [ENC+24] and PARD
[ZDA24] are models that leverage this combination of architectures. In the case of the latter, its
results surpass those of many existing reference models, such as EDP-GNN [NSS+20], DiGress
[aSLH22] or GDSS [aSLH22].

Notable graph generators that implement flow-based models are GraphDF [LYJ21], GraphNVP
[MINA19], CatFlow [EBN+24] and MoFlow [ZW20]. The last two groups, the ones using autore-
gressive and diffusion models, stand out with superior performance, thus significant popularity. The
major contributions in the domain of autoregressive models, GraphRNN [YYR+18] and GRAN
[LLS+19], despite not being permutation invariant, are notably simpler than those made with other
architectures. Due to their regressiveness, these models can handle a broader range of graph sizes
compared to others, highlighting their size invariance property. Both models, GraphRNN and GRAN,
have appropriate features to deal well with COP problems as they reach large graph lengths, and in
the case of GRAN, it could also be appropriate for a large variety of COPs.

Finally, diffusion models have become a very prolific architecture in terms of new proposed models
in recent years. Those, although not being as simple as autoregressive ones, also obtain very good
results, making them a promising area of research. Among others, we find LGGM [WRP+24], Twigs
[MVFG24] and FairWire [KS24]. Some of the proposed diffusion models are permutation invariant,

3

which makes them very suitable for our purpose. Graph generators with such a property are: DisCo
[XQC+24], DiGress [aSLH22], GDSS [aSLH22] and EDP-GNN [NSS+20].

Table 1: Summary of graph generative models for instance generation. Only articles published
since 2018 were considered. Checkmarks in Perm. inv. column indicate that the model is able to
deal with the permutation variability of the graphs naturally, and without involving costly processes.
Checkmarks in Size inv. column indicate that the model is able to generate graphs of different sizes
without changing its architecture. max. |V | column indicates the maximum graph size achieved
in the original experimentation. Code column indicates whether the code is available. In the
Application column we indicate which type of COP problem instances is the model able to generate
indicating unsuitability if the generated graphs are too small. Finally, ’-’ identifies those cases where
characteristic is not clear and red colour the ones a characteristic is believed to be present but cannot
be assured.

Model Ref. Year Perm. inv. Size inv. max. V Code Generated graph type Application
DisCo [XQC+24] 2024 ✔ ✔ |V | = 187 ✔ Graphs with categorical

node and edge attributes.
MIS, MDS, GPP, GCP.

Twigs [MVFG24] 2024 - ✔ |V | = 126 ✔ Graphs with categorical
edge attributes.

MIS, MDS, GPP, GCP.

PARD [ZDA24] 2024 ✔ ✔ |V | = 210 ✔ Graphs with categorical
edge attributes.

MIS, MDS, GPP, GCP.

FairWire [KS24] 2024 ✘ ✔ |V | >= 169 ✘ Undirected unweighted
graphs.

MIS, MDS, GPP, GCP.

CatFlow [EBN+24] 2024 ✔ ✔ |V | = 210 ✘ Graphs with categorical
edge attributes.

MIS, MDS, GPP, GCP.

LGGM [WRP+24] 2024 ✘ ✔ |V | > 265 ✔ Undirected unweighted
graphs.

MIS, MDS, GPP, GCP.

NGG [ENC+24] 2024 ✔ ✔ |V | = 100 ✔ Undirected weighted
graphs.

LOP, TSP, MIS, MDS,
GPP, GCP

DiGress [VKS+22] 2023 ✔ ✔ |V | = 200 ✔ Graphs with categorical
node and edge attributes.

MIS, MDS, GPP, GCP.

GDSS [aSLH22] 2022 ✔ ✔ |V | = 400 ✔ Graphs with categorical
node and edge attributes.

MIS, MDS, GPP, GCP.

GraphDF [LYJ21] 2021 - - |V | = 38 ✘ Graphs with categorical
node and edge attributes.

Not suitable for our pur-
poses.

EDP-GNN [NSS+20] 2020 ✔ ✔ |V | = 20 ✘ Undirected weighted
graphs.

Not suitable for our pur-
poses.

MoFlow [ZW20] 2020 - - |V | = 38 ✔ Graphs with categorical
node and edge attributes.

Not suitable for our pur-
poses.

GraphNVP [MINA19] 2020 ✘ ✔ |V | = 38 ✔ Undirected unweighted
graphs, with attributed
nodes.

Not suitable for our pur-
poses.

GRAN [LLS+19] 2019 ✔ ✔ |V | = 5037 ✔ Undirected unweighted
(and possibly weighted)
graphs.

LOP, TSP, MIS, MDS,
GPP, GCP.

GraphRNN [YYR+18] 2018 ✘ ✔ |V | = 500 ✔ Undirected unweighted
graphs.

MIS, MDS, GPP, GCP.

GraphModel [LVD+18] 2018 ✘ ✔ |V | = 20 ✘ Undirected weighted
graphs.

Not suitable for our pur-
poses.

GraphVAE [SK18] 2018 ✘ ✘ |V | = 38 ✔ Undirected weighted
graphs.

Not suitable for our pur-
poses.

Survey1 [ZDW+22] 2022

2.3 Graph generative models for COP benchmark generation

Not all graph generative models are suitable for generating COP benchmarks. We study GraphRNN
[YYR+18], LGGM [WRP+24] and GRAN [LLS+19] closely, based on their properties, which we
consider most suitable for our task. The first model, which is a reference in graph generation, has
been used as baseline for comparisons in most of the follow-up works described in Table 1. The
original article states that it can replicate graphs with up to 500 nodes, showing potential flexibility
with different problem sizes. On the other hand, the strong point of LGGM is that it does not require
a large number of instances to generate high-quality outputs, as it is pre-trained on a substantial
dataset of graphs. Due to the type of graphs they model, undirected unweighted graphs, GraphRNN
and LGGM can be used to generate instances of MIS, Graph Partitioning Problem (GPP), Graph
Coloring Problem (GCP) and Minimum Dominating Set (MDS) among others. GRAN also shows
a very good potential in this field, as it can generate substantially larger graphs than the other
models, capture correlations between generated edges and furthermore it could be suitable for Linear
Ordering Problem (LOP) or Traveling Salesman Problem (TSP) like COP problems, where edges
between nodes are weighted, in addition to the ones previously mentioned. For this study on COP

4

instance generation, GraphRNN was selected as the experimental model, based on its recognition
as a reference in graph generation, its capacity to generate large graphs and its comparatively less
complex architectural structure.

3 Experimental Setting
This section aims to outline the procedure for rigorously validating the selected graph generative
model, GraphRNN, in generating high-quality MIS instances.

3.1 Model

GraphRNN consists of a node-level recurrent neural network that sequentially generates nodes while
maintaining a hidden state encoding the structure generated so far. It represents a hierarchical
approach to graph generation, where the graph’s structure is decomposed into sequences that capture
both node-level and edge-level dependencies. The model employs two types of RNNs: a graph-level
RNN that maintains the state of the graph generation process and generates new nodes, and an
edge-level RNN that creates edges for each new node by predicting its connections to previously
generated nodes.

The process of graph generation can be seen in Figure 1, where the graph-level RNN functions as the
master controller, maintaining a graph-level hidden state that evolves as the generation progresses.
For each time step, it decides whether to add a new node to the graph. When a new node is added,
the edge-level RNN is activated to generate the node’s connectivity pattern. This edge-level RNN
operates on a sequence of binary decisions, determining for each previously generated node whether
an edge should exist between it and the new node, effectively capturing complex edge dependencies.

The training process learns from true graph sequences obtained through a breadth-first-search (BFS)
ordering of nodes from the training graphs. This ordering provides a consistent representation of
graphs and helps the model learn meaningful patterns in graph structure. The model is trained to
minimize the negative log-likelihood of the proposed generative model over observed node and
edge sequences, allowing it to capture both local and global graph statistics while maintaining
computational efficiency through its sequential generation approach.

Figure 1: GraphRNN at inference time. Green arrows denote the graph-level RNN that encodes
the “graph state” vector hi in its hidden state, updated by the predicted adjacency vector Sπ

i for
node π(vi). Blue arrows represent the edge-level RNN, whose hidden state is initialized by the
graph-level RNN, that is used to predict the adjacency vector Sπ

i for node π(vi). Figure obtained
from GraphRNN original paper [YYR+18].

3.2 Dataset

To measure the power of GraphRNN when generating MIS instances, we will use two dataset
approaches. On the one hand, artificial instances, which follow a known distribution and, on the
other hand, real instances, which follow an unknown distribution. With that purpose, three different
datasets have been used: an artificial dataset made of graphs created with the Erdös-Rènyi model
[ER+60] (which was chosen because, despite producing artificial graphs, it offers a cost-effective
way to generate graphs) and two realistic datasets derived from graphs in DIMACS repositories. By
"realistic", we refer to graphs that exhibit properties comparable to those of real-world graphs.

To address the lack of large, equally sized, and distributed benchmarks of MIS instances required for
training the model, we have developed custom, realistic datasets by adapting real-world graphs used
in combinatorial optimization: a graph showing the internet topology [LKF05] and a graph showing
the connectivity of New York roads [RA15]. In order to best approximate real graph distributions, we
have constructed the new graphs by making a sampling from the edges and nodes of the original ones.
For doing that, we have created non-overlapping partitions to define the subgraphs. Let G = (V,E)

5

be the original graph, where V is the set of vertices and E is the set of edges. For all child graphs
Gi = (Vi, Ei) extracted from the original one:

∀i −→ (Vi ⊂ V and Ei ⊂ E), ∀i ̸= j −→ (Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅).

To ensure similar distributions between the training and test datasets, the test graphs have been created
using the same nodes and edges as those in the training set. However, to prevent identical graphs
from appearing in both partitions, each test graph has been constructed by combining nodes from two
different training graphs. When creating the dataset, the length of the instances has been set to 100
nodes and the length of the dataset to 500 instances. The intention is to test if GraphRNN is able to
replicate MIS instances rather than to prove if it can do it in a truly realistic scenario. Thus, in those
experiments dataset size is not a constraint.

3.3 Training procedure and evaluation metrics
A training of 8000 epochs has been proposed to ensure a consistent training procedure across
datasets and training configurations (seeds, learning rates, etc.). To evaluate the stochasticity of
the learning process, we replicated the experiments 16 times, employing two distinct learning rates
(10−5 and 10−6) and eight different seeds.

The evaluation of the generated instances is crucial to prove the capacity of our model. As our
combinatorial problems are represented as graphs, part of our evaluation process must be similar
to the evaluation of graph generative models. To this end, degree and clustering metrics [New03],
standard in the field of graph generation models, will enable us to determine if the generated graphs
exhibit sufficient similarity to the original graphs from a structural perspective. Furthermore, we
will employ four metrics from the combinatorial optimization field to gain deeper insights into the
structural properties of the instances. Solving the MIS instance for both original and artificial datasets
will allow us to compare the resulting solutions and thereby extract information about the instance’s
inherent properties. Solutions of the problem represented by the instances will be compared by
means of their distribution using both Maximum Mean Discrepancy (MMD) and Kullback–Leibler
divergence (KL) [Kul51].

In order to compare the solutions of the problems represented by the dataset and those represented by
generated graphs, we will first solve the problems using two different methods: simulated annealing
[BT93] and estimation of distribution algorithm [LL12]. These algorithms, each employing a different
optimization strategy, enable us to detect solution-based discrepancies between original and generated
instances, leveraging heuristic nature of the algorithms to reveal variations.

4 Experimental results
To interpret the results, we will first analyze information provided by the metrics and then examine
the training and validation losses, as these also provide crucial insights into model performance.

4.1 Results in terms of metrics

In Table 2 three groups of three rows can be observed. Each group is related to a different dataset
(Erdös-Rènyi, NY roads and Internet Topology). Within each group, the rows are organized as
follows: the first row represents the results of comparing the original training dataset with graphs
obtained from the same distribution as those, thus indicates expected performance. The second row
shows results of graphs that the model outputs with a learning rate of 10−5 and the third row shows
results from graphs generated after a learning rate of 10−6.

When referring to the columns, the first and second columns represent the MMD for degree and
clustering coefficients between original and predicted graphs. SA/EDA column shows the MMD
between the results obtained when evaluating the instances with simulated annealing and estimation
of distribution algorithm. Although being two different experiments both have been shown in the
same column as results do not differ. Finally, SA/EDA KL columns show the Kullback–Leibler
divergence between the distributions of results obtained when evaluating the instances with simulated
annealing and estimation of distribution algorithm respectively. As in the previous column, the results
of both experiments are shown together. With these metrics we can assess both, whether the graph
structure and the representing COP instances are similar to the original ones. For all the presented
metrics, a lower value indicates higher similarity of the generated graphs towards the original dataset.

6

Table 2: Results for different datasets

Comparation dataset degree clustering SA/EDA SA/EDA KL

Erdös-Rènyi 0.00060 0.00003 2.00000e+00 6.40879e-03

GraphRNN (Erdös-Rènyi, lr = 10−5) 0.20072 0.00478 2.00000e+00 2.24628e-02

GraphRNN (Erdös-Rènyi)(lr = 10−6) 0.18862 0.00469 2.00000e+00 2.24628e-02

NY roads 0.04184 0.00121 1.99998e+00 4.79131e-01

GraphRNN (NY roads)(lr = 10−5) 0.09883 0.10717 2.00000e+00 5.53358e-02

GraphRNN (NY roads, lr = 10−6) 0.09796 0.10281 2.00000e+00 5.53358e-02

Internet Topology 0.32786 0.03392 2.00000e+00 6.16101e-01

GraphRNN (Internet Topology, lr = 10−5) 0.28604 0.09559 2.00000e+00 3.50549e-01

GraphRNN (Internet Topology)(lr = 10−6) 0.25500 0.06731 2.00000e+00 3.50549e-01

Our empirical evaluation indicates that there are differences in model performance across different
training datasets. Table 2 shows the results of replicating Erdös-Rènyi distribution, where we see
that the inner structure of the graphs in terms of degree and clustering differs substantially from their
original counterparts. However, SA/EDA column has not captured any difference in terms of MMD
and in the case of Kullback–Leibler divergence the difference has been minimum, as well. Therefore,
it can be stated that although the generated problems were similar to the original ones in terms of their
solutions, as the graph structure was not successfully replicated, the objective was not fully fulfilled.

Observing results related to NY roads dataset we see a similar pattern. The model is not able to
completely replicate the graphs’ inner structure, as degree and especially clustering differences are
bigger than the reference ones. Nevertheless, metrics that involve the objective function of the COP
instance, although being still different from the reference values, do not differ too much. Finally,
results obtained with dataset Internet Topology are the ones that show the best solution to the instance
generation problem, as the generated instances are clearly similar to the original ones in terms of
both graph structure and COP instance representation metrics.

4.2 Training and validation loss results
Loss curves can be helpful to identify the relationship between graph quality and model performance.
Internet Topology dataset, which achieved the best results, also had the lowest loss (see Figure 2). In
contrast, the losses for the other two datasets did not fall below 0.28, leading to poorer performance,
especially when analyzing the evaluation of the resulting COP instances.

The inability of the loss to descend below 0.25 is likely due to the model reaching its capacity limits.
As observed, the training and validation losses follow nearly identical trajectories, indicating no
significant overfitting. Overfitting is a common issue in machine learning, where a model performs
well on training data but fails to generalize to unseen validation or test data [RM19]. In this case,
however, the similar trends in training and validation losses suggest that the model’s limitations
stem from its architecture rather than overfitting, which is often associated with insufficient model
complexity [GBCB16].
5 Conclusion and future work
The preliminary work presented in this paper notes that using graph generative models to create
combinatorial optimization instances might be feasible, showing its potential to create real-world like
problems. The model used here is understood as a first approach, as the goal of the work was to show
the possibility of generating COP artificial instances using graph generative networks. Our results
confirm that learning the underlying distribution of these instances is possible. While the chosen
model may not be optimal, the experimental findings indicate that we can successfully generate MIS
problems with a distribution similar to that of the input data.

However, there are significant challenges to be addressed. As it was observed in our results, the
model improvement gets stuck when reaching a certain number of epochs. Although changes in
the learning rate have been made, the loss gets the same value, which suggests that the model has
reached a plateau in performance, where additional training does not yield better outcomes. This
issue, though not fully understood, likely arises from GraphRNN’s failure to capture these relations,
as shown by the dissimilarity between generated and original graphs.

7

Figure 2: Training and validation loss evolution when using distinct datasets and learning rates

In future research, we aim to explore models specifically tailored for optimization instances. Currently,
most models are designed for graphs and inherently account for both, edges and nodes. However,
for COPs, it may be beneficial to develop models that do not rely on nodes and instead utilize edges
more effectively to capture problem-specific features.

Another promising direction is to explore models like LGGM [WRP+24] and GRAN [LLS+19]. As
shown in Section 2.4, these models could offer greater flexibility and generalization across various
combinatorial optimization scenarios, making them potentially viable for COP instance generation.

References
[aSLH22] J. Jo anc S. Lee and S. Ju Hwang. Score-based generative modeling of graphs via the

system of stochastic differential equations. In International Conference on Machine
Learning, pages 10362–10383. PMLR, 2022.

[BL14] Y. Bengio and Y. LeCun. Auto-encoding variational bayes. ICLR, 12:20, 2014.

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinato-
rial optimization: A methodological tour d’horizon. European Journal of Operational
Research, 290(2):405–421, 2021.

[BPL+16] I. Bello, H. Pham, Q. V Le, M. Norouzi, and S. Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[BR03] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[BT93] D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical science, 8(1):10–15,
1993.

[CHML13] J. Ceberio, L. Hernando, A. Mendiburu, and J. A. Lozano. Understanding instance
complexity in the linear ordering problem. In Intelligent Data Engineering and
Automated Learning–IDEAL 2013: 14th International Conference, IDEAL 2013,
Hefei, China, October 20-23, 2013. Proceedings 14, pages 479–486. Springer, 2013.

[CML17] J. Ceberio, A. Mendiburu, and J. A Lozano. Are we generating instances uniformly
at random? In 2017 IEEE Congress on Evolutionary Computation (CEC), pages
1645–1651. IEEE, 2017.

[Cpl17] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines
Corporation, 46(53):157, 2017.

[DLM11] A. Duarte, M. Laguna, and R. Martí. Tabu search for the linear ordering problem with
cumulative costs. Computational Optimization and Applications, 48:697–715, 2011.

8

[EBN+24] F. Eijkelboom, G. Bartosh, C. A. Naesseth, M. Welling, and J. van de Meent. Varia-
tional flow matching for graph generation. arXiv preprint arXiv:2406.04843, 2024.

[Elm90] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[ENC+24] I. Evdaimon, G. Nikolentzos, M. Chatzianastasis, H. Abdine, and M. Vazirgiannis.
Neural graph generator: Feature-conditioned graph generation using latent diffusion
models. arXiv preprint arXiv:2403.01535, 2024.

[ER+60] P. Erdos, A. Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung.
acad. sci, 5(1):17–60, 1960.

[FZS+16] A. Fischbach, M. Zaefferer, J. Stork, M. Friese, and T. Bartz-Beielstein. From real
world data to test functions. 2016.

[GBCB16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[GY06] M. Gallagher and B. Yuan. A general-purpose tunable landscape generator. IEEE
Transactions on Evolutionary Computation, 10(5):590–603, 2006.

[IHS19] H. Ishibuchi, L. He, and K. Shang. Regular pareto front shape is not realistic. In 2019
IEEE Congress on Evolutionary Computation (CEC), pages 2034–2041. IEEE, 2019.

[KS24] O. D. Kose and Y. Shen. Fairwire: Fair graph generation. arXiv preprint
arXiv:2402.04383, 2024.

[Kul51] Solomon Kullback. Kullback-leibler divergence, 1951.

[LKF05] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, pages
177–187, 2005.

[LL12] P. Larrañaga and J. A Lozano. Estimation of distribution algorithms: A new tool for
evolutionary computation, volume 2. Springer Science & Business Media, 2012.

[LLS+19] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. K Duvenaud, R. Urtasun, and
R. Zemel. Efficient graph generation with graph recurrent attention networks. Ad-
vances in neural information processing systems, 32, 2019.

[LVD+18] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

[LYJ21] Y. Luo, K. Yan, and S. Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pages 7192–7203.
PMLR, 2021.

[MINA19] K. Madhawa, K. Ishiguro, K. Nakago, and M. Abe. Graphnvp: An invertible flow-
based model for generating molecular graphs, 2019.

[MVFG24] G. Mercatali, Y. Verma, A. Freitas, and V. Garg. Diffusion twigs with loop guidance
for conditional graph generation. arXiv preprint arXiv:2410.24012, 2024.

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM review,
45(2):167–256, 2003.

[NSS+20] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon. Permutation invariant
graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

[PF] L. Perron and V. Furnon. Or-tools.

[PR91] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.

9

[RA15] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015.

[RM15] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[RM19] Sebastian Raschka and Vahid Mirjalili. Python machine learning: Machine learning
and deep learning with Python, scikit-learn, and TensorFlow 2. Packt publishing ltd,
2019.

[SDWMG15] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256–2265. PMLR, 2015.

[SK18] M. Simonovsky and N. Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes,
Greece, October 4-7, 2018, Proceedings, Part I 27, pages 412–422. Springer, 2018.

[SSK18] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of mathematical psychology,
85:1–16, 2018.

[TO17] R. Tanabe and A. Oyama. A note on constrained multi-objective optimization bench-
mark problems. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages
1127–1134. IEEE, 2017.

[VKS+22] C. Vignac, I Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard. Digress:
Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,
2022.

[WM97] D. H. Wolpert and W. G Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[WRP+24] Y. Wang, R. A. Rossi, N. Park, H. Chen, N. K Ahmed, P. Trivedi, F. Dernon-
court, D. Koutra, and T. Derr. Large generative graph models. arXiv preprint
arXiv:2406.05109, 2024.

[XQC+24] Z. Xu, R. Qiu, Y. Chen, H. Chen, X. Fan, M Pan, Z. Zeng, M. Das, and H. Tong.
Discrete-state continuous-time diffusion for graph generation. arXiv preprint
arXiv:2405.11416, 2024.

[YYR+18] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine
learning, pages 5708–5717. PMLR, 2018.

[ZDA24] L. Zhao, X. Ding, and L. Akoglu. Pard: Permutation-invariant autoregressive diffusion
for graph generation. arXiv preprint arXiv:2402.03687, 2024.

[ZDW+22] Y. Zhu, Y. Du, Y. Wang, Y. Xu, J. Zhang, Q. Liu, and S. Wu. A survey on deep graph
generation: Methods and applications. In Learning on Graphs Conference, pages
47–1. PMLR, 2022.

[ZW20] C. Zang and F. Wang. Moflow: an invertible flow model for generating molecular
graphs. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & data mining, pages 617–626, 2020.

10

	Introduction
	Background
	Previous work on generating instances for COPs
	Literature review of graph generative models
	Graph generative models for COP benchmark generation

	Experimental Setting
	Model
	Dataset
	Training procedure and evaluation metrics

	Experimental results
	Results in terms of metrics
	Training and validation loss results

	Conclusion and future work

